]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/filemap.c
mlxsw: spectrum_router: Consolidate nexthop helpers
[mirror_ubuntu-jammy-kernel.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51
52 /*
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56
57 #include <asm/mman.h>
58
59 /*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71 /*
72 * Lock ordering:
73 *
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
76 * ->swap_lock (exclusive_swap_page, others)
77 * ->i_pages lock
78 *
79 * ->i_mutex
80 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
81 *
82 * ->mmap_lock
83 * ->i_mmap_rwsem
84 * ->page_table_lock or pte_lock (various, mainly in memory.c)
85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
86 *
87 * ->mmap_lock
88 * ->lock_page (access_process_vm)
89 *
90 * ->i_mutex (generic_perform_write)
91 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
92 *
93 * bdi->wb.list_lock
94 * sb_lock (fs/fs-writeback.c)
95 * ->i_pages lock (__sync_single_inode)
96 *
97 * ->i_mmap_rwsem
98 * ->anon_vma.lock (vma_adjust)
99 *
100 * ->anon_vma.lock
101 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
102 *
103 * ->page_table_lock or pte_lock
104 * ->swap_lock (try_to_unmap_one)
105 * ->private_lock (try_to_unmap_one)
106 * ->i_pages lock (try_to_unmap_one)
107 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
109 * ->private_lock (page_remove_rmap->set_page_dirty)
110 * ->i_pages lock (page_remove_rmap->set_page_dirty)
111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
112 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
115 * ->inode->i_lock (zap_pte_range->set_page_dirty)
116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
117 *
118 * ->i_mmap_rwsem
119 * ->tasklist_lock (memory_failure, collect_procs_ao)
120 */
121
122 static void page_cache_delete(struct address_space *mapping,
123 struct page *page, void *shadow)
124 {
125 XA_STATE(xas, &mapping->i_pages, page->index);
126 unsigned int nr = 1;
127
128 mapping_set_update(&xas, mapping);
129
130 /* hugetlb pages are represented by a single entry in the xarray */
131 if (!PageHuge(page)) {
132 xas_set_order(&xas, page->index, compound_order(page));
133 nr = compound_nr(page);
134 }
135
136 VM_BUG_ON_PAGE(!PageLocked(page), page);
137 VM_BUG_ON_PAGE(PageTail(page), page);
138 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
139
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
142
143 page->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145
146 if (shadow) {
147 mapping->nrexceptional += nr;
148 /*
149 * Make sure the nrexceptional update is committed before
150 * the nrpages update so that final truncate racing
151 * with reclaim does not see both counters 0 at the
152 * same time and miss a shadow entry.
153 */
154 smp_wmb();
155 }
156 mapping->nrpages -= nr;
157 }
158
159 static void unaccount_page_cache_page(struct address_space *mapping,
160 struct page *page)
161 {
162 int nr;
163
164 /*
165 * if we're uptodate, flush out into the cleancache, otherwise
166 * invalidate any existing cleancache entries. We can't leave
167 * stale data around in the cleancache once our page is gone
168 */
169 if (PageUptodate(page) && PageMappedToDisk(page))
170 cleancache_put_page(page);
171 else
172 cleancache_invalidate_page(mapping, page);
173
174 VM_BUG_ON_PAGE(PageTail(page), page);
175 VM_BUG_ON_PAGE(page_mapped(page), page);
176 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
177 int mapcount;
178
179 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
180 current->comm, page_to_pfn(page));
181 dump_page(page, "still mapped when deleted");
182 dump_stack();
183 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
184
185 mapcount = page_mapcount(page);
186 if (mapping_exiting(mapping) &&
187 page_count(page) >= mapcount + 2) {
188 /*
189 * All vmas have already been torn down, so it's
190 * a good bet that actually the page is unmapped,
191 * and we'd prefer not to leak it: if we're wrong,
192 * some other bad page check should catch it later.
193 */
194 page_mapcount_reset(page);
195 page_ref_sub(page, mapcount);
196 }
197 }
198
199 /* hugetlb pages do not participate in page cache accounting. */
200 if (PageHuge(page))
201 return;
202
203 nr = thp_nr_pages(page);
204
205 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
206 if (PageSwapBacked(page)) {
207 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
208 if (PageTransHuge(page))
209 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
210 } else if (PageTransHuge(page)) {
211 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
212 filemap_nr_thps_dec(mapping);
213 }
214
215 /*
216 * At this point page must be either written or cleaned by
217 * truncate. Dirty page here signals a bug and loss of
218 * unwritten data.
219 *
220 * This fixes dirty accounting after removing the page entirely
221 * but leaves PageDirty set: it has no effect for truncated
222 * page and anyway will be cleared before returning page into
223 * buddy allocator.
224 */
225 if (WARN_ON_ONCE(PageDirty(page)))
226 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
227 }
228
229 /*
230 * Delete a page from the page cache and free it. Caller has to make
231 * sure the page is locked and that nobody else uses it - or that usage
232 * is safe. The caller must hold the i_pages lock.
233 */
234 void __delete_from_page_cache(struct page *page, void *shadow)
235 {
236 struct address_space *mapping = page->mapping;
237
238 trace_mm_filemap_delete_from_page_cache(page);
239
240 unaccount_page_cache_page(mapping, page);
241 page_cache_delete(mapping, page, shadow);
242 }
243
244 static void page_cache_free_page(struct address_space *mapping,
245 struct page *page)
246 {
247 void (*freepage)(struct page *);
248
249 freepage = mapping->a_ops->freepage;
250 if (freepage)
251 freepage(page);
252
253 if (PageTransHuge(page) && !PageHuge(page)) {
254 page_ref_sub(page, thp_nr_pages(page));
255 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
256 } else {
257 put_page(page);
258 }
259 }
260
261 /**
262 * delete_from_page_cache - delete page from page cache
263 * @page: the page which the kernel is trying to remove from page cache
264 *
265 * This must be called only on pages that have been verified to be in the page
266 * cache and locked. It will never put the page into the free list, the caller
267 * has a reference on the page.
268 */
269 void delete_from_page_cache(struct page *page)
270 {
271 struct address_space *mapping = page_mapping(page);
272 unsigned long flags;
273
274 BUG_ON(!PageLocked(page));
275 xa_lock_irqsave(&mapping->i_pages, flags);
276 __delete_from_page_cache(page, NULL);
277 xa_unlock_irqrestore(&mapping->i_pages, flags);
278
279 page_cache_free_page(mapping, page);
280 }
281 EXPORT_SYMBOL(delete_from_page_cache);
282
283 /*
284 * page_cache_delete_batch - delete several pages from page cache
285 * @mapping: the mapping to which pages belong
286 * @pvec: pagevec with pages to delete
287 *
288 * The function walks over mapping->i_pages and removes pages passed in @pvec
289 * from the mapping. The function expects @pvec to be sorted by page index
290 * and is optimised for it to be dense.
291 * It tolerates holes in @pvec (mapping entries at those indices are not
292 * modified). The function expects only THP head pages to be present in the
293 * @pvec.
294 *
295 * The function expects the i_pages lock to be held.
296 */
297 static void page_cache_delete_batch(struct address_space *mapping,
298 struct pagevec *pvec)
299 {
300 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
301 int total_pages = 0;
302 int i = 0;
303 struct page *page;
304
305 mapping_set_update(&xas, mapping);
306 xas_for_each(&xas, page, ULONG_MAX) {
307 if (i >= pagevec_count(pvec))
308 break;
309
310 /* A swap/dax/shadow entry got inserted? Skip it. */
311 if (xa_is_value(page))
312 continue;
313 /*
314 * A page got inserted in our range? Skip it. We have our
315 * pages locked so they are protected from being removed.
316 * If we see a page whose index is higher than ours, it
317 * means our page has been removed, which shouldn't be
318 * possible because we're holding the PageLock.
319 */
320 if (page != pvec->pages[i]) {
321 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
322 page);
323 continue;
324 }
325
326 WARN_ON_ONCE(!PageLocked(page));
327
328 if (page->index == xas.xa_index)
329 page->mapping = NULL;
330 /* Leave page->index set: truncation lookup relies on it */
331
332 /*
333 * Move to the next page in the vector if this is a regular
334 * page or the index is of the last sub-page of this compound
335 * page.
336 */
337 if (page->index + compound_nr(page) - 1 == xas.xa_index)
338 i++;
339 xas_store(&xas, NULL);
340 total_pages++;
341 }
342 mapping->nrpages -= total_pages;
343 }
344
345 void delete_from_page_cache_batch(struct address_space *mapping,
346 struct pagevec *pvec)
347 {
348 int i;
349 unsigned long flags;
350
351 if (!pagevec_count(pvec))
352 return;
353
354 xa_lock_irqsave(&mapping->i_pages, flags);
355 for (i = 0; i < pagevec_count(pvec); i++) {
356 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
357
358 unaccount_page_cache_page(mapping, pvec->pages[i]);
359 }
360 page_cache_delete_batch(mapping, pvec);
361 xa_unlock_irqrestore(&mapping->i_pages, flags);
362
363 for (i = 0; i < pagevec_count(pvec); i++)
364 page_cache_free_page(mapping, pvec->pages[i]);
365 }
366
367 int filemap_check_errors(struct address_space *mapping)
368 {
369 int ret = 0;
370 /* Check for outstanding write errors */
371 if (test_bit(AS_ENOSPC, &mapping->flags) &&
372 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
373 ret = -ENOSPC;
374 if (test_bit(AS_EIO, &mapping->flags) &&
375 test_and_clear_bit(AS_EIO, &mapping->flags))
376 ret = -EIO;
377 return ret;
378 }
379 EXPORT_SYMBOL(filemap_check_errors);
380
381 static int filemap_check_and_keep_errors(struct address_space *mapping)
382 {
383 /* Check for outstanding write errors */
384 if (test_bit(AS_EIO, &mapping->flags))
385 return -EIO;
386 if (test_bit(AS_ENOSPC, &mapping->flags))
387 return -ENOSPC;
388 return 0;
389 }
390
391 /**
392 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
393 * @mapping: address space structure to write
394 * @start: offset in bytes where the range starts
395 * @end: offset in bytes where the range ends (inclusive)
396 * @sync_mode: enable synchronous operation
397 *
398 * Start writeback against all of a mapping's dirty pages that lie
399 * within the byte offsets <start, end> inclusive.
400 *
401 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
402 * opposed to a regular memory cleansing writeback. The difference between
403 * these two operations is that if a dirty page/buffer is encountered, it must
404 * be waited upon, and not just skipped over.
405 *
406 * Return: %0 on success, negative error code otherwise.
407 */
408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 loff_t end, int sync_mode)
410 {
411 int ret;
412 struct writeback_control wbc = {
413 .sync_mode = sync_mode,
414 .nr_to_write = LONG_MAX,
415 .range_start = start,
416 .range_end = end,
417 };
418
419 if (!mapping_can_writeback(mapping) ||
420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
421 return 0;
422
423 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
424 ret = do_writepages(mapping, &wbc);
425 wbc_detach_inode(&wbc);
426 return ret;
427 }
428
429 static inline int __filemap_fdatawrite(struct address_space *mapping,
430 int sync_mode)
431 {
432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433 }
434
435 int filemap_fdatawrite(struct address_space *mapping)
436 {
437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438 }
439 EXPORT_SYMBOL(filemap_fdatawrite);
440
441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442 loff_t end)
443 {
444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445 }
446 EXPORT_SYMBOL(filemap_fdatawrite_range);
447
448 /**
449 * filemap_flush - mostly a non-blocking flush
450 * @mapping: target address_space
451 *
452 * This is a mostly non-blocking flush. Not suitable for data-integrity
453 * purposes - I/O may not be started against all dirty pages.
454 *
455 * Return: %0 on success, negative error code otherwise.
456 */
457 int filemap_flush(struct address_space *mapping)
458 {
459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460 }
461 EXPORT_SYMBOL(filemap_flush);
462
463 /**
464 * filemap_range_has_page - check if a page exists in range.
465 * @mapping: address space within which to check
466 * @start_byte: offset in bytes where the range starts
467 * @end_byte: offset in bytes where the range ends (inclusive)
468 *
469 * Find at least one page in the range supplied, usually used to check if
470 * direct writing in this range will trigger a writeback.
471 *
472 * Return: %true if at least one page exists in the specified range,
473 * %false otherwise.
474 */
475 bool filemap_range_has_page(struct address_space *mapping,
476 loff_t start_byte, loff_t end_byte)
477 {
478 struct page *page;
479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 pgoff_t max = end_byte >> PAGE_SHIFT;
481
482 if (end_byte < start_byte)
483 return false;
484
485 rcu_read_lock();
486 for (;;) {
487 page = xas_find(&xas, max);
488 if (xas_retry(&xas, page))
489 continue;
490 /* Shadow entries don't count */
491 if (xa_is_value(page))
492 continue;
493 /*
494 * We don't need to try to pin this page; we're about to
495 * release the RCU lock anyway. It is enough to know that
496 * there was a page here recently.
497 */
498 break;
499 }
500 rcu_read_unlock();
501
502 return page != NULL;
503 }
504 EXPORT_SYMBOL(filemap_range_has_page);
505
506 static void __filemap_fdatawait_range(struct address_space *mapping,
507 loff_t start_byte, loff_t end_byte)
508 {
509 pgoff_t index = start_byte >> PAGE_SHIFT;
510 pgoff_t end = end_byte >> PAGE_SHIFT;
511 struct pagevec pvec;
512 int nr_pages;
513
514 if (end_byte < start_byte)
515 return;
516
517 pagevec_init(&pvec);
518 while (index <= end) {
519 unsigned i;
520
521 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
522 end, PAGECACHE_TAG_WRITEBACK);
523 if (!nr_pages)
524 break;
525
526 for (i = 0; i < nr_pages; i++) {
527 struct page *page = pvec.pages[i];
528
529 wait_on_page_writeback(page);
530 ClearPageError(page);
531 }
532 pagevec_release(&pvec);
533 cond_resched();
534 }
535 }
536
537 /**
538 * filemap_fdatawait_range - wait for writeback to complete
539 * @mapping: address space structure to wait for
540 * @start_byte: offset in bytes where the range starts
541 * @end_byte: offset in bytes where the range ends (inclusive)
542 *
543 * Walk the list of under-writeback pages of the given address space
544 * in the given range and wait for all of them. Check error status of
545 * the address space and return it.
546 *
547 * Since the error status of the address space is cleared by this function,
548 * callers are responsible for checking the return value and handling and/or
549 * reporting the error.
550 *
551 * Return: error status of the address space.
552 */
553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
554 loff_t end_byte)
555 {
556 __filemap_fdatawait_range(mapping, start_byte, end_byte);
557 return filemap_check_errors(mapping);
558 }
559 EXPORT_SYMBOL(filemap_fdatawait_range);
560
561 /**
562 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
563 * @mapping: address space structure to wait for
564 * @start_byte: offset in bytes where the range starts
565 * @end_byte: offset in bytes where the range ends (inclusive)
566 *
567 * Walk the list of under-writeback pages of the given address space in the
568 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
569 * this function does not clear error status of the address space.
570 *
571 * Use this function if callers don't handle errors themselves. Expected
572 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
573 * fsfreeze(8)
574 */
575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
576 loff_t start_byte, loff_t end_byte)
577 {
578 __filemap_fdatawait_range(mapping, start_byte, end_byte);
579 return filemap_check_and_keep_errors(mapping);
580 }
581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582
583 /**
584 * file_fdatawait_range - wait for writeback to complete
585 * @file: file pointing to address space structure to wait for
586 * @start_byte: offset in bytes where the range starts
587 * @end_byte: offset in bytes where the range ends (inclusive)
588 *
589 * Walk the list of under-writeback pages of the address space that file
590 * refers to, in the given range and wait for all of them. Check error
591 * status of the address space vs. the file->f_wb_err cursor and return it.
592 *
593 * Since the error status of the file is advanced by this function,
594 * callers are responsible for checking the return value and handling and/or
595 * reporting the error.
596 *
597 * Return: error status of the address space vs. the file->f_wb_err cursor.
598 */
599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
600 {
601 struct address_space *mapping = file->f_mapping;
602
603 __filemap_fdatawait_range(mapping, start_byte, end_byte);
604 return file_check_and_advance_wb_err(file);
605 }
606 EXPORT_SYMBOL(file_fdatawait_range);
607
608 /**
609 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
610 * @mapping: address space structure to wait for
611 *
612 * Walk the list of under-writeback pages of the given address space
613 * and wait for all of them. Unlike filemap_fdatawait(), this function
614 * does not clear error status of the address space.
615 *
616 * Use this function if callers don't handle errors themselves. Expected
617 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
618 * fsfreeze(8)
619 *
620 * Return: error status of the address space.
621 */
622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
623 {
624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625 return filemap_check_and_keep_errors(mapping);
626 }
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628
629 /* Returns true if writeback might be needed or already in progress. */
630 static bool mapping_needs_writeback(struct address_space *mapping)
631 {
632 if (dax_mapping(mapping))
633 return mapping->nrexceptional;
634
635 return mapping->nrpages;
636 }
637
638 /**
639 * filemap_write_and_wait_range - write out & wait on a file range
640 * @mapping: the address_space for the pages
641 * @lstart: offset in bytes where the range starts
642 * @lend: offset in bytes where the range ends (inclusive)
643 *
644 * Write out and wait upon file offsets lstart->lend, inclusive.
645 *
646 * Note that @lend is inclusive (describes the last byte to be written) so
647 * that this function can be used to write to the very end-of-file (end = -1).
648 *
649 * Return: error status of the address space.
650 */
651 int filemap_write_and_wait_range(struct address_space *mapping,
652 loff_t lstart, loff_t lend)
653 {
654 int err = 0;
655
656 if (mapping_needs_writeback(mapping)) {
657 err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 WB_SYNC_ALL);
659 /*
660 * Even if the above returned error, the pages may be
661 * written partially (e.g. -ENOSPC), so we wait for it.
662 * But the -EIO is special case, it may indicate the worst
663 * thing (e.g. bug) happened, so we avoid waiting for it.
664 */
665 if (err != -EIO) {
666 int err2 = filemap_fdatawait_range(mapping,
667 lstart, lend);
668 if (!err)
669 err = err2;
670 } else {
671 /* Clear any previously stored errors */
672 filemap_check_errors(mapping);
673 }
674 } else {
675 err = filemap_check_errors(mapping);
676 }
677 return err;
678 }
679 EXPORT_SYMBOL(filemap_write_and_wait_range);
680
681 void __filemap_set_wb_err(struct address_space *mapping, int err)
682 {
683 errseq_t eseq = errseq_set(&mapping->wb_err, err);
684
685 trace_filemap_set_wb_err(mapping, eseq);
686 }
687 EXPORT_SYMBOL(__filemap_set_wb_err);
688
689 /**
690 * file_check_and_advance_wb_err - report wb error (if any) that was previously
691 * and advance wb_err to current one
692 * @file: struct file on which the error is being reported
693 *
694 * When userland calls fsync (or something like nfsd does the equivalent), we
695 * want to report any writeback errors that occurred since the last fsync (or
696 * since the file was opened if there haven't been any).
697 *
698 * Grab the wb_err from the mapping. If it matches what we have in the file,
699 * then just quickly return 0. The file is all caught up.
700 *
701 * If it doesn't match, then take the mapping value, set the "seen" flag in
702 * it and try to swap it into place. If it works, or another task beat us
703 * to it with the new value, then update the f_wb_err and return the error
704 * portion. The error at this point must be reported via proper channels
705 * (a'la fsync, or NFS COMMIT operation, etc.).
706 *
707 * While we handle mapping->wb_err with atomic operations, the f_wb_err
708 * value is protected by the f_lock since we must ensure that it reflects
709 * the latest value swapped in for this file descriptor.
710 *
711 * Return: %0 on success, negative error code otherwise.
712 */
713 int file_check_and_advance_wb_err(struct file *file)
714 {
715 int err = 0;
716 errseq_t old = READ_ONCE(file->f_wb_err);
717 struct address_space *mapping = file->f_mapping;
718
719 /* Locklessly handle the common case where nothing has changed */
720 if (errseq_check(&mapping->wb_err, old)) {
721 /* Something changed, must use slow path */
722 spin_lock(&file->f_lock);
723 old = file->f_wb_err;
724 err = errseq_check_and_advance(&mapping->wb_err,
725 &file->f_wb_err);
726 trace_file_check_and_advance_wb_err(file, old);
727 spin_unlock(&file->f_lock);
728 }
729
730 /*
731 * We're mostly using this function as a drop in replacement for
732 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
733 * that the legacy code would have had on these flags.
734 */
735 clear_bit(AS_EIO, &mapping->flags);
736 clear_bit(AS_ENOSPC, &mapping->flags);
737 return err;
738 }
739 EXPORT_SYMBOL(file_check_and_advance_wb_err);
740
741 /**
742 * file_write_and_wait_range - write out & wait on a file range
743 * @file: file pointing to address_space with pages
744 * @lstart: offset in bytes where the range starts
745 * @lend: offset in bytes where the range ends (inclusive)
746 *
747 * Write out and wait upon file offsets lstart->lend, inclusive.
748 *
749 * Note that @lend is inclusive (describes the last byte to be written) so
750 * that this function can be used to write to the very end-of-file (end = -1).
751 *
752 * After writing out and waiting on the data, we check and advance the
753 * f_wb_err cursor to the latest value, and return any errors detected there.
754 *
755 * Return: %0 on success, negative error code otherwise.
756 */
757 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
758 {
759 int err = 0, err2;
760 struct address_space *mapping = file->f_mapping;
761
762 if (mapping_needs_writeback(mapping)) {
763 err = __filemap_fdatawrite_range(mapping, lstart, lend,
764 WB_SYNC_ALL);
765 /* See comment of filemap_write_and_wait() */
766 if (err != -EIO)
767 __filemap_fdatawait_range(mapping, lstart, lend);
768 }
769 err2 = file_check_and_advance_wb_err(file);
770 if (!err)
771 err = err2;
772 return err;
773 }
774 EXPORT_SYMBOL(file_write_and_wait_range);
775
776 /**
777 * replace_page_cache_page - replace a pagecache page with a new one
778 * @old: page to be replaced
779 * @new: page to replace with
780 *
781 * This function replaces a page in the pagecache with a new one. On
782 * success it acquires the pagecache reference for the new page and
783 * drops it for the old page. Both the old and new pages must be
784 * locked. This function does not add the new page to the LRU, the
785 * caller must do that.
786 *
787 * The remove + add is atomic. This function cannot fail.
788 */
789 void replace_page_cache_page(struct page *old, struct page *new)
790 {
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
796
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
800
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
804
805 mem_cgroup_migrate(old, new);
806
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
809
810 old->mapping = NULL;
811 /* hugetlb pages do not participate in page cache accounting. */
812 if (!PageHuge(old))
813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
814 if (!PageHuge(new))
815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
816 if (PageSwapBacked(old))
817 __dec_lruvec_page_state(old, NR_SHMEM);
818 if (PageSwapBacked(new))
819 __inc_lruvec_page_state(new, NR_SHMEM);
820 xas_unlock_irqrestore(&xas, flags);
821 if (freepage)
822 freepage(old);
823 put_page(old);
824 }
825 EXPORT_SYMBOL_GPL(replace_page_cache_page);
826
827 noinline int __add_to_page_cache_locked(struct page *page,
828 struct address_space *mapping,
829 pgoff_t offset, gfp_t gfp,
830 void **shadowp)
831 {
832 XA_STATE(xas, &mapping->i_pages, offset);
833 int huge = PageHuge(page);
834 int error;
835 bool charged = false;
836
837 VM_BUG_ON_PAGE(!PageLocked(page), page);
838 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
839 mapping_set_update(&xas, mapping);
840
841 get_page(page);
842 page->mapping = mapping;
843 page->index = offset;
844
845 if (!huge) {
846 error = mem_cgroup_charge(page, current->mm, gfp);
847 if (error)
848 goto error;
849 charged = true;
850 }
851
852 gfp &= GFP_RECLAIM_MASK;
853
854 do {
855 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
856 void *entry, *old = NULL;
857
858 if (order > thp_order(page))
859 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
860 order, gfp);
861 xas_lock_irq(&xas);
862 xas_for_each_conflict(&xas, entry) {
863 old = entry;
864 if (!xa_is_value(entry)) {
865 xas_set_err(&xas, -EEXIST);
866 goto unlock;
867 }
868 }
869
870 if (old) {
871 if (shadowp)
872 *shadowp = old;
873 /* entry may have been split before we acquired lock */
874 order = xa_get_order(xas.xa, xas.xa_index);
875 if (order > thp_order(page)) {
876 xas_split(&xas, old, order);
877 xas_reset(&xas);
878 }
879 }
880
881 xas_store(&xas, page);
882 if (xas_error(&xas))
883 goto unlock;
884
885 if (old)
886 mapping->nrexceptional--;
887 mapping->nrpages++;
888
889 /* hugetlb pages do not participate in page cache accounting */
890 if (!huge)
891 __inc_lruvec_page_state(page, NR_FILE_PAGES);
892 unlock:
893 xas_unlock_irq(&xas);
894 } while (xas_nomem(&xas, gfp));
895
896 if (xas_error(&xas)) {
897 error = xas_error(&xas);
898 if (charged)
899 mem_cgroup_uncharge(page);
900 goto error;
901 }
902
903 trace_mm_filemap_add_to_page_cache(page);
904 return 0;
905 error:
906 page->mapping = NULL;
907 /* Leave page->index set: truncation relies upon it */
908 put_page(page);
909 return error;
910 }
911 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
912
913 /**
914 * add_to_page_cache_locked - add a locked page to the pagecache
915 * @page: page to add
916 * @mapping: the page's address_space
917 * @offset: page index
918 * @gfp_mask: page allocation mode
919 *
920 * This function is used to add a page to the pagecache. It must be locked.
921 * This function does not add the page to the LRU. The caller must do that.
922 *
923 * Return: %0 on success, negative error code otherwise.
924 */
925 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
926 pgoff_t offset, gfp_t gfp_mask)
927 {
928 return __add_to_page_cache_locked(page, mapping, offset,
929 gfp_mask, NULL);
930 }
931 EXPORT_SYMBOL(add_to_page_cache_locked);
932
933 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
934 pgoff_t offset, gfp_t gfp_mask)
935 {
936 void *shadow = NULL;
937 int ret;
938
939 __SetPageLocked(page);
940 ret = __add_to_page_cache_locked(page, mapping, offset,
941 gfp_mask, &shadow);
942 if (unlikely(ret))
943 __ClearPageLocked(page);
944 else {
945 /*
946 * The page might have been evicted from cache only
947 * recently, in which case it should be activated like
948 * any other repeatedly accessed page.
949 * The exception is pages getting rewritten; evicting other
950 * data from the working set, only to cache data that will
951 * get overwritten with something else, is a waste of memory.
952 */
953 WARN_ON_ONCE(PageActive(page));
954 if (!(gfp_mask & __GFP_WRITE) && shadow)
955 workingset_refault(page, shadow);
956 lru_cache_add(page);
957 }
958 return ret;
959 }
960 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
961
962 #ifdef CONFIG_NUMA
963 struct page *__page_cache_alloc(gfp_t gfp)
964 {
965 int n;
966 struct page *page;
967
968 if (cpuset_do_page_mem_spread()) {
969 unsigned int cpuset_mems_cookie;
970 do {
971 cpuset_mems_cookie = read_mems_allowed_begin();
972 n = cpuset_mem_spread_node();
973 page = __alloc_pages_node(n, gfp, 0);
974 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
975
976 return page;
977 }
978 return alloc_pages(gfp, 0);
979 }
980 EXPORT_SYMBOL(__page_cache_alloc);
981 #endif
982
983 /*
984 * In order to wait for pages to become available there must be
985 * waitqueues associated with pages. By using a hash table of
986 * waitqueues where the bucket discipline is to maintain all
987 * waiters on the same queue and wake all when any of the pages
988 * become available, and for the woken contexts to check to be
989 * sure the appropriate page became available, this saves space
990 * at a cost of "thundering herd" phenomena during rare hash
991 * collisions.
992 */
993 #define PAGE_WAIT_TABLE_BITS 8
994 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
995 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
996
997 static wait_queue_head_t *page_waitqueue(struct page *page)
998 {
999 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1000 }
1001
1002 void __init pagecache_init(void)
1003 {
1004 int i;
1005
1006 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1007 init_waitqueue_head(&page_wait_table[i]);
1008
1009 page_writeback_init();
1010 }
1011
1012 /*
1013 * The page wait code treats the "wait->flags" somewhat unusually, because
1014 * we have multiple different kinds of waits, not just the usual "exclusive"
1015 * one.
1016 *
1017 * We have:
1018 *
1019 * (a) no special bits set:
1020 *
1021 * We're just waiting for the bit to be released, and when a waker
1022 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1023 * and remove it from the wait queue.
1024 *
1025 * Simple and straightforward.
1026 *
1027 * (b) WQ_FLAG_EXCLUSIVE:
1028 *
1029 * The waiter is waiting to get the lock, and only one waiter should
1030 * be woken up to avoid any thundering herd behavior. We'll set the
1031 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1032 *
1033 * This is the traditional exclusive wait.
1034 *
1035 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1036 *
1037 * The waiter is waiting to get the bit, and additionally wants the
1038 * lock to be transferred to it for fair lock behavior. If the lock
1039 * cannot be taken, we stop walking the wait queue without waking
1040 * the waiter.
1041 *
1042 * This is the "fair lock handoff" case, and in addition to setting
1043 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1044 * that it now has the lock.
1045 */
1046 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1047 {
1048 unsigned int flags;
1049 struct wait_page_key *key = arg;
1050 struct wait_page_queue *wait_page
1051 = container_of(wait, struct wait_page_queue, wait);
1052
1053 if (!wake_page_match(wait_page, key))
1054 return 0;
1055
1056 /*
1057 * If it's a lock handoff wait, we get the bit for it, and
1058 * stop walking (and do not wake it up) if we can't.
1059 */
1060 flags = wait->flags;
1061 if (flags & WQ_FLAG_EXCLUSIVE) {
1062 if (test_bit(key->bit_nr, &key->page->flags))
1063 return -1;
1064 if (flags & WQ_FLAG_CUSTOM) {
1065 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1066 return -1;
1067 flags |= WQ_FLAG_DONE;
1068 }
1069 }
1070
1071 /*
1072 * We are holding the wait-queue lock, but the waiter that
1073 * is waiting for this will be checking the flags without
1074 * any locking.
1075 *
1076 * So update the flags atomically, and wake up the waiter
1077 * afterwards to avoid any races. This store-release pairs
1078 * with the load-acquire in wait_on_page_bit_common().
1079 */
1080 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1081 wake_up_state(wait->private, mode);
1082
1083 /*
1084 * Ok, we have successfully done what we're waiting for,
1085 * and we can unconditionally remove the wait entry.
1086 *
1087 * Note that this pairs with the "finish_wait()" in the
1088 * waiter, and has to be the absolute last thing we do.
1089 * After this list_del_init(&wait->entry) the wait entry
1090 * might be de-allocated and the process might even have
1091 * exited.
1092 */
1093 list_del_init_careful(&wait->entry);
1094 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1095 }
1096
1097 static void wake_up_page_bit(struct page *page, int bit_nr)
1098 {
1099 wait_queue_head_t *q = page_waitqueue(page);
1100 struct wait_page_key key;
1101 unsigned long flags;
1102 wait_queue_entry_t bookmark;
1103
1104 key.page = page;
1105 key.bit_nr = bit_nr;
1106 key.page_match = 0;
1107
1108 bookmark.flags = 0;
1109 bookmark.private = NULL;
1110 bookmark.func = NULL;
1111 INIT_LIST_HEAD(&bookmark.entry);
1112
1113 spin_lock_irqsave(&q->lock, flags);
1114 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1115
1116 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1117 /*
1118 * Take a breather from holding the lock,
1119 * allow pages that finish wake up asynchronously
1120 * to acquire the lock and remove themselves
1121 * from wait queue
1122 */
1123 spin_unlock_irqrestore(&q->lock, flags);
1124 cpu_relax();
1125 spin_lock_irqsave(&q->lock, flags);
1126 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1127 }
1128
1129 /*
1130 * It is possible for other pages to have collided on the waitqueue
1131 * hash, so in that case check for a page match. That prevents a long-
1132 * term waiter
1133 *
1134 * It is still possible to miss a case here, when we woke page waiters
1135 * and removed them from the waitqueue, but there are still other
1136 * page waiters.
1137 */
1138 if (!waitqueue_active(q) || !key.page_match) {
1139 ClearPageWaiters(page);
1140 /*
1141 * It's possible to miss clearing Waiters here, when we woke
1142 * our page waiters, but the hashed waitqueue has waiters for
1143 * other pages on it.
1144 *
1145 * That's okay, it's a rare case. The next waker will clear it.
1146 */
1147 }
1148 spin_unlock_irqrestore(&q->lock, flags);
1149 }
1150
1151 static void wake_up_page(struct page *page, int bit)
1152 {
1153 if (!PageWaiters(page))
1154 return;
1155 wake_up_page_bit(page, bit);
1156 }
1157
1158 /*
1159 * A choice of three behaviors for wait_on_page_bit_common():
1160 */
1161 enum behavior {
1162 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1163 * __lock_page() waiting on then setting PG_locked.
1164 */
1165 SHARED, /* Hold ref to page and check the bit when woken, like
1166 * wait_on_page_writeback() waiting on PG_writeback.
1167 */
1168 DROP, /* Drop ref to page before wait, no check when woken,
1169 * like put_and_wait_on_page_locked() on PG_locked.
1170 */
1171 };
1172
1173 /*
1174 * Attempt to check (or get) the page bit, and mark us done
1175 * if successful.
1176 */
1177 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1178 struct wait_queue_entry *wait)
1179 {
1180 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1181 if (test_and_set_bit(bit_nr, &page->flags))
1182 return false;
1183 } else if (test_bit(bit_nr, &page->flags))
1184 return false;
1185
1186 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1187 return true;
1188 }
1189
1190 /* How many times do we accept lock stealing from under a waiter? */
1191 int sysctl_page_lock_unfairness = 5;
1192
1193 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1194 struct page *page, int bit_nr, int state, enum behavior behavior)
1195 {
1196 int unfairness = sysctl_page_lock_unfairness;
1197 struct wait_page_queue wait_page;
1198 wait_queue_entry_t *wait = &wait_page.wait;
1199 bool thrashing = false;
1200 bool delayacct = false;
1201 unsigned long pflags;
1202
1203 if (bit_nr == PG_locked &&
1204 !PageUptodate(page) && PageWorkingset(page)) {
1205 if (!PageSwapBacked(page)) {
1206 delayacct_thrashing_start();
1207 delayacct = true;
1208 }
1209 psi_memstall_enter(&pflags);
1210 thrashing = true;
1211 }
1212
1213 init_wait(wait);
1214 wait->func = wake_page_function;
1215 wait_page.page = page;
1216 wait_page.bit_nr = bit_nr;
1217
1218 repeat:
1219 wait->flags = 0;
1220 if (behavior == EXCLUSIVE) {
1221 wait->flags = WQ_FLAG_EXCLUSIVE;
1222 if (--unfairness < 0)
1223 wait->flags |= WQ_FLAG_CUSTOM;
1224 }
1225
1226 /*
1227 * Do one last check whether we can get the
1228 * page bit synchronously.
1229 *
1230 * Do the SetPageWaiters() marking before that
1231 * to let any waker we _just_ missed know they
1232 * need to wake us up (otherwise they'll never
1233 * even go to the slow case that looks at the
1234 * page queue), and add ourselves to the wait
1235 * queue if we need to sleep.
1236 *
1237 * This part needs to be done under the queue
1238 * lock to avoid races.
1239 */
1240 spin_lock_irq(&q->lock);
1241 SetPageWaiters(page);
1242 if (!trylock_page_bit_common(page, bit_nr, wait))
1243 __add_wait_queue_entry_tail(q, wait);
1244 spin_unlock_irq(&q->lock);
1245
1246 /*
1247 * From now on, all the logic will be based on
1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 * see whether the page bit testing has already
1250 * been done by the wake function.
1251 *
1252 * We can drop our reference to the page.
1253 */
1254 if (behavior == DROP)
1255 put_page(page);
1256
1257 /*
1258 * Note that until the "finish_wait()", or until
1259 * we see the WQ_FLAG_WOKEN flag, we need to
1260 * be very careful with the 'wait->flags', because
1261 * we may race with a waker that sets them.
1262 */
1263 for (;;) {
1264 unsigned int flags;
1265
1266 set_current_state(state);
1267
1268 /* Loop until we've been woken or interrupted */
1269 flags = smp_load_acquire(&wait->flags);
1270 if (!(flags & WQ_FLAG_WOKEN)) {
1271 if (signal_pending_state(state, current))
1272 break;
1273
1274 io_schedule();
1275 continue;
1276 }
1277
1278 /* If we were non-exclusive, we're done */
1279 if (behavior != EXCLUSIVE)
1280 break;
1281
1282 /* If the waker got the lock for us, we're done */
1283 if (flags & WQ_FLAG_DONE)
1284 break;
1285
1286 /*
1287 * Otherwise, if we're getting the lock, we need to
1288 * try to get it ourselves.
1289 *
1290 * And if that fails, we'll have to retry this all.
1291 */
1292 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1293 goto repeat;
1294
1295 wait->flags |= WQ_FLAG_DONE;
1296 break;
1297 }
1298
1299 /*
1300 * If a signal happened, this 'finish_wait()' may remove the last
1301 * waiter from the wait-queues, but the PageWaiters bit will remain
1302 * set. That's ok. The next wakeup will take care of it, and trying
1303 * to do it here would be difficult and prone to races.
1304 */
1305 finish_wait(q, wait);
1306
1307 if (thrashing) {
1308 if (delayacct)
1309 delayacct_thrashing_end();
1310 psi_memstall_leave(&pflags);
1311 }
1312
1313 /*
1314 * NOTE! The wait->flags weren't stable until we've done the
1315 * 'finish_wait()', and we could have exited the loop above due
1316 * to a signal, and had a wakeup event happen after the signal
1317 * test but before the 'finish_wait()'.
1318 *
1319 * So only after the finish_wait() can we reliably determine
1320 * if we got woken up or not, so we can now figure out the final
1321 * return value based on that state without races.
1322 *
1323 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1324 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1325 */
1326 if (behavior == EXCLUSIVE)
1327 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1328
1329 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1330 }
1331
1332 void wait_on_page_bit(struct page *page, int bit_nr)
1333 {
1334 wait_queue_head_t *q = page_waitqueue(page);
1335 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1336 }
1337 EXPORT_SYMBOL(wait_on_page_bit);
1338
1339 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1340 {
1341 wait_queue_head_t *q = page_waitqueue(page);
1342 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1343 }
1344 EXPORT_SYMBOL(wait_on_page_bit_killable);
1345
1346 /**
1347 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1348 * @page: The page to wait for.
1349 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1350 *
1351 * The caller should hold a reference on @page. They expect the page to
1352 * become unlocked relatively soon, but do not wish to hold up migration
1353 * (for example) by holding the reference while waiting for the page to
1354 * come unlocked. After this function returns, the caller should not
1355 * dereference @page.
1356 *
1357 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1358 */
1359 int put_and_wait_on_page_locked(struct page *page, int state)
1360 {
1361 wait_queue_head_t *q;
1362
1363 page = compound_head(page);
1364 q = page_waitqueue(page);
1365 return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1366 }
1367
1368 /**
1369 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1370 * @page: Page defining the wait queue of interest
1371 * @waiter: Waiter to add to the queue
1372 *
1373 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1374 */
1375 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1376 {
1377 wait_queue_head_t *q = page_waitqueue(page);
1378 unsigned long flags;
1379
1380 spin_lock_irqsave(&q->lock, flags);
1381 __add_wait_queue_entry_tail(q, waiter);
1382 SetPageWaiters(page);
1383 spin_unlock_irqrestore(&q->lock, flags);
1384 }
1385 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1386
1387 #ifndef clear_bit_unlock_is_negative_byte
1388
1389 /*
1390 * PG_waiters is the high bit in the same byte as PG_lock.
1391 *
1392 * On x86 (and on many other architectures), we can clear PG_lock and
1393 * test the sign bit at the same time. But if the architecture does
1394 * not support that special operation, we just do this all by hand
1395 * instead.
1396 *
1397 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1398 * being cleared, but a memory barrier should be unnecessary since it is
1399 * in the same byte as PG_locked.
1400 */
1401 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1402 {
1403 clear_bit_unlock(nr, mem);
1404 /* smp_mb__after_atomic(); */
1405 return test_bit(PG_waiters, mem);
1406 }
1407
1408 #endif
1409
1410 /**
1411 * unlock_page - unlock a locked page
1412 * @page: the page
1413 *
1414 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1415 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1416 * mechanism between PageLocked pages and PageWriteback pages is shared.
1417 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1418 *
1419 * Note that this depends on PG_waiters being the sign bit in the byte
1420 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1421 * clear the PG_locked bit and test PG_waiters at the same time fairly
1422 * portably (architectures that do LL/SC can test any bit, while x86 can
1423 * test the sign bit).
1424 */
1425 void unlock_page(struct page *page)
1426 {
1427 BUILD_BUG_ON(PG_waiters != 7);
1428 page = compound_head(page);
1429 VM_BUG_ON_PAGE(!PageLocked(page), page);
1430 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1431 wake_up_page_bit(page, PG_locked);
1432 }
1433 EXPORT_SYMBOL(unlock_page);
1434
1435 /**
1436 * end_page_writeback - end writeback against a page
1437 * @page: the page
1438 */
1439 void end_page_writeback(struct page *page)
1440 {
1441 /*
1442 * TestClearPageReclaim could be used here but it is an atomic
1443 * operation and overkill in this particular case. Failing to
1444 * shuffle a page marked for immediate reclaim is too mild to
1445 * justify taking an atomic operation penalty at the end of
1446 * ever page writeback.
1447 */
1448 if (PageReclaim(page)) {
1449 ClearPageReclaim(page);
1450 rotate_reclaimable_page(page);
1451 }
1452
1453 /*
1454 * Writeback does not hold a page reference of its own, relying
1455 * on truncation to wait for the clearing of PG_writeback.
1456 * But here we must make sure that the page is not freed and
1457 * reused before the wake_up_page().
1458 */
1459 get_page(page);
1460 if (!test_clear_page_writeback(page))
1461 BUG();
1462
1463 smp_mb__after_atomic();
1464 wake_up_page(page, PG_writeback);
1465 put_page(page);
1466 }
1467 EXPORT_SYMBOL(end_page_writeback);
1468
1469 /*
1470 * After completing I/O on a page, call this routine to update the page
1471 * flags appropriately
1472 */
1473 void page_endio(struct page *page, bool is_write, int err)
1474 {
1475 if (!is_write) {
1476 if (!err) {
1477 SetPageUptodate(page);
1478 } else {
1479 ClearPageUptodate(page);
1480 SetPageError(page);
1481 }
1482 unlock_page(page);
1483 } else {
1484 if (err) {
1485 struct address_space *mapping;
1486
1487 SetPageError(page);
1488 mapping = page_mapping(page);
1489 if (mapping)
1490 mapping_set_error(mapping, err);
1491 }
1492 end_page_writeback(page);
1493 }
1494 }
1495 EXPORT_SYMBOL_GPL(page_endio);
1496
1497 /**
1498 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1499 * @__page: the page to lock
1500 */
1501 void __lock_page(struct page *__page)
1502 {
1503 struct page *page = compound_head(__page);
1504 wait_queue_head_t *q = page_waitqueue(page);
1505 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1506 EXCLUSIVE);
1507 }
1508 EXPORT_SYMBOL(__lock_page);
1509
1510 int __lock_page_killable(struct page *__page)
1511 {
1512 struct page *page = compound_head(__page);
1513 wait_queue_head_t *q = page_waitqueue(page);
1514 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1515 EXCLUSIVE);
1516 }
1517 EXPORT_SYMBOL_GPL(__lock_page_killable);
1518
1519 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1520 {
1521 struct wait_queue_head *q = page_waitqueue(page);
1522 int ret = 0;
1523
1524 wait->page = page;
1525 wait->bit_nr = PG_locked;
1526
1527 spin_lock_irq(&q->lock);
1528 __add_wait_queue_entry_tail(q, &wait->wait);
1529 SetPageWaiters(page);
1530 ret = !trylock_page(page);
1531 /*
1532 * If we were successful now, we know we're still on the
1533 * waitqueue as we're still under the lock. This means it's
1534 * safe to remove and return success, we know the callback
1535 * isn't going to trigger.
1536 */
1537 if (!ret)
1538 __remove_wait_queue(q, &wait->wait);
1539 else
1540 ret = -EIOCBQUEUED;
1541 spin_unlock_irq(&q->lock);
1542 return ret;
1543 }
1544
1545 /*
1546 * Return values:
1547 * 1 - page is locked; mmap_lock is still held.
1548 * 0 - page is not locked.
1549 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1550 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1551 * which case mmap_lock is still held.
1552 *
1553 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1554 * with the page locked and the mmap_lock unperturbed.
1555 */
1556 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1557 unsigned int flags)
1558 {
1559 if (fault_flag_allow_retry_first(flags)) {
1560 /*
1561 * CAUTION! In this case, mmap_lock is not released
1562 * even though return 0.
1563 */
1564 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1565 return 0;
1566
1567 mmap_read_unlock(mm);
1568 if (flags & FAULT_FLAG_KILLABLE)
1569 wait_on_page_locked_killable(page);
1570 else
1571 wait_on_page_locked(page);
1572 return 0;
1573 }
1574 if (flags & FAULT_FLAG_KILLABLE) {
1575 int ret;
1576
1577 ret = __lock_page_killable(page);
1578 if (ret) {
1579 mmap_read_unlock(mm);
1580 return 0;
1581 }
1582 } else {
1583 __lock_page(page);
1584 }
1585 return 1;
1586
1587 }
1588
1589 /**
1590 * page_cache_next_miss() - Find the next gap in the page cache.
1591 * @mapping: Mapping.
1592 * @index: Index.
1593 * @max_scan: Maximum range to search.
1594 *
1595 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1596 * gap with the lowest index.
1597 *
1598 * This function may be called under the rcu_read_lock. However, this will
1599 * not atomically search a snapshot of the cache at a single point in time.
1600 * For example, if a gap is created at index 5, then subsequently a gap is
1601 * created at index 10, page_cache_next_miss covering both indices may
1602 * return 10 if called under the rcu_read_lock.
1603 *
1604 * Return: The index of the gap if found, otherwise an index outside the
1605 * range specified (in which case 'return - index >= max_scan' will be true).
1606 * In the rare case of index wrap-around, 0 will be returned.
1607 */
1608 pgoff_t page_cache_next_miss(struct address_space *mapping,
1609 pgoff_t index, unsigned long max_scan)
1610 {
1611 XA_STATE(xas, &mapping->i_pages, index);
1612
1613 while (max_scan--) {
1614 void *entry = xas_next(&xas);
1615 if (!entry || xa_is_value(entry))
1616 break;
1617 if (xas.xa_index == 0)
1618 break;
1619 }
1620
1621 return xas.xa_index;
1622 }
1623 EXPORT_SYMBOL(page_cache_next_miss);
1624
1625 /**
1626 * page_cache_prev_miss() - Find the previous gap in the page cache.
1627 * @mapping: Mapping.
1628 * @index: Index.
1629 * @max_scan: Maximum range to search.
1630 *
1631 * Search the range [max(index - max_scan + 1, 0), index] for the
1632 * gap with the highest index.
1633 *
1634 * This function may be called under the rcu_read_lock. However, this will
1635 * not atomically search a snapshot of the cache at a single point in time.
1636 * For example, if a gap is created at index 10, then subsequently a gap is
1637 * created at index 5, page_cache_prev_miss() covering both indices may
1638 * return 5 if called under the rcu_read_lock.
1639 *
1640 * Return: The index of the gap if found, otherwise an index outside the
1641 * range specified (in which case 'index - return >= max_scan' will be true).
1642 * In the rare case of wrap-around, ULONG_MAX will be returned.
1643 */
1644 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1645 pgoff_t index, unsigned long max_scan)
1646 {
1647 XA_STATE(xas, &mapping->i_pages, index);
1648
1649 while (max_scan--) {
1650 void *entry = xas_prev(&xas);
1651 if (!entry || xa_is_value(entry))
1652 break;
1653 if (xas.xa_index == ULONG_MAX)
1654 break;
1655 }
1656
1657 return xas.xa_index;
1658 }
1659 EXPORT_SYMBOL(page_cache_prev_miss);
1660
1661 /*
1662 * mapping_get_entry - Get a page cache entry.
1663 * @mapping: the address_space to search
1664 * @index: The page cache index.
1665 *
1666 * Looks up the page cache slot at @mapping & @offset. If there is a
1667 * page cache page, the head page is returned with an increased refcount.
1668 *
1669 * If the slot holds a shadow entry of a previously evicted page, or a
1670 * swap entry from shmem/tmpfs, it is returned.
1671 *
1672 * Return: The head page or shadow entry, %NULL if nothing is found.
1673 */
1674 static struct page *mapping_get_entry(struct address_space *mapping,
1675 pgoff_t index)
1676 {
1677 XA_STATE(xas, &mapping->i_pages, index);
1678 struct page *page;
1679
1680 rcu_read_lock();
1681 repeat:
1682 xas_reset(&xas);
1683 page = xas_load(&xas);
1684 if (xas_retry(&xas, page))
1685 goto repeat;
1686 /*
1687 * A shadow entry of a recently evicted page, or a swap entry from
1688 * shmem/tmpfs. Return it without attempting to raise page count.
1689 */
1690 if (!page || xa_is_value(page))
1691 goto out;
1692
1693 if (!page_cache_get_speculative(page))
1694 goto repeat;
1695
1696 /*
1697 * Has the page moved or been split?
1698 * This is part of the lockless pagecache protocol. See
1699 * include/linux/pagemap.h for details.
1700 */
1701 if (unlikely(page != xas_reload(&xas))) {
1702 put_page(page);
1703 goto repeat;
1704 }
1705 out:
1706 rcu_read_unlock();
1707
1708 return page;
1709 }
1710
1711 /**
1712 * pagecache_get_page - Find and get a reference to a page.
1713 * @mapping: The address_space to search.
1714 * @index: The page index.
1715 * @fgp_flags: %FGP flags modify how the page is returned.
1716 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1717 *
1718 * Looks up the page cache entry at @mapping & @index.
1719 *
1720 * @fgp_flags can be zero or more of these flags:
1721 *
1722 * * %FGP_ACCESSED - The page will be marked accessed.
1723 * * %FGP_LOCK - The page is returned locked.
1724 * * %FGP_HEAD - If the page is present and a THP, return the head page
1725 * rather than the exact page specified by the index.
1726 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1727 * instead of allocating a new page to replace it.
1728 * * %FGP_CREAT - If no page is present then a new page is allocated using
1729 * @gfp_mask and added to the page cache and the VM's LRU list.
1730 * The page is returned locked and with an increased refcount.
1731 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1732 * page is already in cache. If the page was allocated, unlock it before
1733 * returning so the caller can do the same dance.
1734 * * %FGP_WRITE - The page will be written
1735 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1736 * * %FGP_NOWAIT - Don't get blocked by page lock
1737 *
1738 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1739 * if the %GFP flags specified for %FGP_CREAT are atomic.
1740 *
1741 * If there is a page cache page, it is returned with an increased refcount.
1742 *
1743 * Return: The found page or %NULL otherwise.
1744 */
1745 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1746 int fgp_flags, gfp_t gfp_mask)
1747 {
1748 struct page *page;
1749
1750 repeat:
1751 page = mapping_get_entry(mapping, index);
1752 if (xa_is_value(page)) {
1753 if (fgp_flags & FGP_ENTRY)
1754 return page;
1755 page = NULL;
1756 }
1757 if (!page)
1758 goto no_page;
1759
1760 if (fgp_flags & FGP_LOCK) {
1761 if (fgp_flags & FGP_NOWAIT) {
1762 if (!trylock_page(page)) {
1763 put_page(page);
1764 return NULL;
1765 }
1766 } else {
1767 lock_page(page);
1768 }
1769
1770 /* Has the page been truncated? */
1771 if (unlikely(page->mapping != mapping)) {
1772 unlock_page(page);
1773 put_page(page);
1774 goto repeat;
1775 }
1776 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1777 }
1778
1779 if (fgp_flags & FGP_ACCESSED)
1780 mark_page_accessed(page);
1781 else if (fgp_flags & FGP_WRITE) {
1782 /* Clear idle flag for buffer write */
1783 if (page_is_idle(page))
1784 clear_page_idle(page);
1785 }
1786 if (!(fgp_flags & FGP_HEAD))
1787 page = find_subpage(page, index);
1788
1789 no_page:
1790 if (!page && (fgp_flags & FGP_CREAT)) {
1791 int err;
1792 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1793 gfp_mask |= __GFP_WRITE;
1794 if (fgp_flags & FGP_NOFS)
1795 gfp_mask &= ~__GFP_FS;
1796
1797 page = __page_cache_alloc(gfp_mask);
1798 if (!page)
1799 return NULL;
1800
1801 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1802 fgp_flags |= FGP_LOCK;
1803
1804 /* Init accessed so avoid atomic mark_page_accessed later */
1805 if (fgp_flags & FGP_ACCESSED)
1806 __SetPageReferenced(page);
1807
1808 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1809 if (unlikely(err)) {
1810 put_page(page);
1811 page = NULL;
1812 if (err == -EEXIST)
1813 goto repeat;
1814 }
1815
1816 /*
1817 * add_to_page_cache_lru locks the page, and for mmap we expect
1818 * an unlocked page.
1819 */
1820 if (page && (fgp_flags & FGP_FOR_MMAP))
1821 unlock_page(page);
1822 }
1823
1824 return page;
1825 }
1826 EXPORT_SYMBOL(pagecache_get_page);
1827
1828 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1829 xa_mark_t mark)
1830 {
1831 struct page *page;
1832
1833 retry:
1834 if (mark == XA_PRESENT)
1835 page = xas_find(xas, max);
1836 else
1837 page = xas_find_marked(xas, max, mark);
1838
1839 if (xas_retry(xas, page))
1840 goto retry;
1841 /*
1842 * A shadow entry of a recently evicted page, a swap
1843 * entry from shmem/tmpfs or a DAX entry. Return it
1844 * without attempting to raise page count.
1845 */
1846 if (!page || xa_is_value(page))
1847 return page;
1848
1849 if (!page_cache_get_speculative(page))
1850 goto reset;
1851
1852 /* Has the page moved or been split? */
1853 if (unlikely(page != xas_reload(xas))) {
1854 put_page(page);
1855 goto reset;
1856 }
1857
1858 return page;
1859 reset:
1860 xas_reset(xas);
1861 goto retry;
1862 }
1863
1864 /**
1865 * find_get_entries - gang pagecache lookup
1866 * @mapping: The address_space to search
1867 * @start: The starting page cache index
1868 * @end: The final page index (inclusive).
1869 * @pvec: Where the resulting entries are placed.
1870 * @indices: The cache indices corresponding to the entries in @entries
1871 *
1872 * find_get_entries() will search for and return a batch of entries in
1873 * the mapping. The entries are placed in @pvec. find_get_entries()
1874 * takes a reference on any actual pages it returns.
1875 *
1876 * The search returns a group of mapping-contiguous page cache entries
1877 * with ascending indexes. There may be holes in the indices due to
1878 * not-present pages.
1879 *
1880 * Any shadow entries of evicted pages, or swap entries from
1881 * shmem/tmpfs, are included in the returned array.
1882 *
1883 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1884 * stops at that page: the caller is likely to have a better way to handle
1885 * the compound page as a whole, and then skip its extent, than repeatedly
1886 * calling find_get_entries() to return all its tails.
1887 *
1888 * Return: the number of pages and shadow entries which were found.
1889 */
1890 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1891 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1892 {
1893 XA_STATE(xas, &mapping->i_pages, start);
1894 struct page *page;
1895 unsigned int ret = 0;
1896 unsigned nr_entries = PAGEVEC_SIZE;
1897
1898 rcu_read_lock();
1899 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1900 /*
1901 * Terminate early on finding a THP, to allow the caller to
1902 * handle it all at once; but continue if this is hugetlbfs.
1903 */
1904 if (!xa_is_value(page) && PageTransHuge(page) &&
1905 !PageHuge(page)) {
1906 page = find_subpage(page, xas.xa_index);
1907 nr_entries = ret + 1;
1908 }
1909
1910 indices[ret] = xas.xa_index;
1911 pvec->pages[ret] = page;
1912 if (++ret == nr_entries)
1913 break;
1914 }
1915 rcu_read_unlock();
1916
1917 pvec->nr = ret;
1918 return ret;
1919 }
1920
1921 /**
1922 * find_lock_entries - Find a batch of pagecache entries.
1923 * @mapping: The address_space to search.
1924 * @start: The starting page cache index.
1925 * @end: The final page index (inclusive).
1926 * @pvec: Where the resulting entries are placed.
1927 * @indices: The cache indices of the entries in @pvec.
1928 *
1929 * find_lock_entries() will return a batch of entries from @mapping.
1930 * Swap, shadow and DAX entries are included. Pages are returned
1931 * locked and with an incremented refcount. Pages which are locked by
1932 * somebody else or under writeback are skipped. Only the head page of
1933 * a THP is returned. Pages which are partially outside the range are
1934 * not returned.
1935 *
1936 * The entries have ascending indexes. The indices may not be consecutive
1937 * due to not-present entries, THP pages, pages which could not be locked
1938 * or pages under writeback.
1939 *
1940 * Return: The number of entries which were found.
1941 */
1942 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
1943 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1944 {
1945 XA_STATE(xas, &mapping->i_pages, start);
1946 struct page *page;
1947
1948 rcu_read_lock();
1949 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1950 if (!xa_is_value(page)) {
1951 if (page->index < start)
1952 goto put;
1953 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1954 if (page->index + thp_nr_pages(page) - 1 > end)
1955 goto put;
1956 if (!trylock_page(page))
1957 goto put;
1958 if (page->mapping != mapping || PageWriteback(page))
1959 goto unlock;
1960 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
1961 page);
1962 }
1963 indices[pvec->nr] = xas.xa_index;
1964 if (!pagevec_add(pvec, page))
1965 break;
1966 goto next;
1967 unlock:
1968 unlock_page(page);
1969 put:
1970 put_page(page);
1971 next:
1972 if (!xa_is_value(page) && PageTransHuge(page))
1973 xas_set(&xas, page->index + thp_nr_pages(page));
1974 }
1975 rcu_read_unlock();
1976
1977 return pagevec_count(pvec);
1978 }
1979
1980 /**
1981 * find_get_pages_range - gang pagecache lookup
1982 * @mapping: The address_space to search
1983 * @start: The starting page index
1984 * @end: The final page index (inclusive)
1985 * @nr_pages: The maximum number of pages
1986 * @pages: Where the resulting pages are placed
1987 *
1988 * find_get_pages_range() will search for and return a group of up to @nr_pages
1989 * pages in the mapping starting at index @start and up to index @end
1990 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1991 * a reference against the returned pages.
1992 *
1993 * The search returns a group of mapping-contiguous pages with ascending
1994 * indexes. There may be holes in the indices due to not-present pages.
1995 * We also update @start to index the next page for the traversal.
1996 *
1997 * Return: the number of pages which were found. If this number is
1998 * smaller than @nr_pages, the end of specified range has been
1999 * reached.
2000 */
2001 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2002 pgoff_t end, unsigned int nr_pages,
2003 struct page **pages)
2004 {
2005 XA_STATE(xas, &mapping->i_pages, *start);
2006 struct page *page;
2007 unsigned ret = 0;
2008
2009 if (unlikely(!nr_pages))
2010 return 0;
2011
2012 rcu_read_lock();
2013 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2014 /* Skip over shadow, swap and DAX entries */
2015 if (xa_is_value(page))
2016 continue;
2017
2018 pages[ret] = find_subpage(page, xas.xa_index);
2019 if (++ret == nr_pages) {
2020 *start = xas.xa_index + 1;
2021 goto out;
2022 }
2023 }
2024
2025 /*
2026 * We come here when there is no page beyond @end. We take care to not
2027 * overflow the index @start as it confuses some of the callers. This
2028 * breaks the iteration when there is a page at index -1 but that is
2029 * already broken anyway.
2030 */
2031 if (end == (pgoff_t)-1)
2032 *start = (pgoff_t)-1;
2033 else
2034 *start = end + 1;
2035 out:
2036 rcu_read_unlock();
2037
2038 return ret;
2039 }
2040
2041 /**
2042 * find_get_pages_contig - gang contiguous pagecache lookup
2043 * @mapping: The address_space to search
2044 * @index: The starting page index
2045 * @nr_pages: The maximum number of pages
2046 * @pages: Where the resulting pages are placed
2047 *
2048 * find_get_pages_contig() works exactly like find_get_pages(), except
2049 * that the returned number of pages are guaranteed to be contiguous.
2050 *
2051 * Return: the number of pages which were found.
2052 */
2053 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2054 unsigned int nr_pages, struct page **pages)
2055 {
2056 XA_STATE(xas, &mapping->i_pages, index);
2057 struct page *page;
2058 unsigned int ret = 0;
2059
2060 if (unlikely(!nr_pages))
2061 return 0;
2062
2063 rcu_read_lock();
2064 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2065 if (xas_retry(&xas, page))
2066 continue;
2067 /*
2068 * If the entry has been swapped out, we can stop looking.
2069 * No current caller is looking for DAX entries.
2070 */
2071 if (xa_is_value(page))
2072 break;
2073
2074 if (!page_cache_get_speculative(page))
2075 goto retry;
2076
2077 /* Has the page moved or been split? */
2078 if (unlikely(page != xas_reload(&xas)))
2079 goto put_page;
2080
2081 pages[ret] = find_subpage(page, xas.xa_index);
2082 if (++ret == nr_pages)
2083 break;
2084 continue;
2085 put_page:
2086 put_page(page);
2087 retry:
2088 xas_reset(&xas);
2089 }
2090 rcu_read_unlock();
2091 return ret;
2092 }
2093 EXPORT_SYMBOL(find_get_pages_contig);
2094
2095 /**
2096 * find_get_pages_range_tag - Find and return head pages matching @tag.
2097 * @mapping: the address_space to search
2098 * @index: the starting page index
2099 * @end: The final page index (inclusive)
2100 * @tag: the tag index
2101 * @nr_pages: the maximum number of pages
2102 * @pages: where the resulting pages are placed
2103 *
2104 * Like find_get_pages(), except we only return head pages which are tagged
2105 * with @tag. @index is updated to the index immediately after the last
2106 * page we return, ready for the next iteration.
2107 *
2108 * Return: the number of pages which were found.
2109 */
2110 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2111 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2112 struct page **pages)
2113 {
2114 XA_STATE(xas, &mapping->i_pages, *index);
2115 struct page *page;
2116 unsigned ret = 0;
2117
2118 if (unlikely(!nr_pages))
2119 return 0;
2120
2121 rcu_read_lock();
2122 while ((page = find_get_entry(&xas, end, tag))) {
2123 /*
2124 * Shadow entries should never be tagged, but this iteration
2125 * is lockless so there is a window for page reclaim to evict
2126 * a page we saw tagged. Skip over it.
2127 */
2128 if (xa_is_value(page))
2129 continue;
2130
2131 pages[ret] = page;
2132 if (++ret == nr_pages) {
2133 *index = page->index + thp_nr_pages(page);
2134 goto out;
2135 }
2136 }
2137
2138 /*
2139 * We come here when we got to @end. We take care to not overflow the
2140 * index @index as it confuses some of the callers. This breaks the
2141 * iteration when there is a page at index -1 but that is already
2142 * broken anyway.
2143 */
2144 if (end == (pgoff_t)-1)
2145 *index = (pgoff_t)-1;
2146 else
2147 *index = end + 1;
2148 out:
2149 rcu_read_unlock();
2150
2151 return ret;
2152 }
2153 EXPORT_SYMBOL(find_get_pages_range_tag);
2154
2155 /*
2156 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2157 * a _large_ part of the i/o request. Imagine the worst scenario:
2158 *
2159 * ---R__________________________________________B__________
2160 * ^ reading here ^ bad block(assume 4k)
2161 *
2162 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2163 * => failing the whole request => read(R) => read(R+1) =>
2164 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2165 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2166 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2167 *
2168 * It is going insane. Fix it by quickly scaling down the readahead size.
2169 */
2170 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2171 {
2172 ra->ra_pages /= 4;
2173 }
2174
2175 /*
2176 * filemap_get_read_batch - Get a batch of pages for read
2177 *
2178 * Get a batch of pages which represent a contiguous range of bytes
2179 * in the file. No tail pages will be returned. If @index is in the
2180 * middle of a THP, the entire THP will be returned. The last page in
2181 * the batch may have Readahead set or be not Uptodate so that the
2182 * caller can take the appropriate action.
2183 */
2184 static void filemap_get_read_batch(struct address_space *mapping,
2185 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2186 {
2187 XA_STATE(xas, &mapping->i_pages, index);
2188 struct page *head;
2189
2190 rcu_read_lock();
2191 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2192 if (xas_retry(&xas, head))
2193 continue;
2194 if (xas.xa_index > max || xa_is_value(head))
2195 break;
2196 if (!page_cache_get_speculative(head))
2197 goto retry;
2198
2199 /* Has the page moved or been split? */
2200 if (unlikely(head != xas_reload(&xas)))
2201 goto put_page;
2202
2203 if (!pagevec_add(pvec, head))
2204 break;
2205 if (!PageUptodate(head))
2206 break;
2207 if (PageReadahead(head))
2208 break;
2209 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2210 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2211 continue;
2212 put_page:
2213 put_page(head);
2214 retry:
2215 xas_reset(&xas);
2216 }
2217 rcu_read_unlock();
2218 }
2219
2220 static int filemap_read_page(struct file *file, struct address_space *mapping,
2221 struct page *page)
2222 {
2223 int error;
2224
2225 /*
2226 * A previous I/O error may have been due to temporary failures,
2227 * eg. multipath errors. PG_error will be set again if readpage
2228 * fails.
2229 */
2230 ClearPageError(page);
2231 /* Start the actual read. The read will unlock the page. */
2232 error = mapping->a_ops->readpage(file, page);
2233 if (error)
2234 return error;
2235
2236 error = wait_on_page_locked_killable(page);
2237 if (error)
2238 return error;
2239 if (PageUptodate(page))
2240 return 0;
2241 if (!page->mapping) /* page truncated */
2242 return AOP_TRUNCATED_PAGE;
2243 shrink_readahead_size_eio(&file->f_ra);
2244 return -EIO;
2245 }
2246
2247 static bool filemap_range_uptodate(struct address_space *mapping,
2248 loff_t pos, struct iov_iter *iter, struct page *page)
2249 {
2250 int count;
2251
2252 if (PageUptodate(page))
2253 return true;
2254 /* pipes can't handle partially uptodate pages */
2255 if (iov_iter_is_pipe(iter))
2256 return false;
2257 if (!mapping->a_ops->is_partially_uptodate)
2258 return false;
2259 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2260 return false;
2261
2262 count = iter->count;
2263 if (page_offset(page) > pos) {
2264 count -= page_offset(page) - pos;
2265 pos = 0;
2266 } else {
2267 pos -= page_offset(page);
2268 }
2269
2270 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2271 }
2272
2273 static int filemap_update_page(struct kiocb *iocb,
2274 struct address_space *mapping, struct iov_iter *iter,
2275 struct page *page)
2276 {
2277 int error;
2278
2279 if (!trylock_page(page)) {
2280 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2281 return -EAGAIN;
2282 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2283 put_and_wait_on_page_locked(page, TASK_KILLABLE);
2284 return AOP_TRUNCATED_PAGE;
2285 }
2286 error = __lock_page_async(page, iocb->ki_waitq);
2287 if (error)
2288 return error;
2289 }
2290
2291 if (!page->mapping)
2292 goto truncated;
2293
2294 error = 0;
2295 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2296 goto unlock;
2297
2298 error = -EAGAIN;
2299 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2300 goto unlock;
2301
2302 error = filemap_read_page(iocb->ki_filp, mapping, page);
2303 if (error == AOP_TRUNCATED_PAGE)
2304 put_page(page);
2305 return error;
2306 truncated:
2307 unlock_page(page);
2308 put_page(page);
2309 return AOP_TRUNCATED_PAGE;
2310 unlock:
2311 unlock_page(page);
2312 return error;
2313 }
2314
2315 static int filemap_create_page(struct file *file,
2316 struct address_space *mapping, pgoff_t index,
2317 struct pagevec *pvec)
2318 {
2319 struct page *page;
2320 int error;
2321
2322 page = page_cache_alloc(mapping);
2323 if (!page)
2324 return -ENOMEM;
2325
2326 error = add_to_page_cache_lru(page, mapping, index,
2327 mapping_gfp_constraint(mapping, GFP_KERNEL));
2328 if (error == -EEXIST)
2329 error = AOP_TRUNCATED_PAGE;
2330 if (error)
2331 goto error;
2332
2333 error = filemap_read_page(file, mapping, page);
2334 if (error)
2335 goto error;
2336
2337 pagevec_add(pvec, page);
2338 return 0;
2339 error:
2340 put_page(page);
2341 return error;
2342 }
2343
2344 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2345 struct address_space *mapping, struct page *page,
2346 pgoff_t last_index)
2347 {
2348 if (iocb->ki_flags & IOCB_NOIO)
2349 return -EAGAIN;
2350 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2351 page->index, last_index - page->index);
2352 return 0;
2353 }
2354
2355 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2356 struct pagevec *pvec)
2357 {
2358 struct file *filp = iocb->ki_filp;
2359 struct address_space *mapping = filp->f_mapping;
2360 struct file_ra_state *ra = &filp->f_ra;
2361 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2362 pgoff_t last_index;
2363 struct page *page;
2364 int err = 0;
2365
2366 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2367 retry:
2368 if (fatal_signal_pending(current))
2369 return -EINTR;
2370
2371 filemap_get_read_batch(mapping, index, last_index, pvec);
2372 if (!pagevec_count(pvec)) {
2373 if (iocb->ki_flags & IOCB_NOIO)
2374 return -EAGAIN;
2375 page_cache_sync_readahead(mapping, ra, filp, index,
2376 last_index - index);
2377 filemap_get_read_batch(mapping, index, last_index, pvec);
2378 }
2379 if (!pagevec_count(pvec)) {
2380 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2381 return -EAGAIN;
2382 err = filemap_create_page(filp, mapping,
2383 iocb->ki_pos >> PAGE_SHIFT, pvec);
2384 if (err == AOP_TRUNCATED_PAGE)
2385 goto retry;
2386 return err;
2387 }
2388
2389 page = pvec->pages[pagevec_count(pvec) - 1];
2390 if (PageReadahead(page)) {
2391 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2392 if (err)
2393 goto err;
2394 }
2395 if (!PageUptodate(page)) {
2396 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2397 iocb->ki_flags |= IOCB_NOWAIT;
2398 err = filemap_update_page(iocb, mapping, iter, page);
2399 if (err)
2400 goto err;
2401 }
2402
2403 return 0;
2404 err:
2405 if (err < 0)
2406 put_page(page);
2407 if (likely(--pvec->nr))
2408 return 0;
2409 if (err == AOP_TRUNCATED_PAGE)
2410 goto retry;
2411 return err;
2412 }
2413
2414 /**
2415 * filemap_read - Read data from the page cache.
2416 * @iocb: The iocb to read.
2417 * @iter: Destination for the data.
2418 * @already_read: Number of bytes already read by the caller.
2419 *
2420 * Copies data from the page cache. If the data is not currently present,
2421 * uses the readahead and readpage address_space operations to fetch it.
2422 *
2423 * Return: Total number of bytes copied, including those already read by
2424 * the caller. If an error happens before any bytes are copied, returns
2425 * a negative error number.
2426 */
2427 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2428 ssize_t already_read)
2429 {
2430 struct file *filp = iocb->ki_filp;
2431 struct file_ra_state *ra = &filp->f_ra;
2432 struct address_space *mapping = filp->f_mapping;
2433 struct inode *inode = mapping->host;
2434 struct pagevec pvec;
2435 int i, error = 0;
2436 bool writably_mapped;
2437 loff_t isize, end_offset;
2438
2439 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2440 return 0;
2441 if (unlikely(!iov_iter_count(iter)))
2442 return 0;
2443
2444 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2445 pagevec_init(&pvec);
2446
2447 do {
2448 cond_resched();
2449
2450 /*
2451 * If we've already successfully copied some data, then we
2452 * can no longer safely return -EIOCBQUEUED. Hence mark
2453 * an async read NOWAIT at that point.
2454 */
2455 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2456 iocb->ki_flags |= IOCB_NOWAIT;
2457
2458 error = filemap_get_pages(iocb, iter, &pvec);
2459 if (error < 0)
2460 break;
2461
2462 /*
2463 * i_size must be checked after we know the pages are Uptodate.
2464 *
2465 * Checking i_size after the check allows us to calculate
2466 * the correct value for "nr", which means the zero-filled
2467 * part of the page is not copied back to userspace (unless
2468 * another truncate extends the file - this is desired though).
2469 */
2470 isize = i_size_read(inode);
2471 if (unlikely(iocb->ki_pos >= isize))
2472 goto put_pages;
2473 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2474
2475 /*
2476 * Once we start copying data, we don't want to be touching any
2477 * cachelines that might be contended:
2478 */
2479 writably_mapped = mapping_writably_mapped(mapping);
2480
2481 /*
2482 * When a sequential read accesses a page several times, only
2483 * mark it as accessed the first time.
2484 */
2485 if (iocb->ki_pos >> PAGE_SHIFT !=
2486 ra->prev_pos >> PAGE_SHIFT)
2487 mark_page_accessed(pvec.pages[0]);
2488
2489 for (i = 0; i < pagevec_count(&pvec); i++) {
2490 struct page *page = pvec.pages[i];
2491 size_t page_size = thp_size(page);
2492 size_t offset = iocb->ki_pos & (page_size - 1);
2493 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2494 page_size - offset);
2495 size_t copied;
2496
2497 if (end_offset < page_offset(page))
2498 break;
2499 if (i > 0)
2500 mark_page_accessed(page);
2501 /*
2502 * If users can be writing to this page using arbitrary
2503 * virtual addresses, take care about potential aliasing
2504 * before reading the page on the kernel side.
2505 */
2506 if (writably_mapped) {
2507 int j;
2508
2509 for (j = 0; j < thp_nr_pages(page); j++)
2510 flush_dcache_page(page + j);
2511 }
2512
2513 copied = copy_page_to_iter(page, offset, bytes, iter);
2514
2515 already_read += copied;
2516 iocb->ki_pos += copied;
2517 ra->prev_pos = iocb->ki_pos;
2518
2519 if (copied < bytes) {
2520 error = -EFAULT;
2521 break;
2522 }
2523 }
2524 put_pages:
2525 for (i = 0; i < pagevec_count(&pvec); i++)
2526 put_page(pvec.pages[i]);
2527 pagevec_reinit(&pvec);
2528 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2529
2530 file_accessed(filp);
2531
2532 return already_read ? already_read : error;
2533 }
2534 EXPORT_SYMBOL_GPL(filemap_read);
2535
2536 /**
2537 * generic_file_read_iter - generic filesystem read routine
2538 * @iocb: kernel I/O control block
2539 * @iter: destination for the data read
2540 *
2541 * This is the "read_iter()" routine for all filesystems
2542 * that can use the page cache directly.
2543 *
2544 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2545 * be returned when no data can be read without waiting for I/O requests
2546 * to complete; it doesn't prevent readahead.
2547 *
2548 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2549 * requests shall be made for the read or for readahead. When no data
2550 * can be read, -EAGAIN shall be returned. When readahead would be
2551 * triggered, a partial, possibly empty read shall be returned.
2552 *
2553 * Return:
2554 * * number of bytes copied, even for partial reads
2555 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2556 */
2557 ssize_t
2558 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2559 {
2560 size_t count = iov_iter_count(iter);
2561 ssize_t retval = 0;
2562
2563 if (!count)
2564 return 0; /* skip atime */
2565
2566 if (iocb->ki_flags & IOCB_DIRECT) {
2567 struct file *file = iocb->ki_filp;
2568 struct address_space *mapping = file->f_mapping;
2569 struct inode *inode = mapping->host;
2570 loff_t size;
2571
2572 size = i_size_read(inode);
2573 if (iocb->ki_flags & IOCB_NOWAIT) {
2574 if (filemap_range_has_page(mapping, iocb->ki_pos,
2575 iocb->ki_pos + count - 1))
2576 return -EAGAIN;
2577 } else {
2578 retval = filemap_write_and_wait_range(mapping,
2579 iocb->ki_pos,
2580 iocb->ki_pos + count - 1);
2581 if (retval < 0)
2582 return retval;
2583 }
2584
2585 file_accessed(file);
2586
2587 retval = mapping->a_ops->direct_IO(iocb, iter);
2588 if (retval >= 0) {
2589 iocb->ki_pos += retval;
2590 count -= retval;
2591 }
2592 if (retval != -EIOCBQUEUED)
2593 iov_iter_revert(iter, count - iov_iter_count(iter));
2594
2595 /*
2596 * Btrfs can have a short DIO read if we encounter
2597 * compressed extents, so if there was an error, or if
2598 * we've already read everything we wanted to, or if
2599 * there was a short read because we hit EOF, go ahead
2600 * and return. Otherwise fallthrough to buffered io for
2601 * the rest of the read. Buffered reads will not work for
2602 * DAX files, so don't bother trying.
2603 */
2604 if (retval < 0 || !count || iocb->ki_pos >= size ||
2605 IS_DAX(inode))
2606 return retval;
2607 }
2608
2609 return filemap_read(iocb, iter, retval);
2610 }
2611 EXPORT_SYMBOL(generic_file_read_iter);
2612
2613 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2614 struct address_space *mapping, struct page *page,
2615 loff_t start, loff_t end, bool seek_data)
2616 {
2617 const struct address_space_operations *ops = mapping->a_ops;
2618 size_t offset, bsz = i_blocksize(mapping->host);
2619
2620 if (xa_is_value(page) || PageUptodate(page))
2621 return seek_data ? start : end;
2622 if (!ops->is_partially_uptodate)
2623 return seek_data ? end : start;
2624
2625 xas_pause(xas);
2626 rcu_read_unlock();
2627 lock_page(page);
2628 if (unlikely(page->mapping != mapping))
2629 goto unlock;
2630
2631 offset = offset_in_thp(page, start) & ~(bsz - 1);
2632
2633 do {
2634 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2635 break;
2636 start = (start + bsz) & ~(bsz - 1);
2637 offset += bsz;
2638 } while (offset < thp_size(page));
2639 unlock:
2640 unlock_page(page);
2641 rcu_read_lock();
2642 return start;
2643 }
2644
2645 static inline
2646 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2647 {
2648 if (xa_is_value(page))
2649 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2650 return thp_size(page);
2651 }
2652
2653 /**
2654 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2655 * @mapping: Address space to search.
2656 * @start: First byte to consider.
2657 * @end: Limit of search (exclusive).
2658 * @whence: Either SEEK_HOLE or SEEK_DATA.
2659 *
2660 * If the page cache knows which blocks contain holes and which blocks
2661 * contain data, your filesystem can use this function to implement
2662 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2663 * entirely memory-based such as tmpfs, and filesystems which support
2664 * unwritten extents.
2665 *
2666 * Return: The requested offset on successs, or -ENXIO if @whence specifies
2667 * SEEK_DATA and there is no data after @start. There is an implicit hole
2668 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2669 * and @end contain data.
2670 */
2671 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2672 loff_t end, int whence)
2673 {
2674 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2675 pgoff_t max = (end - 1) / PAGE_SIZE;
2676 bool seek_data = (whence == SEEK_DATA);
2677 struct page *page;
2678
2679 if (end <= start)
2680 return -ENXIO;
2681
2682 rcu_read_lock();
2683 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2684 loff_t pos = xas.xa_index * PAGE_SIZE;
2685
2686 if (start < pos) {
2687 if (!seek_data)
2688 goto unlock;
2689 start = pos;
2690 }
2691
2692 pos += seek_page_size(&xas, page);
2693 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2694 seek_data);
2695 if (start < pos)
2696 goto unlock;
2697 if (!xa_is_value(page))
2698 put_page(page);
2699 }
2700 rcu_read_unlock();
2701
2702 if (seek_data)
2703 return -ENXIO;
2704 goto out;
2705
2706 unlock:
2707 rcu_read_unlock();
2708 if (!xa_is_value(page))
2709 put_page(page);
2710 out:
2711 if (start > end)
2712 return end;
2713 return start;
2714 }
2715
2716 #ifdef CONFIG_MMU
2717 #define MMAP_LOTSAMISS (100)
2718 /*
2719 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2720 * @vmf - the vm_fault for this fault.
2721 * @page - the page to lock.
2722 * @fpin - the pointer to the file we may pin (or is already pinned).
2723 *
2724 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2725 * It differs in that it actually returns the page locked if it returns 1 and 0
2726 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2727 * will point to the pinned file and needs to be fput()'ed at a later point.
2728 */
2729 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2730 struct file **fpin)
2731 {
2732 if (trylock_page(page))
2733 return 1;
2734
2735 /*
2736 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2737 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2738 * is supposed to work. We have way too many special cases..
2739 */
2740 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2741 return 0;
2742
2743 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2744 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2745 if (__lock_page_killable(page)) {
2746 /*
2747 * We didn't have the right flags to drop the mmap_lock,
2748 * but all fault_handlers only check for fatal signals
2749 * if we return VM_FAULT_RETRY, so we need to drop the
2750 * mmap_lock here and return 0 if we don't have a fpin.
2751 */
2752 if (*fpin == NULL)
2753 mmap_read_unlock(vmf->vma->vm_mm);
2754 return 0;
2755 }
2756 } else
2757 __lock_page(page);
2758 return 1;
2759 }
2760
2761
2762 /*
2763 * Synchronous readahead happens when we don't even find a page in the page
2764 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2765 * to drop the mmap sem we return the file that was pinned in order for us to do
2766 * that. If we didn't pin a file then we return NULL. The file that is
2767 * returned needs to be fput()'ed when we're done with it.
2768 */
2769 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2770 {
2771 struct file *file = vmf->vma->vm_file;
2772 struct file_ra_state *ra = &file->f_ra;
2773 struct address_space *mapping = file->f_mapping;
2774 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2775 struct file *fpin = NULL;
2776 unsigned int mmap_miss;
2777
2778 /* If we don't want any read-ahead, don't bother */
2779 if (vmf->vma->vm_flags & VM_RAND_READ)
2780 return fpin;
2781 if (!ra->ra_pages)
2782 return fpin;
2783
2784 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2785 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2786 page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2787 return fpin;
2788 }
2789
2790 /* Avoid banging the cache line if not needed */
2791 mmap_miss = READ_ONCE(ra->mmap_miss);
2792 if (mmap_miss < MMAP_LOTSAMISS * 10)
2793 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2794
2795 /*
2796 * Do we miss much more than hit in this file? If so,
2797 * stop bothering with read-ahead. It will only hurt.
2798 */
2799 if (mmap_miss > MMAP_LOTSAMISS)
2800 return fpin;
2801
2802 /*
2803 * mmap read-around
2804 */
2805 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2806 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2807 ra->size = ra->ra_pages;
2808 ra->async_size = ra->ra_pages / 4;
2809 ractl._index = ra->start;
2810 do_page_cache_ra(&ractl, ra->size, ra->async_size);
2811 return fpin;
2812 }
2813
2814 /*
2815 * Asynchronous readahead happens when we find the page and PG_readahead,
2816 * so we want to possibly extend the readahead further. We return the file that
2817 * was pinned if we have to drop the mmap_lock in order to do IO.
2818 */
2819 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2820 struct page *page)
2821 {
2822 struct file *file = vmf->vma->vm_file;
2823 struct file_ra_state *ra = &file->f_ra;
2824 struct address_space *mapping = file->f_mapping;
2825 struct file *fpin = NULL;
2826 unsigned int mmap_miss;
2827 pgoff_t offset = vmf->pgoff;
2828
2829 /* If we don't want any read-ahead, don't bother */
2830 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2831 return fpin;
2832 mmap_miss = READ_ONCE(ra->mmap_miss);
2833 if (mmap_miss)
2834 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2835 if (PageReadahead(page)) {
2836 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2837 page_cache_async_readahead(mapping, ra, file,
2838 page, offset, ra->ra_pages);
2839 }
2840 return fpin;
2841 }
2842
2843 /**
2844 * filemap_fault - read in file data for page fault handling
2845 * @vmf: struct vm_fault containing details of the fault
2846 *
2847 * filemap_fault() is invoked via the vma operations vector for a
2848 * mapped memory region to read in file data during a page fault.
2849 *
2850 * The goto's are kind of ugly, but this streamlines the normal case of having
2851 * it in the page cache, and handles the special cases reasonably without
2852 * having a lot of duplicated code.
2853 *
2854 * vma->vm_mm->mmap_lock must be held on entry.
2855 *
2856 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2857 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2858 *
2859 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2860 * has not been released.
2861 *
2862 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2863 *
2864 * Return: bitwise-OR of %VM_FAULT_ codes.
2865 */
2866 vm_fault_t filemap_fault(struct vm_fault *vmf)
2867 {
2868 int error;
2869 struct file *file = vmf->vma->vm_file;
2870 struct file *fpin = NULL;
2871 struct address_space *mapping = file->f_mapping;
2872 struct file_ra_state *ra = &file->f_ra;
2873 struct inode *inode = mapping->host;
2874 pgoff_t offset = vmf->pgoff;
2875 pgoff_t max_off;
2876 struct page *page;
2877 vm_fault_t ret = 0;
2878
2879 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2880 if (unlikely(offset >= max_off))
2881 return VM_FAULT_SIGBUS;
2882
2883 /*
2884 * Do we have something in the page cache already?
2885 */
2886 page = find_get_page(mapping, offset);
2887 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2888 /*
2889 * We found the page, so try async readahead before
2890 * waiting for the lock.
2891 */
2892 fpin = do_async_mmap_readahead(vmf, page);
2893 } else if (!page) {
2894 /* No page in the page cache at all */
2895 count_vm_event(PGMAJFAULT);
2896 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2897 ret = VM_FAULT_MAJOR;
2898 fpin = do_sync_mmap_readahead(vmf);
2899 retry_find:
2900 page = pagecache_get_page(mapping, offset,
2901 FGP_CREAT|FGP_FOR_MMAP,
2902 vmf->gfp_mask);
2903 if (!page) {
2904 if (fpin)
2905 goto out_retry;
2906 return VM_FAULT_OOM;
2907 }
2908 }
2909
2910 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2911 goto out_retry;
2912
2913 /* Did it get truncated? */
2914 if (unlikely(compound_head(page)->mapping != mapping)) {
2915 unlock_page(page);
2916 put_page(page);
2917 goto retry_find;
2918 }
2919 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2920
2921 /*
2922 * We have a locked page in the page cache, now we need to check
2923 * that it's up-to-date. If not, it is going to be due to an error.
2924 */
2925 if (unlikely(!PageUptodate(page)))
2926 goto page_not_uptodate;
2927
2928 /*
2929 * We've made it this far and we had to drop our mmap_lock, now is the
2930 * time to return to the upper layer and have it re-find the vma and
2931 * redo the fault.
2932 */
2933 if (fpin) {
2934 unlock_page(page);
2935 goto out_retry;
2936 }
2937
2938 /*
2939 * Found the page and have a reference on it.
2940 * We must recheck i_size under page lock.
2941 */
2942 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2943 if (unlikely(offset >= max_off)) {
2944 unlock_page(page);
2945 put_page(page);
2946 return VM_FAULT_SIGBUS;
2947 }
2948
2949 vmf->page = page;
2950 return ret | VM_FAULT_LOCKED;
2951
2952 page_not_uptodate:
2953 /*
2954 * Umm, take care of errors if the page isn't up-to-date.
2955 * Try to re-read it _once_. We do this synchronously,
2956 * because there really aren't any performance issues here
2957 * and we need to check for errors.
2958 */
2959 ClearPageError(page);
2960 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2961 error = mapping->a_ops->readpage(file, page);
2962 if (!error) {
2963 wait_on_page_locked(page);
2964 if (!PageUptodate(page))
2965 error = -EIO;
2966 }
2967 if (fpin)
2968 goto out_retry;
2969 put_page(page);
2970
2971 if (!error || error == AOP_TRUNCATED_PAGE)
2972 goto retry_find;
2973
2974 shrink_readahead_size_eio(ra);
2975 return VM_FAULT_SIGBUS;
2976
2977 out_retry:
2978 /*
2979 * We dropped the mmap_lock, we need to return to the fault handler to
2980 * re-find the vma and come back and find our hopefully still populated
2981 * page.
2982 */
2983 if (page)
2984 put_page(page);
2985 if (fpin)
2986 fput(fpin);
2987 return ret | VM_FAULT_RETRY;
2988 }
2989 EXPORT_SYMBOL(filemap_fault);
2990
2991 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
2992 {
2993 struct mm_struct *mm = vmf->vma->vm_mm;
2994
2995 /* Huge page is mapped? No need to proceed. */
2996 if (pmd_trans_huge(*vmf->pmd)) {
2997 unlock_page(page);
2998 put_page(page);
2999 return true;
3000 }
3001
3002 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3003 vm_fault_t ret = do_set_pmd(vmf, page);
3004 if (!ret) {
3005 /* The page is mapped successfully, reference consumed. */
3006 unlock_page(page);
3007 return true;
3008 }
3009 }
3010
3011 if (pmd_none(*vmf->pmd)) {
3012 vmf->ptl = pmd_lock(mm, vmf->pmd);
3013 if (likely(pmd_none(*vmf->pmd))) {
3014 mm_inc_nr_ptes(mm);
3015 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3016 vmf->prealloc_pte = NULL;
3017 }
3018 spin_unlock(vmf->ptl);
3019 }
3020
3021 /* See comment in handle_pte_fault() */
3022 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3023 unlock_page(page);
3024 put_page(page);
3025 return true;
3026 }
3027
3028 return false;
3029 }
3030
3031 static struct page *next_uptodate_page(struct page *page,
3032 struct address_space *mapping,
3033 struct xa_state *xas, pgoff_t end_pgoff)
3034 {
3035 unsigned long max_idx;
3036
3037 do {
3038 if (!page)
3039 return NULL;
3040 if (xas_retry(xas, page))
3041 continue;
3042 if (xa_is_value(page))
3043 continue;
3044 if (PageLocked(page))
3045 continue;
3046 if (!page_cache_get_speculative(page))
3047 continue;
3048 /* Has the page moved or been split? */
3049 if (unlikely(page != xas_reload(xas)))
3050 goto skip;
3051 if (!PageUptodate(page) || PageReadahead(page))
3052 goto skip;
3053 if (PageHWPoison(page))
3054 goto skip;
3055 if (!trylock_page(page))
3056 goto skip;
3057 if (page->mapping != mapping)
3058 goto unlock;
3059 if (!PageUptodate(page))
3060 goto unlock;
3061 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3062 if (xas->xa_index >= max_idx)
3063 goto unlock;
3064 return page;
3065 unlock:
3066 unlock_page(page);
3067 skip:
3068 put_page(page);
3069 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3070
3071 return NULL;
3072 }
3073
3074 static inline struct page *first_map_page(struct address_space *mapping,
3075 struct xa_state *xas,
3076 pgoff_t end_pgoff)
3077 {
3078 return next_uptodate_page(xas_find(xas, end_pgoff),
3079 mapping, xas, end_pgoff);
3080 }
3081
3082 static inline struct page *next_map_page(struct address_space *mapping,
3083 struct xa_state *xas,
3084 pgoff_t end_pgoff)
3085 {
3086 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3087 mapping, xas, end_pgoff);
3088 }
3089
3090 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3091 pgoff_t start_pgoff, pgoff_t end_pgoff)
3092 {
3093 struct vm_area_struct *vma = vmf->vma;
3094 struct file *file = vma->vm_file;
3095 struct address_space *mapping = file->f_mapping;
3096 pgoff_t last_pgoff = start_pgoff;
3097 unsigned long addr;
3098 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3099 struct page *head, *page;
3100 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3101 vm_fault_t ret = 0;
3102
3103 rcu_read_lock();
3104 head = first_map_page(mapping, &xas, end_pgoff);
3105 if (!head)
3106 goto out;
3107
3108 if (filemap_map_pmd(vmf, head)) {
3109 ret = VM_FAULT_NOPAGE;
3110 goto out;
3111 }
3112
3113 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3114 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3115 do {
3116 page = find_subpage(head, xas.xa_index);
3117 if (PageHWPoison(page))
3118 goto unlock;
3119
3120 if (mmap_miss > 0)
3121 mmap_miss--;
3122
3123 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3124 vmf->pte += xas.xa_index - last_pgoff;
3125 last_pgoff = xas.xa_index;
3126
3127 if (!pte_none(*vmf->pte))
3128 goto unlock;
3129
3130 /* We're about to handle the fault */
3131 if (vmf->address == addr)
3132 ret = VM_FAULT_NOPAGE;
3133
3134 do_set_pte(vmf, page, addr);
3135 /* no need to invalidate: a not-present page won't be cached */
3136 update_mmu_cache(vma, addr, vmf->pte);
3137 unlock_page(head);
3138 continue;
3139 unlock:
3140 unlock_page(head);
3141 put_page(head);
3142 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3143 pte_unmap_unlock(vmf->pte, vmf->ptl);
3144 out:
3145 rcu_read_unlock();
3146 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3147 return ret;
3148 }
3149 EXPORT_SYMBOL(filemap_map_pages);
3150
3151 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3152 {
3153 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3154 struct page *page = vmf->page;
3155 vm_fault_t ret = VM_FAULT_LOCKED;
3156
3157 sb_start_pagefault(mapping->host->i_sb);
3158 file_update_time(vmf->vma->vm_file);
3159 lock_page(page);
3160 if (page->mapping != mapping) {
3161 unlock_page(page);
3162 ret = VM_FAULT_NOPAGE;
3163 goto out;
3164 }
3165 /*
3166 * We mark the page dirty already here so that when freeze is in
3167 * progress, we are guaranteed that writeback during freezing will
3168 * see the dirty page and writeprotect it again.
3169 */
3170 set_page_dirty(page);
3171 wait_for_stable_page(page);
3172 out:
3173 sb_end_pagefault(mapping->host->i_sb);
3174 return ret;
3175 }
3176
3177 const struct vm_operations_struct generic_file_vm_ops = {
3178 .fault = filemap_fault,
3179 .map_pages = filemap_map_pages,
3180 .page_mkwrite = filemap_page_mkwrite,
3181 };
3182
3183 /* This is used for a general mmap of a disk file */
3184
3185 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3186 {
3187 struct address_space *mapping = file->f_mapping;
3188
3189 if (!mapping->a_ops->readpage)
3190 return -ENOEXEC;
3191 file_accessed(file);
3192 vma->vm_ops = &generic_file_vm_ops;
3193 return 0;
3194 }
3195
3196 /*
3197 * This is for filesystems which do not implement ->writepage.
3198 */
3199 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3200 {
3201 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3202 return -EINVAL;
3203 return generic_file_mmap(file, vma);
3204 }
3205 #else
3206 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3207 {
3208 return VM_FAULT_SIGBUS;
3209 }
3210 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3211 {
3212 return -ENOSYS;
3213 }
3214 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3215 {
3216 return -ENOSYS;
3217 }
3218 #endif /* CONFIG_MMU */
3219
3220 EXPORT_SYMBOL(filemap_page_mkwrite);
3221 EXPORT_SYMBOL(generic_file_mmap);
3222 EXPORT_SYMBOL(generic_file_readonly_mmap);
3223
3224 static struct page *wait_on_page_read(struct page *page)
3225 {
3226 if (!IS_ERR(page)) {
3227 wait_on_page_locked(page);
3228 if (!PageUptodate(page)) {
3229 put_page(page);
3230 page = ERR_PTR(-EIO);
3231 }
3232 }
3233 return page;
3234 }
3235
3236 static struct page *do_read_cache_page(struct address_space *mapping,
3237 pgoff_t index,
3238 int (*filler)(void *, struct page *),
3239 void *data,
3240 gfp_t gfp)
3241 {
3242 struct page *page;
3243 int err;
3244 repeat:
3245 page = find_get_page(mapping, index);
3246 if (!page) {
3247 page = __page_cache_alloc(gfp);
3248 if (!page)
3249 return ERR_PTR(-ENOMEM);
3250 err = add_to_page_cache_lru(page, mapping, index, gfp);
3251 if (unlikely(err)) {
3252 put_page(page);
3253 if (err == -EEXIST)
3254 goto repeat;
3255 /* Presumably ENOMEM for xarray node */
3256 return ERR_PTR(err);
3257 }
3258
3259 filler:
3260 if (filler)
3261 err = filler(data, page);
3262 else
3263 err = mapping->a_ops->readpage(data, page);
3264
3265 if (err < 0) {
3266 put_page(page);
3267 return ERR_PTR(err);
3268 }
3269
3270 page = wait_on_page_read(page);
3271 if (IS_ERR(page))
3272 return page;
3273 goto out;
3274 }
3275 if (PageUptodate(page))
3276 goto out;
3277
3278 /*
3279 * Page is not up to date and may be locked due to one of the following
3280 * case a: Page is being filled and the page lock is held
3281 * case b: Read/write error clearing the page uptodate status
3282 * case c: Truncation in progress (page locked)
3283 * case d: Reclaim in progress
3284 *
3285 * Case a, the page will be up to date when the page is unlocked.
3286 * There is no need to serialise on the page lock here as the page
3287 * is pinned so the lock gives no additional protection. Even if the
3288 * page is truncated, the data is still valid if PageUptodate as
3289 * it's a race vs truncate race.
3290 * Case b, the page will not be up to date
3291 * Case c, the page may be truncated but in itself, the data may still
3292 * be valid after IO completes as it's a read vs truncate race. The
3293 * operation must restart if the page is not uptodate on unlock but
3294 * otherwise serialising on page lock to stabilise the mapping gives
3295 * no additional guarantees to the caller as the page lock is
3296 * released before return.
3297 * Case d, similar to truncation. If reclaim holds the page lock, it
3298 * will be a race with remove_mapping that determines if the mapping
3299 * is valid on unlock but otherwise the data is valid and there is
3300 * no need to serialise with page lock.
3301 *
3302 * As the page lock gives no additional guarantee, we optimistically
3303 * wait on the page to be unlocked and check if it's up to date and
3304 * use the page if it is. Otherwise, the page lock is required to
3305 * distinguish between the different cases. The motivation is that we
3306 * avoid spurious serialisations and wakeups when multiple processes
3307 * wait on the same page for IO to complete.
3308 */
3309 wait_on_page_locked(page);
3310 if (PageUptodate(page))
3311 goto out;
3312
3313 /* Distinguish between all the cases under the safety of the lock */
3314 lock_page(page);
3315
3316 /* Case c or d, restart the operation */
3317 if (!page->mapping) {
3318 unlock_page(page);
3319 put_page(page);
3320 goto repeat;
3321 }
3322
3323 /* Someone else locked and filled the page in a very small window */
3324 if (PageUptodate(page)) {
3325 unlock_page(page);
3326 goto out;
3327 }
3328
3329 /*
3330 * A previous I/O error may have been due to temporary
3331 * failures.
3332 * Clear page error before actual read, PG_error will be
3333 * set again if read page fails.
3334 */
3335 ClearPageError(page);
3336 goto filler;
3337
3338 out:
3339 mark_page_accessed(page);
3340 return page;
3341 }
3342
3343 /**
3344 * read_cache_page - read into page cache, fill it if needed
3345 * @mapping: the page's address_space
3346 * @index: the page index
3347 * @filler: function to perform the read
3348 * @data: first arg to filler(data, page) function, often left as NULL
3349 *
3350 * Read into the page cache. If a page already exists, and PageUptodate() is
3351 * not set, try to fill the page and wait for it to become unlocked.
3352 *
3353 * If the page does not get brought uptodate, return -EIO.
3354 *
3355 * Return: up to date page on success, ERR_PTR() on failure.
3356 */
3357 struct page *read_cache_page(struct address_space *mapping,
3358 pgoff_t index,
3359 int (*filler)(void *, struct page *),
3360 void *data)
3361 {
3362 return do_read_cache_page(mapping, index, filler, data,
3363 mapping_gfp_mask(mapping));
3364 }
3365 EXPORT_SYMBOL(read_cache_page);
3366
3367 /**
3368 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3369 * @mapping: the page's address_space
3370 * @index: the page index
3371 * @gfp: the page allocator flags to use if allocating
3372 *
3373 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3374 * any new page allocations done using the specified allocation flags.
3375 *
3376 * If the page does not get brought uptodate, return -EIO.
3377 *
3378 * Return: up to date page on success, ERR_PTR() on failure.
3379 */
3380 struct page *read_cache_page_gfp(struct address_space *mapping,
3381 pgoff_t index,
3382 gfp_t gfp)
3383 {
3384 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3385 }
3386 EXPORT_SYMBOL(read_cache_page_gfp);
3387
3388 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3389 loff_t pos, unsigned len, unsigned flags,
3390 struct page **pagep, void **fsdata)
3391 {
3392 const struct address_space_operations *aops = mapping->a_ops;
3393
3394 return aops->write_begin(file, mapping, pos, len, flags,
3395 pagep, fsdata);
3396 }
3397 EXPORT_SYMBOL(pagecache_write_begin);
3398
3399 int pagecache_write_end(struct file *file, struct address_space *mapping,
3400 loff_t pos, unsigned len, unsigned copied,
3401 struct page *page, void *fsdata)
3402 {
3403 const struct address_space_operations *aops = mapping->a_ops;
3404
3405 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3406 }
3407 EXPORT_SYMBOL(pagecache_write_end);
3408
3409 /*
3410 * Warn about a page cache invalidation failure during a direct I/O write.
3411 */
3412 void dio_warn_stale_pagecache(struct file *filp)
3413 {
3414 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3415 char pathname[128];
3416 char *path;
3417
3418 errseq_set(&filp->f_mapping->wb_err, -EIO);
3419 if (__ratelimit(&_rs)) {
3420 path = file_path(filp, pathname, sizeof(pathname));
3421 if (IS_ERR(path))
3422 path = "(unknown)";
3423 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3424 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3425 current->comm);
3426 }
3427 }
3428
3429 ssize_t
3430 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3431 {
3432 struct file *file = iocb->ki_filp;
3433 struct address_space *mapping = file->f_mapping;
3434 struct inode *inode = mapping->host;
3435 loff_t pos = iocb->ki_pos;
3436 ssize_t written;
3437 size_t write_len;
3438 pgoff_t end;
3439
3440 write_len = iov_iter_count(from);
3441 end = (pos + write_len - 1) >> PAGE_SHIFT;
3442
3443 if (iocb->ki_flags & IOCB_NOWAIT) {
3444 /* If there are pages to writeback, return */
3445 if (filemap_range_has_page(file->f_mapping, pos,
3446 pos + write_len - 1))
3447 return -EAGAIN;
3448 } else {
3449 written = filemap_write_and_wait_range(mapping, pos,
3450 pos + write_len - 1);
3451 if (written)
3452 goto out;
3453 }
3454
3455 /*
3456 * After a write we want buffered reads to be sure to go to disk to get
3457 * the new data. We invalidate clean cached page from the region we're
3458 * about to write. We do this *before* the write so that we can return
3459 * without clobbering -EIOCBQUEUED from ->direct_IO().
3460 */
3461 written = invalidate_inode_pages2_range(mapping,
3462 pos >> PAGE_SHIFT, end);
3463 /*
3464 * If a page can not be invalidated, return 0 to fall back
3465 * to buffered write.
3466 */
3467 if (written) {
3468 if (written == -EBUSY)
3469 return 0;
3470 goto out;
3471 }
3472
3473 written = mapping->a_ops->direct_IO(iocb, from);
3474
3475 /*
3476 * Finally, try again to invalidate clean pages which might have been
3477 * cached by non-direct readahead, or faulted in by get_user_pages()
3478 * if the source of the write was an mmap'ed region of the file
3479 * we're writing. Either one is a pretty crazy thing to do,
3480 * so we don't support it 100%. If this invalidation
3481 * fails, tough, the write still worked...
3482 *
3483 * Most of the time we do not need this since dio_complete() will do
3484 * the invalidation for us. However there are some file systems that
3485 * do not end up with dio_complete() being called, so let's not break
3486 * them by removing it completely.
3487 *
3488 * Noticeable example is a blkdev_direct_IO().
3489 *
3490 * Skip invalidation for async writes or if mapping has no pages.
3491 */
3492 if (written > 0 && mapping->nrpages &&
3493 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3494 dio_warn_stale_pagecache(file);
3495
3496 if (written > 0) {
3497 pos += written;
3498 write_len -= written;
3499 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3500 i_size_write(inode, pos);
3501 mark_inode_dirty(inode);
3502 }
3503 iocb->ki_pos = pos;
3504 }
3505 if (written != -EIOCBQUEUED)
3506 iov_iter_revert(from, write_len - iov_iter_count(from));
3507 out:
3508 return written;
3509 }
3510 EXPORT_SYMBOL(generic_file_direct_write);
3511
3512 /*
3513 * Find or create a page at the given pagecache position. Return the locked
3514 * page. This function is specifically for buffered writes.
3515 */
3516 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3517 pgoff_t index, unsigned flags)
3518 {
3519 struct page *page;
3520 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3521
3522 if (flags & AOP_FLAG_NOFS)
3523 fgp_flags |= FGP_NOFS;
3524
3525 page = pagecache_get_page(mapping, index, fgp_flags,
3526 mapping_gfp_mask(mapping));
3527 if (page)
3528 wait_for_stable_page(page);
3529
3530 return page;
3531 }
3532 EXPORT_SYMBOL(grab_cache_page_write_begin);
3533
3534 ssize_t generic_perform_write(struct file *file,
3535 struct iov_iter *i, loff_t pos)
3536 {
3537 struct address_space *mapping = file->f_mapping;
3538 const struct address_space_operations *a_ops = mapping->a_ops;
3539 long status = 0;
3540 ssize_t written = 0;
3541 unsigned int flags = 0;
3542
3543 do {
3544 struct page *page;
3545 unsigned long offset; /* Offset into pagecache page */
3546 unsigned long bytes; /* Bytes to write to page */
3547 size_t copied; /* Bytes copied from user */
3548 void *fsdata;
3549
3550 offset = (pos & (PAGE_SIZE - 1));
3551 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3552 iov_iter_count(i));
3553
3554 again:
3555 /*
3556 * Bring in the user page that we will copy from _first_.
3557 * Otherwise there's a nasty deadlock on copying from the
3558 * same page as we're writing to, without it being marked
3559 * up-to-date.
3560 *
3561 * Not only is this an optimisation, but it is also required
3562 * to check that the address is actually valid, when atomic
3563 * usercopies are used, below.
3564 */
3565 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3566 status = -EFAULT;
3567 break;
3568 }
3569
3570 if (fatal_signal_pending(current)) {
3571 status = -EINTR;
3572 break;
3573 }
3574
3575 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3576 &page, &fsdata);
3577 if (unlikely(status < 0))
3578 break;
3579
3580 if (mapping_writably_mapped(mapping))
3581 flush_dcache_page(page);
3582
3583 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3584 flush_dcache_page(page);
3585
3586 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3587 page, fsdata);
3588 if (unlikely(status < 0))
3589 break;
3590 copied = status;
3591
3592 cond_resched();
3593
3594 iov_iter_advance(i, copied);
3595 if (unlikely(copied == 0)) {
3596 /*
3597 * If we were unable to copy any data at all, we must
3598 * fall back to a single segment length write.
3599 *
3600 * If we didn't fallback here, we could livelock
3601 * because not all segments in the iov can be copied at
3602 * once without a pagefault.
3603 */
3604 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3605 iov_iter_single_seg_count(i));
3606 goto again;
3607 }
3608 pos += copied;
3609 written += copied;
3610
3611 balance_dirty_pages_ratelimited(mapping);
3612 } while (iov_iter_count(i));
3613
3614 return written ? written : status;
3615 }
3616 EXPORT_SYMBOL(generic_perform_write);
3617
3618 /**
3619 * __generic_file_write_iter - write data to a file
3620 * @iocb: IO state structure (file, offset, etc.)
3621 * @from: iov_iter with data to write
3622 *
3623 * This function does all the work needed for actually writing data to a
3624 * file. It does all basic checks, removes SUID from the file, updates
3625 * modification times and calls proper subroutines depending on whether we
3626 * do direct IO or a standard buffered write.
3627 *
3628 * It expects i_mutex to be grabbed unless we work on a block device or similar
3629 * object which does not need locking at all.
3630 *
3631 * This function does *not* take care of syncing data in case of O_SYNC write.
3632 * A caller has to handle it. This is mainly due to the fact that we want to
3633 * avoid syncing under i_mutex.
3634 *
3635 * Return:
3636 * * number of bytes written, even for truncated writes
3637 * * negative error code if no data has been written at all
3638 */
3639 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3640 {
3641 struct file *file = iocb->ki_filp;
3642 struct address_space * mapping = file->f_mapping;
3643 struct inode *inode = mapping->host;
3644 ssize_t written = 0;
3645 ssize_t err;
3646 ssize_t status;
3647
3648 /* We can write back this queue in page reclaim */
3649 current->backing_dev_info = inode_to_bdi(inode);
3650 err = file_remove_privs(file);
3651 if (err)
3652 goto out;
3653
3654 err = file_update_time(file);
3655 if (err)
3656 goto out;
3657
3658 if (iocb->ki_flags & IOCB_DIRECT) {
3659 loff_t pos, endbyte;
3660
3661 written = generic_file_direct_write(iocb, from);
3662 /*
3663 * If the write stopped short of completing, fall back to
3664 * buffered writes. Some filesystems do this for writes to
3665 * holes, for example. For DAX files, a buffered write will
3666 * not succeed (even if it did, DAX does not handle dirty
3667 * page-cache pages correctly).
3668 */
3669 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3670 goto out;
3671
3672 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3673 /*
3674 * If generic_perform_write() returned a synchronous error
3675 * then we want to return the number of bytes which were
3676 * direct-written, or the error code if that was zero. Note
3677 * that this differs from normal direct-io semantics, which
3678 * will return -EFOO even if some bytes were written.
3679 */
3680 if (unlikely(status < 0)) {
3681 err = status;
3682 goto out;
3683 }
3684 /*
3685 * We need to ensure that the page cache pages are written to
3686 * disk and invalidated to preserve the expected O_DIRECT
3687 * semantics.
3688 */
3689 endbyte = pos + status - 1;
3690 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3691 if (err == 0) {
3692 iocb->ki_pos = endbyte + 1;
3693 written += status;
3694 invalidate_mapping_pages(mapping,
3695 pos >> PAGE_SHIFT,
3696 endbyte >> PAGE_SHIFT);
3697 } else {
3698 /*
3699 * We don't know how much we wrote, so just return
3700 * the number of bytes which were direct-written
3701 */
3702 }
3703 } else {
3704 written = generic_perform_write(file, from, iocb->ki_pos);
3705 if (likely(written > 0))
3706 iocb->ki_pos += written;
3707 }
3708 out:
3709 current->backing_dev_info = NULL;
3710 return written ? written : err;
3711 }
3712 EXPORT_SYMBOL(__generic_file_write_iter);
3713
3714 /**
3715 * generic_file_write_iter - write data to a file
3716 * @iocb: IO state structure
3717 * @from: iov_iter with data to write
3718 *
3719 * This is a wrapper around __generic_file_write_iter() to be used by most
3720 * filesystems. It takes care of syncing the file in case of O_SYNC file
3721 * and acquires i_mutex as needed.
3722 * Return:
3723 * * negative error code if no data has been written at all of
3724 * vfs_fsync_range() failed for a synchronous write
3725 * * number of bytes written, even for truncated writes
3726 */
3727 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3728 {
3729 struct file *file = iocb->ki_filp;
3730 struct inode *inode = file->f_mapping->host;
3731 ssize_t ret;
3732
3733 inode_lock(inode);
3734 ret = generic_write_checks(iocb, from);
3735 if (ret > 0)
3736 ret = __generic_file_write_iter(iocb, from);
3737 inode_unlock(inode);
3738
3739 if (ret > 0)
3740 ret = generic_write_sync(iocb, ret);
3741 return ret;
3742 }
3743 EXPORT_SYMBOL(generic_file_write_iter);
3744
3745 /**
3746 * try_to_release_page() - release old fs-specific metadata on a page
3747 *
3748 * @page: the page which the kernel is trying to free
3749 * @gfp_mask: memory allocation flags (and I/O mode)
3750 *
3751 * The address_space is to try to release any data against the page
3752 * (presumably at page->private).
3753 *
3754 * This may also be called if PG_fscache is set on a page, indicating that the
3755 * page is known to the local caching routines.
3756 *
3757 * The @gfp_mask argument specifies whether I/O may be performed to release
3758 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3759 *
3760 * Return: %1 if the release was successful, otherwise return zero.
3761 */
3762 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3763 {
3764 struct address_space * const mapping = page->mapping;
3765
3766 BUG_ON(!PageLocked(page));
3767 if (PageWriteback(page))
3768 return 0;
3769
3770 if (mapping && mapping->a_ops->releasepage)
3771 return mapping->a_ops->releasepage(page, gfp_mask);
3772 return try_to_free_buffers(page);
3773 }
3774
3775 EXPORT_SYMBOL(try_to_release_page);