]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/filemap.c
virtio-net: correctly enable multiqueue
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115 {
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 if (node)
136 workingset_node_shadows_dec(node);
137 } else {
138 /* DAX can replace empty locked entry with a hole */
139 WARN_ON_ONCE(p !=
140 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 RADIX_DAX_ENTRY_LOCK));
142 /* DAX accounts exceptional entries as normal pages */
143 if (node)
144 workingset_node_pages_dec(node);
145 /* Wakeup waiters for exceptional entry lock */
146 dax_wake_mapping_entry_waiter(mapping, page->index,
147 false);
148 }
149 }
150 radix_tree_replace_slot(slot, page);
151 mapping->nrpages++;
152 if (node) {
153 workingset_node_pages_inc(node);
154 /*
155 * Don't track node that contains actual pages.
156 *
157 * Avoid acquiring the list_lru lock if already
158 * untracked. The list_empty() test is safe as
159 * node->private_list is protected by
160 * mapping->tree_lock.
161 */
162 if (!list_empty(&node->private_list))
163 list_lru_del(&workingset_shadow_nodes,
164 &node->private_list);
165 }
166 return 0;
167 }
168
169 static void page_cache_tree_delete(struct address_space *mapping,
170 struct page *page, void *shadow)
171 {
172 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173
174 VM_BUG_ON_PAGE(!PageLocked(page), page);
175 VM_BUG_ON_PAGE(PageTail(page), page);
176 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177
178 for (i = 0; i < nr; i++) {
179 struct radix_tree_node *node;
180 void **slot;
181
182 __radix_tree_lookup(&mapping->page_tree, page->index + i,
183 &node, &slot);
184
185 radix_tree_clear_tags(&mapping->page_tree, node, slot);
186
187 if (!node) {
188 VM_BUG_ON_PAGE(nr != 1, page);
189 /*
190 * We need a node to properly account shadow
191 * entries. Don't plant any without. XXX
192 */
193 shadow = NULL;
194 }
195
196 radix_tree_replace_slot(slot, shadow);
197
198 if (!node)
199 break;
200
201 workingset_node_pages_dec(node);
202 if (shadow)
203 workingset_node_shadows_inc(node);
204 else
205 if (__radix_tree_delete_node(&mapping->page_tree, node))
206 continue;
207
208 /*
209 * Track node that only contains shadow entries. DAX mappings
210 * contain no shadow entries and may contain other exceptional
211 * entries so skip those.
212 *
213 * Avoid acquiring the list_lru lock if already tracked.
214 * The list_empty() test is safe as node->private_list is
215 * protected by mapping->tree_lock.
216 */
217 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218 list_empty(&node->private_list)) {
219 node->private_data = mapping;
220 list_lru_add(&workingset_shadow_nodes,
221 &node->private_list);
222 }
223 }
224
225 if (shadow) {
226 mapping->nrexceptional += nr;
227 /*
228 * Make sure the nrexceptional update is committed before
229 * the nrpages update so that final truncate racing
230 * with reclaim does not see both counters 0 at the
231 * same time and miss a shadow entry.
232 */
233 smp_wmb();
234 }
235 mapping->nrpages -= nr;
236 }
237
238 /*
239 * Delete a page from the page cache and free it. Caller has to make
240 * sure the page is locked and that nobody else uses it - or that usage
241 * is safe. The caller must hold the mapping's tree_lock.
242 */
243 void __delete_from_page_cache(struct page *page, void *shadow)
244 {
245 struct address_space *mapping = page->mapping;
246 int nr = hpage_nr_pages(page);
247
248 trace_mm_filemap_delete_from_page_cache(page);
249 /*
250 * if we're uptodate, flush out into the cleancache, otherwise
251 * invalidate any existing cleancache entries. We can't leave
252 * stale data around in the cleancache once our page is gone
253 */
254 if (PageUptodate(page) && PageMappedToDisk(page))
255 cleancache_put_page(page);
256 else
257 cleancache_invalidate_page(mapping, page);
258
259 VM_BUG_ON_PAGE(PageTail(page), page);
260 VM_BUG_ON_PAGE(page_mapped(page), page);
261 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262 int mapcount;
263
264 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 dump_page(page, "still mapped when deleted");
267 dump_stack();
268 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269
270 mapcount = page_mapcount(page);
271 if (mapping_exiting(mapping) &&
272 page_count(page) >= mapcount + 2) {
273 /*
274 * All vmas have already been torn down, so it's
275 * a good bet that actually the page is unmapped,
276 * and we'd prefer not to leak it: if we're wrong,
277 * some other bad page check should catch it later.
278 */
279 page_mapcount_reset(page);
280 page_ref_sub(page, mapcount);
281 }
282 }
283
284 page_cache_tree_delete(mapping, page, shadow);
285
286 page->mapping = NULL;
287 /* Leave page->index set: truncation lookup relies upon it */
288
289 /* hugetlb pages do not participate in page cache accounting. */
290 if (!PageHuge(page))
291 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292 if (PageSwapBacked(page)) {
293 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294 if (PageTransHuge(page))
295 __dec_node_page_state(page, NR_SHMEM_THPS);
296 } else {
297 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298 }
299
300 /*
301 * At this point page must be either written or cleaned by truncate.
302 * Dirty page here signals a bug and loss of unwritten data.
303 *
304 * This fixes dirty accounting after removing the page entirely but
305 * leaves PageDirty set: it has no effect for truncated page and
306 * anyway will be cleared before returning page into buddy allocator.
307 */
308 if (WARN_ON_ONCE(PageDirty(page)))
309 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310 }
311
312 /**
313 * delete_from_page_cache - delete page from page cache
314 * @page: the page which the kernel is trying to remove from page cache
315 *
316 * This must be called only on pages that have been verified to be in the page
317 * cache and locked. It will never put the page into the free list, the caller
318 * has a reference on the page.
319 */
320 void delete_from_page_cache(struct page *page)
321 {
322 struct address_space *mapping = page_mapping(page);
323 unsigned long flags;
324 void (*freepage)(struct page *);
325
326 BUG_ON(!PageLocked(page));
327
328 freepage = mapping->a_ops->freepage;
329
330 spin_lock_irqsave(&mapping->tree_lock, flags);
331 __delete_from_page_cache(page, NULL);
332 spin_unlock_irqrestore(&mapping->tree_lock, flags);
333
334 if (freepage)
335 freepage(page);
336
337 if (PageTransHuge(page) && !PageHuge(page)) {
338 page_ref_sub(page, HPAGE_PMD_NR);
339 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340 } else {
341 put_page(page);
342 }
343 }
344 EXPORT_SYMBOL(delete_from_page_cache);
345
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
360 /**
361 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362 * @mapping: address space structure to write
363 * @start: offset in bytes where the range starts
364 * @end: offset in bytes where the range ends (inclusive)
365 * @sync_mode: enable synchronous operation
366 *
367 * Start writeback against all of a mapping's dirty pages that lie
368 * within the byte offsets <start, end> inclusive.
369 *
370 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371 * opposed to a regular memory cleansing writeback. The difference between
372 * these two operations is that if a dirty page/buffer is encountered, it must
373 * be waited upon, and not just skipped over.
374 */
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376 loff_t end, int sync_mode)
377 {
378 int ret;
379 struct writeback_control wbc = {
380 .sync_mode = sync_mode,
381 .nr_to_write = LONG_MAX,
382 .range_start = start,
383 .range_end = end,
384 };
385
386 if (!mapping_cap_writeback_dirty(mapping))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390 ret = do_writepages(mapping, &wbc);
391 wbc_detach_inode(&wbc);
392 return ret;
393 }
394
395 static inline int __filemap_fdatawrite(struct address_space *mapping,
396 int sync_mode)
397 {
398 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
399 }
400
401 int filemap_fdatawrite(struct address_space *mapping)
402 {
403 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
404 }
405 EXPORT_SYMBOL(filemap_fdatawrite);
406
407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 loff_t end)
409 {
410 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
411 }
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
413
414 /**
415 * filemap_flush - mostly a non-blocking flush
416 * @mapping: target address_space
417 *
418 * This is a mostly non-blocking flush. Not suitable for data-integrity
419 * purposes - I/O may not be started against all dirty pages.
420 */
421 int filemap_flush(struct address_space *mapping)
422 {
423 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
424 }
425 EXPORT_SYMBOL(filemap_flush);
426
427 static int __filemap_fdatawait_range(struct address_space *mapping,
428 loff_t start_byte, loff_t end_byte)
429 {
430 pgoff_t index = start_byte >> PAGE_SHIFT;
431 pgoff_t end = end_byte >> PAGE_SHIFT;
432 struct pagevec pvec;
433 int nr_pages;
434 int ret = 0;
435
436 if (end_byte < start_byte)
437 goto out;
438
439 pagevec_init(&pvec, 0);
440 while ((index <= end) &&
441 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442 PAGECACHE_TAG_WRITEBACK,
443 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444 unsigned i;
445
446 for (i = 0; i < nr_pages; i++) {
447 struct page *page = pvec.pages[i];
448
449 /* until radix tree lookup accepts end_index */
450 if (page->index > end)
451 continue;
452
453 wait_on_page_writeback(page);
454 if (TestClearPageError(page))
455 ret = -EIO;
456 }
457 pagevec_release(&pvec);
458 cond_resched();
459 }
460 out:
461 return ret;
462 }
463
464 /**
465 * filemap_fdatawait_range - wait for writeback to complete
466 * @mapping: address space structure to wait for
467 * @start_byte: offset in bytes where the range starts
468 * @end_byte: offset in bytes where the range ends (inclusive)
469 *
470 * Walk the list of under-writeback pages of the given address space
471 * in the given range and wait for all of them. Check error status of
472 * the address space and return it.
473 *
474 * Since the error status of the address space is cleared by this function,
475 * callers are responsible for checking the return value and handling and/or
476 * reporting the error.
477 */
478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479 loff_t end_byte)
480 {
481 int ret, ret2;
482
483 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484 ret2 = filemap_check_errors(mapping);
485 if (!ret)
486 ret = ret2;
487
488 return ret;
489 }
490 EXPORT_SYMBOL(filemap_fdatawait_range);
491
492 /**
493 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494 * @mapping: address space structure to wait for
495 *
496 * Walk the list of under-writeback pages of the given address space
497 * and wait for all of them. Unlike filemap_fdatawait(), this function
498 * does not clear error status of the address space.
499 *
500 * Use this function if callers don't handle errors themselves. Expected
501 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502 * fsfreeze(8)
503 */
504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
505 {
506 loff_t i_size = i_size_read(mapping->host);
507
508 if (i_size == 0)
509 return;
510
511 __filemap_fdatawait_range(mapping, 0, i_size - 1);
512 }
513
514 /**
515 * filemap_fdatawait - wait for all under-writeback pages to complete
516 * @mapping: address space structure to wait for
517 *
518 * Walk the list of under-writeback pages of the given address space
519 * and wait for all of them. Check error status of the address space
520 * and return it.
521 *
522 * Since the error status of the address space is cleared by this function,
523 * callers are responsible for checking the return value and handling and/or
524 * reporting the error.
525 */
526 int filemap_fdatawait(struct address_space *mapping)
527 {
528 loff_t i_size = i_size_read(mapping->host);
529
530 if (i_size == 0)
531 return 0;
532
533 return filemap_fdatawait_range(mapping, 0, i_size - 1);
534 }
535 EXPORT_SYMBOL(filemap_fdatawait);
536
537 int filemap_write_and_wait(struct address_space *mapping)
538 {
539 int err = 0;
540
541 if ((!dax_mapping(mapping) && mapping->nrpages) ||
542 (dax_mapping(mapping) && mapping->nrexceptional)) {
543 err = filemap_fdatawrite(mapping);
544 /*
545 * Even if the above returned error, the pages may be
546 * written partially (e.g. -ENOSPC), so we wait for it.
547 * But the -EIO is special case, it may indicate the worst
548 * thing (e.g. bug) happened, so we avoid waiting for it.
549 */
550 if (err != -EIO) {
551 int err2 = filemap_fdatawait(mapping);
552 if (!err)
553 err = err2;
554 }
555 } else {
556 err = filemap_check_errors(mapping);
557 }
558 return err;
559 }
560 EXPORT_SYMBOL(filemap_write_and_wait);
561
562 /**
563 * filemap_write_and_wait_range - write out & wait on a file range
564 * @mapping: the address_space for the pages
565 * @lstart: offset in bytes where the range starts
566 * @lend: offset in bytes where the range ends (inclusive)
567 *
568 * Write out and wait upon file offsets lstart->lend, inclusive.
569 *
570 * Note that `lend' is inclusive (describes the last byte to be written) so
571 * that this function can be used to write to the very end-of-file (end = -1).
572 */
573 int filemap_write_and_wait_range(struct address_space *mapping,
574 loff_t lstart, loff_t lend)
575 {
576 int err = 0;
577
578 if ((!dax_mapping(mapping) && mapping->nrpages) ||
579 (dax_mapping(mapping) && mapping->nrexceptional)) {
580 err = __filemap_fdatawrite_range(mapping, lstart, lend,
581 WB_SYNC_ALL);
582 /* See comment of filemap_write_and_wait() */
583 if (err != -EIO) {
584 int err2 = filemap_fdatawait_range(mapping,
585 lstart, lend);
586 if (!err)
587 err = err2;
588 }
589 } else {
590 err = filemap_check_errors(mapping);
591 }
592 return err;
593 }
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
595
596 /**
597 * replace_page_cache_page - replace a pagecache page with a new one
598 * @old: page to be replaced
599 * @new: page to replace with
600 * @gfp_mask: allocation mode
601 *
602 * This function replaces a page in the pagecache with a new one. On
603 * success it acquires the pagecache reference for the new page and
604 * drops it for the old page. Both the old and new pages must be
605 * locked. This function does not add the new page to the LRU, the
606 * caller must do that.
607 *
608 * The remove + add is atomic. The only way this function can fail is
609 * memory allocation failure.
610 */
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
612 {
613 int error;
614
615 VM_BUG_ON_PAGE(!PageLocked(old), old);
616 VM_BUG_ON_PAGE(!PageLocked(new), new);
617 VM_BUG_ON_PAGE(new->mapping, new);
618
619 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
620 if (!error) {
621 struct address_space *mapping = old->mapping;
622 void (*freepage)(struct page *);
623 unsigned long flags;
624
625 pgoff_t offset = old->index;
626 freepage = mapping->a_ops->freepage;
627
628 get_page(new);
629 new->mapping = mapping;
630 new->index = offset;
631
632 spin_lock_irqsave(&mapping->tree_lock, flags);
633 __delete_from_page_cache(old, NULL);
634 error = page_cache_tree_insert(mapping, new, NULL);
635 BUG_ON(error);
636
637 /*
638 * hugetlb pages do not participate in page cache accounting.
639 */
640 if (!PageHuge(new))
641 __inc_node_page_state(new, NR_FILE_PAGES);
642 if (PageSwapBacked(new))
643 __inc_node_page_state(new, NR_SHMEM);
644 spin_unlock_irqrestore(&mapping->tree_lock, flags);
645 mem_cgroup_migrate(old, new);
646 radix_tree_preload_end();
647 if (freepage)
648 freepage(old);
649 put_page(old);
650 }
651
652 return error;
653 }
654 EXPORT_SYMBOL_GPL(replace_page_cache_page);
655
656 static int __add_to_page_cache_locked(struct page *page,
657 struct address_space *mapping,
658 pgoff_t offset, gfp_t gfp_mask,
659 void **shadowp)
660 {
661 int huge = PageHuge(page);
662 struct mem_cgroup *memcg;
663 int error;
664
665 VM_BUG_ON_PAGE(!PageLocked(page), page);
666 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
667
668 if (!huge) {
669 error = mem_cgroup_try_charge(page, current->mm,
670 gfp_mask, &memcg, false);
671 if (error)
672 return error;
673 }
674
675 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
676 if (error) {
677 if (!huge)
678 mem_cgroup_cancel_charge(page, memcg, false);
679 return error;
680 }
681
682 get_page(page);
683 page->mapping = mapping;
684 page->index = offset;
685
686 spin_lock_irq(&mapping->tree_lock);
687 error = page_cache_tree_insert(mapping, page, shadowp);
688 radix_tree_preload_end();
689 if (unlikely(error))
690 goto err_insert;
691
692 /* hugetlb pages do not participate in page cache accounting. */
693 if (!huge)
694 __inc_node_page_state(page, NR_FILE_PAGES);
695 spin_unlock_irq(&mapping->tree_lock);
696 if (!huge)
697 mem_cgroup_commit_charge(page, memcg, false, false);
698 trace_mm_filemap_add_to_page_cache(page);
699 return 0;
700 err_insert:
701 page->mapping = NULL;
702 /* Leave page->index set: truncation relies upon it */
703 spin_unlock_irq(&mapping->tree_lock);
704 if (!huge)
705 mem_cgroup_cancel_charge(page, memcg, false);
706 put_page(page);
707 return error;
708 }
709
710 /**
711 * add_to_page_cache_locked - add a locked page to the pagecache
712 * @page: page to add
713 * @mapping: the page's address_space
714 * @offset: page index
715 * @gfp_mask: page allocation mode
716 *
717 * This function is used to add a page to the pagecache. It must be locked.
718 * This function does not add the page to the LRU. The caller must do that.
719 */
720 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
721 pgoff_t offset, gfp_t gfp_mask)
722 {
723 return __add_to_page_cache_locked(page, mapping, offset,
724 gfp_mask, NULL);
725 }
726 EXPORT_SYMBOL(add_to_page_cache_locked);
727
728 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
729 pgoff_t offset, gfp_t gfp_mask)
730 {
731 void *shadow = NULL;
732 int ret;
733
734 __SetPageLocked(page);
735 ret = __add_to_page_cache_locked(page, mapping, offset,
736 gfp_mask, &shadow);
737 if (unlikely(ret))
738 __ClearPageLocked(page);
739 else {
740 /*
741 * The page might have been evicted from cache only
742 * recently, in which case it should be activated like
743 * any other repeatedly accessed page.
744 * The exception is pages getting rewritten; evicting other
745 * data from the working set, only to cache data that will
746 * get overwritten with something else, is a waste of memory.
747 */
748 if (!(gfp_mask & __GFP_WRITE) &&
749 shadow && workingset_refault(shadow)) {
750 SetPageActive(page);
751 workingset_activation(page);
752 } else
753 ClearPageActive(page);
754 lru_cache_add(page);
755 }
756 return ret;
757 }
758 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
759
760 #ifdef CONFIG_NUMA
761 struct page *__page_cache_alloc(gfp_t gfp)
762 {
763 int n;
764 struct page *page;
765
766 if (cpuset_do_page_mem_spread()) {
767 unsigned int cpuset_mems_cookie;
768 do {
769 cpuset_mems_cookie = read_mems_allowed_begin();
770 n = cpuset_mem_spread_node();
771 page = __alloc_pages_node(n, gfp, 0);
772 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
773
774 return page;
775 }
776 return alloc_pages(gfp, 0);
777 }
778 EXPORT_SYMBOL(__page_cache_alloc);
779 #endif
780
781 /*
782 * In order to wait for pages to become available there must be
783 * waitqueues associated with pages. By using a hash table of
784 * waitqueues where the bucket discipline is to maintain all
785 * waiters on the same queue and wake all when any of the pages
786 * become available, and for the woken contexts to check to be
787 * sure the appropriate page became available, this saves space
788 * at a cost of "thundering herd" phenomena during rare hash
789 * collisions.
790 */
791 wait_queue_head_t *page_waitqueue(struct page *page)
792 {
793 return bit_waitqueue(page, 0);
794 }
795 EXPORT_SYMBOL(page_waitqueue);
796
797 void wait_on_page_bit(struct page *page, int bit_nr)
798 {
799 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
800
801 if (test_bit(bit_nr, &page->flags))
802 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
803 TASK_UNINTERRUPTIBLE);
804 }
805 EXPORT_SYMBOL(wait_on_page_bit);
806
807 int wait_on_page_bit_killable(struct page *page, int bit_nr)
808 {
809 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
810
811 if (!test_bit(bit_nr, &page->flags))
812 return 0;
813
814 return __wait_on_bit(page_waitqueue(page), &wait,
815 bit_wait_io, TASK_KILLABLE);
816 }
817
818 int wait_on_page_bit_killable_timeout(struct page *page,
819 int bit_nr, unsigned long timeout)
820 {
821 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
822
823 wait.key.timeout = jiffies + timeout;
824 if (!test_bit(bit_nr, &page->flags))
825 return 0;
826 return __wait_on_bit(page_waitqueue(page), &wait,
827 bit_wait_io_timeout, TASK_KILLABLE);
828 }
829 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
830
831 /**
832 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
833 * @page: Page defining the wait queue of interest
834 * @waiter: Waiter to add to the queue
835 *
836 * Add an arbitrary @waiter to the wait queue for the nominated @page.
837 */
838 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
839 {
840 wait_queue_head_t *q = page_waitqueue(page);
841 unsigned long flags;
842
843 spin_lock_irqsave(&q->lock, flags);
844 __add_wait_queue(q, waiter);
845 spin_unlock_irqrestore(&q->lock, flags);
846 }
847 EXPORT_SYMBOL_GPL(add_page_wait_queue);
848
849 /**
850 * unlock_page - unlock a locked page
851 * @page: the page
852 *
853 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
854 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
855 * mechanism between PageLocked pages and PageWriteback pages is shared.
856 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
857 *
858 * The mb is necessary to enforce ordering between the clear_bit and the read
859 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
860 */
861 void unlock_page(struct page *page)
862 {
863 page = compound_head(page);
864 VM_BUG_ON_PAGE(!PageLocked(page), page);
865 clear_bit_unlock(PG_locked, &page->flags);
866 smp_mb__after_atomic();
867 wake_up_page(page, PG_locked);
868 }
869 EXPORT_SYMBOL(unlock_page);
870
871 /**
872 * end_page_writeback - end writeback against a page
873 * @page: the page
874 */
875 void end_page_writeback(struct page *page)
876 {
877 /*
878 * TestClearPageReclaim could be used here but it is an atomic
879 * operation and overkill in this particular case. Failing to
880 * shuffle a page marked for immediate reclaim is too mild to
881 * justify taking an atomic operation penalty at the end of
882 * ever page writeback.
883 */
884 if (PageReclaim(page)) {
885 ClearPageReclaim(page);
886 rotate_reclaimable_page(page);
887 }
888
889 if (!test_clear_page_writeback(page))
890 BUG();
891
892 smp_mb__after_atomic();
893 wake_up_page(page, PG_writeback);
894 }
895 EXPORT_SYMBOL(end_page_writeback);
896
897 /*
898 * After completing I/O on a page, call this routine to update the page
899 * flags appropriately
900 */
901 void page_endio(struct page *page, bool is_write, int err)
902 {
903 if (!is_write) {
904 if (!err) {
905 SetPageUptodate(page);
906 } else {
907 ClearPageUptodate(page);
908 SetPageError(page);
909 }
910 unlock_page(page);
911 } else {
912 if (err) {
913 SetPageError(page);
914 if (page->mapping)
915 mapping_set_error(page->mapping, err);
916 }
917 end_page_writeback(page);
918 }
919 }
920 EXPORT_SYMBOL_GPL(page_endio);
921
922 /**
923 * __lock_page - get a lock on the page, assuming we need to sleep to get it
924 * @page: the page to lock
925 */
926 void __lock_page(struct page *page)
927 {
928 struct page *page_head = compound_head(page);
929 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
930
931 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
932 TASK_UNINTERRUPTIBLE);
933 }
934 EXPORT_SYMBOL(__lock_page);
935
936 int __lock_page_killable(struct page *page)
937 {
938 struct page *page_head = compound_head(page);
939 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
940
941 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
942 bit_wait_io, TASK_KILLABLE);
943 }
944 EXPORT_SYMBOL_GPL(__lock_page_killable);
945
946 /*
947 * Return values:
948 * 1 - page is locked; mmap_sem is still held.
949 * 0 - page is not locked.
950 * mmap_sem has been released (up_read()), unless flags had both
951 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
952 * which case mmap_sem is still held.
953 *
954 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
955 * with the page locked and the mmap_sem unperturbed.
956 */
957 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
958 unsigned int flags)
959 {
960 if (flags & FAULT_FLAG_ALLOW_RETRY) {
961 /*
962 * CAUTION! In this case, mmap_sem is not released
963 * even though return 0.
964 */
965 if (flags & FAULT_FLAG_RETRY_NOWAIT)
966 return 0;
967
968 up_read(&mm->mmap_sem);
969 if (flags & FAULT_FLAG_KILLABLE)
970 wait_on_page_locked_killable(page);
971 else
972 wait_on_page_locked(page);
973 return 0;
974 } else {
975 if (flags & FAULT_FLAG_KILLABLE) {
976 int ret;
977
978 ret = __lock_page_killable(page);
979 if (ret) {
980 up_read(&mm->mmap_sem);
981 return 0;
982 }
983 } else
984 __lock_page(page);
985 return 1;
986 }
987 }
988
989 /**
990 * page_cache_next_hole - find the next hole (not-present entry)
991 * @mapping: mapping
992 * @index: index
993 * @max_scan: maximum range to search
994 *
995 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
996 * lowest indexed hole.
997 *
998 * Returns: the index of the hole if found, otherwise returns an index
999 * outside of the set specified (in which case 'return - index >=
1000 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1001 * be returned.
1002 *
1003 * page_cache_next_hole may be called under rcu_read_lock. However,
1004 * like radix_tree_gang_lookup, this will not atomically search a
1005 * snapshot of the tree at a single point in time. For example, if a
1006 * hole is created at index 5, then subsequently a hole is created at
1007 * index 10, page_cache_next_hole covering both indexes may return 10
1008 * if called under rcu_read_lock.
1009 */
1010 pgoff_t page_cache_next_hole(struct address_space *mapping,
1011 pgoff_t index, unsigned long max_scan)
1012 {
1013 unsigned long i;
1014
1015 for (i = 0; i < max_scan; i++) {
1016 struct page *page;
1017
1018 page = radix_tree_lookup(&mapping->page_tree, index);
1019 if (!page || radix_tree_exceptional_entry(page))
1020 break;
1021 index++;
1022 if (index == 0)
1023 break;
1024 }
1025
1026 return index;
1027 }
1028 EXPORT_SYMBOL(page_cache_next_hole);
1029
1030 /**
1031 * page_cache_prev_hole - find the prev hole (not-present entry)
1032 * @mapping: mapping
1033 * @index: index
1034 * @max_scan: maximum range to search
1035 *
1036 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1037 * the first hole.
1038 *
1039 * Returns: the index of the hole if found, otherwise returns an index
1040 * outside of the set specified (in which case 'index - return >=
1041 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1042 * will be returned.
1043 *
1044 * page_cache_prev_hole may be called under rcu_read_lock. However,
1045 * like radix_tree_gang_lookup, this will not atomically search a
1046 * snapshot of the tree at a single point in time. For example, if a
1047 * hole is created at index 10, then subsequently a hole is created at
1048 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1049 * called under rcu_read_lock.
1050 */
1051 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1052 pgoff_t index, unsigned long max_scan)
1053 {
1054 unsigned long i;
1055
1056 for (i = 0; i < max_scan; i++) {
1057 struct page *page;
1058
1059 page = radix_tree_lookup(&mapping->page_tree, index);
1060 if (!page || radix_tree_exceptional_entry(page))
1061 break;
1062 index--;
1063 if (index == ULONG_MAX)
1064 break;
1065 }
1066
1067 return index;
1068 }
1069 EXPORT_SYMBOL(page_cache_prev_hole);
1070
1071 /**
1072 * find_get_entry - find and get a page cache entry
1073 * @mapping: the address_space to search
1074 * @offset: the page cache index
1075 *
1076 * Looks up the page cache slot at @mapping & @offset. If there is a
1077 * page cache page, it is returned with an increased refcount.
1078 *
1079 * If the slot holds a shadow entry of a previously evicted page, or a
1080 * swap entry from shmem/tmpfs, it is returned.
1081 *
1082 * Otherwise, %NULL is returned.
1083 */
1084 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1085 {
1086 void **pagep;
1087 struct page *head, *page;
1088
1089 rcu_read_lock();
1090 repeat:
1091 page = NULL;
1092 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1093 if (pagep) {
1094 page = radix_tree_deref_slot(pagep);
1095 if (unlikely(!page))
1096 goto out;
1097 if (radix_tree_exception(page)) {
1098 if (radix_tree_deref_retry(page))
1099 goto repeat;
1100 /*
1101 * A shadow entry of a recently evicted page,
1102 * or a swap entry from shmem/tmpfs. Return
1103 * it without attempting to raise page count.
1104 */
1105 goto out;
1106 }
1107
1108 head = compound_head(page);
1109 if (!page_cache_get_speculative(head))
1110 goto repeat;
1111
1112 /* The page was split under us? */
1113 if (compound_head(page) != head) {
1114 put_page(head);
1115 goto repeat;
1116 }
1117
1118 /*
1119 * Has the page moved?
1120 * This is part of the lockless pagecache protocol. See
1121 * include/linux/pagemap.h for details.
1122 */
1123 if (unlikely(page != *pagep)) {
1124 put_page(head);
1125 goto repeat;
1126 }
1127 }
1128 out:
1129 rcu_read_unlock();
1130
1131 return page;
1132 }
1133 EXPORT_SYMBOL(find_get_entry);
1134
1135 /**
1136 * find_lock_entry - locate, pin and lock a page cache entry
1137 * @mapping: the address_space to search
1138 * @offset: the page cache index
1139 *
1140 * Looks up the page cache slot at @mapping & @offset. If there is a
1141 * page cache page, it is returned locked and with an increased
1142 * refcount.
1143 *
1144 * If the slot holds a shadow entry of a previously evicted page, or a
1145 * swap entry from shmem/tmpfs, it is returned.
1146 *
1147 * Otherwise, %NULL is returned.
1148 *
1149 * find_lock_entry() may sleep.
1150 */
1151 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1152 {
1153 struct page *page;
1154
1155 repeat:
1156 page = find_get_entry(mapping, offset);
1157 if (page && !radix_tree_exception(page)) {
1158 lock_page(page);
1159 /* Has the page been truncated? */
1160 if (unlikely(page_mapping(page) != mapping)) {
1161 unlock_page(page);
1162 put_page(page);
1163 goto repeat;
1164 }
1165 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1166 }
1167 return page;
1168 }
1169 EXPORT_SYMBOL(find_lock_entry);
1170
1171 /**
1172 * pagecache_get_page - find and get a page reference
1173 * @mapping: the address_space to search
1174 * @offset: the page index
1175 * @fgp_flags: PCG flags
1176 * @gfp_mask: gfp mask to use for the page cache data page allocation
1177 *
1178 * Looks up the page cache slot at @mapping & @offset.
1179 *
1180 * PCG flags modify how the page is returned.
1181 *
1182 * FGP_ACCESSED: the page will be marked accessed
1183 * FGP_LOCK: Page is return locked
1184 * FGP_CREAT: If page is not present then a new page is allocated using
1185 * @gfp_mask and added to the page cache and the VM's LRU
1186 * list. The page is returned locked and with an increased
1187 * refcount. Otherwise, %NULL is returned.
1188 *
1189 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1190 * if the GFP flags specified for FGP_CREAT are atomic.
1191 *
1192 * If there is a page cache page, it is returned with an increased refcount.
1193 */
1194 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1195 int fgp_flags, gfp_t gfp_mask)
1196 {
1197 struct page *page;
1198
1199 repeat:
1200 page = find_get_entry(mapping, offset);
1201 if (radix_tree_exceptional_entry(page))
1202 page = NULL;
1203 if (!page)
1204 goto no_page;
1205
1206 if (fgp_flags & FGP_LOCK) {
1207 if (fgp_flags & FGP_NOWAIT) {
1208 if (!trylock_page(page)) {
1209 put_page(page);
1210 return NULL;
1211 }
1212 } else {
1213 lock_page(page);
1214 }
1215
1216 /* Has the page been truncated? */
1217 if (unlikely(page->mapping != mapping)) {
1218 unlock_page(page);
1219 put_page(page);
1220 goto repeat;
1221 }
1222 VM_BUG_ON_PAGE(page->index != offset, page);
1223 }
1224
1225 if (page && (fgp_flags & FGP_ACCESSED))
1226 mark_page_accessed(page);
1227
1228 no_page:
1229 if (!page && (fgp_flags & FGP_CREAT)) {
1230 int err;
1231 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1232 gfp_mask |= __GFP_WRITE;
1233 if (fgp_flags & FGP_NOFS)
1234 gfp_mask &= ~__GFP_FS;
1235
1236 page = __page_cache_alloc(gfp_mask);
1237 if (!page)
1238 return NULL;
1239
1240 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1241 fgp_flags |= FGP_LOCK;
1242
1243 /* Init accessed so avoid atomic mark_page_accessed later */
1244 if (fgp_flags & FGP_ACCESSED)
1245 __SetPageReferenced(page);
1246
1247 err = add_to_page_cache_lru(page, mapping, offset,
1248 gfp_mask & GFP_RECLAIM_MASK);
1249 if (unlikely(err)) {
1250 put_page(page);
1251 page = NULL;
1252 if (err == -EEXIST)
1253 goto repeat;
1254 }
1255 }
1256
1257 return page;
1258 }
1259 EXPORT_SYMBOL(pagecache_get_page);
1260
1261 /**
1262 * find_get_entries - gang pagecache lookup
1263 * @mapping: The address_space to search
1264 * @start: The starting page cache index
1265 * @nr_entries: The maximum number of entries
1266 * @entries: Where the resulting entries are placed
1267 * @indices: The cache indices corresponding to the entries in @entries
1268 *
1269 * find_get_entries() will search for and return a group of up to
1270 * @nr_entries entries in the mapping. The entries are placed at
1271 * @entries. find_get_entries() takes a reference against any actual
1272 * pages it returns.
1273 *
1274 * The search returns a group of mapping-contiguous page cache entries
1275 * with ascending indexes. There may be holes in the indices due to
1276 * not-present pages.
1277 *
1278 * Any shadow entries of evicted pages, or swap entries from
1279 * shmem/tmpfs, are included in the returned array.
1280 *
1281 * find_get_entries() returns the number of pages and shadow entries
1282 * which were found.
1283 */
1284 unsigned find_get_entries(struct address_space *mapping,
1285 pgoff_t start, unsigned int nr_entries,
1286 struct page **entries, pgoff_t *indices)
1287 {
1288 void **slot;
1289 unsigned int ret = 0;
1290 struct radix_tree_iter iter;
1291
1292 if (!nr_entries)
1293 return 0;
1294
1295 rcu_read_lock();
1296 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1297 struct page *head, *page;
1298 repeat:
1299 page = radix_tree_deref_slot(slot);
1300 if (unlikely(!page))
1301 continue;
1302 if (radix_tree_exception(page)) {
1303 if (radix_tree_deref_retry(page)) {
1304 slot = radix_tree_iter_retry(&iter);
1305 continue;
1306 }
1307 /*
1308 * A shadow entry of a recently evicted page, a swap
1309 * entry from shmem/tmpfs or a DAX entry. Return it
1310 * without attempting to raise page count.
1311 */
1312 goto export;
1313 }
1314
1315 head = compound_head(page);
1316 if (!page_cache_get_speculative(head))
1317 goto repeat;
1318
1319 /* The page was split under us? */
1320 if (compound_head(page) != head) {
1321 put_page(head);
1322 goto repeat;
1323 }
1324
1325 /* Has the page moved? */
1326 if (unlikely(page != *slot)) {
1327 put_page(head);
1328 goto repeat;
1329 }
1330 export:
1331 indices[ret] = iter.index;
1332 entries[ret] = page;
1333 if (++ret == nr_entries)
1334 break;
1335 }
1336 rcu_read_unlock();
1337 return ret;
1338 }
1339
1340 /**
1341 * find_get_pages - gang pagecache lookup
1342 * @mapping: The address_space to search
1343 * @start: The starting page index
1344 * @nr_pages: The maximum number of pages
1345 * @pages: Where the resulting pages are placed
1346 *
1347 * find_get_pages() will search for and return a group of up to
1348 * @nr_pages pages in the mapping. The pages are placed at @pages.
1349 * find_get_pages() takes a reference against the returned pages.
1350 *
1351 * The search returns a group of mapping-contiguous pages with ascending
1352 * indexes. There may be holes in the indices due to not-present pages.
1353 *
1354 * find_get_pages() returns the number of pages which were found.
1355 */
1356 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1357 unsigned int nr_pages, struct page **pages)
1358 {
1359 struct radix_tree_iter iter;
1360 void **slot;
1361 unsigned ret = 0;
1362
1363 if (unlikely(!nr_pages))
1364 return 0;
1365
1366 rcu_read_lock();
1367 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1368 struct page *head, *page;
1369 repeat:
1370 page = radix_tree_deref_slot(slot);
1371 if (unlikely(!page))
1372 continue;
1373
1374 if (radix_tree_exception(page)) {
1375 if (radix_tree_deref_retry(page)) {
1376 slot = radix_tree_iter_retry(&iter);
1377 continue;
1378 }
1379 /*
1380 * A shadow entry of a recently evicted page,
1381 * or a swap entry from shmem/tmpfs. Skip
1382 * over it.
1383 */
1384 continue;
1385 }
1386
1387 head = compound_head(page);
1388 if (!page_cache_get_speculative(head))
1389 goto repeat;
1390
1391 /* The page was split under us? */
1392 if (compound_head(page) != head) {
1393 put_page(head);
1394 goto repeat;
1395 }
1396
1397 /* Has the page moved? */
1398 if (unlikely(page != *slot)) {
1399 put_page(head);
1400 goto repeat;
1401 }
1402
1403 pages[ret] = page;
1404 if (++ret == nr_pages)
1405 break;
1406 }
1407
1408 rcu_read_unlock();
1409 return ret;
1410 }
1411
1412 /**
1413 * find_get_pages_contig - gang contiguous pagecache lookup
1414 * @mapping: The address_space to search
1415 * @index: The starting page index
1416 * @nr_pages: The maximum number of pages
1417 * @pages: Where the resulting pages are placed
1418 *
1419 * find_get_pages_contig() works exactly like find_get_pages(), except
1420 * that the returned number of pages are guaranteed to be contiguous.
1421 *
1422 * find_get_pages_contig() returns the number of pages which were found.
1423 */
1424 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1425 unsigned int nr_pages, struct page **pages)
1426 {
1427 struct radix_tree_iter iter;
1428 void **slot;
1429 unsigned int ret = 0;
1430
1431 if (unlikely(!nr_pages))
1432 return 0;
1433
1434 rcu_read_lock();
1435 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1436 struct page *head, *page;
1437 repeat:
1438 page = radix_tree_deref_slot(slot);
1439 /* The hole, there no reason to continue */
1440 if (unlikely(!page))
1441 break;
1442
1443 if (radix_tree_exception(page)) {
1444 if (radix_tree_deref_retry(page)) {
1445 slot = radix_tree_iter_retry(&iter);
1446 continue;
1447 }
1448 /*
1449 * A shadow entry of a recently evicted page,
1450 * or a swap entry from shmem/tmpfs. Stop
1451 * looking for contiguous pages.
1452 */
1453 break;
1454 }
1455
1456 head = compound_head(page);
1457 if (!page_cache_get_speculative(head))
1458 goto repeat;
1459
1460 /* The page was split under us? */
1461 if (compound_head(page) != head) {
1462 put_page(head);
1463 goto repeat;
1464 }
1465
1466 /* Has the page moved? */
1467 if (unlikely(page != *slot)) {
1468 put_page(head);
1469 goto repeat;
1470 }
1471
1472 /*
1473 * must check mapping and index after taking the ref.
1474 * otherwise we can get both false positives and false
1475 * negatives, which is just confusing to the caller.
1476 */
1477 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1478 put_page(page);
1479 break;
1480 }
1481
1482 pages[ret] = page;
1483 if (++ret == nr_pages)
1484 break;
1485 }
1486 rcu_read_unlock();
1487 return ret;
1488 }
1489 EXPORT_SYMBOL(find_get_pages_contig);
1490
1491 /**
1492 * find_get_pages_tag - find and return pages that match @tag
1493 * @mapping: the address_space to search
1494 * @index: the starting page index
1495 * @tag: the tag index
1496 * @nr_pages: the maximum number of pages
1497 * @pages: where the resulting pages are placed
1498 *
1499 * Like find_get_pages, except we only return pages which are tagged with
1500 * @tag. We update @index to index the next page for the traversal.
1501 */
1502 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1503 int tag, unsigned int nr_pages, struct page **pages)
1504 {
1505 struct radix_tree_iter iter;
1506 void **slot;
1507 unsigned ret = 0;
1508
1509 if (unlikely(!nr_pages))
1510 return 0;
1511
1512 rcu_read_lock();
1513 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1514 &iter, *index, tag) {
1515 struct page *head, *page;
1516 repeat:
1517 page = radix_tree_deref_slot(slot);
1518 if (unlikely(!page))
1519 continue;
1520
1521 if (radix_tree_exception(page)) {
1522 if (radix_tree_deref_retry(page)) {
1523 slot = radix_tree_iter_retry(&iter);
1524 continue;
1525 }
1526 /*
1527 * A shadow entry of a recently evicted page.
1528 *
1529 * Those entries should never be tagged, but
1530 * this tree walk is lockless and the tags are
1531 * looked up in bulk, one radix tree node at a
1532 * time, so there is a sizable window for page
1533 * reclaim to evict a page we saw tagged.
1534 *
1535 * Skip over it.
1536 */
1537 continue;
1538 }
1539
1540 head = compound_head(page);
1541 if (!page_cache_get_speculative(head))
1542 goto repeat;
1543
1544 /* The page was split under us? */
1545 if (compound_head(page) != head) {
1546 put_page(head);
1547 goto repeat;
1548 }
1549
1550 /* Has the page moved? */
1551 if (unlikely(page != *slot)) {
1552 put_page(head);
1553 goto repeat;
1554 }
1555
1556 pages[ret] = page;
1557 if (++ret == nr_pages)
1558 break;
1559 }
1560
1561 rcu_read_unlock();
1562
1563 if (ret)
1564 *index = pages[ret - 1]->index + 1;
1565
1566 return ret;
1567 }
1568 EXPORT_SYMBOL(find_get_pages_tag);
1569
1570 /**
1571 * find_get_entries_tag - find and return entries that match @tag
1572 * @mapping: the address_space to search
1573 * @start: the starting page cache index
1574 * @tag: the tag index
1575 * @nr_entries: the maximum number of entries
1576 * @entries: where the resulting entries are placed
1577 * @indices: the cache indices corresponding to the entries in @entries
1578 *
1579 * Like find_get_entries, except we only return entries which are tagged with
1580 * @tag.
1581 */
1582 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1583 int tag, unsigned int nr_entries,
1584 struct page **entries, pgoff_t *indices)
1585 {
1586 void **slot;
1587 unsigned int ret = 0;
1588 struct radix_tree_iter iter;
1589
1590 if (!nr_entries)
1591 return 0;
1592
1593 rcu_read_lock();
1594 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1595 &iter, start, tag) {
1596 struct page *head, *page;
1597 repeat:
1598 page = radix_tree_deref_slot(slot);
1599 if (unlikely(!page))
1600 continue;
1601 if (radix_tree_exception(page)) {
1602 if (radix_tree_deref_retry(page)) {
1603 slot = radix_tree_iter_retry(&iter);
1604 continue;
1605 }
1606
1607 /*
1608 * A shadow entry of a recently evicted page, a swap
1609 * entry from shmem/tmpfs or a DAX entry. Return it
1610 * without attempting to raise page count.
1611 */
1612 goto export;
1613 }
1614
1615 head = compound_head(page);
1616 if (!page_cache_get_speculative(head))
1617 goto repeat;
1618
1619 /* The page was split under us? */
1620 if (compound_head(page) != head) {
1621 put_page(head);
1622 goto repeat;
1623 }
1624
1625 /* Has the page moved? */
1626 if (unlikely(page != *slot)) {
1627 put_page(head);
1628 goto repeat;
1629 }
1630 export:
1631 indices[ret] = iter.index;
1632 entries[ret] = page;
1633 if (++ret == nr_entries)
1634 break;
1635 }
1636 rcu_read_unlock();
1637 return ret;
1638 }
1639 EXPORT_SYMBOL(find_get_entries_tag);
1640
1641 /*
1642 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1643 * a _large_ part of the i/o request. Imagine the worst scenario:
1644 *
1645 * ---R__________________________________________B__________
1646 * ^ reading here ^ bad block(assume 4k)
1647 *
1648 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1649 * => failing the whole request => read(R) => read(R+1) =>
1650 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1651 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1652 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1653 *
1654 * It is going insane. Fix it by quickly scaling down the readahead size.
1655 */
1656 static void shrink_readahead_size_eio(struct file *filp,
1657 struct file_ra_state *ra)
1658 {
1659 ra->ra_pages /= 4;
1660 }
1661
1662 /**
1663 * do_generic_file_read - generic file read routine
1664 * @filp: the file to read
1665 * @ppos: current file position
1666 * @iter: data destination
1667 * @written: already copied
1668 *
1669 * This is a generic file read routine, and uses the
1670 * mapping->a_ops->readpage() function for the actual low-level stuff.
1671 *
1672 * This is really ugly. But the goto's actually try to clarify some
1673 * of the logic when it comes to error handling etc.
1674 */
1675 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1676 struct iov_iter *iter, ssize_t written)
1677 {
1678 struct address_space *mapping = filp->f_mapping;
1679 struct inode *inode = mapping->host;
1680 struct file_ra_state *ra = &filp->f_ra;
1681 pgoff_t index;
1682 pgoff_t last_index;
1683 pgoff_t prev_index;
1684 unsigned long offset; /* offset into pagecache page */
1685 unsigned int prev_offset;
1686 int error = 0;
1687
1688 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1689 return -EINVAL;
1690 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1691
1692 index = *ppos >> PAGE_SHIFT;
1693 prev_index = ra->prev_pos >> PAGE_SHIFT;
1694 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1695 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1696 offset = *ppos & ~PAGE_MASK;
1697
1698 for (;;) {
1699 struct page *page;
1700 pgoff_t end_index;
1701 loff_t isize;
1702 unsigned long nr, ret;
1703
1704 cond_resched();
1705 find_page:
1706 page = find_get_page(mapping, index);
1707 if (!page) {
1708 page_cache_sync_readahead(mapping,
1709 ra, filp,
1710 index, last_index - index);
1711 page = find_get_page(mapping, index);
1712 if (unlikely(page == NULL))
1713 goto no_cached_page;
1714 }
1715 if (PageReadahead(page)) {
1716 page_cache_async_readahead(mapping,
1717 ra, filp, page,
1718 index, last_index - index);
1719 }
1720 if (!PageUptodate(page)) {
1721 /*
1722 * See comment in do_read_cache_page on why
1723 * wait_on_page_locked is used to avoid unnecessarily
1724 * serialisations and why it's safe.
1725 */
1726 error = wait_on_page_locked_killable(page);
1727 if (unlikely(error))
1728 goto readpage_error;
1729 if (PageUptodate(page))
1730 goto page_ok;
1731
1732 if (inode->i_blkbits == PAGE_SHIFT ||
1733 !mapping->a_ops->is_partially_uptodate)
1734 goto page_not_up_to_date;
1735 /* pipes can't handle partially uptodate pages */
1736 if (unlikely(iter->type & ITER_PIPE))
1737 goto page_not_up_to_date;
1738 if (!trylock_page(page))
1739 goto page_not_up_to_date;
1740 /* Did it get truncated before we got the lock? */
1741 if (!page->mapping)
1742 goto page_not_up_to_date_locked;
1743 if (!mapping->a_ops->is_partially_uptodate(page,
1744 offset, iter->count))
1745 goto page_not_up_to_date_locked;
1746 unlock_page(page);
1747 }
1748 page_ok:
1749 /*
1750 * i_size must be checked after we know the page is Uptodate.
1751 *
1752 * Checking i_size after the check allows us to calculate
1753 * the correct value for "nr", which means the zero-filled
1754 * part of the page is not copied back to userspace (unless
1755 * another truncate extends the file - this is desired though).
1756 */
1757
1758 isize = i_size_read(inode);
1759 end_index = (isize - 1) >> PAGE_SHIFT;
1760 if (unlikely(!isize || index > end_index)) {
1761 put_page(page);
1762 goto out;
1763 }
1764
1765 /* nr is the maximum number of bytes to copy from this page */
1766 nr = PAGE_SIZE;
1767 if (index == end_index) {
1768 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1769 if (nr <= offset) {
1770 put_page(page);
1771 goto out;
1772 }
1773 }
1774 nr = nr - offset;
1775
1776 /* If users can be writing to this page using arbitrary
1777 * virtual addresses, take care about potential aliasing
1778 * before reading the page on the kernel side.
1779 */
1780 if (mapping_writably_mapped(mapping))
1781 flush_dcache_page(page);
1782
1783 /*
1784 * When a sequential read accesses a page several times,
1785 * only mark it as accessed the first time.
1786 */
1787 if (prev_index != index || offset != prev_offset)
1788 mark_page_accessed(page);
1789 prev_index = index;
1790
1791 /*
1792 * Ok, we have the page, and it's up-to-date, so
1793 * now we can copy it to user space...
1794 */
1795
1796 ret = copy_page_to_iter(page, offset, nr, iter);
1797 offset += ret;
1798 index += offset >> PAGE_SHIFT;
1799 offset &= ~PAGE_MASK;
1800 prev_offset = offset;
1801
1802 put_page(page);
1803 written += ret;
1804 if (!iov_iter_count(iter))
1805 goto out;
1806 if (ret < nr) {
1807 error = -EFAULT;
1808 goto out;
1809 }
1810 continue;
1811
1812 page_not_up_to_date:
1813 /* Get exclusive access to the page ... */
1814 error = lock_page_killable(page);
1815 if (unlikely(error))
1816 goto readpage_error;
1817
1818 page_not_up_to_date_locked:
1819 /* Did it get truncated before we got the lock? */
1820 if (!page->mapping) {
1821 unlock_page(page);
1822 put_page(page);
1823 continue;
1824 }
1825
1826 /* Did somebody else fill it already? */
1827 if (PageUptodate(page)) {
1828 unlock_page(page);
1829 goto page_ok;
1830 }
1831
1832 readpage:
1833 /*
1834 * A previous I/O error may have been due to temporary
1835 * failures, eg. multipath errors.
1836 * PG_error will be set again if readpage fails.
1837 */
1838 ClearPageError(page);
1839 /* Start the actual read. The read will unlock the page. */
1840 error = mapping->a_ops->readpage(filp, page);
1841
1842 if (unlikely(error)) {
1843 if (error == AOP_TRUNCATED_PAGE) {
1844 put_page(page);
1845 error = 0;
1846 goto find_page;
1847 }
1848 goto readpage_error;
1849 }
1850
1851 if (!PageUptodate(page)) {
1852 error = lock_page_killable(page);
1853 if (unlikely(error))
1854 goto readpage_error;
1855 if (!PageUptodate(page)) {
1856 if (page->mapping == NULL) {
1857 /*
1858 * invalidate_mapping_pages got it
1859 */
1860 unlock_page(page);
1861 put_page(page);
1862 goto find_page;
1863 }
1864 unlock_page(page);
1865 shrink_readahead_size_eio(filp, ra);
1866 error = -EIO;
1867 goto readpage_error;
1868 }
1869 unlock_page(page);
1870 }
1871
1872 goto page_ok;
1873
1874 readpage_error:
1875 /* UHHUH! A synchronous read error occurred. Report it */
1876 put_page(page);
1877 goto out;
1878
1879 no_cached_page:
1880 /*
1881 * Ok, it wasn't cached, so we need to create a new
1882 * page..
1883 */
1884 page = page_cache_alloc_cold(mapping);
1885 if (!page) {
1886 error = -ENOMEM;
1887 goto out;
1888 }
1889 error = add_to_page_cache_lru(page, mapping, index,
1890 mapping_gfp_constraint(mapping, GFP_KERNEL));
1891 if (error) {
1892 put_page(page);
1893 if (error == -EEXIST) {
1894 error = 0;
1895 goto find_page;
1896 }
1897 goto out;
1898 }
1899 goto readpage;
1900 }
1901
1902 out:
1903 ra->prev_pos = prev_index;
1904 ra->prev_pos <<= PAGE_SHIFT;
1905 ra->prev_pos |= prev_offset;
1906
1907 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1908 file_accessed(filp);
1909 return written ? written : error;
1910 }
1911
1912 /**
1913 * generic_file_read_iter - generic filesystem read routine
1914 * @iocb: kernel I/O control block
1915 * @iter: destination for the data read
1916 *
1917 * This is the "read_iter()" routine for all filesystems
1918 * that can use the page cache directly.
1919 */
1920 ssize_t
1921 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1922 {
1923 struct file *file = iocb->ki_filp;
1924 ssize_t retval = 0;
1925 size_t count = iov_iter_count(iter);
1926
1927 if (!count)
1928 goto out; /* skip atime */
1929
1930 if (iocb->ki_flags & IOCB_DIRECT) {
1931 struct address_space *mapping = file->f_mapping;
1932 struct inode *inode = mapping->host;
1933 struct iov_iter data = *iter;
1934 loff_t size;
1935
1936 size = i_size_read(inode);
1937 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1938 iocb->ki_pos + count - 1);
1939 if (retval < 0)
1940 goto out;
1941
1942 file_accessed(file);
1943
1944 retval = mapping->a_ops->direct_IO(iocb, &data);
1945 if (retval >= 0) {
1946 iocb->ki_pos += retval;
1947 iov_iter_advance(iter, retval);
1948 }
1949
1950 /*
1951 * Btrfs can have a short DIO read if we encounter
1952 * compressed extents, so if there was an error, or if
1953 * we've already read everything we wanted to, or if
1954 * there was a short read because we hit EOF, go ahead
1955 * and return. Otherwise fallthrough to buffered io for
1956 * the rest of the read. Buffered reads will not work for
1957 * DAX files, so don't bother trying.
1958 */
1959 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1960 IS_DAX(inode))
1961 goto out;
1962 }
1963
1964 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1965 out:
1966 return retval;
1967 }
1968 EXPORT_SYMBOL(generic_file_read_iter);
1969
1970 #ifdef CONFIG_MMU
1971 /**
1972 * page_cache_read - adds requested page to the page cache if not already there
1973 * @file: file to read
1974 * @offset: page index
1975 * @gfp_mask: memory allocation flags
1976 *
1977 * This adds the requested page to the page cache if it isn't already there,
1978 * and schedules an I/O to read in its contents from disk.
1979 */
1980 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1981 {
1982 struct address_space *mapping = file->f_mapping;
1983 struct page *page;
1984 int ret;
1985
1986 do {
1987 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1988 if (!page)
1989 return -ENOMEM;
1990
1991 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1992 if (ret == 0)
1993 ret = mapping->a_ops->readpage(file, page);
1994 else if (ret == -EEXIST)
1995 ret = 0; /* losing race to add is OK */
1996
1997 put_page(page);
1998
1999 } while (ret == AOP_TRUNCATED_PAGE);
2000
2001 return ret;
2002 }
2003
2004 #define MMAP_LOTSAMISS (100)
2005
2006 /*
2007 * Synchronous readahead happens when we don't even find
2008 * a page in the page cache at all.
2009 */
2010 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2011 struct file_ra_state *ra,
2012 struct file *file,
2013 pgoff_t offset)
2014 {
2015 struct address_space *mapping = file->f_mapping;
2016
2017 /* If we don't want any read-ahead, don't bother */
2018 if (vma->vm_flags & VM_RAND_READ)
2019 return;
2020 if (!ra->ra_pages)
2021 return;
2022
2023 if (vma->vm_flags & VM_SEQ_READ) {
2024 page_cache_sync_readahead(mapping, ra, file, offset,
2025 ra->ra_pages);
2026 return;
2027 }
2028
2029 /* Avoid banging the cache line if not needed */
2030 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2031 ra->mmap_miss++;
2032
2033 /*
2034 * Do we miss much more than hit in this file? If so,
2035 * stop bothering with read-ahead. It will only hurt.
2036 */
2037 if (ra->mmap_miss > MMAP_LOTSAMISS)
2038 return;
2039
2040 /*
2041 * mmap read-around
2042 */
2043 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2044 ra->size = ra->ra_pages;
2045 ra->async_size = ra->ra_pages / 4;
2046 ra_submit(ra, mapping, file);
2047 }
2048
2049 /*
2050 * Asynchronous readahead happens when we find the page and PG_readahead,
2051 * so we want to possibly extend the readahead further..
2052 */
2053 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2054 struct file_ra_state *ra,
2055 struct file *file,
2056 struct page *page,
2057 pgoff_t offset)
2058 {
2059 struct address_space *mapping = file->f_mapping;
2060
2061 /* If we don't want any read-ahead, don't bother */
2062 if (vma->vm_flags & VM_RAND_READ)
2063 return;
2064 if (ra->mmap_miss > 0)
2065 ra->mmap_miss--;
2066 if (PageReadahead(page))
2067 page_cache_async_readahead(mapping, ra, file,
2068 page, offset, ra->ra_pages);
2069 }
2070
2071 /**
2072 * filemap_fault - read in file data for page fault handling
2073 * @vma: vma in which the fault was taken
2074 * @vmf: struct vm_fault containing details of the fault
2075 *
2076 * filemap_fault() is invoked via the vma operations vector for a
2077 * mapped memory region to read in file data during a page fault.
2078 *
2079 * The goto's are kind of ugly, but this streamlines the normal case of having
2080 * it in the page cache, and handles the special cases reasonably without
2081 * having a lot of duplicated code.
2082 *
2083 * vma->vm_mm->mmap_sem must be held on entry.
2084 *
2085 * If our return value has VM_FAULT_RETRY set, it's because
2086 * lock_page_or_retry() returned 0.
2087 * The mmap_sem has usually been released in this case.
2088 * See __lock_page_or_retry() for the exception.
2089 *
2090 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2091 * has not been released.
2092 *
2093 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2094 */
2095 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2096 {
2097 int error;
2098 struct file *file = vma->vm_file;
2099 struct address_space *mapping = file->f_mapping;
2100 struct file_ra_state *ra = &file->f_ra;
2101 struct inode *inode = mapping->host;
2102 pgoff_t offset = vmf->pgoff;
2103 struct page *page;
2104 loff_t size;
2105 int ret = 0;
2106
2107 size = round_up(i_size_read(inode), PAGE_SIZE);
2108 if (offset >= size >> PAGE_SHIFT)
2109 return VM_FAULT_SIGBUS;
2110
2111 /*
2112 * Do we have something in the page cache already?
2113 */
2114 page = find_get_page(mapping, offset);
2115 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2116 /*
2117 * We found the page, so try async readahead before
2118 * waiting for the lock.
2119 */
2120 do_async_mmap_readahead(vma, ra, file, page, offset);
2121 } else if (!page) {
2122 /* No page in the page cache at all */
2123 do_sync_mmap_readahead(vma, ra, file, offset);
2124 count_vm_event(PGMAJFAULT);
2125 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2126 ret = VM_FAULT_MAJOR;
2127 retry_find:
2128 page = find_get_page(mapping, offset);
2129 if (!page)
2130 goto no_cached_page;
2131 }
2132
2133 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2134 put_page(page);
2135 return ret | VM_FAULT_RETRY;
2136 }
2137
2138 /* Did it get truncated? */
2139 if (unlikely(page->mapping != mapping)) {
2140 unlock_page(page);
2141 put_page(page);
2142 goto retry_find;
2143 }
2144 VM_BUG_ON_PAGE(page->index != offset, page);
2145
2146 /*
2147 * We have a locked page in the page cache, now we need to check
2148 * that it's up-to-date. If not, it is going to be due to an error.
2149 */
2150 if (unlikely(!PageUptodate(page)))
2151 goto page_not_uptodate;
2152
2153 /*
2154 * Found the page and have a reference on it.
2155 * We must recheck i_size under page lock.
2156 */
2157 size = round_up(i_size_read(inode), PAGE_SIZE);
2158 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2159 unlock_page(page);
2160 put_page(page);
2161 return VM_FAULT_SIGBUS;
2162 }
2163
2164 vmf->page = page;
2165 return ret | VM_FAULT_LOCKED;
2166
2167 no_cached_page:
2168 /*
2169 * We're only likely to ever get here if MADV_RANDOM is in
2170 * effect.
2171 */
2172 error = page_cache_read(file, offset, vmf->gfp_mask);
2173
2174 /*
2175 * The page we want has now been added to the page cache.
2176 * In the unlikely event that someone removed it in the
2177 * meantime, we'll just come back here and read it again.
2178 */
2179 if (error >= 0)
2180 goto retry_find;
2181
2182 /*
2183 * An error return from page_cache_read can result if the
2184 * system is low on memory, or a problem occurs while trying
2185 * to schedule I/O.
2186 */
2187 if (error == -ENOMEM)
2188 return VM_FAULT_OOM;
2189 return VM_FAULT_SIGBUS;
2190
2191 page_not_uptodate:
2192 /*
2193 * Umm, take care of errors if the page isn't up-to-date.
2194 * Try to re-read it _once_. We do this synchronously,
2195 * because there really aren't any performance issues here
2196 * and we need to check for errors.
2197 */
2198 ClearPageError(page);
2199 error = mapping->a_ops->readpage(file, page);
2200 if (!error) {
2201 wait_on_page_locked(page);
2202 if (!PageUptodate(page))
2203 error = -EIO;
2204 }
2205 put_page(page);
2206
2207 if (!error || error == AOP_TRUNCATED_PAGE)
2208 goto retry_find;
2209
2210 /* Things didn't work out. Return zero to tell the mm layer so. */
2211 shrink_readahead_size_eio(file, ra);
2212 return VM_FAULT_SIGBUS;
2213 }
2214 EXPORT_SYMBOL(filemap_fault);
2215
2216 void filemap_map_pages(struct fault_env *fe,
2217 pgoff_t start_pgoff, pgoff_t end_pgoff)
2218 {
2219 struct radix_tree_iter iter;
2220 void **slot;
2221 struct file *file = fe->vma->vm_file;
2222 struct address_space *mapping = file->f_mapping;
2223 pgoff_t last_pgoff = start_pgoff;
2224 loff_t size;
2225 struct page *head, *page;
2226
2227 rcu_read_lock();
2228 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2229 start_pgoff) {
2230 if (iter.index > end_pgoff)
2231 break;
2232 repeat:
2233 page = radix_tree_deref_slot(slot);
2234 if (unlikely(!page))
2235 goto next;
2236 if (radix_tree_exception(page)) {
2237 if (radix_tree_deref_retry(page)) {
2238 slot = radix_tree_iter_retry(&iter);
2239 continue;
2240 }
2241 goto next;
2242 }
2243
2244 head = compound_head(page);
2245 if (!page_cache_get_speculative(head))
2246 goto repeat;
2247
2248 /* The page was split under us? */
2249 if (compound_head(page) != head) {
2250 put_page(head);
2251 goto repeat;
2252 }
2253
2254 /* Has the page moved? */
2255 if (unlikely(page != *slot)) {
2256 put_page(head);
2257 goto repeat;
2258 }
2259
2260 if (!PageUptodate(page) ||
2261 PageReadahead(page) ||
2262 PageHWPoison(page))
2263 goto skip;
2264 if (!trylock_page(page))
2265 goto skip;
2266
2267 if (page->mapping != mapping || !PageUptodate(page))
2268 goto unlock;
2269
2270 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2271 if (page->index >= size >> PAGE_SHIFT)
2272 goto unlock;
2273
2274 if (file->f_ra.mmap_miss > 0)
2275 file->f_ra.mmap_miss--;
2276
2277 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2278 if (fe->pte)
2279 fe->pte += iter.index - last_pgoff;
2280 last_pgoff = iter.index;
2281 if (alloc_set_pte(fe, NULL, page))
2282 goto unlock;
2283 unlock_page(page);
2284 goto next;
2285 unlock:
2286 unlock_page(page);
2287 skip:
2288 put_page(page);
2289 next:
2290 /* Huge page is mapped? No need to proceed. */
2291 if (pmd_trans_huge(*fe->pmd))
2292 break;
2293 if (iter.index == end_pgoff)
2294 break;
2295 }
2296 rcu_read_unlock();
2297 }
2298 EXPORT_SYMBOL(filemap_map_pages);
2299
2300 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2301 {
2302 struct page *page = vmf->page;
2303 struct inode *inode = file_inode(vma->vm_file);
2304 int ret = VM_FAULT_LOCKED;
2305
2306 sb_start_pagefault(inode->i_sb);
2307 file_update_time(vma->vm_file);
2308 lock_page(page);
2309 if (page->mapping != inode->i_mapping) {
2310 unlock_page(page);
2311 ret = VM_FAULT_NOPAGE;
2312 goto out;
2313 }
2314 /*
2315 * We mark the page dirty already here so that when freeze is in
2316 * progress, we are guaranteed that writeback during freezing will
2317 * see the dirty page and writeprotect it again.
2318 */
2319 set_page_dirty(page);
2320 wait_for_stable_page(page);
2321 out:
2322 sb_end_pagefault(inode->i_sb);
2323 return ret;
2324 }
2325 EXPORT_SYMBOL(filemap_page_mkwrite);
2326
2327 const struct vm_operations_struct generic_file_vm_ops = {
2328 .fault = filemap_fault,
2329 .map_pages = filemap_map_pages,
2330 .page_mkwrite = filemap_page_mkwrite,
2331 };
2332
2333 /* This is used for a general mmap of a disk file */
2334
2335 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2336 {
2337 struct address_space *mapping = file->f_mapping;
2338
2339 if (!mapping->a_ops->readpage)
2340 return -ENOEXEC;
2341 file_accessed(file);
2342 vma->vm_ops = &generic_file_vm_ops;
2343 return 0;
2344 }
2345
2346 /*
2347 * This is for filesystems which do not implement ->writepage.
2348 */
2349 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2350 {
2351 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2352 return -EINVAL;
2353 return generic_file_mmap(file, vma);
2354 }
2355 #else
2356 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2357 {
2358 return -ENOSYS;
2359 }
2360 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2361 {
2362 return -ENOSYS;
2363 }
2364 #endif /* CONFIG_MMU */
2365
2366 EXPORT_SYMBOL(generic_file_mmap);
2367 EXPORT_SYMBOL(generic_file_readonly_mmap);
2368
2369 static struct page *wait_on_page_read(struct page *page)
2370 {
2371 if (!IS_ERR(page)) {
2372 wait_on_page_locked(page);
2373 if (!PageUptodate(page)) {
2374 put_page(page);
2375 page = ERR_PTR(-EIO);
2376 }
2377 }
2378 return page;
2379 }
2380
2381 static struct page *do_read_cache_page(struct address_space *mapping,
2382 pgoff_t index,
2383 int (*filler)(void *, struct page *),
2384 void *data,
2385 gfp_t gfp)
2386 {
2387 struct page *page;
2388 int err;
2389 repeat:
2390 page = find_get_page(mapping, index);
2391 if (!page) {
2392 page = __page_cache_alloc(gfp | __GFP_COLD);
2393 if (!page)
2394 return ERR_PTR(-ENOMEM);
2395 err = add_to_page_cache_lru(page, mapping, index, gfp);
2396 if (unlikely(err)) {
2397 put_page(page);
2398 if (err == -EEXIST)
2399 goto repeat;
2400 /* Presumably ENOMEM for radix tree node */
2401 return ERR_PTR(err);
2402 }
2403
2404 filler:
2405 err = filler(data, page);
2406 if (err < 0) {
2407 put_page(page);
2408 return ERR_PTR(err);
2409 }
2410
2411 page = wait_on_page_read(page);
2412 if (IS_ERR(page))
2413 return page;
2414 goto out;
2415 }
2416 if (PageUptodate(page))
2417 goto out;
2418
2419 /*
2420 * Page is not up to date and may be locked due one of the following
2421 * case a: Page is being filled and the page lock is held
2422 * case b: Read/write error clearing the page uptodate status
2423 * case c: Truncation in progress (page locked)
2424 * case d: Reclaim in progress
2425 *
2426 * Case a, the page will be up to date when the page is unlocked.
2427 * There is no need to serialise on the page lock here as the page
2428 * is pinned so the lock gives no additional protection. Even if the
2429 * the page is truncated, the data is still valid if PageUptodate as
2430 * it's a race vs truncate race.
2431 * Case b, the page will not be up to date
2432 * Case c, the page may be truncated but in itself, the data may still
2433 * be valid after IO completes as it's a read vs truncate race. The
2434 * operation must restart if the page is not uptodate on unlock but
2435 * otherwise serialising on page lock to stabilise the mapping gives
2436 * no additional guarantees to the caller as the page lock is
2437 * released before return.
2438 * Case d, similar to truncation. If reclaim holds the page lock, it
2439 * will be a race with remove_mapping that determines if the mapping
2440 * is valid on unlock but otherwise the data is valid and there is
2441 * no need to serialise with page lock.
2442 *
2443 * As the page lock gives no additional guarantee, we optimistically
2444 * wait on the page to be unlocked and check if it's up to date and
2445 * use the page if it is. Otherwise, the page lock is required to
2446 * distinguish between the different cases. The motivation is that we
2447 * avoid spurious serialisations and wakeups when multiple processes
2448 * wait on the same page for IO to complete.
2449 */
2450 wait_on_page_locked(page);
2451 if (PageUptodate(page))
2452 goto out;
2453
2454 /* Distinguish between all the cases under the safety of the lock */
2455 lock_page(page);
2456
2457 /* Case c or d, restart the operation */
2458 if (!page->mapping) {
2459 unlock_page(page);
2460 put_page(page);
2461 goto repeat;
2462 }
2463
2464 /* Someone else locked and filled the page in a very small window */
2465 if (PageUptodate(page)) {
2466 unlock_page(page);
2467 goto out;
2468 }
2469 goto filler;
2470
2471 out:
2472 mark_page_accessed(page);
2473 return page;
2474 }
2475
2476 /**
2477 * read_cache_page - read into page cache, fill it if needed
2478 * @mapping: the page's address_space
2479 * @index: the page index
2480 * @filler: function to perform the read
2481 * @data: first arg to filler(data, page) function, often left as NULL
2482 *
2483 * Read into the page cache. If a page already exists, and PageUptodate() is
2484 * not set, try to fill the page and wait for it to become unlocked.
2485 *
2486 * If the page does not get brought uptodate, return -EIO.
2487 */
2488 struct page *read_cache_page(struct address_space *mapping,
2489 pgoff_t index,
2490 int (*filler)(void *, struct page *),
2491 void *data)
2492 {
2493 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2494 }
2495 EXPORT_SYMBOL(read_cache_page);
2496
2497 /**
2498 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2499 * @mapping: the page's address_space
2500 * @index: the page index
2501 * @gfp: the page allocator flags to use if allocating
2502 *
2503 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2504 * any new page allocations done using the specified allocation flags.
2505 *
2506 * If the page does not get brought uptodate, return -EIO.
2507 */
2508 struct page *read_cache_page_gfp(struct address_space *mapping,
2509 pgoff_t index,
2510 gfp_t gfp)
2511 {
2512 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2513
2514 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2515 }
2516 EXPORT_SYMBOL(read_cache_page_gfp);
2517
2518 /*
2519 * Performs necessary checks before doing a write
2520 *
2521 * Can adjust writing position or amount of bytes to write.
2522 * Returns appropriate error code that caller should return or
2523 * zero in case that write should be allowed.
2524 */
2525 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2526 {
2527 struct file *file = iocb->ki_filp;
2528 struct inode *inode = file->f_mapping->host;
2529 unsigned long limit = rlimit(RLIMIT_FSIZE);
2530 loff_t pos;
2531
2532 if (!iov_iter_count(from))
2533 return 0;
2534
2535 /* FIXME: this is for backwards compatibility with 2.4 */
2536 if (iocb->ki_flags & IOCB_APPEND)
2537 iocb->ki_pos = i_size_read(inode);
2538
2539 pos = iocb->ki_pos;
2540
2541 if (limit != RLIM_INFINITY) {
2542 if (iocb->ki_pos >= limit) {
2543 send_sig(SIGXFSZ, current, 0);
2544 return -EFBIG;
2545 }
2546 iov_iter_truncate(from, limit - (unsigned long)pos);
2547 }
2548
2549 /*
2550 * LFS rule
2551 */
2552 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2553 !(file->f_flags & O_LARGEFILE))) {
2554 if (pos >= MAX_NON_LFS)
2555 return -EFBIG;
2556 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2557 }
2558
2559 /*
2560 * Are we about to exceed the fs block limit ?
2561 *
2562 * If we have written data it becomes a short write. If we have
2563 * exceeded without writing data we send a signal and return EFBIG.
2564 * Linus frestrict idea will clean these up nicely..
2565 */
2566 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2567 return -EFBIG;
2568
2569 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2570 return iov_iter_count(from);
2571 }
2572 EXPORT_SYMBOL(generic_write_checks);
2573
2574 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2575 loff_t pos, unsigned len, unsigned flags,
2576 struct page **pagep, void **fsdata)
2577 {
2578 const struct address_space_operations *aops = mapping->a_ops;
2579
2580 return aops->write_begin(file, mapping, pos, len, flags,
2581 pagep, fsdata);
2582 }
2583 EXPORT_SYMBOL(pagecache_write_begin);
2584
2585 int pagecache_write_end(struct file *file, struct address_space *mapping,
2586 loff_t pos, unsigned len, unsigned copied,
2587 struct page *page, void *fsdata)
2588 {
2589 const struct address_space_operations *aops = mapping->a_ops;
2590
2591 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2592 }
2593 EXPORT_SYMBOL(pagecache_write_end);
2594
2595 ssize_t
2596 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2597 {
2598 struct file *file = iocb->ki_filp;
2599 struct address_space *mapping = file->f_mapping;
2600 struct inode *inode = mapping->host;
2601 loff_t pos = iocb->ki_pos;
2602 ssize_t written;
2603 size_t write_len;
2604 pgoff_t end;
2605 struct iov_iter data;
2606
2607 write_len = iov_iter_count(from);
2608 end = (pos + write_len - 1) >> PAGE_SHIFT;
2609
2610 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2611 if (written)
2612 goto out;
2613
2614 /*
2615 * After a write we want buffered reads to be sure to go to disk to get
2616 * the new data. We invalidate clean cached page from the region we're
2617 * about to write. We do this *before* the write so that we can return
2618 * without clobbering -EIOCBQUEUED from ->direct_IO().
2619 */
2620 if (mapping->nrpages) {
2621 written = invalidate_inode_pages2_range(mapping,
2622 pos >> PAGE_SHIFT, end);
2623 /*
2624 * If a page can not be invalidated, return 0 to fall back
2625 * to buffered write.
2626 */
2627 if (written) {
2628 if (written == -EBUSY)
2629 return 0;
2630 goto out;
2631 }
2632 }
2633
2634 data = *from;
2635 written = mapping->a_ops->direct_IO(iocb, &data);
2636
2637 /*
2638 * Finally, try again to invalidate clean pages which might have been
2639 * cached by non-direct readahead, or faulted in by get_user_pages()
2640 * if the source of the write was an mmap'ed region of the file
2641 * we're writing. Either one is a pretty crazy thing to do,
2642 * so we don't support it 100%. If this invalidation
2643 * fails, tough, the write still worked...
2644 */
2645 if (mapping->nrpages) {
2646 invalidate_inode_pages2_range(mapping,
2647 pos >> PAGE_SHIFT, end);
2648 }
2649
2650 if (written > 0) {
2651 pos += written;
2652 iov_iter_advance(from, written);
2653 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2654 i_size_write(inode, pos);
2655 mark_inode_dirty(inode);
2656 }
2657 iocb->ki_pos = pos;
2658 }
2659 out:
2660 return written;
2661 }
2662 EXPORT_SYMBOL(generic_file_direct_write);
2663
2664 /*
2665 * Find or create a page at the given pagecache position. Return the locked
2666 * page. This function is specifically for buffered writes.
2667 */
2668 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2669 pgoff_t index, unsigned flags)
2670 {
2671 struct page *page;
2672 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2673
2674 if (flags & AOP_FLAG_NOFS)
2675 fgp_flags |= FGP_NOFS;
2676
2677 page = pagecache_get_page(mapping, index, fgp_flags,
2678 mapping_gfp_mask(mapping));
2679 if (page)
2680 wait_for_stable_page(page);
2681
2682 return page;
2683 }
2684 EXPORT_SYMBOL(grab_cache_page_write_begin);
2685
2686 ssize_t generic_perform_write(struct file *file,
2687 struct iov_iter *i, loff_t pos)
2688 {
2689 struct address_space *mapping = file->f_mapping;
2690 const struct address_space_operations *a_ops = mapping->a_ops;
2691 long status = 0;
2692 ssize_t written = 0;
2693 unsigned int flags = 0;
2694
2695 /*
2696 * Copies from kernel address space cannot fail (NFSD is a big user).
2697 */
2698 if (!iter_is_iovec(i))
2699 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2700
2701 do {
2702 struct page *page;
2703 unsigned long offset; /* Offset into pagecache page */
2704 unsigned long bytes; /* Bytes to write to page */
2705 size_t copied; /* Bytes copied from user */
2706 void *fsdata;
2707
2708 offset = (pos & (PAGE_SIZE - 1));
2709 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2710 iov_iter_count(i));
2711
2712 again:
2713 /*
2714 * Bring in the user page that we will copy from _first_.
2715 * Otherwise there's a nasty deadlock on copying from the
2716 * same page as we're writing to, without it being marked
2717 * up-to-date.
2718 *
2719 * Not only is this an optimisation, but it is also required
2720 * to check that the address is actually valid, when atomic
2721 * usercopies are used, below.
2722 */
2723 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2724 status = -EFAULT;
2725 break;
2726 }
2727
2728 if (fatal_signal_pending(current)) {
2729 status = -EINTR;
2730 break;
2731 }
2732
2733 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2734 &page, &fsdata);
2735 if (unlikely(status < 0))
2736 break;
2737
2738 if (mapping_writably_mapped(mapping))
2739 flush_dcache_page(page);
2740
2741 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2742 flush_dcache_page(page);
2743
2744 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2745 page, fsdata);
2746 if (unlikely(status < 0))
2747 break;
2748 copied = status;
2749
2750 cond_resched();
2751
2752 iov_iter_advance(i, copied);
2753 if (unlikely(copied == 0)) {
2754 /*
2755 * If we were unable to copy any data at all, we must
2756 * fall back to a single segment length write.
2757 *
2758 * If we didn't fallback here, we could livelock
2759 * because not all segments in the iov can be copied at
2760 * once without a pagefault.
2761 */
2762 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2763 iov_iter_single_seg_count(i));
2764 goto again;
2765 }
2766 pos += copied;
2767 written += copied;
2768
2769 balance_dirty_pages_ratelimited(mapping);
2770 } while (iov_iter_count(i));
2771
2772 return written ? written : status;
2773 }
2774 EXPORT_SYMBOL(generic_perform_write);
2775
2776 /**
2777 * __generic_file_write_iter - write data to a file
2778 * @iocb: IO state structure (file, offset, etc.)
2779 * @from: iov_iter with data to write
2780 *
2781 * This function does all the work needed for actually writing data to a
2782 * file. It does all basic checks, removes SUID from the file, updates
2783 * modification times and calls proper subroutines depending on whether we
2784 * do direct IO or a standard buffered write.
2785 *
2786 * It expects i_mutex to be grabbed unless we work on a block device or similar
2787 * object which does not need locking at all.
2788 *
2789 * This function does *not* take care of syncing data in case of O_SYNC write.
2790 * A caller has to handle it. This is mainly due to the fact that we want to
2791 * avoid syncing under i_mutex.
2792 */
2793 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2794 {
2795 struct file *file = iocb->ki_filp;
2796 struct address_space * mapping = file->f_mapping;
2797 struct inode *inode = mapping->host;
2798 ssize_t written = 0;
2799 ssize_t err;
2800 ssize_t status;
2801
2802 /* We can write back this queue in page reclaim */
2803 current->backing_dev_info = inode_to_bdi(inode);
2804 err = file_remove_privs(file);
2805 if (err)
2806 goto out;
2807
2808 err = file_update_time(file);
2809 if (err)
2810 goto out;
2811
2812 if (iocb->ki_flags & IOCB_DIRECT) {
2813 loff_t pos, endbyte;
2814
2815 written = generic_file_direct_write(iocb, from);
2816 /*
2817 * If the write stopped short of completing, fall back to
2818 * buffered writes. Some filesystems do this for writes to
2819 * holes, for example. For DAX files, a buffered write will
2820 * not succeed (even if it did, DAX does not handle dirty
2821 * page-cache pages correctly).
2822 */
2823 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2824 goto out;
2825
2826 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2827 /*
2828 * If generic_perform_write() returned a synchronous error
2829 * then we want to return the number of bytes which were
2830 * direct-written, or the error code if that was zero. Note
2831 * that this differs from normal direct-io semantics, which
2832 * will return -EFOO even if some bytes were written.
2833 */
2834 if (unlikely(status < 0)) {
2835 err = status;
2836 goto out;
2837 }
2838 /*
2839 * We need to ensure that the page cache pages are written to
2840 * disk and invalidated to preserve the expected O_DIRECT
2841 * semantics.
2842 */
2843 endbyte = pos + status - 1;
2844 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2845 if (err == 0) {
2846 iocb->ki_pos = endbyte + 1;
2847 written += status;
2848 invalidate_mapping_pages(mapping,
2849 pos >> PAGE_SHIFT,
2850 endbyte >> PAGE_SHIFT);
2851 } else {
2852 /*
2853 * We don't know how much we wrote, so just return
2854 * the number of bytes which were direct-written
2855 */
2856 }
2857 } else {
2858 written = generic_perform_write(file, from, iocb->ki_pos);
2859 if (likely(written > 0))
2860 iocb->ki_pos += written;
2861 }
2862 out:
2863 current->backing_dev_info = NULL;
2864 return written ? written : err;
2865 }
2866 EXPORT_SYMBOL(__generic_file_write_iter);
2867
2868 /**
2869 * generic_file_write_iter - write data to a file
2870 * @iocb: IO state structure
2871 * @from: iov_iter with data to write
2872 *
2873 * This is a wrapper around __generic_file_write_iter() to be used by most
2874 * filesystems. It takes care of syncing the file in case of O_SYNC file
2875 * and acquires i_mutex as needed.
2876 */
2877 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2878 {
2879 struct file *file = iocb->ki_filp;
2880 struct inode *inode = file->f_mapping->host;
2881 ssize_t ret;
2882
2883 inode_lock(inode);
2884 ret = generic_write_checks(iocb, from);
2885 if (ret > 0)
2886 ret = __generic_file_write_iter(iocb, from);
2887 inode_unlock(inode);
2888
2889 if (ret > 0)
2890 ret = generic_write_sync(iocb, ret);
2891 return ret;
2892 }
2893 EXPORT_SYMBOL(generic_file_write_iter);
2894
2895 /**
2896 * try_to_release_page() - release old fs-specific metadata on a page
2897 *
2898 * @page: the page which the kernel is trying to free
2899 * @gfp_mask: memory allocation flags (and I/O mode)
2900 *
2901 * The address_space is to try to release any data against the page
2902 * (presumably at page->private). If the release was successful, return `1'.
2903 * Otherwise return zero.
2904 *
2905 * This may also be called if PG_fscache is set on a page, indicating that the
2906 * page is known to the local caching routines.
2907 *
2908 * The @gfp_mask argument specifies whether I/O may be performed to release
2909 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2910 *
2911 */
2912 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2913 {
2914 struct address_space * const mapping = page->mapping;
2915
2916 BUG_ON(!PageLocked(page));
2917 if (PageWriteback(page))
2918 return 0;
2919
2920 if (mapping && mapping->a_ops->releasepage)
2921 return mapping->a_ops->releasepage(page, gfp_mask);
2922 return try_to_free_buffers(page);
2923 }
2924
2925 EXPORT_SYMBOL(try_to_release_page);