]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/filemap.c
cgroup: Prevent double killing of css when enabling threaded cgroup
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include "internal.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/filemap.h>
44
45 /*
46 * FIXME: remove all knowledge of the buffer layer from the core VM
47 */
48 #include <linux/buffer_head.h> /* for try_to_free_buffers */
49
50 #include <asm/mman.h>
51
52 /*
53 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * though.
55 *
56 * Shared mappings now work. 15.8.1995 Bruno.
57 *
58 * finished 'unifying' the page and buffer cache and SMP-threaded the
59 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
60 *
61 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 */
63
64 /*
65 * Lock ordering:
66 *
67 * ->i_mmap_rwsem (truncate_pagecache)
68 * ->private_lock (__free_pte->__set_page_dirty_buffers)
69 * ->swap_lock (exclusive_swap_page, others)
70 * ->mapping->tree_lock
71 *
72 * ->i_mutex
73 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
74 *
75 * ->mmap_sem
76 * ->i_mmap_rwsem
77 * ->page_table_lock or pte_lock (various, mainly in memory.c)
78 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 *
80 * ->mmap_sem
81 * ->lock_page (access_process_vm)
82 *
83 * ->i_mutex (generic_perform_write)
84 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 *
86 * bdi->wb.list_lock
87 * sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
89 *
90 * ->i_mmap_rwsem
91 * ->anon_vma.lock (vma_adjust)
92 *
93 * ->anon_vma.lock
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 *
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
101 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
105 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
106 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
107 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
108 * ->inode->i_lock (zap_pte_range->set_page_dirty)
109 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
110 *
111 * ->i_mmap_rwsem
112 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 */
114
115 static int page_cache_tree_insert(struct address_space *mapping,
116 struct page *page, void **shadowp)
117 {
118 struct radix_tree_node *node;
119 void **slot;
120 int error;
121
122 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
123 &node, &slot);
124 if (error)
125 return error;
126 if (*slot) {
127 void *p;
128
129 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
130 if (!radix_tree_exceptional_entry(p))
131 return -EEXIST;
132
133 mapping->nrexceptional--;
134 if (shadowp)
135 *shadowp = p;
136 }
137 __radix_tree_replace(&mapping->page_tree, node, slot, page,
138 workingset_lookup_update(mapping));
139 mapping->nrpages++;
140 return 0;
141 }
142
143 static void page_cache_tree_delete(struct address_space *mapping,
144 struct page *page, void *shadow)
145 {
146 int i, nr;
147
148 /* hugetlb pages are represented by one entry in the radix tree */
149 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
150
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(PageTail(page), page);
153 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
154
155 for (i = 0; i < nr; i++) {
156 struct radix_tree_node *node;
157 void **slot;
158
159 __radix_tree_lookup(&mapping->page_tree, page->index + i,
160 &node, &slot);
161
162 VM_BUG_ON_PAGE(!node && nr != 1, page);
163
164 radix_tree_clear_tags(&mapping->page_tree, node, slot);
165 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
166 workingset_lookup_update(mapping));
167 }
168
169 page->mapping = NULL;
170 /* Leave page->index set: truncation lookup relies upon it */
171
172 if (shadow) {
173 mapping->nrexceptional += nr;
174 /*
175 * Make sure the nrexceptional update is committed before
176 * the nrpages update so that final truncate racing
177 * with reclaim does not see both counters 0 at the
178 * same time and miss a shadow entry.
179 */
180 smp_wmb();
181 }
182 mapping->nrpages -= nr;
183 }
184
185 static void unaccount_page_cache_page(struct address_space *mapping,
186 struct page *page)
187 {
188 int nr;
189
190 /*
191 * if we're uptodate, flush out into the cleancache, otherwise
192 * invalidate any existing cleancache entries. We can't leave
193 * stale data around in the cleancache once our page is gone
194 */
195 if (PageUptodate(page) && PageMappedToDisk(page))
196 cleancache_put_page(page);
197 else
198 cleancache_invalidate_page(mapping, page);
199
200 VM_BUG_ON_PAGE(PageTail(page), page);
201 VM_BUG_ON_PAGE(page_mapped(page), page);
202 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
203 int mapcount;
204
205 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
206 current->comm, page_to_pfn(page));
207 dump_page(page, "still mapped when deleted");
208 dump_stack();
209 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210
211 mapcount = page_mapcount(page);
212 if (mapping_exiting(mapping) &&
213 page_count(page) >= mapcount + 2) {
214 /*
215 * All vmas have already been torn down, so it's
216 * a good bet that actually the page is unmapped,
217 * and we'd prefer not to leak it: if we're wrong,
218 * some other bad page check should catch it later.
219 */
220 page_mapcount_reset(page);
221 page_ref_sub(page, mapcount);
222 }
223 }
224
225 /* hugetlb pages do not participate in page cache accounting. */
226 if (PageHuge(page))
227 return;
228
229 nr = hpage_nr_pages(page);
230
231 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232 if (PageSwapBacked(page)) {
233 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234 if (PageTransHuge(page))
235 __dec_node_page_state(page, NR_SHMEM_THPS);
236 } else {
237 VM_BUG_ON_PAGE(PageTransHuge(page), page);
238 }
239
240 /*
241 * At this point page must be either written or cleaned by
242 * truncate. Dirty page here signals a bug and loss of
243 * unwritten data.
244 *
245 * This fixes dirty accounting after removing the page entirely
246 * but leaves PageDirty set: it has no effect for truncated
247 * page and anyway will be cleared before returning page into
248 * buddy allocator.
249 */
250 if (WARN_ON_ONCE(PageDirty(page)))
251 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
252 }
253
254 /*
255 * Delete a page from the page cache and free it. Caller has to make
256 * sure the page is locked and that nobody else uses it - or that usage
257 * is safe. The caller must hold the mapping's tree_lock.
258 */
259 void __delete_from_page_cache(struct page *page, void *shadow)
260 {
261 struct address_space *mapping = page->mapping;
262
263 trace_mm_filemap_delete_from_page_cache(page);
264
265 unaccount_page_cache_page(mapping, page);
266 page_cache_tree_delete(mapping, page, shadow);
267 }
268
269 static void page_cache_free_page(struct address_space *mapping,
270 struct page *page)
271 {
272 void (*freepage)(struct page *);
273
274 freepage = mapping->a_ops->freepage;
275 if (freepage)
276 freepage(page);
277
278 if (PageTransHuge(page) && !PageHuge(page)) {
279 page_ref_sub(page, HPAGE_PMD_NR);
280 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
281 } else {
282 put_page(page);
283 }
284 }
285
286 /**
287 * delete_from_page_cache - delete page from page cache
288 * @page: the page which the kernel is trying to remove from page cache
289 *
290 * This must be called only on pages that have been verified to be in the page
291 * cache and locked. It will never put the page into the free list, the caller
292 * has a reference on the page.
293 */
294 void delete_from_page_cache(struct page *page)
295 {
296 struct address_space *mapping = page_mapping(page);
297 unsigned long flags;
298
299 BUG_ON(!PageLocked(page));
300 spin_lock_irqsave(&mapping->tree_lock, flags);
301 __delete_from_page_cache(page, NULL);
302 spin_unlock_irqrestore(&mapping->tree_lock, flags);
303
304 page_cache_free_page(mapping, page);
305 }
306 EXPORT_SYMBOL(delete_from_page_cache);
307
308 /*
309 * page_cache_tree_delete_batch - delete several pages from page cache
310 * @mapping: the mapping to which pages belong
311 * @pvec: pagevec with pages to delete
312 *
313 * The function walks over mapping->page_tree and removes pages passed in @pvec
314 * from the radix tree. The function expects @pvec to be sorted by page index.
315 * It tolerates holes in @pvec (radix tree entries at those indices are not
316 * modified). The function expects only THP head pages to be present in the
317 * @pvec and takes care to delete all corresponding tail pages from the radix
318 * tree as well.
319 *
320 * The function expects mapping->tree_lock to be held.
321 */
322 static void
323 page_cache_tree_delete_batch(struct address_space *mapping,
324 struct pagevec *pvec)
325 {
326 struct radix_tree_iter iter;
327 void **slot;
328 int total_pages = 0;
329 int i = 0, tail_pages = 0;
330 struct page *page;
331 pgoff_t start;
332
333 start = pvec->pages[0]->index;
334 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
335 if (i >= pagevec_count(pvec) && !tail_pages)
336 break;
337 page = radix_tree_deref_slot_protected(slot,
338 &mapping->tree_lock);
339 if (radix_tree_exceptional_entry(page))
340 continue;
341 if (!tail_pages) {
342 /*
343 * Some page got inserted in our range? Skip it. We
344 * have our pages locked so they are protected from
345 * being removed.
346 */
347 if (page != pvec->pages[i])
348 continue;
349 WARN_ON_ONCE(!PageLocked(page));
350 if (PageTransHuge(page) && !PageHuge(page))
351 tail_pages = HPAGE_PMD_NR - 1;
352 page->mapping = NULL;
353 /*
354 * Leave page->index set: truncation lookup relies
355 * upon it
356 */
357 i++;
358 } else {
359 tail_pages--;
360 }
361 radix_tree_clear_tags(&mapping->page_tree, iter.node, slot);
362 __radix_tree_replace(&mapping->page_tree, iter.node, slot, NULL,
363 workingset_lookup_update(mapping));
364 total_pages++;
365 }
366 mapping->nrpages -= total_pages;
367 }
368
369 void delete_from_page_cache_batch(struct address_space *mapping,
370 struct pagevec *pvec)
371 {
372 int i;
373 unsigned long flags;
374
375 if (!pagevec_count(pvec))
376 return;
377
378 spin_lock_irqsave(&mapping->tree_lock, flags);
379 for (i = 0; i < pagevec_count(pvec); i++) {
380 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
381
382 unaccount_page_cache_page(mapping, pvec->pages[i]);
383 }
384 page_cache_tree_delete_batch(mapping, pvec);
385 spin_unlock_irqrestore(&mapping->tree_lock, flags);
386
387 for (i = 0; i < pagevec_count(pvec); i++)
388 page_cache_free_page(mapping, pvec->pages[i]);
389 }
390
391 int filemap_check_errors(struct address_space *mapping)
392 {
393 int ret = 0;
394 /* Check for outstanding write errors */
395 if (test_bit(AS_ENOSPC, &mapping->flags) &&
396 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
397 ret = -ENOSPC;
398 if (test_bit(AS_EIO, &mapping->flags) &&
399 test_and_clear_bit(AS_EIO, &mapping->flags))
400 ret = -EIO;
401 return ret;
402 }
403 EXPORT_SYMBOL(filemap_check_errors);
404
405 static int filemap_check_and_keep_errors(struct address_space *mapping)
406 {
407 /* Check for outstanding write errors */
408 if (test_bit(AS_EIO, &mapping->flags))
409 return -EIO;
410 if (test_bit(AS_ENOSPC, &mapping->flags))
411 return -ENOSPC;
412 return 0;
413 }
414
415 /**
416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
417 * @mapping: address space structure to write
418 * @start: offset in bytes where the range starts
419 * @end: offset in bytes where the range ends (inclusive)
420 * @sync_mode: enable synchronous operation
421 *
422 * Start writeback against all of a mapping's dirty pages that lie
423 * within the byte offsets <start, end> inclusive.
424 *
425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
426 * opposed to a regular memory cleansing writeback. The difference between
427 * these two operations is that if a dirty page/buffer is encountered, it must
428 * be waited upon, and not just skipped over.
429 */
430 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
432 {
433 int ret;
434 struct writeback_control wbc = {
435 .sync_mode = sync_mode,
436 .nr_to_write = LONG_MAX,
437 .range_start = start,
438 .range_end = end,
439 };
440
441 if (!mapping_cap_writeback_dirty(mapping) ||
442 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
443 return 0;
444
445 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
446 ret = do_writepages(mapping, &wbc);
447 wbc_detach_inode(&wbc);
448 return ret;
449 }
450
451 static inline int __filemap_fdatawrite(struct address_space *mapping,
452 int sync_mode)
453 {
454 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
455 }
456
457 int filemap_fdatawrite(struct address_space *mapping)
458 {
459 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
460 }
461 EXPORT_SYMBOL(filemap_fdatawrite);
462
463 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
464 loff_t end)
465 {
466 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
467 }
468 EXPORT_SYMBOL(filemap_fdatawrite_range);
469
470 /**
471 * filemap_flush - mostly a non-blocking flush
472 * @mapping: target address_space
473 *
474 * This is a mostly non-blocking flush. Not suitable for data-integrity
475 * purposes - I/O may not be started against all dirty pages.
476 */
477 int filemap_flush(struct address_space *mapping)
478 {
479 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
480 }
481 EXPORT_SYMBOL(filemap_flush);
482
483 /**
484 * filemap_range_has_page - check if a page exists in range.
485 * @mapping: address space within which to check
486 * @start_byte: offset in bytes where the range starts
487 * @end_byte: offset in bytes where the range ends (inclusive)
488 *
489 * Find at least one page in the range supplied, usually used to check if
490 * direct writing in this range will trigger a writeback.
491 */
492 bool filemap_range_has_page(struct address_space *mapping,
493 loff_t start_byte, loff_t end_byte)
494 {
495 pgoff_t index = start_byte >> PAGE_SHIFT;
496 pgoff_t end = end_byte >> PAGE_SHIFT;
497 struct page *page;
498
499 if (end_byte < start_byte)
500 return false;
501
502 if (mapping->nrpages == 0)
503 return false;
504
505 if (!find_get_pages_range(mapping, &index, end, 1, &page))
506 return false;
507 put_page(page);
508 return true;
509 }
510 EXPORT_SYMBOL(filemap_range_has_page);
511
512 static void __filemap_fdatawait_range(struct address_space *mapping,
513 loff_t start_byte, loff_t end_byte)
514 {
515 pgoff_t index = start_byte >> PAGE_SHIFT;
516 pgoff_t end = end_byte >> PAGE_SHIFT;
517 struct pagevec pvec;
518 int nr_pages;
519
520 if (end_byte < start_byte)
521 return;
522
523 pagevec_init(&pvec);
524 while (index <= end) {
525 unsigned i;
526
527 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
528 end, PAGECACHE_TAG_WRITEBACK);
529 if (!nr_pages)
530 break;
531
532 for (i = 0; i < nr_pages; i++) {
533 struct page *page = pvec.pages[i];
534
535 wait_on_page_writeback(page);
536 ClearPageError(page);
537 }
538 pagevec_release(&pvec);
539 cond_resched();
540 }
541 }
542
543 /**
544 * filemap_fdatawait_range - wait for writeback to complete
545 * @mapping: address space structure to wait for
546 * @start_byte: offset in bytes where the range starts
547 * @end_byte: offset in bytes where the range ends (inclusive)
548 *
549 * Walk the list of under-writeback pages of the given address space
550 * in the given range and wait for all of them. Check error status of
551 * the address space and return it.
552 *
553 * Since the error status of the address space is cleared by this function,
554 * callers are responsible for checking the return value and handling and/or
555 * reporting the error.
556 */
557 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
558 loff_t end_byte)
559 {
560 __filemap_fdatawait_range(mapping, start_byte, end_byte);
561 return filemap_check_errors(mapping);
562 }
563 EXPORT_SYMBOL(filemap_fdatawait_range);
564
565 /**
566 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
567 * @mapping: address space structure to wait for
568 * @start_byte: offset in bytes where the range starts
569 * @end_byte: offset in bytes where the range ends (inclusive)
570 *
571 * Walk the list of under-writeback pages of the given address space in the
572 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
573 * this function does not clear error status of the address space.
574 *
575 * Use this function if callers don't handle errors themselves. Expected
576 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
577 * fsfreeze(8)
578 */
579 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
580 loff_t start_byte, loff_t end_byte)
581 {
582 __filemap_fdatawait_range(mapping, start_byte, end_byte);
583 return filemap_check_and_keep_errors(mapping);
584 }
585 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
586
587 /**
588 * file_fdatawait_range - wait for writeback to complete
589 * @file: file pointing to address space structure to wait for
590 * @start_byte: offset in bytes where the range starts
591 * @end_byte: offset in bytes where the range ends (inclusive)
592 *
593 * Walk the list of under-writeback pages of the address space that file
594 * refers to, in the given range and wait for all of them. Check error
595 * status of the address space vs. the file->f_wb_err cursor and return it.
596 *
597 * Since the error status of the file is advanced by this function,
598 * callers are responsible for checking the return value and handling and/or
599 * reporting the error.
600 */
601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603 struct address_space *mapping = file->f_mapping;
604
605 __filemap_fdatawait_range(mapping, start_byte, end_byte);
606 return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609
610 /**
611 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612 * @mapping: address space structure to wait for
613 *
614 * Walk the list of under-writeback pages of the given address space
615 * and wait for all of them. Unlike filemap_fdatawait(), this function
616 * does not clear error status of the address space.
617 *
618 * Use this function if callers don't handle errors themselves. Expected
619 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620 * fsfreeze(8)
621 */
622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
623 {
624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625 return filemap_check_and_keep_errors(mapping);
626 }
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628
629 static bool mapping_needs_writeback(struct address_space *mapping)
630 {
631 return (!dax_mapping(mapping) && mapping->nrpages) ||
632 (dax_mapping(mapping) && mapping->nrexceptional);
633 }
634
635 int filemap_write_and_wait(struct address_space *mapping)
636 {
637 int err = 0;
638
639 if (mapping_needs_writeback(mapping)) {
640 err = filemap_fdatawrite(mapping);
641 /*
642 * Even if the above returned error, the pages may be
643 * written partially (e.g. -ENOSPC), so we wait for it.
644 * But the -EIO is special case, it may indicate the worst
645 * thing (e.g. bug) happened, so we avoid waiting for it.
646 */
647 if (err != -EIO) {
648 int err2 = filemap_fdatawait(mapping);
649 if (!err)
650 err = err2;
651 } else {
652 /* Clear any previously stored errors */
653 filemap_check_errors(mapping);
654 }
655 } else {
656 err = filemap_check_errors(mapping);
657 }
658 return err;
659 }
660 EXPORT_SYMBOL(filemap_write_and_wait);
661
662 /**
663 * filemap_write_and_wait_range - write out & wait on a file range
664 * @mapping: the address_space for the pages
665 * @lstart: offset in bytes where the range starts
666 * @lend: offset in bytes where the range ends (inclusive)
667 *
668 * Write out and wait upon file offsets lstart->lend, inclusive.
669 *
670 * Note that @lend is inclusive (describes the last byte to be written) so
671 * that this function can be used to write to the very end-of-file (end = -1).
672 */
673 int filemap_write_and_wait_range(struct address_space *mapping,
674 loff_t lstart, loff_t lend)
675 {
676 int err = 0;
677
678 if (mapping_needs_writeback(mapping)) {
679 err = __filemap_fdatawrite_range(mapping, lstart, lend,
680 WB_SYNC_ALL);
681 /* See comment of filemap_write_and_wait() */
682 if (err != -EIO) {
683 int err2 = filemap_fdatawait_range(mapping,
684 lstart, lend);
685 if (!err)
686 err = err2;
687 } else {
688 /* Clear any previously stored errors */
689 filemap_check_errors(mapping);
690 }
691 } else {
692 err = filemap_check_errors(mapping);
693 }
694 return err;
695 }
696 EXPORT_SYMBOL(filemap_write_and_wait_range);
697
698 void __filemap_set_wb_err(struct address_space *mapping, int err)
699 {
700 errseq_t eseq = errseq_set(&mapping->wb_err, err);
701
702 trace_filemap_set_wb_err(mapping, eseq);
703 }
704 EXPORT_SYMBOL(__filemap_set_wb_err);
705
706 /**
707 * file_check_and_advance_wb_err - report wb error (if any) that was previously
708 * and advance wb_err to current one
709 * @file: struct file on which the error is being reported
710 *
711 * When userland calls fsync (or something like nfsd does the equivalent), we
712 * want to report any writeback errors that occurred since the last fsync (or
713 * since the file was opened if there haven't been any).
714 *
715 * Grab the wb_err from the mapping. If it matches what we have in the file,
716 * then just quickly return 0. The file is all caught up.
717 *
718 * If it doesn't match, then take the mapping value, set the "seen" flag in
719 * it and try to swap it into place. If it works, or another task beat us
720 * to it with the new value, then update the f_wb_err and return the error
721 * portion. The error at this point must be reported via proper channels
722 * (a'la fsync, or NFS COMMIT operation, etc.).
723 *
724 * While we handle mapping->wb_err with atomic operations, the f_wb_err
725 * value is protected by the f_lock since we must ensure that it reflects
726 * the latest value swapped in for this file descriptor.
727 */
728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
752 return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756 /**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
769 */
770 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
771 {
772 int err = 0, err2;
773 struct address_space *mapping = file->f_mapping;
774
775 if (mapping_needs_writeback(mapping)) {
776 err = __filemap_fdatawrite_range(mapping, lstart, lend,
777 WB_SYNC_ALL);
778 /* See comment of filemap_write_and_wait() */
779 if (err != -EIO)
780 __filemap_fdatawait_range(mapping, lstart, lend);
781 }
782 err2 = file_check_and_advance_wb_err(file);
783 if (!err)
784 err = err2;
785 return err;
786 }
787 EXPORT_SYMBOL(file_write_and_wait_range);
788
789 /**
790 * replace_page_cache_page - replace a pagecache page with a new one
791 * @old: page to be replaced
792 * @new: page to replace with
793 * @gfp_mask: allocation mode
794 *
795 * This function replaces a page in the pagecache with a new one. On
796 * success it acquires the pagecache reference for the new page and
797 * drops it for the old page. Both the old and new pages must be
798 * locked. This function does not add the new page to the LRU, the
799 * caller must do that.
800 *
801 * The remove + add is atomic. The only way this function can fail is
802 * memory allocation failure.
803 */
804 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
805 {
806 int error;
807
808 VM_BUG_ON_PAGE(!PageLocked(old), old);
809 VM_BUG_ON_PAGE(!PageLocked(new), new);
810 VM_BUG_ON_PAGE(new->mapping, new);
811
812 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
813 if (!error) {
814 struct address_space *mapping = old->mapping;
815 void (*freepage)(struct page *);
816 unsigned long flags;
817
818 pgoff_t offset = old->index;
819 freepage = mapping->a_ops->freepage;
820
821 get_page(new);
822 new->mapping = mapping;
823 new->index = offset;
824
825 spin_lock_irqsave(&mapping->tree_lock, flags);
826 __delete_from_page_cache(old, NULL);
827 error = page_cache_tree_insert(mapping, new, NULL);
828 BUG_ON(error);
829
830 /*
831 * hugetlb pages do not participate in page cache accounting.
832 */
833 if (!PageHuge(new))
834 __inc_node_page_state(new, NR_FILE_PAGES);
835 if (PageSwapBacked(new))
836 __inc_node_page_state(new, NR_SHMEM);
837 spin_unlock_irqrestore(&mapping->tree_lock, flags);
838 mem_cgroup_migrate(old, new);
839 radix_tree_preload_end();
840 if (freepage)
841 freepage(old);
842 put_page(old);
843 }
844
845 return error;
846 }
847 EXPORT_SYMBOL_GPL(replace_page_cache_page);
848
849 static int __add_to_page_cache_locked(struct page *page,
850 struct address_space *mapping,
851 pgoff_t offset, gfp_t gfp_mask,
852 void **shadowp)
853 {
854 int huge = PageHuge(page);
855 struct mem_cgroup *memcg;
856 int error;
857
858 VM_BUG_ON_PAGE(!PageLocked(page), page);
859 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
860
861 if (!huge) {
862 error = mem_cgroup_try_charge(page, current->mm,
863 gfp_mask, &memcg, false);
864 if (error)
865 return error;
866 }
867
868 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
869 if (error) {
870 if (!huge)
871 mem_cgroup_cancel_charge(page, memcg, false);
872 return error;
873 }
874
875 get_page(page);
876 page->mapping = mapping;
877 page->index = offset;
878
879 spin_lock_irq(&mapping->tree_lock);
880 error = page_cache_tree_insert(mapping, page, shadowp);
881 radix_tree_preload_end();
882 if (unlikely(error))
883 goto err_insert;
884
885 /* hugetlb pages do not participate in page cache accounting. */
886 if (!huge)
887 __inc_node_page_state(page, NR_FILE_PAGES);
888 spin_unlock_irq(&mapping->tree_lock);
889 if (!huge)
890 mem_cgroup_commit_charge(page, memcg, false, false);
891 trace_mm_filemap_add_to_page_cache(page);
892 return 0;
893 err_insert:
894 page->mapping = NULL;
895 /* Leave page->index set: truncation relies upon it */
896 spin_unlock_irq(&mapping->tree_lock);
897 if (!huge)
898 mem_cgroup_cancel_charge(page, memcg, false);
899 put_page(page);
900 return error;
901 }
902
903 /**
904 * add_to_page_cache_locked - add a locked page to the pagecache
905 * @page: page to add
906 * @mapping: the page's address_space
907 * @offset: page index
908 * @gfp_mask: page allocation mode
909 *
910 * This function is used to add a page to the pagecache. It must be locked.
911 * This function does not add the page to the LRU. The caller must do that.
912 */
913 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
914 pgoff_t offset, gfp_t gfp_mask)
915 {
916 return __add_to_page_cache_locked(page, mapping, offset,
917 gfp_mask, NULL);
918 }
919 EXPORT_SYMBOL(add_to_page_cache_locked);
920
921 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
922 pgoff_t offset, gfp_t gfp_mask)
923 {
924 void *shadow = NULL;
925 int ret;
926
927 __SetPageLocked(page);
928 ret = __add_to_page_cache_locked(page, mapping, offset,
929 gfp_mask, &shadow);
930 if (unlikely(ret))
931 __ClearPageLocked(page);
932 else {
933 /*
934 * The page might have been evicted from cache only
935 * recently, in which case it should be activated like
936 * any other repeatedly accessed page.
937 * The exception is pages getting rewritten; evicting other
938 * data from the working set, only to cache data that will
939 * get overwritten with something else, is a waste of memory.
940 */
941 if (!(gfp_mask & __GFP_WRITE) &&
942 shadow && workingset_refault(shadow)) {
943 SetPageActive(page);
944 workingset_activation(page);
945 } else
946 ClearPageActive(page);
947 lru_cache_add(page);
948 }
949 return ret;
950 }
951 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
952
953 #ifdef CONFIG_NUMA
954 struct page *__page_cache_alloc(gfp_t gfp)
955 {
956 int n;
957 struct page *page;
958
959 if (cpuset_do_page_mem_spread()) {
960 unsigned int cpuset_mems_cookie;
961 do {
962 cpuset_mems_cookie = read_mems_allowed_begin();
963 n = cpuset_mem_spread_node();
964 page = __alloc_pages_node(n, gfp, 0);
965 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
966
967 return page;
968 }
969 return alloc_pages(gfp, 0);
970 }
971 EXPORT_SYMBOL(__page_cache_alloc);
972 #endif
973
974 /*
975 * In order to wait for pages to become available there must be
976 * waitqueues associated with pages. By using a hash table of
977 * waitqueues where the bucket discipline is to maintain all
978 * waiters on the same queue and wake all when any of the pages
979 * become available, and for the woken contexts to check to be
980 * sure the appropriate page became available, this saves space
981 * at a cost of "thundering herd" phenomena during rare hash
982 * collisions.
983 */
984 #define PAGE_WAIT_TABLE_BITS 8
985 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
986 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
987
988 static wait_queue_head_t *page_waitqueue(struct page *page)
989 {
990 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
991 }
992
993 void __init pagecache_init(void)
994 {
995 int i;
996
997 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
998 init_waitqueue_head(&page_wait_table[i]);
999
1000 page_writeback_init();
1001 }
1002
1003 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1004 struct wait_page_key {
1005 struct page *page;
1006 int bit_nr;
1007 int page_match;
1008 };
1009
1010 struct wait_page_queue {
1011 struct page *page;
1012 int bit_nr;
1013 wait_queue_entry_t wait;
1014 };
1015
1016 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1017 {
1018 struct wait_page_key *key = arg;
1019 struct wait_page_queue *wait_page
1020 = container_of(wait, struct wait_page_queue, wait);
1021
1022 if (wait_page->page != key->page)
1023 return 0;
1024 key->page_match = 1;
1025
1026 if (wait_page->bit_nr != key->bit_nr)
1027 return 0;
1028
1029 /* Stop walking if it's locked */
1030 if (test_bit(key->bit_nr, &key->page->flags))
1031 return -1;
1032
1033 return autoremove_wake_function(wait, mode, sync, key);
1034 }
1035
1036 static void wake_up_page_bit(struct page *page, int bit_nr)
1037 {
1038 wait_queue_head_t *q = page_waitqueue(page);
1039 struct wait_page_key key;
1040 unsigned long flags;
1041 wait_queue_entry_t bookmark;
1042
1043 key.page = page;
1044 key.bit_nr = bit_nr;
1045 key.page_match = 0;
1046
1047 bookmark.flags = 0;
1048 bookmark.private = NULL;
1049 bookmark.func = NULL;
1050 INIT_LIST_HEAD(&bookmark.entry);
1051
1052 spin_lock_irqsave(&q->lock, flags);
1053 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1054
1055 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1056 /*
1057 * Take a breather from holding the lock,
1058 * allow pages that finish wake up asynchronously
1059 * to acquire the lock and remove themselves
1060 * from wait queue
1061 */
1062 spin_unlock_irqrestore(&q->lock, flags);
1063 cpu_relax();
1064 spin_lock_irqsave(&q->lock, flags);
1065 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1066 }
1067
1068 /*
1069 * It is possible for other pages to have collided on the waitqueue
1070 * hash, so in that case check for a page match. That prevents a long-
1071 * term waiter
1072 *
1073 * It is still possible to miss a case here, when we woke page waiters
1074 * and removed them from the waitqueue, but there are still other
1075 * page waiters.
1076 */
1077 if (!waitqueue_active(q) || !key.page_match) {
1078 ClearPageWaiters(page);
1079 /*
1080 * It's possible to miss clearing Waiters here, when we woke
1081 * our page waiters, but the hashed waitqueue has waiters for
1082 * other pages on it.
1083 *
1084 * That's okay, it's a rare case. The next waker will clear it.
1085 */
1086 }
1087 spin_unlock_irqrestore(&q->lock, flags);
1088 }
1089
1090 static void wake_up_page(struct page *page, int bit)
1091 {
1092 if (!PageWaiters(page))
1093 return;
1094 wake_up_page_bit(page, bit);
1095 }
1096
1097 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1098 struct page *page, int bit_nr, int state, bool lock)
1099 {
1100 struct wait_page_queue wait_page;
1101 wait_queue_entry_t *wait = &wait_page.wait;
1102 int ret = 0;
1103
1104 init_wait(wait);
1105 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1106 wait->func = wake_page_function;
1107 wait_page.page = page;
1108 wait_page.bit_nr = bit_nr;
1109
1110 for (;;) {
1111 spin_lock_irq(&q->lock);
1112
1113 if (likely(list_empty(&wait->entry))) {
1114 __add_wait_queue_entry_tail(q, wait);
1115 SetPageWaiters(page);
1116 }
1117
1118 set_current_state(state);
1119
1120 spin_unlock_irq(&q->lock);
1121
1122 if (likely(test_bit(bit_nr, &page->flags))) {
1123 io_schedule();
1124 }
1125
1126 if (lock) {
1127 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1128 break;
1129 } else {
1130 if (!test_bit(bit_nr, &page->flags))
1131 break;
1132 }
1133
1134 if (unlikely(signal_pending_state(state, current))) {
1135 ret = -EINTR;
1136 break;
1137 }
1138 }
1139
1140 finish_wait(q, wait);
1141
1142 /*
1143 * A signal could leave PageWaiters set. Clearing it here if
1144 * !waitqueue_active would be possible (by open-coding finish_wait),
1145 * but still fail to catch it in the case of wait hash collision. We
1146 * already can fail to clear wait hash collision cases, so don't
1147 * bother with signals either.
1148 */
1149
1150 return ret;
1151 }
1152
1153 void wait_on_page_bit(struct page *page, int bit_nr)
1154 {
1155 wait_queue_head_t *q = page_waitqueue(page);
1156 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1157 }
1158 EXPORT_SYMBOL(wait_on_page_bit);
1159
1160 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1161 {
1162 wait_queue_head_t *q = page_waitqueue(page);
1163 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1164 }
1165 EXPORT_SYMBOL(wait_on_page_bit_killable);
1166
1167 /**
1168 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1169 * @page: Page defining the wait queue of interest
1170 * @waiter: Waiter to add to the queue
1171 *
1172 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1173 */
1174 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1175 {
1176 wait_queue_head_t *q = page_waitqueue(page);
1177 unsigned long flags;
1178
1179 spin_lock_irqsave(&q->lock, flags);
1180 __add_wait_queue_entry_tail(q, waiter);
1181 SetPageWaiters(page);
1182 spin_unlock_irqrestore(&q->lock, flags);
1183 }
1184 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1185
1186 #ifndef clear_bit_unlock_is_negative_byte
1187
1188 /*
1189 * PG_waiters is the high bit in the same byte as PG_lock.
1190 *
1191 * On x86 (and on many other architectures), we can clear PG_lock and
1192 * test the sign bit at the same time. But if the architecture does
1193 * not support that special operation, we just do this all by hand
1194 * instead.
1195 *
1196 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1197 * being cleared, but a memory barrier should be unneccssary since it is
1198 * in the same byte as PG_locked.
1199 */
1200 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1201 {
1202 clear_bit_unlock(nr, mem);
1203 /* smp_mb__after_atomic(); */
1204 return test_bit(PG_waiters, mem);
1205 }
1206
1207 #endif
1208
1209 /**
1210 * unlock_page - unlock a locked page
1211 * @page: the page
1212 *
1213 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1214 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1215 * mechanism between PageLocked pages and PageWriteback pages is shared.
1216 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1217 *
1218 * Note that this depends on PG_waiters being the sign bit in the byte
1219 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1220 * clear the PG_locked bit and test PG_waiters at the same time fairly
1221 * portably (architectures that do LL/SC can test any bit, while x86 can
1222 * test the sign bit).
1223 */
1224 void unlock_page(struct page *page)
1225 {
1226 BUILD_BUG_ON(PG_waiters != 7);
1227 page = compound_head(page);
1228 VM_BUG_ON_PAGE(!PageLocked(page), page);
1229 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1230 wake_up_page_bit(page, PG_locked);
1231 }
1232 EXPORT_SYMBOL(unlock_page);
1233
1234 /**
1235 * end_page_writeback - end writeback against a page
1236 * @page: the page
1237 */
1238 void end_page_writeback(struct page *page)
1239 {
1240 /*
1241 * TestClearPageReclaim could be used here but it is an atomic
1242 * operation and overkill in this particular case. Failing to
1243 * shuffle a page marked for immediate reclaim is too mild to
1244 * justify taking an atomic operation penalty at the end of
1245 * ever page writeback.
1246 */
1247 if (PageReclaim(page)) {
1248 ClearPageReclaim(page);
1249 rotate_reclaimable_page(page);
1250 }
1251
1252 if (!test_clear_page_writeback(page))
1253 BUG();
1254
1255 smp_mb__after_atomic();
1256 wake_up_page(page, PG_writeback);
1257 }
1258 EXPORT_SYMBOL(end_page_writeback);
1259
1260 /*
1261 * After completing I/O on a page, call this routine to update the page
1262 * flags appropriately
1263 */
1264 void page_endio(struct page *page, bool is_write, int err)
1265 {
1266 if (!is_write) {
1267 if (!err) {
1268 SetPageUptodate(page);
1269 } else {
1270 ClearPageUptodate(page);
1271 SetPageError(page);
1272 }
1273 unlock_page(page);
1274 } else {
1275 if (err) {
1276 struct address_space *mapping;
1277
1278 SetPageError(page);
1279 mapping = page_mapping(page);
1280 if (mapping)
1281 mapping_set_error(mapping, err);
1282 }
1283 end_page_writeback(page);
1284 }
1285 }
1286 EXPORT_SYMBOL_GPL(page_endio);
1287
1288 /**
1289 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1290 * @__page: the page to lock
1291 */
1292 void __lock_page(struct page *__page)
1293 {
1294 struct page *page = compound_head(__page);
1295 wait_queue_head_t *q = page_waitqueue(page);
1296 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1297 }
1298 EXPORT_SYMBOL(__lock_page);
1299
1300 int __lock_page_killable(struct page *__page)
1301 {
1302 struct page *page = compound_head(__page);
1303 wait_queue_head_t *q = page_waitqueue(page);
1304 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1305 }
1306 EXPORT_SYMBOL_GPL(__lock_page_killable);
1307
1308 /*
1309 * Return values:
1310 * 1 - page is locked; mmap_sem is still held.
1311 * 0 - page is not locked.
1312 * mmap_sem has been released (up_read()), unless flags had both
1313 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1314 * which case mmap_sem is still held.
1315 *
1316 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1317 * with the page locked and the mmap_sem unperturbed.
1318 */
1319 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1320 unsigned int flags)
1321 {
1322 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1323 /*
1324 * CAUTION! In this case, mmap_sem is not released
1325 * even though return 0.
1326 */
1327 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1328 return 0;
1329
1330 up_read(&mm->mmap_sem);
1331 if (flags & FAULT_FLAG_KILLABLE)
1332 wait_on_page_locked_killable(page);
1333 else
1334 wait_on_page_locked(page);
1335 return 0;
1336 } else {
1337 if (flags & FAULT_FLAG_KILLABLE) {
1338 int ret;
1339
1340 ret = __lock_page_killable(page);
1341 if (ret) {
1342 up_read(&mm->mmap_sem);
1343 return 0;
1344 }
1345 } else
1346 __lock_page(page);
1347 return 1;
1348 }
1349 }
1350
1351 /**
1352 * page_cache_next_hole - find the next hole (not-present entry)
1353 * @mapping: mapping
1354 * @index: index
1355 * @max_scan: maximum range to search
1356 *
1357 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1358 * lowest indexed hole.
1359 *
1360 * Returns: the index of the hole if found, otherwise returns an index
1361 * outside of the set specified (in which case 'return - index >=
1362 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1363 * be returned.
1364 *
1365 * page_cache_next_hole may be called under rcu_read_lock. However,
1366 * like radix_tree_gang_lookup, this will not atomically search a
1367 * snapshot of the tree at a single point in time. For example, if a
1368 * hole is created at index 5, then subsequently a hole is created at
1369 * index 10, page_cache_next_hole covering both indexes may return 10
1370 * if called under rcu_read_lock.
1371 */
1372 pgoff_t page_cache_next_hole(struct address_space *mapping,
1373 pgoff_t index, unsigned long max_scan)
1374 {
1375 unsigned long i;
1376
1377 for (i = 0; i < max_scan; i++) {
1378 struct page *page;
1379
1380 page = radix_tree_lookup(&mapping->page_tree, index);
1381 if (!page || radix_tree_exceptional_entry(page))
1382 break;
1383 index++;
1384 if (index == 0)
1385 break;
1386 }
1387
1388 return index;
1389 }
1390 EXPORT_SYMBOL(page_cache_next_hole);
1391
1392 /**
1393 * page_cache_prev_hole - find the prev hole (not-present entry)
1394 * @mapping: mapping
1395 * @index: index
1396 * @max_scan: maximum range to search
1397 *
1398 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1399 * the first hole.
1400 *
1401 * Returns: the index of the hole if found, otherwise returns an index
1402 * outside of the set specified (in which case 'index - return >=
1403 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1404 * will be returned.
1405 *
1406 * page_cache_prev_hole may be called under rcu_read_lock. However,
1407 * like radix_tree_gang_lookup, this will not atomically search a
1408 * snapshot of the tree at a single point in time. For example, if a
1409 * hole is created at index 10, then subsequently a hole is created at
1410 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1411 * called under rcu_read_lock.
1412 */
1413 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1414 pgoff_t index, unsigned long max_scan)
1415 {
1416 unsigned long i;
1417
1418 for (i = 0; i < max_scan; i++) {
1419 struct page *page;
1420
1421 page = radix_tree_lookup(&mapping->page_tree, index);
1422 if (!page || radix_tree_exceptional_entry(page))
1423 break;
1424 index--;
1425 if (index == ULONG_MAX)
1426 break;
1427 }
1428
1429 return index;
1430 }
1431 EXPORT_SYMBOL(page_cache_prev_hole);
1432
1433 /**
1434 * find_get_entry - find and get a page cache entry
1435 * @mapping: the address_space to search
1436 * @offset: the page cache index
1437 *
1438 * Looks up the page cache slot at @mapping & @offset. If there is a
1439 * page cache page, it is returned with an increased refcount.
1440 *
1441 * If the slot holds a shadow entry of a previously evicted page, or a
1442 * swap entry from shmem/tmpfs, it is returned.
1443 *
1444 * Otherwise, %NULL is returned.
1445 */
1446 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1447 {
1448 void **pagep;
1449 struct page *head, *page;
1450
1451 rcu_read_lock();
1452 repeat:
1453 page = NULL;
1454 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1455 if (pagep) {
1456 page = radix_tree_deref_slot(pagep);
1457 if (unlikely(!page))
1458 goto out;
1459 if (radix_tree_exception(page)) {
1460 if (radix_tree_deref_retry(page))
1461 goto repeat;
1462 /*
1463 * A shadow entry of a recently evicted page,
1464 * or a swap entry from shmem/tmpfs. Return
1465 * it without attempting to raise page count.
1466 */
1467 goto out;
1468 }
1469
1470 head = compound_head(page);
1471 if (!page_cache_get_speculative(head))
1472 goto repeat;
1473
1474 /* The page was split under us? */
1475 if (compound_head(page) != head) {
1476 put_page(head);
1477 goto repeat;
1478 }
1479
1480 /*
1481 * Has the page moved?
1482 * This is part of the lockless pagecache protocol. See
1483 * include/linux/pagemap.h for details.
1484 */
1485 if (unlikely(page != *pagep)) {
1486 put_page(head);
1487 goto repeat;
1488 }
1489 }
1490 out:
1491 rcu_read_unlock();
1492
1493 return page;
1494 }
1495 EXPORT_SYMBOL(find_get_entry);
1496
1497 /**
1498 * find_lock_entry - locate, pin and lock a page cache entry
1499 * @mapping: the address_space to search
1500 * @offset: the page cache index
1501 *
1502 * Looks up the page cache slot at @mapping & @offset. If there is a
1503 * page cache page, it is returned locked and with an increased
1504 * refcount.
1505 *
1506 * If the slot holds a shadow entry of a previously evicted page, or a
1507 * swap entry from shmem/tmpfs, it is returned.
1508 *
1509 * Otherwise, %NULL is returned.
1510 *
1511 * find_lock_entry() may sleep.
1512 */
1513 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1514 {
1515 struct page *page;
1516
1517 repeat:
1518 page = find_get_entry(mapping, offset);
1519 if (page && !radix_tree_exception(page)) {
1520 lock_page(page);
1521 /* Has the page been truncated? */
1522 if (unlikely(page_mapping(page) != mapping)) {
1523 unlock_page(page);
1524 put_page(page);
1525 goto repeat;
1526 }
1527 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1528 }
1529 return page;
1530 }
1531 EXPORT_SYMBOL(find_lock_entry);
1532
1533 /**
1534 * pagecache_get_page - find and get a page reference
1535 * @mapping: the address_space to search
1536 * @offset: the page index
1537 * @fgp_flags: PCG flags
1538 * @gfp_mask: gfp mask to use for the page cache data page allocation
1539 *
1540 * Looks up the page cache slot at @mapping & @offset.
1541 *
1542 * PCG flags modify how the page is returned.
1543 *
1544 * @fgp_flags can be:
1545 *
1546 * - FGP_ACCESSED: the page will be marked accessed
1547 * - FGP_LOCK: Page is return locked
1548 * - FGP_CREAT: If page is not present then a new page is allocated using
1549 * @gfp_mask and added to the page cache and the VM's LRU
1550 * list. The page is returned locked and with an increased
1551 * refcount. Otherwise, NULL is returned.
1552 *
1553 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1554 * if the GFP flags specified for FGP_CREAT are atomic.
1555 *
1556 * If there is a page cache page, it is returned with an increased refcount.
1557 */
1558 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1559 int fgp_flags, gfp_t gfp_mask)
1560 {
1561 struct page *page;
1562
1563 repeat:
1564 page = find_get_entry(mapping, offset);
1565 if (radix_tree_exceptional_entry(page))
1566 page = NULL;
1567 if (!page)
1568 goto no_page;
1569
1570 if (fgp_flags & FGP_LOCK) {
1571 if (fgp_flags & FGP_NOWAIT) {
1572 if (!trylock_page(page)) {
1573 put_page(page);
1574 return NULL;
1575 }
1576 } else {
1577 lock_page(page);
1578 }
1579
1580 /* Has the page been truncated? */
1581 if (unlikely(page->mapping != mapping)) {
1582 unlock_page(page);
1583 put_page(page);
1584 goto repeat;
1585 }
1586 VM_BUG_ON_PAGE(page->index != offset, page);
1587 }
1588
1589 if (page && (fgp_flags & FGP_ACCESSED))
1590 mark_page_accessed(page);
1591
1592 no_page:
1593 if (!page && (fgp_flags & FGP_CREAT)) {
1594 int err;
1595 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1596 gfp_mask |= __GFP_WRITE;
1597 if (fgp_flags & FGP_NOFS)
1598 gfp_mask &= ~__GFP_FS;
1599
1600 page = __page_cache_alloc(gfp_mask);
1601 if (!page)
1602 return NULL;
1603
1604 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1605 fgp_flags |= FGP_LOCK;
1606
1607 /* Init accessed so avoid atomic mark_page_accessed later */
1608 if (fgp_flags & FGP_ACCESSED)
1609 __SetPageReferenced(page);
1610
1611 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1612 if (unlikely(err)) {
1613 put_page(page);
1614 page = NULL;
1615 if (err == -EEXIST)
1616 goto repeat;
1617 }
1618 }
1619
1620 return page;
1621 }
1622 EXPORT_SYMBOL(pagecache_get_page);
1623
1624 /**
1625 * find_get_entries - gang pagecache lookup
1626 * @mapping: The address_space to search
1627 * @start: The starting page cache index
1628 * @nr_entries: The maximum number of entries
1629 * @entries: Where the resulting entries are placed
1630 * @indices: The cache indices corresponding to the entries in @entries
1631 *
1632 * find_get_entries() will search for and return a group of up to
1633 * @nr_entries entries in the mapping. The entries are placed at
1634 * @entries. find_get_entries() takes a reference against any actual
1635 * pages it returns.
1636 *
1637 * The search returns a group of mapping-contiguous page cache entries
1638 * with ascending indexes. There may be holes in the indices due to
1639 * not-present pages.
1640 *
1641 * Any shadow entries of evicted pages, or swap entries from
1642 * shmem/tmpfs, are included in the returned array.
1643 *
1644 * find_get_entries() returns the number of pages and shadow entries
1645 * which were found.
1646 */
1647 unsigned find_get_entries(struct address_space *mapping,
1648 pgoff_t start, unsigned int nr_entries,
1649 struct page **entries, pgoff_t *indices)
1650 {
1651 void **slot;
1652 unsigned int ret = 0;
1653 struct radix_tree_iter iter;
1654
1655 if (!nr_entries)
1656 return 0;
1657
1658 rcu_read_lock();
1659 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1660 struct page *head, *page;
1661 repeat:
1662 page = radix_tree_deref_slot(slot);
1663 if (unlikely(!page))
1664 continue;
1665 if (radix_tree_exception(page)) {
1666 if (radix_tree_deref_retry(page)) {
1667 slot = radix_tree_iter_retry(&iter);
1668 continue;
1669 }
1670 /*
1671 * A shadow entry of a recently evicted page, a swap
1672 * entry from shmem/tmpfs or a DAX entry. Return it
1673 * without attempting to raise page count.
1674 */
1675 goto export;
1676 }
1677
1678 head = compound_head(page);
1679 if (!page_cache_get_speculative(head))
1680 goto repeat;
1681
1682 /* The page was split under us? */
1683 if (compound_head(page) != head) {
1684 put_page(head);
1685 goto repeat;
1686 }
1687
1688 /* Has the page moved? */
1689 if (unlikely(page != *slot)) {
1690 put_page(head);
1691 goto repeat;
1692 }
1693 export:
1694 indices[ret] = iter.index;
1695 entries[ret] = page;
1696 if (++ret == nr_entries)
1697 break;
1698 }
1699 rcu_read_unlock();
1700 return ret;
1701 }
1702
1703 /**
1704 * find_get_pages_range - gang pagecache lookup
1705 * @mapping: The address_space to search
1706 * @start: The starting page index
1707 * @end: The final page index (inclusive)
1708 * @nr_pages: The maximum number of pages
1709 * @pages: Where the resulting pages are placed
1710 *
1711 * find_get_pages_range() will search for and return a group of up to @nr_pages
1712 * pages in the mapping starting at index @start and up to index @end
1713 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1714 * a reference against the returned pages.
1715 *
1716 * The search returns a group of mapping-contiguous pages with ascending
1717 * indexes. There may be holes in the indices due to not-present pages.
1718 * We also update @start to index the next page for the traversal.
1719 *
1720 * find_get_pages_range() returns the number of pages which were found. If this
1721 * number is smaller than @nr_pages, the end of specified range has been
1722 * reached.
1723 */
1724 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1725 pgoff_t end, unsigned int nr_pages,
1726 struct page **pages)
1727 {
1728 struct radix_tree_iter iter;
1729 void **slot;
1730 unsigned ret = 0;
1731
1732 if (unlikely(!nr_pages))
1733 return 0;
1734
1735 rcu_read_lock();
1736 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1737 struct page *head, *page;
1738
1739 if (iter.index > end)
1740 break;
1741 repeat:
1742 page = radix_tree_deref_slot(slot);
1743 if (unlikely(!page))
1744 continue;
1745
1746 if (radix_tree_exception(page)) {
1747 if (radix_tree_deref_retry(page)) {
1748 slot = radix_tree_iter_retry(&iter);
1749 continue;
1750 }
1751 /*
1752 * A shadow entry of a recently evicted page,
1753 * or a swap entry from shmem/tmpfs. Skip
1754 * over it.
1755 */
1756 continue;
1757 }
1758
1759 head = compound_head(page);
1760 if (!page_cache_get_speculative(head))
1761 goto repeat;
1762
1763 /* The page was split under us? */
1764 if (compound_head(page) != head) {
1765 put_page(head);
1766 goto repeat;
1767 }
1768
1769 /* Has the page moved? */
1770 if (unlikely(page != *slot)) {
1771 put_page(head);
1772 goto repeat;
1773 }
1774
1775 pages[ret] = page;
1776 if (++ret == nr_pages) {
1777 *start = pages[ret - 1]->index + 1;
1778 goto out;
1779 }
1780 }
1781
1782 /*
1783 * We come here when there is no page beyond @end. We take care to not
1784 * overflow the index @start as it confuses some of the callers. This
1785 * breaks the iteration when there is page at index -1 but that is
1786 * already broken anyway.
1787 */
1788 if (end == (pgoff_t)-1)
1789 *start = (pgoff_t)-1;
1790 else
1791 *start = end + 1;
1792 out:
1793 rcu_read_unlock();
1794
1795 return ret;
1796 }
1797
1798 /**
1799 * find_get_pages_contig - gang contiguous pagecache lookup
1800 * @mapping: The address_space to search
1801 * @index: The starting page index
1802 * @nr_pages: The maximum number of pages
1803 * @pages: Where the resulting pages are placed
1804 *
1805 * find_get_pages_contig() works exactly like find_get_pages(), except
1806 * that the returned number of pages are guaranteed to be contiguous.
1807 *
1808 * find_get_pages_contig() returns the number of pages which were found.
1809 */
1810 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1811 unsigned int nr_pages, struct page **pages)
1812 {
1813 struct radix_tree_iter iter;
1814 void **slot;
1815 unsigned int ret = 0;
1816
1817 if (unlikely(!nr_pages))
1818 return 0;
1819
1820 rcu_read_lock();
1821 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1822 struct page *head, *page;
1823 repeat:
1824 page = radix_tree_deref_slot(slot);
1825 /* The hole, there no reason to continue */
1826 if (unlikely(!page))
1827 break;
1828
1829 if (radix_tree_exception(page)) {
1830 if (radix_tree_deref_retry(page)) {
1831 slot = radix_tree_iter_retry(&iter);
1832 continue;
1833 }
1834 /*
1835 * A shadow entry of a recently evicted page,
1836 * or a swap entry from shmem/tmpfs. Stop
1837 * looking for contiguous pages.
1838 */
1839 break;
1840 }
1841
1842 head = compound_head(page);
1843 if (!page_cache_get_speculative(head))
1844 goto repeat;
1845
1846 /* The page was split under us? */
1847 if (compound_head(page) != head) {
1848 put_page(head);
1849 goto repeat;
1850 }
1851
1852 /* Has the page moved? */
1853 if (unlikely(page != *slot)) {
1854 put_page(head);
1855 goto repeat;
1856 }
1857
1858 /*
1859 * must check mapping and index after taking the ref.
1860 * otherwise we can get both false positives and false
1861 * negatives, which is just confusing to the caller.
1862 */
1863 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1864 put_page(page);
1865 break;
1866 }
1867
1868 pages[ret] = page;
1869 if (++ret == nr_pages)
1870 break;
1871 }
1872 rcu_read_unlock();
1873 return ret;
1874 }
1875 EXPORT_SYMBOL(find_get_pages_contig);
1876
1877 /**
1878 * find_get_pages_range_tag - find and return pages in given range matching @tag
1879 * @mapping: the address_space to search
1880 * @index: the starting page index
1881 * @end: The final page index (inclusive)
1882 * @tag: the tag index
1883 * @nr_pages: the maximum number of pages
1884 * @pages: where the resulting pages are placed
1885 *
1886 * Like find_get_pages, except we only return pages which are tagged with
1887 * @tag. We update @index to index the next page for the traversal.
1888 */
1889 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1890 pgoff_t end, int tag, unsigned int nr_pages,
1891 struct page **pages)
1892 {
1893 struct radix_tree_iter iter;
1894 void **slot;
1895 unsigned ret = 0;
1896
1897 if (unlikely(!nr_pages))
1898 return 0;
1899
1900 rcu_read_lock();
1901 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1902 &iter, *index, tag) {
1903 struct page *head, *page;
1904
1905 if (iter.index > end)
1906 break;
1907 repeat:
1908 page = radix_tree_deref_slot(slot);
1909 if (unlikely(!page))
1910 continue;
1911
1912 if (radix_tree_exception(page)) {
1913 if (radix_tree_deref_retry(page)) {
1914 slot = radix_tree_iter_retry(&iter);
1915 continue;
1916 }
1917 /*
1918 * A shadow entry of a recently evicted page.
1919 *
1920 * Those entries should never be tagged, but
1921 * this tree walk is lockless and the tags are
1922 * looked up in bulk, one radix tree node at a
1923 * time, so there is a sizable window for page
1924 * reclaim to evict a page we saw tagged.
1925 *
1926 * Skip over it.
1927 */
1928 continue;
1929 }
1930
1931 head = compound_head(page);
1932 if (!page_cache_get_speculative(head))
1933 goto repeat;
1934
1935 /* The page was split under us? */
1936 if (compound_head(page) != head) {
1937 put_page(head);
1938 goto repeat;
1939 }
1940
1941 /* Has the page moved? */
1942 if (unlikely(page != *slot)) {
1943 put_page(head);
1944 goto repeat;
1945 }
1946
1947 pages[ret] = page;
1948 if (++ret == nr_pages) {
1949 *index = pages[ret - 1]->index + 1;
1950 goto out;
1951 }
1952 }
1953
1954 /*
1955 * We come here when we got at @end. We take care to not overflow the
1956 * index @index as it confuses some of the callers. This breaks the
1957 * iteration when there is page at index -1 but that is already broken
1958 * anyway.
1959 */
1960 if (end == (pgoff_t)-1)
1961 *index = (pgoff_t)-1;
1962 else
1963 *index = end + 1;
1964 out:
1965 rcu_read_unlock();
1966
1967 return ret;
1968 }
1969 EXPORT_SYMBOL(find_get_pages_range_tag);
1970
1971 /**
1972 * find_get_entries_tag - find and return entries that match @tag
1973 * @mapping: the address_space to search
1974 * @start: the starting page cache index
1975 * @tag: the tag index
1976 * @nr_entries: the maximum number of entries
1977 * @entries: where the resulting entries are placed
1978 * @indices: the cache indices corresponding to the entries in @entries
1979 *
1980 * Like find_get_entries, except we only return entries which are tagged with
1981 * @tag.
1982 */
1983 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1984 int tag, unsigned int nr_entries,
1985 struct page **entries, pgoff_t *indices)
1986 {
1987 void **slot;
1988 unsigned int ret = 0;
1989 struct radix_tree_iter iter;
1990
1991 if (!nr_entries)
1992 return 0;
1993
1994 rcu_read_lock();
1995 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1996 &iter, start, tag) {
1997 struct page *head, *page;
1998 repeat:
1999 page = radix_tree_deref_slot(slot);
2000 if (unlikely(!page))
2001 continue;
2002 if (radix_tree_exception(page)) {
2003 if (radix_tree_deref_retry(page)) {
2004 slot = radix_tree_iter_retry(&iter);
2005 continue;
2006 }
2007
2008 /*
2009 * A shadow entry of a recently evicted page, a swap
2010 * entry from shmem/tmpfs or a DAX entry. Return it
2011 * without attempting to raise page count.
2012 */
2013 goto export;
2014 }
2015
2016 head = compound_head(page);
2017 if (!page_cache_get_speculative(head))
2018 goto repeat;
2019
2020 /* The page was split under us? */
2021 if (compound_head(page) != head) {
2022 put_page(head);
2023 goto repeat;
2024 }
2025
2026 /* Has the page moved? */
2027 if (unlikely(page != *slot)) {
2028 put_page(head);
2029 goto repeat;
2030 }
2031 export:
2032 indices[ret] = iter.index;
2033 entries[ret] = page;
2034 if (++ret == nr_entries)
2035 break;
2036 }
2037 rcu_read_unlock();
2038 return ret;
2039 }
2040 EXPORT_SYMBOL(find_get_entries_tag);
2041
2042 /*
2043 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2044 * a _large_ part of the i/o request. Imagine the worst scenario:
2045 *
2046 * ---R__________________________________________B__________
2047 * ^ reading here ^ bad block(assume 4k)
2048 *
2049 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2050 * => failing the whole request => read(R) => read(R+1) =>
2051 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2052 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2053 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2054 *
2055 * It is going insane. Fix it by quickly scaling down the readahead size.
2056 */
2057 static void shrink_readahead_size_eio(struct file *filp,
2058 struct file_ra_state *ra)
2059 {
2060 ra->ra_pages /= 4;
2061 }
2062
2063 /**
2064 * generic_file_buffered_read - generic file read routine
2065 * @iocb: the iocb to read
2066 * @iter: data destination
2067 * @written: already copied
2068 *
2069 * This is a generic file read routine, and uses the
2070 * mapping->a_ops->readpage() function for the actual low-level stuff.
2071 *
2072 * This is really ugly. But the goto's actually try to clarify some
2073 * of the logic when it comes to error handling etc.
2074 */
2075 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2076 struct iov_iter *iter, ssize_t written)
2077 {
2078 struct file *filp = iocb->ki_filp;
2079 struct address_space *mapping = filp->f_mapping;
2080 struct inode *inode = mapping->host;
2081 struct file_ra_state *ra = &filp->f_ra;
2082 loff_t *ppos = &iocb->ki_pos;
2083 pgoff_t index;
2084 pgoff_t last_index;
2085 pgoff_t prev_index;
2086 unsigned long offset; /* offset into pagecache page */
2087 unsigned int prev_offset;
2088 int error = 0;
2089
2090 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2091 return 0;
2092 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2093
2094 index = *ppos >> PAGE_SHIFT;
2095 prev_index = ra->prev_pos >> PAGE_SHIFT;
2096 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2097 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2098 offset = *ppos & ~PAGE_MASK;
2099
2100 for (;;) {
2101 struct page *page;
2102 pgoff_t end_index;
2103 loff_t isize;
2104 unsigned long nr, ret;
2105
2106 cond_resched();
2107 find_page:
2108 if (fatal_signal_pending(current)) {
2109 error = -EINTR;
2110 goto out;
2111 }
2112
2113 page = find_get_page(mapping, index);
2114 if (!page) {
2115 if (iocb->ki_flags & IOCB_NOWAIT)
2116 goto would_block;
2117 page_cache_sync_readahead(mapping,
2118 ra, filp,
2119 index, last_index - index);
2120 page = find_get_page(mapping, index);
2121 if (unlikely(page == NULL))
2122 goto no_cached_page;
2123 }
2124 if (PageReadahead(page)) {
2125 page_cache_async_readahead(mapping,
2126 ra, filp, page,
2127 index, last_index - index);
2128 }
2129 if (!PageUptodate(page)) {
2130 if (iocb->ki_flags & IOCB_NOWAIT) {
2131 put_page(page);
2132 goto would_block;
2133 }
2134
2135 /*
2136 * See comment in do_read_cache_page on why
2137 * wait_on_page_locked is used to avoid unnecessarily
2138 * serialisations and why it's safe.
2139 */
2140 error = wait_on_page_locked_killable(page);
2141 if (unlikely(error))
2142 goto readpage_error;
2143 if (PageUptodate(page))
2144 goto page_ok;
2145
2146 if (inode->i_blkbits == PAGE_SHIFT ||
2147 !mapping->a_ops->is_partially_uptodate)
2148 goto page_not_up_to_date;
2149 /* pipes can't handle partially uptodate pages */
2150 if (unlikely(iter->type & ITER_PIPE))
2151 goto page_not_up_to_date;
2152 if (!trylock_page(page))
2153 goto page_not_up_to_date;
2154 /* Did it get truncated before we got the lock? */
2155 if (!page->mapping)
2156 goto page_not_up_to_date_locked;
2157 if (!mapping->a_ops->is_partially_uptodate(page,
2158 offset, iter->count))
2159 goto page_not_up_to_date_locked;
2160 unlock_page(page);
2161 }
2162 page_ok:
2163 /*
2164 * i_size must be checked after we know the page is Uptodate.
2165 *
2166 * Checking i_size after the check allows us to calculate
2167 * the correct value for "nr", which means the zero-filled
2168 * part of the page is not copied back to userspace (unless
2169 * another truncate extends the file - this is desired though).
2170 */
2171
2172 isize = i_size_read(inode);
2173 end_index = (isize - 1) >> PAGE_SHIFT;
2174 if (unlikely(!isize || index > end_index)) {
2175 put_page(page);
2176 goto out;
2177 }
2178
2179 /* nr is the maximum number of bytes to copy from this page */
2180 nr = PAGE_SIZE;
2181 if (index == end_index) {
2182 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2183 if (nr <= offset) {
2184 put_page(page);
2185 goto out;
2186 }
2187 }
2188 nr = nr - offset;
2189
2190 /* If users can be writing to this page using arbitrary
2191 * virtual addresses, take care about potential aliasing
2192 * before reading the page on the kernel side.
2193 */
2194 if (mapping_writably_mapped(mapping))
2195 flush_dcache_page(page);
2196
2197 /*
2198 * When a sequential read accesses a page several times,
2199 * only mark it as accessed the first time.
2200 */
2201 if (prev_index != index || offset != prev_offset)
2202 mark_page_accessed(page);
2203 prev_index = index;
2204
2205 /*
2206 * Ok, we have the page, and it's up-to-date, so
2207 * now we can copy it to user space...
2208 */
2209
2210 ret = copy_page_to_iter(page, offset, nr, iter);
2211 offset += ret;
2212 index += offset >> PAGE_SHIFT;
2213 offset &= ~PAGE_MASK;
2214 prev_offset = offset;
2215
2216 put_page(page);
2217 written += ret;
2218 if (!iov_iter_count(iter))
2219 goto out;
2220 if (ret < nr) {
2221 error = -EFAULT;
2222 goto out;
2223 }
2224 continue;
2225
2226 page_not_up_to_date:
2227 /* Get exclusive access to the page ... */
2228 error = lock_page_killable(page);
2229 if (unlikely(error))
2230 goto readpage_error;
2231
2232 page_not_up_to_date_locked:
2233 /* Did it get truncated before we got the lock? */
2234 if (!page->mapping) {
2235 unlock_page(page);
2236 put_page(page);
2237 continue;
2238 }
2239
2240 /* Did somebody else fill it already? */
2241 if (PageUptodate(page)) {
2242 unlock_page(page);
2243 goto page_ok;
2244 }
2245
2246 readpage:
2247 /*
2248 * A previous I/O error may have been due to temporary
2249 * failures, eg. multipath errors.
2250 * PG_error will be set again if readpage fails.
2251 */
2252 ClearPageError(page);
2253 /* Start the actual read. The read will unlock the page. */
2254 error = mapping->a_ops->readpage(filp, page);
2255
2256 if (unlikely(error)) {
2257 if (error == AOP_TRUNCATED_PAGE) {
2258 put_page(page);
2259 error = 0;
2260 goto find_page;
2261 }
2262 goto readpage_error;
2263 }
2264
2265 if (!PageUptodate(page)) {
2266 error = lock_page_killable(page);
2267 if (unlikely(error))
2268 goto readpage_error;
2269 if (!PageUptodate(page)) {
2270 if (page->mapping == NULL) {
2271 /*
2272 * invalidate_mapping_pages got it
2273 */
2274 unlock_page(page);
2275 put_page(page);
2276 goto find_page;
2277 }
2278 unlock_page(page);
2279 shrink_readahead_size_eio(filp, ra);
2280 error = -EIO;
2281 goto readpage_error;
2282 }
2283 unlock_page(page);
2284 }
2285
2286 goto page_ok;
2287
2288 readpage_error:
2289 /* UHHUH! A synchronous read error occurred. Report it */
2290 put_page(page);
2291 goto out;
2292
2293 no_cached_page:
2294 /*
2295 * Ok, it wasn't cached, so we need to create a new
2296 * page..
2297 */
2298 page = page_cache_alloc(mapping);
2299 if (!page) {
2300 error = -ENOMEM;
2301 goto out;
2302 }
2303 error = add_to_page_cache_lru(page, mapping, index,
2304 mapping_gfp_constraint(mapping, GFP_KERNEL));
2305 if (error) {
2306 put_page(page);
2307 if (error == -EEXIST) {
2308 error = 0;
2309 goto find_page;
2310 }
2311 goto out;
2312 }
2313 goto readpage;
2314 }
2315
2316 would_block:
2317 error = -EAGAIN;
2318 out:
2319 ra->prev_pos = prev_index;
2320 ra->prev_pos <<= PAGE_SHIFT;
2321 ra->prev_pos |= prev_offset;
2322
2323 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2324 file_accessed(filp);
2325 return written ? written : error;
2326 }
2327
2328 /**
2329 * generic_file_read_iter - generic filesystem read routine
2330 * @iocb: kernel I/O control block
2331 * @iter: destination for the data read
2332 *
2333 * This is the "read_iter()" routine for all filesystems
2334 * that can use the page cache directly.
2335 */
2336 ssize_t
2337 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2338 {
2339 size_t count = iov_iter_count(iter);
2340 ssize_t retval = 0;
2341
2342 if (!count)
2343 goto out; /* skip atime */
2344
2345 if (iocb->ki_flags & IOCB_DIRECT) {
2346 struct file *file = iocb->ki_filp;
2347 struct address_space *mapping = file->f_mapping;
2348 struct inode *inode = mapping->host;
2349 loff_t size;
2350
2351 size = i_size_read(inode);
2352 if (iocb->ki_flags & IOCB_NOWAIT) {
2353 if (filemap_range_has_page(mapping, iocb->ki_pos,
2354 iocb->ki_pos + count - 1))
2355 return -EAGAIN;
2356 } else {
2357 retval = filemap_write_and_wait_range(mapping,
2358 iocb->ki_pos,
2359 iocb->ki_pos + count - 1);
2360 if (retval < 0)
2361 goto out;
2362 }
2363
2364 file_accessed(file);
2365
2366 retval = mapping->a_ops->direct_IO(iocb, iter);
2367 if (retval >= 0) {
2368 iocb->ki_pos += retval;
2369 count -= retval;
2370 }
2371 iov_iter_revert(iter, count - iov_iter_count(iter));
2372
2373 /*
2374 * Btrfs can have a short DIO read if we encounter
2375 * compressed extents, so if there was an error, or if
2376 * we've already read everything we wanted to, or if
2377 * there was a short read because we hit EOF, go ahead
2378 * and return. Otherwise fallthrough to buffered io for
2379 * the rest of the read. Buffered reads will not work for
2380 * DAX files, so don't bother trying.
2381 */
2382 if (retval < 0 || !count || iocb->ki_pos >= size ||
2383 IS_DAX(inode))
2384 goto out;
2385 }
2386
2387 retval = generic_file_buffered_read(iocb, iter, retval);
2388 out:
2389 return retval;
2390 }
2391 EXPORT_SYMBOL(generic_file_read_iter);
2392
2393 #ifdef CONFIG_MMU
2394 /**
2395 * page_cache_read - adds requested page to the page cache if not already there
2396 * @file: file to read
2397 * @offset: page index
2398 * @gfp_mask: memory allocation flags
2399 *
2400 * This adds the requested page to the page cache if it isn't already there,
2401 * and schedules an I/O to read in its contents from disk.
2402 */
2403 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2404 {
2405 struct address_space *mapping = file->f_mapping;
2406 struct page *page;
2407 int ret;
2408
2409 do {
2410 page = __page_cache_alloc(gfp_mask);
2411 if (!page)
2412 return -ENOMEM;
2413
2414 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2415 if (ret == 0)
2416 ret = mapping->a_ops->readpage(file, page);
2417 else if (ret == -EEXIST)
2418 ret = 0; /* losing race to add is OK */
2419
2420 put_page(page);
2421
2422 } while (ret == AOP_TRUNCATED_PAGE);
2423
2424 return ret;
2425 }
2426
2427 #define MMAP_LOTSAMISS (100)
2428
2429 /*
2430 * Synchronous readahead happens when we don't even find
2431 * a page in the page cache at all.
2432 */
2433 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2434 struct file_ra_state *ra,
2435 struct file *file,
2436 pgoff_t offset)
2437 {
2438 struct address_space *mapping = file->f_mapping;
2439
2440 /* If we don't want any read-ahead, don't bother */
2441 if (vma->vm_flags & VM_RAND_READ)
2442 return;
2443 if (!ra->ra_pages)
2444 return;
2445
2446 if (vma->vm_flags & VM_SEQ_READ) {
2447 page_cache_sync_readahead(mapping, ra, file, offset,
2448 ra->ra_pages);
2449 return;
2450 }
2451
2452 /* Avoid banging the cache line if not needed */
2453 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2454 ra->mmap_miss++;
2455
2456 /*
2457 * Do we miss much more than hit in this file? If so,
2458 * stop bothering with read-ahead. It will only hurt.
2459 */
2460 if (ra->mmap_miss > MMAP_LOTSAMISS)
2461 return;
2462
2463 /*
2464 * mmap read-around
2465 */
2466 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2467 ra->size = ra->ra_pages;
2468 ra->async_size = ra->ra_pages / 4;
2469 ra_submit(ra, mapping, file);
2470 }
2471
2472 /*
2473 * Asynchronous readahead happens when we find the page and PG_readahead,
2474 * so we want to possibly extend the readahead further..
2475 */
2476 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2477 struct file_ra_state *ra,
2478 struct file *file,
2479 struct page *page,
2480 pgoff_t offset)
2481 {
2482 struct address_space *mapping = file->f_mapping;
2483
2484 /* If we don't want any read-ahead, don't bother */
2485 if (vma->vm_flags & VM_RAND_READ)
2486 return;
2487 if (ra->mmap_miss > 0)
2488 ra->mmap_miss--;
2489 if (PageReadahead(page))
2490 page_cache_async_readahead(mapping, ra, file,
2491 page, offset, ra->ra_pages);
2492 }
2493
2494 /**
2495 * filemap_fault - read in file data for page fault handling
2496 * @vmf: struct vm_fault containing details of the fault
2497 *
2498 * filemap_fault() is invoked via the vma operations vector for a
2499 * mapped memory region to read in file data during a page fault.
2500 *
2501 * The goto's are kind of ugly, but this streamlines the normal case of having
2502 * it in the page cache, and handles the special cases reasonably without
2503 * having a lot of duplicated code.
2504 *
2505 * vma->vm_mm->mmap_sem must be held on entry.
2506 *
2507 * If our return value has VM_FAULT_RETRY set, it's because
2508 * lock_page_or_retry() returned 0.
2509 * The mmap_sem has usually been released in this case.
2510 * See __lock_page_or_retry() for the exception.
2511 *
2512 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2513 * has not been released.
2514 *
2515 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2516 */
2517 int filemap_fault(struct vm_fault *vmf)
2518 {
2519 int error;
2520 struct file *file = vmf->vma->vm_file;
2521 struct address_space *mapping = file->f_mapping;
2522 struct file_ra_state *ra = &file->f_ra;
2523 struct inode *inode = mapping->host;
2524 pgoff_t offset = vmf->pgoff;
2525 pgoff_t max_off;
2526 struct page *page;
2527 int ret = 0;
2528
2529 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2530 if (unlikely(offset >= max_off))
2531 return VM_FAULT_SIGBUS;
2532
2533 /*
2534 * Do we have something in the page cache already?
2535 */
2536 page = find_get_page(mapping, offset);
2537 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2538 /*
2539 * We found the page, so try async readahead before
2540 * waiting for the lock.
2541 */
2542 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2543 } else if (!page) {
2544 /* No page in the page cache at all */
2545 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2546 count_vm_event(PGMAJFAULT);
2547 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2548 ret = VM_FAULT_MAJOR;
2549 retry_find:
2550 page = find_get_page(mapping, offset);
2551 if (!page)
2552 goto no_cached_page;
2553 }
2554
2555 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2556 put_page(page);
2557 return ret | VM_FAULT_RETRY;
2558 }
2559
2560 /* Did it get truncated? */
2561 if (unlikely(page->mapping != mapping)) {
2562 unlock_page(page);
2563 put_page(page);
2564 goto retry_find;
2565 }
2566 VM_BUG_ON_PAGE(page->index != offset, page);
2567
2568 /*
2569 * We have a locked page in the page cache, now we need to check
2570 * that it's up-to-date. If not, it is going to be due to an error.
2571 */
2572 if (unlikely(!PageUptodate(page)))
2573 goto page_not_uptodate;
2574
2575 /*
2576 * Found the page and have a reference on it.
2577 * We must recheck i_size under page lock.
2578 */
2579 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2580 if (unlikely(offset >= max_off)) {
2581 unlock_page(page);
2582 put_page(page);
2583 return VM_FAULT_SIGBUS;
2584 }
2585
2586 vmf->page = page;
2587 return ret | VM_FAULT_LOCKED;
2588
2589 no_cached_page:
2590 /*
2591 * We're only likely to ever get here if MADV_RANDOM is in
2592 * effect.
2593 */
2594 error = page_cache_read(file, offset, vmf->gfp_mask);
2595
2596 /*
2597 * The page we want has now been added to the page cache.
2598 * In the unlikely event that someone removed it in the
2599 * meantime, we'll just come back here and read it again.
2600 */
2601 if (error >= 0)
2602 goto retry_find;
2603
2604 /*
2605 * An error return from page_cache_read can result if the
2606 * system is low on memory, or a problem occurs while trying
2607 * to schedule I/O.
2608 */
2609 if (error == -ENOMEM)
2610 return VM_FAULT_OOM;
2611 return VM_FAULT_SIGBUS;
2612
2613 page_not_uptodate:
2614 /*
2615 * Umm, take care of errors if the page isn't up-to-date.
2616 * Try to re-read it _once_. We do this synchronously,
2617 * because there really aren't any performance issues here
2618 * and we need to check for errors.
2619 */
2620 ClearPageError(page);
2621 error = mapping->a_ops->readpage(file, page);
2622 if (!error) {
2623 wait_on_page_locked(page);
2624 if (!PageUptodate(page))
2625 error = -EIO;
2626 }
2627 put_page(page);
2628
2629 if (!error || error == AOP_TRUNCATED_PAGE)
2630 goto retry_find;
2631
2632 /* Things didn't work out. Return zero to tell the mm layer so. */
2633 shrink_readahead_size_eio(file, ra);
2634 return VM_FAULT_SIGBUS;
2635 }
2636 EXPORT_SYMBOL(filemap_fault);
2637
2638 void filemap_map_pages(struct vm_fault *vmf,
2639 pgoff_t start_pgoff, pgoff_t end_pgoff)
2640 {
2641 struct radix_tree_iter iter;
2642 void **slot;
2643 struct file *file = vmf->vma->vm_file;
2644 struct address_space *mapping = file->f_mapping;
2645 pgoff_t last_pgoff = start_pgoff;
2646 unsigned long max_idx;
2647 struct page *head, *page;
2648
2649 rcu_read_lock();
2650 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2651 start_pgoff) {
2652 if (iter.index > end_pgoff)
2653 break;
2654 repeat:
2655 page = radix_tree_deref_slot(slot);
2656 if (unlikely(!page))
2657 goto next;
2658 if (radix_tree_exception(page)) {
2659 if (radix_tree_deref_retry(page)) {
2660 slot = radix_tree_iter_retry(&iter);
2661 continue;
2662 }
2663 goto next;
2664 }
2665
2666 head = compound_head(page);
2667 if (!page_cache_get_speculative(head))
2668 goto repeat;
2669
2670 /* The page was split under us? */
2671 if (compound_head(page) != head) {
2672 put_page(head);
2673 goto repeat;
2674 }
2675
2676 /* Has the page moved? */
2677 if (unlikely(page != *slot)) {
2678 put_page(head);
2679 goto repeat;
2680 }
2681
2682 if (!PageUptodate(page) ||
2683 PageReadahead(page) ||
2684 PageHWPoison(page))
2685 goto skip;
2686 if (!trylock_page(page))
2687 goto skip;
2688
2689 if (page->mapping != mapping || !PageUptodate(page))
2690 goto unlock;
2691
2692 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2693 if (page->index >= max_idx)
2694 goto unlock;
2695
2696 if (file->f_ra.mmap_miss > 0)
2697 file->f_ra.mmap_miss--;
2698
2699 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2700 if (vmf->pte)
2701 vmf->pte += iter.index - last_pgoff;
2702 last_pgoff = iter.index;
2703 if (alloc_set_pte(vmf, NULL, page))
2704 goto unlock;
2705 unlock_page(page);
2706 goto next;
2707 unlock:
2708 unlock_page(page);
2709 skip:
2710 put_page(page);
2711 next:
2712 /* Huge page is mapped? No need to proceed. */
2713 if (pmd_trans_huge(*vmf->pmd))
2714 break;
2715 if (iter.index == end_pgoff)
2716 break;
2717 }
2718 rcu_read_unlock();
2719 }
2720 EXPORT_SYMBOL(filemap_map_pages);
2721
2722 int filemap_page_mkwrite(struct vm_fault *vmf)
2723 {
2724 struct page *page = vmf->page;
2725 struct inode *inode = file_inode(vmf->vma->vm_file);
2726 int ret = VM_FAULT_LOCKED;
2727
2728 sb_start_pagefault(inode->i_sb);
2729 vma_file_update_time(vmf->vma);
2730 lock_page(page);
2731 if (page->mapping != inode->i_mapping) {
2732 unlock_page(page);
2733 ret = VM_FAULT_NOPAGE;
2734 goto out;
2735 }
2736 /*
2737 * We mark the page dirty already here so that when freeze is in
2738 * progress, we are guaranteed that writeback during freezing will
2739 * see the dirty page and writeprotect it again.
2740 */
2741 set_page_dirty(page);
2742 wait_for_stable_page(page);
2743 out:
2744 sb_end_pagefault(inode->i_sb);
2745 return ret;
2746 }
2747 EXPORT_SYMBOL(filemap_page_mkwrite);
2748
2749 const struct vm_operations_struct generic_file_vm_ops = {
2750 .fault = filemap_fault,
2751 .map_pages = filemap_map_pages,
2752 .page_mkwrite = filemap_page_mkwrite,
2753 };
2754
2755 /* This is used for a general mmap of a disk file */
2756
2757 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2758 {
2759 struct address_space *mapping = file->f_mapping;
2760
2761 if (!mapping->a_ops->readpage)
2762 return -ENOEXEC;
2763 file_accessed(file);
2764 vma->vm_ops = &generic_file_vm_ops;
2765 return 0;
2766 }
2767
2768 /*
2769 * This is for filesystems which do not implement ->writepage.
2770 */
2771 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2772 {
2773 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2774 return -EINVAL;
2775 return generic_file_mmap(file, vma);
2776 }
2777 #else
2778 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2779 {
2780 return -ENOSYS;
2781 }
2782 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2783 {
2784 return -ENOSYS;
2785 }
2786 #endif /* CONFIG_MMU */
2787
2788 EXPORT_SYMBOL(generic_file_mmap);
2789 EXPORT_SYMBOL(generic_file_readonly_mmap);
2790
2791 static struct page *wait_on_page_read(struct page *page)
2792 {
2793 if (!IS_ERR(page)) {
2794 wait_on_page_locked(page);
2795 if (!PageUptodate(page)) {
2796 put_page(page);
2797 page = ERR_PTR(-EIO);
2798 }
2799 }
2800 return page;
2801 }
2802
2803 static struct page *do_read_cache_page(struct address_space *mapping,
2804 pgoff_t index,
2805 int (*filler)(void *, struct page *),
2806 void *data,
2807 gfp_t gfp)
2808 {
2809 struct page *page;
2810 int err;
2811 repeat:
2812 page = find_get_page(mapping, index);
2813 if (!page) {
2814 page = __page_cache_alloc(gfp);
2815 if (!page)
2816 return ERR_PTR(-ENOMEM);
2817 err = add_to_page_cache_lru(page, mapping, index, gfp);
2818 if (unlikely(err)) {
2819 put_page(page);
2820 if (err == -EEXIST)
2821 goto repeat;
2822 /* Presumably ENOMEM for radix tree node */
2823 return ERR_PTR(err);
2824 }
2825
2826 filler:
2827 err = filler(data, page);
2828 if (err < 0) {
2829 put_page(page);
2830 return ERR_PTR(err);
2831 }
2832
2833 page = wait_on_page_read(page);
2834 if (IS_ERR(page))
2835 return page;
2836 goto out;
2837 }
2838 if (PageUptodate(page))
2839 goto out;
2840
2841 /*
2842 * Page is not up to date and may be locked due one of the following
2843 * case a: Page is being filled and the page lock is held
2844 * case b: Read/write error clearing the page uptodate status
2845 * case c: Truncation in progress (page locked)
2846 * case d: Reclaim in progress
2847 *
2848 * Case a, the page will be up to date when the page is unlocked.
2849 * There is no need to serialise on the page lock here as the page
2850 * is pinned so the lock gives no additional protection. Even if the
2851 * the page is truncated, the data is still valid if PageUptodate as
2852 * it's a race vs truncate race.
2853 * Case b, the page will not be up to date
2854 * Case c, the page may be truncated but in itself, the data may still
2855 * be valid after IO completes as it's a read vs truncate race. The
2856 * operation must restart if the page is not uptodate on unlock but
2857 * otherwise serialising on page lock to stabilise the mapping gives
2858 * no additional guarantees to the caller as the page lock is
2859 * released before return.
2860 * Case d, similar to truncation. If reclaim holds the page lock, it
2861 * will be a race with remove_mapping that determines if the mapping
2862 * is valid on unlock but otherwise the data is valid and there is
2863 * no need to serialise with page lock.
2864 *
2865 * As the page lock gives no additional guarantee, we optimistically
2866 * wait on the page to be unlocked and check if it's up to date and
2867 * use the page if it is. Otherwise, the page lock is required to
2868 * distinguish between the different cases. The motivation is that we
2869 * avoid spurious serialisations and wakeups when multiple processes
2870 * wait on the same page for IO to complete.
2871 */
2872 wait_on_page_locked(page);
2873 if (PageUptodate(page))
2874 goto out;
2875
2876 /* Distinguish between all the cases under the safety of the lock */
2877 lock_page(page);
2878
2879 /* Case c or d, restart the operation */
2880 if (!page->mapping) {
2881 unlock_page(page);
2882 put_page(page);
2883 goto repeat;
2884 }
2885
2886 /* Someone else locked and filled the page in a very small window */
2887 if (PageUptodate(page)) {
2888 unlock_page(page);
2889 goto out;
2890 }
2891 goto filler;
2892
2893 out:
2894 mark_page_accessed(page);
2895 return page;
2896 }
2897
2898 /**
2899 * read_cache_page - read into page cache, fill it if needed
2900 * @mapping: the page's address_space
2901 * @index: the page index
2902 * @filler: function to perform the read
2903 * @data: first arg to filler(data, page) function, often left as NULL
2904 *
2905 * Read into the page cache. If a page already exists, and PageUptodate() is
2906 * not set, try to fill the page and wait for it to become unlocked.
2907 *
2908 * If the page does not get brought uptodate, return -EIO.
2909 */
2910 struct page *read_cache_page(struct address_space *mapping,
2911 pgoff_t index,
2912 int (*filler)(void *, struct page *),
2913 void *data)
2914 {
2915 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2916 }
2917 EXPORT_SYMBOL(read_cache_page);
2918
2919 /**
2920 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2921 * @mapping: the page's address_space
2922 * @index: the page index
2923 * @gfp: the page allocator flags to use if allocating
2924 *
2925 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2926 * any new page allocations done using the specified allocation flags.
2927 *
2928 * If the page does not get brought uptodate, return -EIO.
2929 */
2930 struct page *read_cache_page_gfp(struct address_space *mapping,
2931 pgoff_t index,
2932 gfp_t gfp)
2933 {
2934 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2935
2936 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2937 }
2938 EXPORT_SYMBOL(read_cache_page_gfp);
2939
2940 /*
2941 * Performs necessary checks before doing a write
2942 *
2943 * Can adjust writing position or amount of bytes to write.
2944 * Returns appropriate error code that caller should return or
2945 * zero in case that write should be allowed.
2946 */
2947 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2948 {
2949 struct file *file = iocb->ki_filp;
2950 struct inode *inode = file->f_mapping->host;
2951 unsigned long limit = rlimit(RLIMIT_FSIZE);
2952 loff_t pos;
2953
2954 if (!iov_iter_count(from))
2955 return 0;
2956
2957 /* FIXME: this is for backwards compatibility with 2.4 */
2958 if (iocb->ki_flags & IOCB_APPEND)
2959 iocb->ki_pos = i_size_read(inode);
2960
2961 pos = iocb->ki_pos;
2962
2963 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2964 return -EINVAL;
2965
2966 if (limit != RLIM_INFINITY) {
2967 if (iocb->ki_pos >= limit) {
2968 send_sig(SIGXFSZ, current, 0);
2969 return -EFBIG;
2970 }
2971 iov_iter_truncate(from, limit - (unsigned long)pos);
2972 }
2973
2974 /*
2975 * LFS rule
2976 */
2977 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2978 !(file->f_flags & O_LARGEFILE))) {
2979 if (pos >= MAX_NON_LFS)
2980 return -EFBIG;
2981 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2982 }
2983
2984 /*
2985 * Are we about to exceed the fs block limit ?
2986 *
2987 * If we have written data it becomes a short write. If we have
2988 * exceeded without writing data we send a signal and return EFBIG.
2989 * Linus frestrict idea will clean these up nicely..
2990 */
2991 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2992 return -EFBIG;
2993
2994 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2995 return iov_iter_count(from);
2996 }
2997 EXPORT_SYMBOL(generic_write_checks);
2998
2999 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3000 loff_t pos, unsigned len, unsigned flags,
3001 struct page **pagep, void **fsdata)
3002 {
3003 const struct address_space_operations *aops = mapping->a_ops;
3004
3005 return aops->write_begin(file, mapping, pos, len, flags,
3006 pagep, fsdata);
3007 }
3008 EXPORT_SYMBOL(pagecache_write_begin);
3009
3010 int pagecache_write_end(struct file *file, struct address_space *mapping,
3011 loff_t pos, unsigned len, unsigned copied,
3012 struct page *page, void *fsdata)
3013 {
3014 const struct address_space_operations *aops = mapping->a_ops;
3015
3016 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3017 }
3018 EXPORT_SYMBOL(pagecache_write_end);
3019
3020 ssize_t
3021 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3022 {
3023 struct file *file = iocb->ki_filp;
3024 struct address_space *mapping = file->f_mapping;
3025 struct inode *inode = mapping->host;
3026 loff_t pos = iocb->ki_pos;
3027 ssize_t written;
3028 size_t write_len;
3029 pgoff_t end;
3030
3031 write_len = iov_iter_count(from);
3032 end = (pos + write_len - 1) >> PAGE_SHIFT;
3033
3034 if (iocb->ki_flags & IOCB_NOWAIT) {
3035 /* If there are pages to writeback, return */
3036 if (filemap_range_has_page(inode->i_mapping, pos,
3037 pos + iov_iter_count(from)))
3038 return -EAGAIN;
3039 } else {
3040 written = filemap_write_and_wait_range(mapping, pos,
3041 pos + write_len - 1);
3042 if (written)
3043 goto out;
3044 }
3045
3046 /*
3047 * After a write we want buffered reads to be sure to go to disk to get
3048 * the new data. We invalidate clean cached page from the region we're
3049 * about to write. We do this *before* the write so that we can return
3050 * without clobbering -EIOCBQUEUED from ->direct_IO().
3051 */
3052 written = invalidate_inode_pages2_range(mapping,
3053 pos >> PAGE_SHIFT, end);
3054 /*
3055 * If a page can not be invalidated, return 0 to fall back
3056 * to buffered write.
3057 */
3058 if (written) {
3059 if (written == -EBUSY)
3060 return 0;
3061 goto out;
3062 }
3063
3064 written = mapping->a_ops->direct_IO(iocb, from);
3065
3066 /*
3067 * Finally, try again to invalidate clean pages which might have been
3068 * cached by non-direct readahead, or faulted in by get_user_pages()
3069 * if the source of the write was an mmap'ed region of the file
3070 * we're writing. Either one is a pretty crazy thing to do,
3071 * so we don't support it 100%. If this invalidation
3072 * fails, tough, the write still worked...
3073 *
3074 * Most of the time we do not need this since dio_complete() will do
3075 * the invalidation for us. However there are some file systems that
3076 * do not end up with dio_complete() being called, so let's not break
3077 * them by removing it completely
3078 */
3079 if (mapping->nrpages)
3080 invalidate_inode_pages2_range(mapping,
3081 pos >> PAGE_SHIFT, end);
3082
3083 if (written > 0) {
3084 pos += written;
3085 write_len -= written;
3086 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3087 i_size_write(inode, pos);
3088 mark_inode_dirty(inode);
3089 }
3090 iocb->ki_pos = pos;
3091 }
3092 iov_iter_revert(from, write_len - iov_iter_count(from));
3093 out:
3094 return written;
3095 }
3096 EXPORT_SYMBOL(generic_file_direct_write);
3097
3098 /*
3099 * Find or create a page at the given pagecache position. Return the locked
3100 * page. This function is specifically for buffered writes.
3101 */
3102 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3103 pgoff_t index, unsigned flags)
3104 {
3105 struct page *page;
3106 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3107
3108 if (flags & AOP_FLAG_NOFS)
3109 fgp_flags |= FGP_NOFS;
3110
3111 page = pagecache_get_page(mapping, index, fgp_flags,
3112 mapping_gfp_mask(mapping));
3113 if (page)
3114 wait_for_stable_page(page);
3115
3116 return page;
3117 }
3118 EXPORT_SYMBOL(grab_cache_page_write_begin);
3119
3120 ssize_t generic_perform_write(struct file *file,
3121 struct iov_iter *i, loff_t pos)
3122 {
3123 struct address_space *mapping = file->f_mapping;
3124 const struct address_space_operations *a_ops = mapping->a_ops;
3125 long status = 0;
3126 ssize_t written = 0;
3127 unsigned int flags = 0;
3128
3129 do {
3130 struct page *page;
3131 unsigned long offset; /* Offset into pagecache page */
3132 unsigned long bytes; /* Bytes to write to page */
3133 size_t copied; /* Bytes copied from user */
3134 void *fsdata;
3135
3136 offset = (pos & (PAGE_SIZE - 1));
3137 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3138 iov_iter_count(i));
3139
3140 again:
3141 /*
3142 * Bring in the user page that we will copy from _first_.
3143 * Otherwise there's a nasty deadlock on copying from the
3144 * same page as we're writing to, without it being marked
3145 * up-to-date.
3146 *
3147 * Not only is this an optimisation, but it is also required
3148 * to check that the address is actually valid, when atomic
3149 * usercopies are used, below.
3150 */
3151 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3152 status = -EFAULT;
3153 break;
3154 }
3155
3156 if (fatal_signal_pending(current)) {
3157 status = -EINTR;
3158 break;
3159 }
3160
3161 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3162 &page, &fsdata);
3163 if (unlikely(status < 0))
3164 break;
3165
3166 if (mapping_writably_mapped(mapping))
3167 flush_dcache_page(page);
3168
3169 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3170 flush_dcache_page(page);
3171
3172 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3173 page, fsdata);
3174 if (unlikely(status < 0))
3175 break;
3176 copied = status;
3177
3178 cond_resched();
3179
3180 iov_iter_advance(i, copied);
3181 if (unlikely(copied == 0)) {
3182 /*
3183 * If we were unable to copy any data at all, we must
3184 * fall back to a single segment length write.
3185 *
3186 * If we didn't fallback here, we could livelock
3187 * because not all segments in the iov can be copied at
3188 * once without a pagefault.
3189 */
3190 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3191 iov_iter_single_seg_count(i));
3192 goto again;
3193 }
3194 pos += copied;
3195 written += copied;
3196
3197 balance_dirty_pages_ratelimited(mapping);
3198 } while (iov_iter_count(i));
3199
3200 return written ? written : status;
3201 }
3202 EXPORT_SYMBOL(generic_perform_write);
3203
3204 /**
3205 * __generic_file_write_iter - write data to a file
3206 * @iocb: IO state structure (file, offset, etc.)
3207 * @from: iov_iter with data to write
3208 *
3209 * This function does all the work needed for actually writing data to a
3210 * file. It does all basic checks, removes SUID from the file, updates
3211 * modification times and calls proper subroutines depending on whether we
3212 * do direct IO or a standard buffered write.
3213 *
3214 * It expects i_mutex to be grabbed unless we work on a block device or similar
3215 * object which does not need locking at all.
3216 *
3217 * This function does *not* take care of syncing data in case of O_SYNC write.
3218 * A caller has to handle it. This is mainly due to the fact that we want to
3219 * avoid syncing under i_mutex.
3220 */
3221 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3222 {
3223 struct file *file = iocb->ki_filp;
3224 struct address_space * mapping = file->f_mapping;
3225 struct inode *inode = mapping->host;
3226 ssize_t written = 0;
3227 ssize_t err;
3228 ssize_t status;
3229
3230 /* We can write back this queue in page reclaim */
3231 current->backing_dev_info = inode_to_bdi(inode);
3232 err = file_remove_privs(file);
3233 if (err)
3234 goto out;
3235
3236 err = file_update_time(file);
3237 if (err)
3238 goto out;
3239
3240 if (iocb->ki_flags & IOCB_DIRECT) {
3241 loff_t pos, endbyte;
3242
3243 written = generic_file_direct_write(iocb, from);
3244 /*
3245 * If the write stopped short of completing, fall back to
3246 * buffered writes. Some filesystems do this for writes to
3247 * holes, for example. For DAX files, a buffered write will
3248 * not succeed (even if it did, DAX does not handle dirty
3249 * page-cache pages correctly).
3250 */
3251 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3252 goto out;
3253
3254 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3255 /*
3256 * If generic_perform_write() returned a synchronous error
3257 * then we want to return the number of bytes which were
3258 * direct-written, or the error code if that was zero. Note
3259 * that this differs from normal direct-io semantics, which
3260 * will return -EFOO even if some bytes were written.
3261 */
3262 if (unlikely(status < 0)) {
3263 err = status;
3264 goto out;
3265 }
3266 /*
3267 * We need to ensure that the page cache pages are written to
3268 * disk and invalidated to preserve the expected O_DIRECT
3269 * semantics.
3270 */
3271 endbyte = pos + status - 1;
3272 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3273 if (err == 0) {
3274 iocb->ki_pos = endbyte + 1;
3275 written += status;
3276 invalidate_mapping_pages(mapping,
3277 pos >> PAGE_SHIFT,
3278 endbyte >> PAGE_SHIFT);
3279 } else {
3280 /*
3281 * We don't know how much we wrote, so just return
3282 * the number of bytes which were direct-written
3283 */
3284 }
3285 } else {
3286 written = generic_perform_write(file, from, iocb->ki_pos);
3287 if (likely(written > 0))
3288 iocb->ki_pos += written;
3289 }
3290 out:
3291 current->backing_dev_info = NULL;
3292 return written ? written : err;
3293 }
3294 EXPORT_SYMBOL(__generic_file_write_iter);
3295
3296 /**
3297 * generic_file_write_iter - write data to a file
3298 * @iocb: IO state structure
3299 * @from: iov_iter with data to write
3300 *
3301 * This is a wrapper around __generic_file_write_iter() to be used by most
3302 * filesystems. It takes care of syncing the file in case of O_SYNC file
3303 * and acquires i_mutex as needed.
3304 */
3305 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3306 {
3307 struct file *file = iocb->ki_filp;
3308 struct inode *inode = file->f_mapping->host;
3309 ssize_t ret;
3310
3311 inode_lock(inode);
3312 ret = generic_write_checks(iocb, from);
3313 if (ret > 0)
3314 ret = __generic_file_write_iter(iocb, from);
3315 inode_unlock(inode);
3316
3317 if (ret > 0)
3318 ret = generic_write_sync(iocb, ret);
3319 return ret;
3320 }
3321 EXPORT_SYMBOL(generic_file_write_iter);
3322
3323 /**
3324 * try_to_release_page() - release old fs-specific metadata on a page
3325 *
3326 * @page: the page which the kernel is trying to free
3327 * @gfp_mask: memory allocation flags (and I/O mode)
3328 *
3329 * The address_space is to try to release any data against the page
3330 * (presumably at page->private). If the release was successful, return '1'.
3331 * Otherwise return zero.
3332 *
3333 * This may also be called if PG_fscache is set on a page, indicating that the
3334 * page is known to the local caching routines.
3335 *
3336 * The @gfp_mask argument specifies whether I/O may be performed to release
3337 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3338 *
3339 */
3340 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3341 {
3342 struct address_space * const mapping = page->mapping;
3343
3344 BUG_ON(!PageLocked(page));
3345 if (PageWriteback(page))
3346 return 0;
3347
3348 if (mapping && mapping->a_ops->releasepage)
3349 return mapping->a_ops->releasepage(page, gfp_mask);
3350 return try_to_free_buffers(page);
3351 }
3352
3353 EXPORT_SYMBOL(try_to_release_page);