]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/filemap.c
Merge tag 'usb-5.9-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-jammy-kernel.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include "internal.h"
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/filemap.h>
49
50 /*
51 * FIXME: remove all knowledge of the buffer layer from the core VM
52 */
53 #include <linux/buffer_head.h> /* for try_to_free_buffers */
54
55 #include <asm/mman.h>
56
57 /*
58 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * though.
60 *
61 * Shared mappings now work. 15.8.1995 Bruno.
62 *
63 * finished 'unifying' the page and buffer cache and SMP-threaded the
64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65 *
66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
67 */
68
69 /*
70 * Lock ordering:
71 *
72 * ->i_mmap_rwsem (truncate_pagecache)
73 * ->private_lock (__free_pte->__set_page_dirty_buffers)
74 * ->swap_lock (exclusive_swap_page, others)
75 * ->i_pages lock
76 *
77 * ->i_mutex
78 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
79 *
80 * ->mmap_lock
81 * ->i_mmap_rwsem
82 * ->page_table_lock or pte_lock (various, mainly in memory.c)
83 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
84 *
85 * ->mmap_lock
86 * ->lock_page (access_process_vm)
87 *
88 * ->i_mutex (generic_perform_write)
89 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
90 *
91 * bdi->wb.list_lock
92 * sb_lock (fs/fs-writeback.c)
93 * ->i_pages lock (__sync_single_inode)
94 *
95 * ->i_mmap_rwsem
96 * ->anon_vma.lock (vma_adjust)
97 *
98 * ->anon_vma.lock
99 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
100 *
101 * ->page_table_lock or pte_lock
102 * ->swap_lock (try_to_unmap_one)
103 * ->private_lock (try_to_unmap_one)
104 * ->i_pages lock (try_to_unmap_one)
105 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
106 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
107 * ->private_lock (page_remove_rmap->set_page_dirty)
108 * ->i_pages lock (page_remove_rmap->set_page_dirty)
109 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
110 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
111 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
112 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
113 * ->inode->i_lock (zap_pte_range->set_page_dirty)
114 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 *
116 * ->i_mmap_rwsem
117 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 */
119
120 static void page_cache_delete(struct address_space *mapping,
121 struct page *page, void *shadow)
122 {
123 XA_STATE(xas, &mapping->i_pages, page->index);
124 unsigned int nr = 1;
125
126 mapping_set_update(&xas, mapping);
127
128 /* hugetlb pages are represented by a single entry in the xarray */
129 if (!PageHuge(page)) {
130 xas_set_order(&xas, page->index, compound_order(page));
131 nr = compound_nr(page);
132 }
133
134 VM_BUG_ON_PAGE(!PageLocked(page), page);
135 VM_BUG_ON_PAGE(PageTail(page), page);
136 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
137
138 xas_store(&xas, shadow);
139 xas_init_marks(&xas);
140
141 page->mapping = NULL;
142 /* Leave page->index set: truncation lookup relies upon it */
143
144 if (shadow) {
145 mapping->nrexceptional += nr;
146 /*
147 * Make sure the nrexceptional update is committed before
148 * the nrpages update so that final truncate racing
149 * with reclaim does not see both counters 0 at the
150 * same time and miss a shadow entry.
151 */
152 smp_wmb();
153 }
154 mapping->nrpages -= nr;
155 }
156
157 static void unaccount_page_cache_page(struct address_space *mapping,
158 struct page *page)
159 {
160 int nr;
161
162 /*
163 * if we're uptodate, flush out into the cleancache, otherwise
164 * invalidate any existing cleancache entries. We can't leave
165 * stale data around in the cleancache once our page is gone
166 */
167 if (PageUptodate(page) && PageMappedToDisk(page))
168 cleancache_put_page(page);
169 else
170 cleancache_invalidate_page(mapping, page);
171
172 VM_BUG_ON_PAGE(PageTail(page), page);
173 VM_BUG_ON_PAGE(page_mapped(page), page);
174 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 int mapcount;
176
177 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
178 current->comm, page_to_pfn(page));
179 dump_page(page, "still mapped when deleted");
180 dump_stack();
181 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
182
183 mapcount = page_mapcount(page);
184 if (mapping_exiting(mapping) &&
185 page_count(page) >= mapcount + 2) {
186 /*
187 * All vmas have already been torn down, so it's
188 * a good bet that actually the page is unmapped,
189 * and we'd prefer not to leak it: if we're wrong,
190 * some other bad page check should catch it later.
191 */
192 page_mapcount_reset(page);
193 page_ref_sub(page, mapcount);
194 }
195 }
196
197 /* hugetlb pages do not participate in page cache accounting. */
198 if (PageHuge(page))
199 return;
200
201 nr = thp_nr_pages(page);
202
203 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204 if (PageSwapBacked(page)) {
205 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 if (PageTransHuge(page))
207 __dec_node_page_state(page, NR_SHMEM_THPS);
208 } else if (PageTransHuge(page)) {
209 __dec_node_page_state(page, NR_FILE_THPS);
210 filemap_nr_thps_dec(mapping);
211 }
212
213 /*
214 * At this point page must be either written or cleaned by
215 * truncate. Dirty page here signals a bug and loss of
216 * unwritten data.
217 *
218 * This fixes dirty accounting after removing the page entirely
219 * but leaves PageDirty set: it has no effect for truncated
220 * page and anyway will be cleared before returning page into
221 * buddy allocator.
222 */
223 if (WARN_ON_ONCE(PageDirty(page)))
224 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 }
226
227 /*
228 * Delete a page from the page cache and free it. Caller has to make
229 * sure the page is locked and that nobody else uses it - or that usage
230 * is safe. The caller must hold the i_pages lock.
231 */
232 void __delete_from_page_cache(struct page *page, void *shadow)
233 {
234 struct address_space *mapping = page->mapping;
235
236 trace_mm_filemap_delete_from_page_cache(page);
237
238 unaccount_page_cache_page(mapping, page);
239 page_cache_delete(mapping, page, shadow);
240 }
241
242 static void page_cache_free_page(struct address_space *mapping,
243 struct page *page)
244 {
245 void (*freepage)(struct page *);
246
247 freepage = mapping->a_ops->freepage;
248 if (freepage)
249 freepage(page);
250
251 if (PageTransHuge(page) && !PageHuge(page)) {
252 page_ref_sub(page, HPAGE_PMD_NR);
253 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
254 } else {
255 put_page(page);
256 }
257 }
258
259 /**
260 * delete_from_page_cache - delete page from page cache
261 * @page: the page which the kernel is trying to remove from page cache
262 *
263 * This must be called only on pages that have been verified to be in the page
264 * cache and locked. It will never put the page into the free list, the caller
265 * has a reference on the page.
266 */
267 void delete_from_page_cache(struct page *page)
268 {
269 struct address_space *mapping = page_mapping(page);
270 unsigned long flags;
271
272 BUG_ON(!PageLocked(page));
273 xa_lock_irqsave(&mapping->i_pages, flags);
274 __delete_from_page_cache(page, NULL);
275 xa_unlock_irqrestore(&mapping->i_pages, flags);
276
277 page_cache_free_page(mapping, page);
278 }
279 EXPORT_SYMBOL(delete_from_page_cache);
280
281 /*
282 * page_cache_delete_batch - delete several pages from page cache
283 * @mapping: the mapping to which pages belong
284 * @pvec: pagevec with pages to delete
285 *
286 * The function walks over mapping->i_pages and removes pages passed in @pvec
287 * from the mapping. The function expects @pvec to be sorted by page index
288 * and is optimised for it to be dense.
289 * It tolerates holes in @pvec (mapping entries at those indices are not
290 * modified). The function expects only THP head pages to be present in the
291 * @pvec.
292 *
293 * The function expects the i_pages lock to be held.
294 */
295 static void page_cache_delete_batch(struct address_space *mapping,
296 struct pagevec *pvec)
297 {
298 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
299 int total_pages = 0;
300 int i = 0;
301 struct page *page;
302
303 mapping_set_update(&xas, mapping);
304 xas_for_each(&xas, page, ULONG_MAX) {
305 if (i >= pagevec_count(pvec))
306 break;
307
308 /* A swap/dax/shadow entry got inserted? Skip it. */
309 if (xa_is_value(page))
310 continue;
311 /*
312 * A page got inserted in our range? Skip it. We have our
313 * pages locked so they are protected from being removed.
314 * If we see a page whose index is higher than ours, it
315 * means our page has been removed, which shouldn't be
316 * possible because we're holding the PageLock.
317 */
318 if (page != pvec->pages[i]) {
319 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
320 page);
321 continue;
322 }
323
324 WARN_ON_ONCE(!PageLocked(page));
325
326 if (page->index == xas.xa_index)
327 page->mapping = NULL;
328 /* Leave page->index set: truncation lookup relies on it */
329
330 /*
331 * Move to the next page in the vector if this is a regular
332 * page or the index is of the last sub-page of this compound
333 * page.
334 */
335 if (page->index + compound_nr(page) - 1 == xas.xa_index)
336 i++;
337 xas_store(&xas, NULL);
338 total_pages++;
339 }
340 mapping->nrpages -= total_pages;
341 }
342
343 void delete_from_page_cache_batch(struct address_space *mapping,
344 struct pagevec *pvec)
345 {
346 int i;
347 unsigned long flags;
348
349 if (!pagevec_count(pvec))
350 return;
351
352 xa_lock_irqsave(&mapping->i_pages, flags);
353 for (i = 0; i < pagevec_count(pvec); i++) {
354 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
355
356 unaccount_page_cache_page(mapping, pvec->pages[i]);
357 }
358 page_cache_delete_batch(mapping, pvec);
359 xa_unlock_irqrestore(&mapping->i_pages, flags);
360
361 for (i = 0; i < pagevec_count(pvec); i++)
362 page_cache_free_page(mapping, pvec->pages[i]);
363 }
364
365 int filemap_check_errors(struct address_space *mapping)
366 {
367 int ret = 0;
368 /* Check for outstanding write errors */
369 if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371 ret = -ENOSPC;
372 if (test_bit(AS_EIO, &mapping->flags) &&
373 test_and_clear_bit(AS_EIO, &mapping->flags))
374 ret = -EIO;
375 return ret;
376 }
377 EXPORT_SYMBOL(filemap_check_errors);
378
379 static int filemap_check_and_keep_errors(struct address_space *mapping)
380 {
381 /* Check for outstanding write errors */
382 if (test_bit(AS_EIO, &mapping->flags))
383 return -EIO;
384 if (test_bit(AS_ENOSPC, &mapping->flags))
385 return -ENOSPC;
386 return 0;
387 }
388
389 /**
390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391 * @mapping: address space structure to write
392 * @start: offset in bytes where the range starts
393 * @end: offset in bytes where the range ends (inclusive)
394 * @sync_mode: enable synchronous operation
395 *
396 * Start writeback against all of a mapping's dirty pages that lie
397 * within the byte offsets <start, end> inclusive.
398 *
399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400 * opposed to a regular memory cleansing writeback. The difference between
401 * these two operations is that if a dirty page/buffer is encountered, it must
402 * be waited upon, and not just skipped over.
403 *
404 * Return: %0 on success, negative error code otherwise.
405 */
406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 loff_t end, int sync_mode)
408 {
409 int ret;
410 struct writeback_control wbc = {
411 .sync_mode = sync_mode,
412 .nr_to_write = LONG_MAX,
413 .range_start = start,
414 .range_end = end,
415 };
416
417 if (!mapping_cap_writeback_dirty(mapping) ||
418 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
419 return 0;
420
421 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
422 ret = do_writepages(mapping, &wbc);
423 wbc_detach_inode(&wbc);
424 return ret;
425 }
426
427 static inline int __filemap_fdatawrite(struct address_space *mapping,
428 int sync_mode)
429 {
430 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
431 }
432
433 int filemap_fdatawrite(struct address_space *mapping)
434 {
435 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite);
438
439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
440 loff_t end)
441 {
442 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
443 }
444 EXPORT_SYMBOL(filemap_fdatawrite_range);
445
446 /**
447 * filemap_flush - mostly a non-blocking flush
448 * @mapping: target address_space
449 *
450 * This is a mostly non-blocking flush. Not suitable for data-integrity
451 * purposes - I/O may not be started against all dirty pages.
452 *
453 * Return: %0 on success, negative error code otherwise.
454 */
455 int filemap_flush(struct address_space *mapping)
456 {
457 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
458 }
459 EXPORT_SYMBOL(filemap_flush);
460
461 /**
462 * filemap_range_has_page - check if a page exists in range.
463 * @mapping: address space within which to check
464 * @start_byte: offset in bytes where the range starts
465 * @end_byte: offset in bytes where the range ends (inclusive)
466 *
467 * Find at least one page in the range supplied, usually used to check if
468 * direct writing in this range will trigger a writeback.
469 *
470 * Return: %true if at least one page exists in the specified range,
471 * %false otherwise.
472 */
473 bool filemap_range_has_page(struct address_space *mapping,
474 loff_t start_byte, loff_t end_byte)
475 {
476 struct page *page;
477 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 pgoff_t max = end_byte >> PAGE_SHIFT;
479
480 if (end_byte < start_byte)
481 return false;
482
483 rcu_read_lock();
484 for (;;) {
485 page = xas_find(&xas, max);
486 if (xas_retry(&xas, page))
487 continue;
488 /* Shadow entries don't count */
489 if (xa_is_value(page))
490 continue;
491 /*
492 * We don't need to try to pin this page; we're about to
493 * release the RCU lock anyway. It is enough to know that
494 * there was a page here recently.
495 */
496 break;
497 }
498 rcu_read_unlock();
499
500 return page != NULL;
501 }
502 EXPORT_SYMBOL(filemap_range_has_page);
503
504 static void __filemap_fdatawait_range(struct address_space *mapping,
505 loff_t start_byte, loff_t end_byte)
506 {
507 pgoff_t index = start_byte >> PAGE_SHIFT;
508 pgoff_t end = end_byte >> PAGE_SHIFT;
509 struct pagevec pvec;
510 int nr_pages;
511
512 if (end_byte < start_byte)
513 return;
514
515 pagevec_init(&pvec);
516 while (index <= end) {
517 unsigned i;
518
519 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520 end, PAGECACHE_TAG_WRITEBACK);
521 if (!nr_pages)
522 break;
523
524 for (i = 0; i < nr_pages; i++) {
525 struct page *page = pvec.pages[i];
526
527 wait_on_page_writeback(page);
528 ClearPageError(page);
529 }
530 pagevec_release(&pvec);
531 cond_resched();
532 }
533 }
534
535 /**
536 * filemap_fdatawait_range - wait for writeback to complete
537 * @mapping: address space structure to wait for
538 * @start_byte: offset in bytes where the range starts
539 * @end_byte: offset in bytes where the range ends (inclusive)
540 *
541 * Walk the list of under-writeback pages of the given address space
542 * in the given range and wait for all of them. Check error status of
543 * the address space and return it.
544 *
545 * Since the error status of the address space is cleared by this function,
546 * callers are responsible for checking the return value and handling and/or
547 * reporting the error.
548 *
549 * Return: error status of the address space.
550 */
551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
552 loff_t end_byte)
553 {
554 __filemap_fdatawait_range(mapping, start_byte, end_byte);
555 return filemap_check_errors(mapping);
556 }
557 EXPORT_SYMBOL(filemap_fdatawait_range);
558
559 /**
560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561 * @mapping: address space structure to wait for
562 * @start_byte: offset in bytes where the range starts
563 * @end_byte: offset in bytes where the range ends (inclusive)
564 *
565 * Walk the list of under-writeback pages of the given address space in the
566 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
567 * this function does not clear error status of the address space.
568 *
569 * Use this function if callers don't handle errors themselves. Expected
570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571 * fsfreeze(8)
572 */
573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 loff_t start_byte, loff_t end_byte)
575 {
576 __filemap_fdatawait_range(mapping, start_byte, end_byte);
577 return filemap_check_and_keep_errors(mapping);
578 }
579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
580
581 /**
582 * file_fdatawait_range - wait for writeback to complete
583 * @file: file pointing to address space structure to wait for
584 * @start_byte: offset in bytes where the range starts
585 * @end_byte: offset in bytes where the range ends (inclusive)
586 *
587 * Walk the list of under-writeback pages of the address space that file
588 * refers to, in the given range and wait for all of them. Check error
589 * status of the address space vs. the file->f_wb_err cursor and return it.
590 *
591 * Since the error status of the file is advanced by this function,
592 * callers are responsible for checking the return value and handling and/or
593 * reporting the error.
594 *
595 * Return: error status of the address space vs. the file->f_wb_err cursor.
596 */
597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
598 {
599 struct address_space *mapping = file->f_mapping;
600
601 __filemap_fdatawait_range(mapping, start_byte, end_byte);
602 return file_check_and_advance_wb_err(file);
603 }
604 EXPORT_SYMBOL(file_fdatawait_range);
605
606 /**
607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608 * @mapping: address space structure to wait for
609 *
610 * Walk the list of under-writeback pages of the given address space
611 * and wait for all of them. Unlike filemap_fdatawait(), this function
612 * does not clear error status of the address space.
613 *
614 * Use this function if callers don't handle errors themselves. Expected
615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616 * fsfreeze(8)
617 *
618 * Return: error status of the address space.
619 */
620 int filemap_fdatawait_keep_errors(struct address_space *mapping)
621 {
622 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623 return filemap_check_and_keep_errors(mapping);
624 }
625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
626
627 /* Returns true if writeback might be needed or already in progress. */
628 static bool mapping_needs_writeback(struct address_space *mapping)
629 {
630 if (dax_mapping(mapping))
631 return mapping->nrexceptional;
632
633 return mapping->nrpages;
634 }
635
636 /**
637 * filemap_write_and_wait_range - write out & wait on a file range
638 * @mapping: the address_space for the pages
639 * @lstart: offset in bytes where the range starts
640 * @lend: offset in bytes where the range ends (inclusive)
641 *
642 * Write out and wait upon file offsets lstart->lend, inclusive.
643 *
644 * Note that @lend is inclusive (describes the last byte to be written) so
645 * that this function can be used to write to the very end-of-file (end = -1).
646 *
647 * Return: error status of the address space.
648 */
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 loff_t lstart, loff_t lend)
651 {
652 int err = 0;
653
654 if (mapping_needs_writeback(mapping)) {
655 err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 WB_SYNC_ALL);
657 /*
658 * Even if the above returned error, the pages may be
659 * written partially (e.g. -ENOSPC), so we wait for it.
660 * But the -EIO is special case, it may indicate the worst
661 * thing (e.g. bug) happened, so we avoid waiting for it.
662 */
663 if (err != -EIO) {
664 int err2 = filemap_fdatawait_range(mapping,
665 lstart, lend);
666 if (!err)
667 err = err2;
668 } else {
669 /* Clear any previously stored errors */
670 filemap_check_errors(mapping);
671 }
672 } else {
673 err = filemap_check_errors(mapping);
674 }
675 return err;
676 }
677 EXPORT_SYMBOL(filemap_write_and_wait_range);
678
679 void __filemap_set_wb_err(struct address_space *mapping, int err)
680 {
681 errseq_t eseq = errseq_set(&mapping->wb_err, err);
682
683 trace_filemap_set_wb_err(mapping, eseq);
684 }
685 EXPORT_SYMBOL(__filemap_set_wb_err);
686
687 /**
688 * file_check_and_advance_wb_err - report wb error (if any) that was previously
689 * and advance wb_err to current one
690 * @file: struct file on which the error is being reported
691 *
692 * When userland calls fsync (or something like nfsd does the equivalent), we
693 * want to report any writeback errors that occurred since the last fsync (or
694 * since the file was opened if there haven't been any).
695 *
696 * Grab the wb_err from the mapping. If it matches what we have in the file,
697 * then just quickly return 0. The file is all caught up.
698 *
699 * If it doesn't match, then take the mapping value, set the "seen" flag in
700 * it and try to swap it into place. If it works, or another task beat us
701 * to it with the new value, then update the f_wb_err and return the error
702 * portion. The error at this point must be reported via proper channels
703 * (a'la fsync, or NFS COMMIT operation, etc.).
704 *
705 * While we handle mapping->wb_err with atomic operations, the f_wb_err
706 * value is protected by the f_lock since we must ensure that it reflects
707 * the latest value swapped in for this file descriptor.
708 *
709 * Return: %0 on success, negative error code otherwise.
710 */
711 int file_check_and_advance_wb_err(struct file *file)
712 {
713 int err = 0;
714 errseq_t old = READ_ONCE(file->f_wb_err);
715 struct address_space *mapping = file->f_mapping;
716
717 /* Locklessly handle the common case where nothing has changed */
718 if (errseq_check(&mapping->wb_err, old)) {
719 /* Something changed, must use slow path */
720 spin_lock(&file->f_lock);
721 old = file->f_wb_err;
722 err = errseq_check_and_advance(&mapping->wb_err,
723 &file->f_wb_err);
724 trace_file_check_and_advance_wb_err(file, old);
725 spin_unlock(&file->f_lock);
726 }
727
728 /*
729 * We're mostly using this function as a drop in replacement for
730 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 * that the legacy code would have had on these flags.
732 */
733 clear_bit(AS_EIO, &mapping->flags);
734 clear_bit(AS_ENOSPC, &mapping->flags);
735 return err;
736 }
737 EXPORT_SYMBOL(file_check_and_advance_wb_err);
738
739 /**
740 * file_write_and_wait_range - write out & wait on a file range
741 * @file: file pointing to address_space with pages
742 * @lstart: offset in bytes where the range starts
743 * @lend: offset in bytes where the range ends (inclusive)
744 *
745 * Write out and wait upon file offsets lstart->lend, inclusive.
746 *
747 * Note that @lend is inclusive (describes the last byte to be written) so
748 * that this function can be used to write to the very end-of-file (end = -1).
749 *
750 * After writing out and waiting on the data, we check and advance the
751 * f_wb_err cursor to the latest value, and return any errors detected there.
752 *
753 * Return: %0 on success, negative error code otherwise.
754 */
755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
756 {
757 int err = 0, err2;
758 struct address_space *mapping = file->f_mapping;
759
760 if (mapping_needs_writeback(mapping)) {
761 err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 WB_SYNC_ALL);
763 /* See comment of filemap_write_and_wait() */
764 if (err != -EIO)
765 __filemap_fdatawait_range(mapping, lstart, lend);
766 }
767 err2 = file_check_and_advance_wb_err(file);
768 if (!err)
769 err = err2;
770 return err;
771 }
772 EXPORT_SYMBOL(file_write_and_wait_range);
773
774 /**
775 * replace_page_cache_page - replace a pagecache page with a new one
776 * @old: page to be replaced
777 * @new: page to replace with
778 * @gfp_mask: allocation mode
779 *
780 * This function replaces a page in the pagecache with a new one. On
781 * success it acquires the pagecache reference for the new page and
782 * drops it for the old page. Both the old and new pages must be
783 * locked. This function does not add the new page to the LRU, the
784 * caller must do that.
785 *
786 * The remove + add is atomic. This function cannot fail.
787 *
788 * Return: %0
789 */
790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
791 {
792 struct address_space *mapping = old->mapping;
793 void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 pgoff_t offset = old->index;
795 XA_STATE(xas, &mapping->i_pages, offset);
796 unsigned long flags;
797
798 VM_BUG_ON_PAGE(!PageLocked(old), old);
799 VM_BUG_ON_PAGE(!PageLocked(new), new);
800 VM_BUG_ON_PAGE(new->mapping, new);
801
802 get_page(new);
803 new->mapping = mapping;
804 new->index = offset;
805
806 mem_cgroup_migrate(old, new);
807
808 xas_lock_irqsave(&xas, flags);
809 xas_store(&xas, new);
810
811 old->mapping = NULL;
812 /* hugetlb pages do not participate in page cache accounting. */
813 if (!PageHuge(old))
814 __dec_lruvec_page_state(old, NR_FILE_PAGES);
815 if (!PageHuge(new))
816 __inc_lruvec_page_state(new, NR_FILE_PAGES);
817 if (PageSwapBacked(old))
818 __dec_lruvec_page_state(old, NR_SHMEM);
819 if (PageSwapBacked(new))
820 __inc_lruvec_page_state(new, NR_SHMEM);
821 xas_unlock_irqrestore(&xas, flags);
822 if (freepage)
823 freepage(old);
824 put_page(old);
825
826 return 0;
827 }
828 EXPORT_SYMBOL_GPL(replace_page_cache_page);
829
830 static int __add_to_page_cache_locked(struct page *page,
831 struct address_space *mapping,
832 pgoff_t offset, gfp_t gfp_mask,
833 void **shadowp)
834 {
835 XA_STATE(xas, &mapping->i_pages, offset);
836 int huge = PageHuge(page);
837 int error;
838 void *old;
839
840 VM_BUG_ON_PAGE(!PageLocked(page), page);
841 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
842 mapping_set_update(&xas, mapping);
843
844 get_page(page);
845 page->mapping = mapping;
846 page->index = offset;
847
848 if (!huge) {
849 error = mem_cgroup_charge(page, current->mm, gfp_mask);
850 if (error)
851 goto error;
852 }
853
854 do {
855 xas_lock_irq(&xas);
856 old = xas_load(&xas);
857 if (old && !xa_is_value(old))
858 xas_set_err(&xas, -EEXIST);
859 xas_store(&xas, page);
860 if (xas_error(&xas))
861 goto unlock;
862
863 if (xa_is_value(old)) {
864 mapping->nrexceptional--;
865 if (shadowp)
866 *shadowp = old;
867 }
868 mapping->nrpages++;
869
870 /* hugetlb pages do not participate in page cache accounting */
871 if (!huge)
872 __inc_lruvec_page_state(page, NR_FILE_PAGES);
873 unlock:
874 xas_unlock_irq(&xas);
875 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876
877 if (xas_error(&xas)) {
878 error = xas_error(&xas);
879 goto error;
880 }
881
882 trace_mm_filemap_add_to_page_cache(page);
883 return 0;
884 error:
885 page->mapping = NULL;
886 /* Leave page->index set: truncation relies upon it */
887 put_page(page);
888 return error;
889 }
890 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
891
892 /**
893 * add_to_page_cache_locked - add a locked page to the pagecache
894 * @page: page to add
895 * @mapping: the page's address_space
896 * @offset: page index
897 * @gfp_mask: page allocation mode
898 *
899 * This function is used to add a page to the pagecache. It must be locked.
900 * This function does not add the page to the LRU. The caller must do that.
901 *
902 * Return: %0 on success, negative error code otherwise.
903 */
904 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
905 pgoff_t offset, gfp_t gfp_mask)
906 {
907 return __add_to_page_cache_locked(page, mapping, offset,
908 gfp_mask, NULL);
909 }
910 EXPORT_SYMBOL(add_to_page_cache_locked);
911
912 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
913 pgoff_t offset, gfp_t gfp_mask)
914 {
915 void *shadow = NULL;
916 int ret;
917
918 __SetPageLocked(page);
919 ret = __add_to_page_cache_locked(page, mapping, offset,
920 gfp_mask, &shadow);
921 if (unlikely(ret))
922 __ClearPageLocked(page);
923 else {
924 /*
925 * The page might have been evicted from cache only
926 * recently, in which case it should be activated like
927 * any other repeatedly accessed page.
928 * The exception is pages getting rewritten; evicting other
929 * data from the working set, only to cache data that will
930 * get overwritten with something else, is a waste of memory.
931 */
932 WARN_ON_ONCE(PageActive(page));
933 if (!(gfp_mask & __GFP_WRITE) && shadow)
934 workingset_refault(page, shadow);
935 lru_cache_add(page);
936 }
937 return ret;
938 }
939 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
940
941 #ifdef CONFIG_NUMA
942 struct page *__page_cache_alloc(gfp_t gfp)
943 {
944 int n;
945 struct page *page;
946
947 if (cpuset_do_page_mem_spread()) {
948 unsigned int cpuset_mems_cookie;
949 do {
950 cpuset_mems_cookie = read_mems_allowed_begin();
951 n = cpuset_mem_spread_node();
952 page = __alloc_pages_node(n, gfp, 0);
953 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
954
955 return page;
956 }
957 return alloc_pages(gfp, 0);
958 }
959 EXPORT_SYMBOL(__page_cache_alloc);
960 #endif
961
962 /*
963 * In order to wait for pages to become available there must be
964 * waitqueues associated with pages. By using a hash table of
965 * waitqueues where the bucket discipline is to maintain all
966 * waiters on the same queue and wake all when any of the pages
967 * become available, and for the woken contexts to check to be
968 * sure the appropriate page became available, this saves space
969 * at a cost of "thundering herd" phenomena during rare hash
970 * collisions.
971 */
972 #define PAGE_WAIT_TABLE_BITS 8
973 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
974 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
975
976 static wait_queue_head_t *page_waitqueue(struct page *page)
977 {
978 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
979 }
980
981 void __init pagecache_init(void)
982 {
983 int i;
984
985 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
986 init_waitqueue_head(&page_wait_table[i]);
987
988 page_writeback_init();
989 }
990
991 /*
992 * The page wait code treats the "wait->flags" somewhat unusually, because
993 * we have multiple different kinds of waits, not just the usual "exclusive"
994 * one.
995 *
996 * We have:
997 *
998 * (a) no special bits set:
999 *
1000 * We're just waiting for the bit to be released, and when a waker
1001 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1002 * and remove it from the wait queue.
1003 *
1004 * Simple and straightforward.
1005 *
1006 * (b) WQ_FLAG_EXCLUSIVE:
1007 *
1008 * The waiter is waiting to get the lock, and only one waiter should
1009 * be woken up to avoid any thundering herd behavior. We'll set the
1010 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1011 *
1012 * This is the traditional exclusive wait.
1013 *
1014 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1015 *
1016 * The waiter is waiting to get the bit, and additionally wants the
1017 * lock to be transferred to it for fair lock behavior. If the lock
1018 * cannot be taken, we stop walking the wait queue without waking
1019 * the waiter.
1020 *
1021 * This is the "fair lock handoff" case, and in addition to setting
1022 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1023 * that it now has the lock.
1024 */
1025 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1026 {
1027 unsigned int flags;
1028 struct wait_page_key *key = arg;
1029 struct wait_page_queue *wait_page
1030 = container_of(wait, struct wait_page_queue, wait);
1031
1032 if (!wake_page_match(wait_page, key))
1033 return 0;
1034
1035 /*
1036 * If it's a lock handoff wait, we get the bit for it, and
1037 * stop walking (and do not wake it up) if we can't.
1038 */
1039 flags = wait->flags;
1040 if (flags & WQ_FLAG_EXCLUSIVE) {
1041 if (test_bit(key->bit_nr, &key->page->flags))
1042 return -1;
1043 if (flags & WQ_FLAG_CUSTOM) {
1044 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1045 return -1;
1046 flags |= WQ_FLAG_DONE;
1047 }
1048 }
1049
1050 /*
1051 * We are holding the wait-queue lock, but the waiter that
1052 * is waiting for this will be checking the flags without
1053 * any locking.
1054 *
1055 * So update the flags atomically, and wake up the waiter
1056 * afterwards to avoid any races. This store-release pairs
1057 * with the load-acquire in wait_on_page_bit_common().
1058 */
1059 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1060 wake_up_state(wait->private, mode);
1061
1062 /*
1063 * Ok, we have successfully done what we're waiting for,
1064 * and we can unconditionally remove the wait entry.
1065 *
1066 * Note that this pairs with the "finish_wait()" in the
1067 * waiter, and has to be the absolute last thing we do.
1068 * After this list_del_init(&wait->entry) the wait entry
1069 * might be de-allocated and the process might even have
1070 * exited.
1071 */
1072 list_del_init_careful(&wait->entry);
1073 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1074 }
1075
1076 static void wake_up_page_bit(struct page *page, int bit_nr)
1077 {
1078 wait_queue_head_t *q = page_waitqueue(page);
1079 struct wait_page_key key;
1080 unsigned long flags;
1081 wait_queue_entry_t bookmark;
1082
1083 key.page = page;
1084 key.bit_nr = bit_nr;
1085 key.page_match = 0;
1086
1087 bookmark.flags = 0;
1088 bookmark.private = NULL;
1089 bookmark.func = NULL;
1090 INIT_LIST_HEAD(&bookmark.entry);
1091
1092 spin_lock_irqsave(&q->lock, flags);
1093 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1094
1095 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1096 /*
1097 * Take a breather from holding the lock,
1098 * allow pages that finish wake up asynchronously
1099 * to acquire the lock and remove themselves
1100 * from wait queue
1101 */
1102 spin_unlock_irqrestore(&q->lock, flags);
1103 cpu_relax();
1104 spin_lock_irqsave(&q->lock, flags);
1105 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1106 }
1107
1108 /*
1109 * It is possible for other pages to have collided on the waitqueue
1110 * hash, so in that case check for a page match. That prevents a long-
1111 * term waiter
1112 *
1113 * It is still possible to miss a case here, when we woke page waiters
1114 * and removed them from the waitqueue, but there are still other
1115 * page waiters.
1116 */
1117 if (!waitqueue_active(q) || !key.page_match) {
1118 ClearPageWaiters(page);
1119 /*
1120 * It's possible to miss clearing Waiters here, when we woke
1121 * our page waiters, but the hashed waitqueue has waiters for
1122 * other pages on it.
1123 *
1124 * That's okay, it's a rare case. The next waker will clear it.
1125 */
1126 }
1127 spin_unlock_irqrestore(&q->lock, flags);
1128 }
1129
1130 static void wake_up_page(struct page *page, int bit)
1131 {
1132 if (!PageWaiters(page))
1133 return;
1134 wake_up_page_bit(page, bit);
1135 }
1136
1137 /*
1138 * A choice of three behaviors for wait_on_page_bit_common():
1139 */
1140 enum behavior {
1141 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1142 * __lock_page() waiting on then setting PG_locked.
1143 */
1144 SHARED, /* Hold ref to page and check the bit when woken, like
1145 * wait_on_page_writeback() waiting on PG_writeback.
1146 */
1147 DROP, /* Drop ref to page before wait, no check when woken,
1148 * like put_and_wait_on_page_locked() on PG_locked.
1149 */
1150 };
1151
1152 /*
1153 * Attempt to check (or get) the page bit, and mark us done
1154 * if successful.
1155 */
1156 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1157 struct wait_queue_entry *wait)
1158 {
1159 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1160 if (test_and_set_bit(bit_nr, &page->flags))
1161 return false;
1162 } else if (test_bit(bit_nr, &page->flags))
1163 return false;
1164
1165 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1166 return true;
1167 }
1168
1169 /* How many times do we accept lock stealing from under a waiter? */
1170 int sysctl_page_lock_unfairness = 5;
1171
1172 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1173 struct page *page, int bit_nr, int state, enum behavior behavior)
1174 {
1175 int unfairness = sysctl_page_lock_unfairness;
1176 struct wait_page_queue wait_page;
1177 wait_queue_entry_t *wait = &wait_page.wait;
1178 bool thrashing = false;
1179 bool delayacct = false;
1180 unsigned long pflags;
1181
1182 if (bit_nr == PG_locked &&
1183 !PageUptodate(page) && PageWorkingset(page)) {
1184 if (!PageSwapBacked(page)) {
1185 delayacct_thrashing_start();
1186 delayacct = true;
1187 }
1188 psi_memstall_enter(&pflags);
1189 thrashing = true;
1190 }
1191
1192 init_wait(wait);
1193 wait->func = wake_page_function;
1194 wait_page.page = page;
1195 wait_page.bit_nr = bit_nr;
1196
1197 repeat:
1198 wait->flags = 0;
1199 if (behavior == EXCLUSIVE) {
1200 wait->flags = WQ_FLAG_EXCLUSIVE;
1201 if (--unfairness < 0)
1202 wait->flags |= WQ_FLAG_CUSTOM;
1203 }
1204
1205 /*
1206 * Do one last check whether we can get the
1207 * page bit synchronously.
1208 *
1209 * Do the SetPageWaiters() marking before that
1210 * to let any waker we _just_ missed know they
1211 * need to wake us up (otherwise they'll never
1212 * even go to the slow case that looks at the
1213 * page queue), and add ourselves to the wait
1214 * queue if we need to sleep.
1215 *
1216 * This part needs to be done under the queue
1217 * lock to avoid races.
1218 */
1219 spin_lock_irq(&q->lock);
1220 SetPageWaiters(page);
1221 if (!trylock_page_bit_common(page, bit_nr, wait))
1222 __add_wait_queue_entry_tail(q, wait);
1223 spin_unlock_irq(&q->lock);
1224
1225 /*
1226 * From now on, all the logic will be based on
1227 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1228 * see whether the page bit testing has already
1229 * been done by the wake function.
1230 *
1231 * We can drop our reference to the page.
1232 */
1233 if (behavior == DROP)
1234 put_page(page);
1235
1236 /*
1237 * Note that until the "finish_wait()", or until
1238 * we see the WQ_FLAG_WOKEN flag, we need to
1239 * be very careful with the 'wait->flags', because
1240 * we may race with a waker that sets them.
1241 */
1242 for (;;) {
1243 unsigned int flags;
1244
1245 set_current_state(state);
1246
1247 /* Loop until we've been woken or interrupted */
1248 flags = smp_load_acquire(&wait->flags);
1249 if (!(flags & WQ_FLAG_WOKEN)) {
1250 if (signal_pending_state(state, current))
1251 break;
1252
1253 io_schedule();
1254 continue;
1255 }
1256
1257 /* If we were non-exclusive, we're done */
1258 if (behavior != EXCLUSIVE)
1259 break;
1260
1261 /* If the waker got the lock for us, we're done */
1262 if (flags & WQ_FLAG_DONE)
1263 break;
1264
1265 /*
1266 * Otherwise, if we're getting the lock, we need to
1267 * try to get it ourselves.
1268 *
1269 * And if that fails, we'll have to retry this all.
1270 */
1271 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1272 goto repeat;
1273
1274 wait->flags |= WQ_FLAG_DONE;
1275 break;
1276 }
1277
1278 /*
1279 * If a signal happened, this 'finish_wait()' may remove the last
1280 * waiter from the wait-queues, but the PageWaiters bit will remain
1281 * set. That's ok. The next wakeup will take care of it, and trying
1282 * to do it here would be difficult and prone to races.
1283 */
1284 finish_wait(q, wait);
1285
1286 if (thrashing) {
1287 if (delayacct)
1288 delayacct_thrashing_end();
1289 psi_memstall_leave(&pflags);
1290 }
1291
1292 /*
1293 * NOTE! The wait->flags weren't stable until we've done the
1294 * 'finish_wait()', and we could have exited the loop above due
1295 * to a signal, and had a wakeup event happen after the signal
1296 * test but before the 'finish_wait()'.
1297 *
1298 * So only after the finish_wait() can we reliably determine
1299 * if we got woken up or not, so we can now figure out the final
1300 * return value based on that state without races.
1301 *
1302 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1303 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1304 */
1305 if (behavior == EXCLUSIVE)
1306 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1307
1308 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1309 }
1310
1311 void wait_on_page_bit(struct page *page, int bit_nr)
1312 {
1313 wait_queue_head_t *q = page_waitqueue(page);
1314 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1315 }
1316 EXPORT_SYMBOL(wait_on_page_bit);
1317
1318 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1319 {
1320 wait_queue_head_t *q = page_waitqueue(page);
1321 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1322 }
1323 EXPORT_SYMBOL(wait_on_page_bit_killable);
1324
1325 static int __wait_on_page_locked_async(struct page *page,
1326 struct wait_page_queue *wait, bool set)
1327 {
1328 struct wait_queue_head *q = page_waitqueue(page);
1329 int ret = 0;
1330
1331 wait->page = page;
1332 wait->bit_nr = PG_locked;
1333
1334 spin_lock_irq(&q->lock);
1335 __add_wait_queue_entry_tail(q, &wait->wait);
1336 SetPageWaiters(page);
1337 if (set)
1338 ret = !trylock_page(page);
1339 else
1340 ret = PageLocked(page);
1341 /*
1342 * If we were succesful now, we know we're still on the
1343 * waitqueue as we're still under the lock. This means it's
1344 * safe to remove and return success, we know the callback
1345 * isn't going to trigger.
1346 */
1347 if (!ret)
1348 __remove_wait_queue(q, &wait->wait);
1349 else
1350 ret = -EIOCBQUEUED;
1351 spin_unlock_irq(&q->lock);
1352 return ret;
1353 }
1354
1355 static int wait_on_page_locked_async(struct page *page,
1356 struct wait_page_queue *wait)
1357 {
1358 if (!PageLocked(page))
1359 return 0;
1360 return __wait_on_page_locked_async(compound_head(page), wait, false);
1361 }
1362
1363 /**
1364 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1365 * @page: The page to wait for.
1366 *
1367 * The caller should hold a reference on @page. They expect the page to
1368 * become unlocked relatively soon, but do not wish to hold up migration
1369 * (for example) by holding the reference while waiting for the page to
1370 * come unlocked. After this function returns, the caller should not
1371 * dereference @page.
1372 */
1373 void put_and_wait_on_page_locked(struct page *page)
1374 {
1375 wait_queue_head_t *q;
1376
1377 page = compound_head(page);
1378 q = page_waitqueue(page);
1379 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1380 }
1381
1382 /**
1383 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1384 * @page: Page defining the wait queue of interest
1385 * @waiter: Waiter to add to the queue
1386 *
1387 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1388 */
1389 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1390 {
1391 wait_queue_head_t *q = page_waitqueue(page);
1392 unsigned long flags;
1393
1394 spin_lock_irqsave(&q->lock, flags);
1395 __add_wait_queue_entry_tail(q, waiter);
1396 SetPageWaiters(page);
1397 spin_unlock_irqrestore(&q->lock, flags);
1398 }
1399 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1400
1401 #ifndef clear_bit_unlock_is_negative_byte
1402
1403 /*
1404 * PG_waiters is the high bit in the same byte as PG_lock.
1405 *
1406 * On x86 (and on many other architectures), we can clear PG_lock and
1407 * test the sign bit at the same time. But if the architecture does
1408 * not support that special operation, we just do this all by hand
1409 * instead.
1410 *
1411 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1412 * being cleared, but a memory barrier should be unnecessary since it is
1413 * in the same byte as PG_locked.
1414 */
1415 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1416 {
1417 clear_bit_unlock(nr, mem);
1418 /* smp_mb__after_atomic(); */
1419 return test_bit(PG_waiters, mem);
1420 }
1421
1422 #endif
1423
1424 /**
1425 * unlock_page - unlock a locked page
1426 * @page: the page
1427 *
1428 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1429 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1430 * mechanism between PageLocked pages and PageWriteback pages is shared.
1431 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1432 *
1433 * Note that this depends on PG_waiters being the sign bit in the byte
1434 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1435 * clear the PG_locked bit and test PG_waiters at the same time fairly
1436 * portably (architectures that do LL/SC can test any bit, while x86 can
1437 * test the sign bit).
1438 */
1439 void unlock_page(struct page *page)
1440 {
1441 BUILD_BUG_ON(PG_waiters != 7);
1442 page = compound_head(page);
1443 VM_BUG_ON_PAGE(!PageLocked(page), page);
1444 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1445 wake_up_page_bit(page, PG_locked);
1446 }
1447 EXPORT_SYMBOL(unlock_page);
1448
1449 /**
1450 * end_page_writeback - end writeback against a page
1451 * @page: the page
1452 */
1453 void end_page_writeback(struct page *page)
1454 {
1455 /*
1456 * TestClearPageReclaim could be used here but it is an atomic
1457 * operation and overkill in this particular case. Failing to
1458 * shuffle a page marked for immediate reclaim is too mild to
1459 * justify taking an atomic operation penalty at the end of
1460 * ever page writeback.
1461 */
1462 if (PageReclaim(page)) {
1463 ClearPageReclaim(page);
1464 rotate_reclaimable_page(page);
1465 }
1466
1467 if (!test_clear_page_writeback(page))
1468 BUG();
1469
1470 smp_mb__after_atomic();
1471 wake_up_page(page, PG_writeback);
1472 }
1473 EXPORT_SYMBOL(end_page_writeback);
1474
1475 /*
1476 * After completing I/O on a page, call this routine to update the page
1477 * flags appropriately
1478 */
1479 void page_endio(struct page *page, bool is_write, int err)
1480 {
1481 if (!is_write) {
1482 if (!err) {
1483 SetPageUptodate(page);
1484 } else {
1485 ClearPageUptodate(page);
1486 SetPageError(page);
1487 }
1488 unlock_page(page);
1489 } else {
1490 if (err) {
1491 struct address_space *mapping;
1492
1493 SetPageError(page);
1494 mapping = page_mapping(page);
1495 if (mapping)
1496 mapping_set_error(mapping, err);
1497 }
1498 end_page_writeback(page);
1499 }
1500 }
1501 EXPORT_SYMBOL_GPL(page_endio);
1502
1503 /**
1504 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1505 * @__page: the page to lock
1506 */
1507 void __lock_page(struct page *__page)
1508 {
1509 struct page *page = compound_head(__page);
1510 wait_queue_head_t *q = page_waitqueue(page);
1511 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1512 EXCLUSIVE);
1513 }
1514 EXPORT_SYMBOL(__lock_page);
1515
1516 int __lock_page_killable(struct page *__page)
1517 {
1518 struct page *page = compound_head(__page);
1519 wait_queue_head_t *q = page_waitqueue(page);
1520 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1521 EXCLUSIVE);
1522 }
1523 EXPORT_SYMBOL_GPL(__lock_page_killable);
1524
1525 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1526 {
1527 return __wait_on_page_locked_async(page, wait, true);
1528 }
1529
1530 /*
1531 * Return values:
1532 * 1 - page is locked; mmap_lock is still held.
1533 * 0 - page is not locked.
1534 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1535 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1536 * which case mmap_lock is still held.
1537 *
1538 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1539 * with the page locked and the mmap_lock unperturbed.
1540 */
1541 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1542 unsigned int flags)
1543 {
1544 if (fault_flag_allow_retry_first(flags)) {
1545 /*
1546 * CAUTION! In this case, mmap_lock is not released
1547 * even though return 0.
1548 */
1549 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1550 return 0;
1551
1552 mmap_read_unlock(mm);
1553 if (flags & FAULT_FLAG_KILLABLE)
1554 wait_on_page_locked_killable(page);
1555 else
1556 wait_on_page_locked(page);
1557 return 0;
1558 } else {
1559 if (flags & FAULT_FLAG_KILLABLE) {
1560 int ret;
1561
1562 ret = __lock_page_killable(page);
1563 if (ret) {
1564 mmap_read_unlock(mm);
1565 return 0;
1566 }
1567 } else
1568 __lock_page(page);
1569 return 1;
1570 }
1571 }
1572
1573 /**
1574 * page_cache_next_miss() - Find the next gap in the page cache.
1575 * @mapping: Mapping.
1576 * @index: Index.
1577 * @max_scan: Maximum range to search.
1578 *
1579 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1580 * gap with the lowest index.
1581 *
1582 * This function may be called under the rcu_read_lock. However, this will
1583 * not atomically search a snapshot of the cache at a single point in time.
1584 * For example, if a gap is created at index 5, then subsequently a gap is
1585 * created at index 10, page_cache_next_miss covering both indices may
1586 * return 10 if called under the rcu_read_lock.
1587 *
1588 * Return: The index of the gap if found, otherwise an index outside the
1589 * range specified (in which case 'return - index >= max_scan' will be true).
1590 * In the rare case of index wrap-around, 0 will be returned.
1591 */
1592 pgoff_t page_cache_next_miss(struct address_space *mapping,
1593 pgoff_t index, unsigned long max_scan)
1594 {
1595 XA_STATE(xas, &mapping->i_pages, index);
1596
1597 while (max_scan--) {
1598 void *entry = xas_next(&xas);
1599 if (!entry || xa_is_value(entry))
1600 break;
1601 if (xas.xa_index == 0)
1602 break;
1603 }
1604
1605 return xas.xa_index;
1606 }
1607 EXPORT_SYMBOL(page_cache_next_miss);
1608
1609 /**
1610 * page_cache_prev_miss() - Find the previous gap in the page cache.
1611 * @mapping: Mapping.
1612 * @index: Index.
1613 * @max_scan: Maximum range to search.
1614 *
1615 * Search the range [max(index - max_scan + 1, 0), index] for the
1616 * gap with the highest index.
1617 *
1618 * This function may be called under the rcu_read_lock. However, this will
1619 * not atomically search a snapshot of the cache at a single point in time.
1620 * For example, if a gap is created at index 10, then subsequently a gap is
1621 * created at index 5, page_cache_prev_miss() covering both indices may
1622 * return 5 if called under the rcu_read_lock.
1623 *
1624 * Return: The index of the gap if found, otherwise an index outside the
1625 * range specified (in which case 'index - return >= max_scan' will be true).
1626 * In the rare case of wrap-around, ULONG_MAX will be returned.
1627 */
1628 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1629 pgoff_t index, unsigned long max_scan)
1630 {
1631 XA_STATE(xas, &mapping->i_pages, index);
1632
1633 while (max_scan--) {
1634 void *entry = xas_prev(&xas);
1635 if (!entry || xa_is_value(entry))
1636 break;
1637 if (xas.xa_index == ULONG_MAX)
1638 break;
1639 }
1640
1641 return xas.xa_index;
1642 }
1643 EXPORT_SYMBOL(page_cache_prev_miss);
1644
1645 /**
1646 * find_get_entry - find and get a page cache entry
1647 * @mapping: the address_space to search
1648 * @offset: the page cache index
1649 *
1650 * Looks up the page cache slot at @mapping & @offset. If there is a
1651 * page cache page, it is returned with an increased refcount.
1652 *
1653 * If the slot holds a shadow entry of a previously evicted page, or a
1654 * swap entry from shmem/tmpfs, it is returned.
1655 *
1656 * Return: the found page or shadow entry, %NULL if nothing is found.
1657 */
1658 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1659 {
1660 XA_STATE(xas, &mapping->i_pages, offset);
1661 struct page *page;
1662
1663 rcu_read_lock();
1664 repeat:
1665 xas_reset(&xas);
1666 page = xas_load(&xas);
1667 if (xas_retry(&xas, page))
1668 goto repeat;
1669 /*
1670 * A shadow entry of a recently evicted page, or a swap entry from
1671 * shmem/tmpfs. Return it without attempting to raise page count.
1672 */
1673 if (!page || xa_is_value(page))
1674 goto out;
1675
1676 if (!page_cache_get_speculative(page))
1677 goto repeat;
1678
1679 /*
1680 * Has the page moved or been split?
1681 * This is part of the lockless pagecache protocol. See
1682 * include/linux/pagemap.h for details.
1683 */
1684 if (unlikely(page != xas_reload(&xas))) {
1685 put_page(page);
1686 goto repeat;
1687 }
1688 page = find_subpage(page, offset);
1689 out:
1690 rcu_read_unlock();
1691
1692 return page;
1693 }
1694
1695 /**
1696 * find_lock_entry - locate, pin and lock a page cache entry
1697 * @mapping: the address_space to search
1698 * @offset: the page cache index
1699 *
1700 * Looks up the page cache slot at @mapping & @offset. If there is a
1701 * page cache page, it is returned locked and with an increased
1702 * refcount.
1703 *
1704 * If the slot holds a shadow entry of a previously evicted page, or a
1705 * swap entry from shmem/tmpfs, it is returned.
1706 *
1707 * find_lock_entry() may sleep.
1708 *
1709 * Return: the found page or shadow entry, %NULL if nothing is found.
1710 */
1711 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1712 {
1713 struct page *page;
1714
1715 repeat:
1716 page = find_get_entry(mapping, offset);
1717 if (page && !xa_is_value(page)) {
1718 lock_page(page);
1719 /* Has the page been truncated? */
1720 if (unlikely(page_mapping(page) != mapping)) {
1721 unlock_page(page);
1722 put_page(page);
1723 goto repeat;
1724 }
1725 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1726 }
1727 return page;
1728 }
1729 EXPORT_SYMBOL(find_lock_entry);
1730
1731 /**
1732 * pagecache_get_page - Find and get a reference to a page.
1733 * @mapping: The address_space to search.
1734 * @index: The page index.
1735 * @fgp_flags: %FGP flags modify how the page is returned.
1736 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1737 *
1738 * Looks up the page cache entry at @mapping & @index.
1739 *
1740 * @fgp_flags can be zero or more of these flags:
1741 *
1742 * * %FGP_ACCESSED - The page will be marked accessed.
1743 * * %FGP_LOCK - The page is returned locked.
1744 * * %FGP_CREAT - If no page is present then a new page is allocated using
1745 * @gfp_mask and added to the page cache and the VM's LRU list.
1746 * The page is returned locked and with an increased refcount.
1747 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1748 * page is already in cache. If the page was allocated, unlock it before
1749 * returning so the caller can do the same dance.
1750 * * %FGP_WRITE - The page will be written
1751 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1752 * * %FGP_NOWAIT - Don't get blocked by page lock
1753 *
1754 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1755 * if the %GFP flags specified for %FGP_CREAT are atomic.
1756 *
1757 * If there is a page cache page, it is returned with an increased refcount.
1758 *
1759 * Return: The found page or %NULL otherwise.
1760 */
1761 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1762 int fgp_flags, gfp_t gfp_mask)
1763 {
1764 struct page *page;
1765
1766 repeat:
1767 page = find_get_entry(mapping, index);
1768 if (xa_is_value(page))
1769 page = NULL;
1770 if (!page)
1771 goto no_page;
1772
1773 if (fgp_flags & FGP_LOCK) {
1774 if (fgp_flags & FGP_NOWAIT) {
1775 if (!trylock_page(page)) {
1776 put_page(page);
1777 return NULL;
1778 }
1779 } else {
1780 lock_page(page);
1781 }
1782
1783 /* Has the page been truncated? */
1784 if (unlikely(compound_head(page)->mapping != mapping)) {
1785 unlock_page(page);
1786 put_page(page);
1787 goto repeat;
1788 }
1789 VM_BUG_ON_PAGE(page->index != index, page);
1790 }
1791
1792 if (fgp_flags & FGP_ACCESSED)
1793 mark_page_accessed(page);
1794 else if (fgp_flags & FGP_WRITE) {
1795 /* Clear idle flag for buffer write */
1796 if (page_is_idle(page))
1797 clear_page_idle(page);
1798 }
1799
1800 no_page:
1801 if (!page && (fgp_flags & FGP_CREAT)) {
1802 int err;
1803 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1804 gfp_mask |= __GFP_WRITE;
1805 if (fgp_flags & FGP_NOFS)
1806 gfp_mask &= ~__GFP_FS;
1807
1808 page = __page_cache_alloc(gfp_mask);
1809 if (!page)
1810 return NULL;
1811
1812 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1813 fgp_flags |= FGP_LOCK;
1814
1815 /* Init accessed so avoid atomic mark_page_accessed later */
1816 if (fgp_flags & FGP_ACCESSED)
1817 __SetPageReferenced(page);
1818
1819 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1820 if (unlikely(err)) {
1821 put_page(page);
1822 page = NULL;
1823 if (err == -EEXIST)
1824 goto repeat;
1825 }
1826
1827 /*
1828 * add_to_page_cache_lru locks the page, and for mmap we expect
1829 * an unlocked page.
1830 */
1831 if (page && (fgp_flags & FGP_FOR_MMAP))
1832 unlock_page(page);
1833 }
1834
1835 return page;
1836 }
1837 EXPORT_SYMBOL(pagecache_get_page);
1838
1839 /**
1840 * find_get_entries - gang pagecache lookup
1841 * @mapping: The address_space to search
1842 * @start: The starting page cache index
1843 * @nr_entries: The maximum number of entries
1844 * @entries: Where the resulting entries are placed
1845 * @indices: The cache indices corresponding to the entries in @entries
1846 *
1847 * find_get_entries() will search for and return a group of up to
1848 * @nr_entries entries in the mapping. The entries are placed at
1849 * @entries. find_get_entries() takes a reference against any actual
1850 * pages it returns.
1851 *
1852 * The search returns a group of mapping-contiguous page cache entries
1853 * with ascending indexes. There may be holes in the indices due to
1854 * not-present pages.
1855 *
1856 * Any shadow entries of evicted pages, or swap entries from
1857 * shmem/tmpfs, are included in the returned array.
1858 *
1859 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1860 * stops at that page: the caller is likely to have a better way to handle
1861 * the compound page as a whole, and then skip its extent, than repeatedly
1862 * calling find_get_entries() to return all its tails.
1863 *
1864 * Return: the number of pages and shadow entries which were found.
1865 */
1866 unsigned find_get_entries(struct address_space *mapping,
1867 pgoff_t start, unsigned int nr_entries,
1868 struct page **entries, pgoff_t *indices)
1869 {
1870 XA_STATE(xas, &mapping->i_pages, start);
1871 struct page *page;
1872 unsigned int ret = 0;
1873
1874 if (!nr_entries)
1875 return 0;
1876
1877 rcu_read_lock();
1878 xas_for_each(&xas, page, ULONG_MAX) {
1879 if (xas_retry(&xas, page))
1880 continue;
1881 /*
1882 * A shadow entry of a recently evicted page, a swap
1883 * entry from shmem/tmpfs or a DAX entry. Return it
1884 * without attempting to raise page count.
1885 */
1886 if (xa_is_value(page))
1887 goto export;
1888
1889 if (!page_cache_get_speculative(page))
1890 goto retry;
1891
1892 /* Has the page moved or been split? */
1893 if (unlikely(page != xas_reload(&xas)))
1894 goto put_page;
1895
1896 /*
1897 * Terminate early on finding a THP, to allow the caller to
1898 * handle it all at once; but continue if this is hugetlbfs.
1899 */
1900 if (PageTransHuge(page) && !PageHuge(page)) {
1901 page = find_subpage(page, xas.xa_index);
1902 nr_entries = ret + 1;
1903 }
1904 export:
1905 indices[ret] = xas.xa_index;
1906 entries[ret] = page;
1907 if (++ret == nr_entries)
1908 break;
1909 continue;
1910 put_page:
1911 put_page(page);
1912 retry:
1913 xas_reset(&xas);
1914 }
1915 rcu_read_unlock();
1916 return ret;
1917 }
1918
1919 /**
1920 * find_get_pages_range - gang pagecache lookup
1921 * @mapping: The address_space to search
1922 * @start: The starting page index
1923 * @end: The final page index (inclusive)
1924 * @nr_pages: The maximum number of pages
1925 * @pages: Where the resulting pages are placed
1926 *
1927 * find_get_pages_range() will search for and return a group of up to @nr_pages
1928 * pages in the mapping starting at index @start and up to index @end
1929 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1930 * a reference against the returned pages.
1931 *
1932 * The search returns a group of mapping-contiguous pages with ascending
1933 * indexes. There may be holes in the indices due to not-present pages.
1934 * We also update @start to index the next page for the traversal.
1935 *
1936 * Return: the number of pages which were found. If this number is
1937 * smaller than @nr_pages, the end of specified range has been
1938 * reached.
1939 */
1940 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1941 pgoff_t end, unsigned int nr_pages,
1942 struct page **pages)
1943 {
1944 XA_STATE(xas, &mapping->i_pages, *start);
1945 struct page *page;
1946 unsigned ret = 0;
1947
1948 if (unlikely(!nr_pages))
1949 return 0;
1950
1951 rcu_read_lock();
1952 xas_for_each(&xas, page, end) {
1953 if (xas_retry(&xas, page))
1954 continue;
1955 /* Skip over shadow, swap and DAX entries */
1956 if (xa_is_value(page))
1957 continue;
1958
1959 if (!page_cache_get_speculative(page))
1960 goto retry;
1961
1962 /* Has the page moved or been split? */
1963 if (unlikely(page != xas_reload(&xas)))
1964 goto put_page;
1965
1966 pages[ret] = find_subpage(page, xas.xa_index);
1967 if (++ret == nr_pages) {
1968 *start = xas.xa_index + 1;
1969 goto out;
1970 }
1971 continue;
1972 put_page:
1973 put_page(page);
1974 retry:
1975 xas_reset(&xas);
1976 }
1977
1978 /*
1979 * We come here when there is no page beyond @end. We take care to not
1980 * overflow the index @start as it confuses some of the callers. This
1981 * breaks the iteration when there is a page at index -1 but that is
1982 * already broken anyway.
1983 */
1984 if (end == (pgoff_t)-1)
1985 *start = (pgoff_t)-1;
1986 else
1987 *start = end + 1;
1988 out:
1989 rcu_read_unlock();
1990
1991 return ret;
1992 }
1993
1994 /**
1995 * find_get_pages_contig - gang contiguous pagecache lookup
1996 * @mapping: The address_space to search
1997 * @index: The starting page index
1998 * @nr_pages: The maximum number of pages
1999 * @pages: Where the resulting pages are placed
2000 *
2001 * find_get_pages_contig() works exactly like find_get_pages(), except
2002 * that the returned number of pages are guaranteed to be contiguous.
2003 *
2004 * Return: the number of pages which were found.
2005 */
2006 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2007 unsigned int nr_pages, struct page **pages)
2008 {
2009 XA_STATE(xas, &mapping->i_pages, index);
2010 struct page *page;
2011 unsigned int ret = 0;
2012
2013 if (unlikely(!nr_pages))
2014 return 0;
2015
2016 rcu_read_lock();
2017 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2018 if (xas_retry(&xas, page))
2019 continue;
2020 /*
2021 * If the entry has been swapped out, we can stop looking.
2022 * No current caller is looking for DAX entries.
2023 */
2024 if (xa_is_value(page))
2025 break;
2026
2027 if (!page_cache_get_speculative(page))
2028 goto retry;
2029
2030 /* Has the page moved or been split? */
2031 if (unlikely(page != xas_reload(&xas)))
2032 goto put_page;
2033
2034 pages[ret] = find_subpage(page, xas.xa_index);
2035 if (++ret == nr_pages)
2036 break;
2037 continue;
2038 put_page:
2039 put_page(page);
2040 retry:
2041 xas_reset(&xas);
2042 }
2043 rcu_read_unlock();
2044 return ret;
2045 }
2046 EXPORT_SYMBOL(find_get_pages_contig);
2047
2048 /**
2049 * find_get_pages_range_tag - find and return pages in given range matching @tag
2050 * @mapping: the address_space to search
2051 * @index: the starting page index
2052 * @end: The final page index (inclusive)
2053 * @tag: the tag index
2054 * @nr_pages: the maximum number of pages
2055 * @pages: where the resulting pages are placed
2056 *
2057 * Like find_get_pages, except we only return pages which are tagged with
2058 * @tag. We update @index to index the next page for the traversal.
2059 *
2060 * Return: the number of pages which were found.
2061 */
2062 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2063 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2064 struct page **pages)
2065 {
2066 XA_STATE(xas, &mapping->i_pages, *index);
2067 struct page *page;
2068 unsigned ret = 0;
2069
2070 if (unlikely(!nr_pages))
2071 return 0;
2072
2073 rcu_read_lock();
2074 xas_for_each_marked(&xas, page, end, tag) {
2075 if (xas_retry(&xas, page))
2076 continue;
2077 /*
2078 * Shadow entries should never be tagged, but this iteration
2079 * is lockless so there is a window for page reclaim to evict
2080 * a page we saw tagged. Skip over it.
2081 */
2082 if (xa_is_value(page))
2083 continue;
2084
2085 if (!page_cache_get_speculative(page))
2086 goto retry;
2087
2088 /* Has the page moved or been split? */
2089 if (unlikely(page != xas_reload(&xas)))
2090 goto put_page;
2091
2092 pages[ret] = find_subpage(page, xas.xa_index);
2093 if (++ret == nr_pages) {
2094 *index = xas.xa_index + 1;
2095 goto out;
2096 }
2097 continue;
2098 put_page:
2099 put_page(page);
2100 retry:
2101 xas_reset(&xas);
2102 }
2103
2104 /*
2105 * We come here when we got to @end. We take care to not overflow the
2106 * index @index as it confuses some of the callers. This breaks the
2107 * iteration when there is a page at index -1 but that is already
2108 * broken anyway.
2109 */
2110 if (end == (pgoff_t)-1)
2111 *index = (pgoff_t)-1;
2112 else
2113 *index = end + 1;
2114 out:
2115 rcu_read_unlock();
2116
2117 return ret;
2118 }
2119 EXPORT_SYMBOL(find_get_pages_range_tag);
2120
2121 /*
2122 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2123 * a _large_ part of the i/o request. Imagine the worst scenario:
2124 *
2125 * ---R__________________________________________B__________
2126 * ^ reading here ^ bad block(assume 4k)
2127 *
2128 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2129 * => failing the whole request => read(R) => read(R+1) =>
2130 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2131 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2132 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2133 *
2134 * It is going insane. Fix it by quickly scaling down the readahead size.
2135 */
2136 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2137 {
2138 ra->ra_pages /= 4;
2139 }
2140
2141 /**
2142 * generic_file_buffered_read - generic file read routine
2143 * @iocb: the iocb to read
2144 * @iter: data destination
2145 * @written: already copied
2146 *
2147 * This is a generic file read routine, and uses the
2148 * mapping->a_ops->readpage() function for the actual low-level stuff.
2149 *
2150 * This is really ugly. But the goto's actually try to clarify some
2151 * of the logic when it comes to error handling etc.
2152 *
2153 * Return:
2154 * * total number of bytes copied, including those the were already @written
2155 * * negative error code if nothing was copied
2156 */
2157 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2158 struct iov_iter *iter, ssize_t written)
2159 {
2160 struct file *filp = iocb->ki_filp;
2161 struct address_space *mapping = filp->f_mapping;
2162 struct inode *inode = mapping->host;
2163 struct file_ra_state *ra = &filp->f_ra;
2164 loff_t *ppos = &iocb->ki_pos;
2165 pgoff_t index;
2166 pgoff_t last_index;
2167 pgoff_t prev_index;
2168 unsigned long offset; /* offset into pagecache page */
2169 unsigned int prev_offset;
2170 int error = 0;
2171
2172 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2173 return 0;
2174 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2175
2176 index = *ppos >> PAGE_SHIFT;
2177 prev_index = ra->prev_pos >> PAGE_SHIFT;
2178 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2179 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2180 offset = *ppos & ~PAGE_MASK;
2181
2182 for (;;) {
2183 struct page *page;
2184 pgoff_t end_index;
2185 loff_t isize;
2186 unsigned long nr, ret;
2187
2188 cond_resched();
2189 find_page:
2190 if (fatal_signal_pending(current)) {
2191 error = -EINTR;
2192 goto out;
2193 }
2194
2195 page = find_get_page(mapping, index);
2196 if (!page) {
2197 if (iocb->ki_flags & IOCB_NOIO)
2198 goto would_block;
2199 page_cache_sync_readahead(mapping,
2200 ra, filp,
2201 index, last_index - index);
2202 page = find_get_page(mapping, index);
2203 if (unlikely(page == NULL))
2204 goto no_cached_page;
2205 }
2206 if (PageReadahead(page)) {
2207 if (iocb->ki_flags & IOCB_NOIO) {
2208 put_page(page);
2209 goto out;
2210 }
2211 page_cache_async_readahead(mapping,
2212 ra, filp, page,
2213 index, last_index - index);
2214 }
2215 if (!PageUptodate(page)) {
2216 /*
2217 * See comment in do_read_cache_page on why
2218 * wait_on_page_locked is used to avoid unnecessarily
2219 * serialisations and why it's safe.
2220 */
2221 if (iocb->ki_flags & IOCB_WAITQ) {
2222 if (written) {
2223 put_page(page);
2224 goto out;
2225 }
2226 error = wait_on_page_locked_async(page,
2227 iocb->ki_waitq);
2228 } else {
2229 if (iocb->ki_flags & IOCB_NOWAIT) {
2230 put_page(page);
2231 goto would_block;
2232 }
2233 error = wait_on_page_locked_killable(page);
2234 }
2235 if (unlikely(error))
2236 goto readpage_error;
2237 if (PageUptodate(page))
2238 goto page_ok;
2239
2240 if (inode->i_blkbits == PAGE_SHIFT ||
2241 !mapping->a_ops->is_partially_uptodate)
2242 goto page_not_up_to_date;
2243 /* pipes can't handle partially uptodate pages */
2244 if (unlikely(iov_iter_is_pipe(iter)))
2245 goto page_not_up_to_date;
2246 if (!trylock_page(page))
2247 goto page_not_up_to_date;
2248 /* Did it get truncated before we got the lock? */
2249 if (!page->mapping)
2250 goto page_not_up_to_date_locked;
2251 if (!mapping->a_ops->is_partially_uptodate(page,
2252 offset, iter->count))
2253 goto page_not_up_to_date_locked;
2254 unlock_page(page);
2255 }
2256 page_ok:
2257 /*
2258 * i_size must be checked after we know the page is Uptodate.
2259 *
2260 * Checking i_size after the check allows us to calculate
2261 * the correct value for "nr", which means the zero-filled
2262 * part of the page is not copied back to userspace (unless
2263 * another truncate extends the file - this is desired though).
2264 */
2265
2266 isize = i_size_read(inode);
2267 end_index = (isize - 1) >> PAGE_SHIFT;
2268 if (unlikely(!isize || index > end_index)) {
2269 put_page(page);
2270 goto out;
2271 }
2272
2273 /* nr is the maximum number of bytes to copy from this page */
2274 nr = PAGE_SIZE;
2275 if (index == end_index) {
2276 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2277 if (nr <= offset) {
2278 put_page(page);
2279 goto out;
2280 }
2281 }
2282 nr = nr - offset;
2283
2284 /* If users can be writing to this page using arbitrary
2285 * virtual addresses, take care about potential aliasing
2286 * before reading the page on the kernel side.
2287 */
2288 if (mapping_writably_mapped(mapping))
2289 flush_dcache_page(page);
2290
2291 /*
2292 * When a sequential read accesses a page several times,
2293 * only mark it as accessed the first time.
2294 */
2295 if (prev_index != index || offset != prev_offset)
2296 mark_page_accessed(page);
2297 prev_index = index;
2298
2299 /*
2300 * Ok, we have the page, and it's up-to-date, so
2301 * now we can copy it to user space...
2302 */
2303
2304 ret = copy_page_to_iter(page, offset, nr, iter);
2305 offset += ret;
2306 index += offset >> PAGE_SHIFT;
2307 offset &= ~PAGE_MASK;
2308 prev_offset = offset;
2309
2310 put_page(page);
2311 written += ret;
2312 if (!iov_iter_count(iter))
2313 goto out;
2314 if (ret < nr) {
2315 error = -EFAULT;
2316 goto out;
2317 }
2318 continue;
2319
2320 page_not_up_to_date:
2321 /* Get exclusive access to the page ... */
2322 if (iocb->ki_flags & IOCB_WAITQ)
2323 error = lock_page_async(page, iocb->ki_waitq);
2324 else
2325 error = lock_page_killable(page);
2326 if (unlikely(error))
2327 goto readpage_error;
2328
2329 page_not_up_to_date_locked:
2330 /* Did it get truncated before we got the lock? */
2331 if (!page->mapping) {
2332 unlock_page(page);
2333 put_page(page);
2334 continue;
2335 }
2336
2337 /* Did somebody else fill it already? */
2338 if (PageUptodate(page)) {
2339 unlock_page(page);
2340 goto page_ok;
2341 }
2342
2343 readpage:
2344 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2345 unlock_page(page);
2346 put_page(page);
2347 goto would_block;
2348 }
2349 /*
2350 * A previous I/O error may have been due to temporary
2351 * failures, eg. multipath errors.
2352 * PG_error will be set again if readpage fails.
2353 */
2354 ClearPageError(page);
2355 /* Start the actual read. The read will unlock the page. */
2356 error = mapping->a_ops->readpage(filp, page);
2357
2358 if (unlikely(error)) {
2359 if (error == AOP_TRUNCATED_PAGE) {
2360 put_page(page);
2361 error = 0;
2362 goto find_page;
2363 }
2364 goto readpage_error;
2365 }
2366
2367 if (!PageUptodate(page)) {
2368 error = lock_page_killable(page);
2369 if (unlikely(error))
2370 goto readpage_error;
2371 if (!PageUptodate(page)) {
2372 if (page->mapping == NULL) {
2373 /*
2374 * invalidate_mapping_pages got it
2375 */
2376 unlock_page(page);
2377 put_page(page);
2378 goto find_page;
2379 }
2380 unlock_page(page);
2381 shrink_readahead_size_eio(ra);
2382 error = -EIO;
2383 goto readpage_error;
2384 }
2385 unlock_page(page);
2386 }
2387
2388 goto page_ok;
2389
2390 readpage_error:
2391 /* UHHUH! A synchronous read error occurred. Report it */
2392 put_page(page);
2393 goto out;
2394
2395 no_cached_page:
2396 /*
2397 * Ok, it wasn't cached, so we need to create a new
2398 * page..
2399 */
2400 page = page_cache_alloc(mapping);
2401 if (!page) {
2402 error = -ENOMEM;
2403 goto out;
2404 }
2405 error = add_to_page_cache_lru(page, mapping, index,
2406 mapping_gfp_constraint(mapping, GFP_KERNEL));
2407 if (error) {
2408 put_page(page);
2409 if (error == -EEXIST) {
2410 error = 0;
2411 goto find_page;
2412 }
2413 goto out;
2414 }
2415 goto readpage;
2416 }
2417
2418 would_block:
2419 error = -EAGAIN;
2420 out:
2421 ra->prev_pos = prev_index;
2422 ra->prev_pos <<= PAGE_SHIFT;
2423 ra->prev_pos |= prev_offset;
2424
2425 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2426 file_accessed(filp);
2427 return written ? written : error;
2428 }
2429 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2430
2431 /**
2432 * generic_file_read_iter - generic filesystem read routine
2433 * @iocb: kernel I/O control block
2434 * @iter: destination for the data read
2435 *
2436 * This is the "read_iter()" routine for all filesystems
2437 * that can use the page cache directly.
2438 *
2439 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2440 * be returned when no data can be read without waiting for I/O requests
2441 * to complete; it doesn't prevent readahead.
2442 *
2443 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2444 * requests shall be made for the read or for readahead. When no data
2445 * can be read, -EAGAIN shall be returned. When readahead would be
2446 * triggered, a partial, possibly empty read shall be returned.
2447 *
2448 * Return:
2449 * * number of bytes copied, even for partial reads
2450 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2451 */
2452 ssize_t
2453 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2454 {
2455 size_t count = iov_iter_count(iter);
2456 ssize_t retval = 0;
2457
2458 if (!count)
2459 goto out; /* skip atime */
2460
2461 if (iocb->ki_flags & IOCB_DIRECT) {
2462 struct file *file = iocb->ki_filp;
2463 struct address_space *mapping = file->f_mapping;
2464 struct inode *inode = mapping->host;
2465 loff_t size;
2466
2467 size = i_size_read(inode);
2468 if (iocb->ki_flags & IOCB_NOWAIT) {
2469 if (filemap_range_has_page(mapping, iocb->ki_pos,
2470 iocb->ki_pos + count - 1))
2471 return -EAGAIN;
2472 } else {
2473 retval = filemap_write_and_wait_range(mapping,
2474 iocb->ki_pos,
2475 iocb->ki_pos + count - 1);
2476 if (retval < 0)
2477 goto out;
2478 }
2479
2480 file_accessed(file);
2481
2482 retval = mapping->a_ops->direct_IO(iocb, iter);
2483 if (retval >= 0) {
2484 iocb->ki_pos += retval;
2485 count -= retval;
2486 }
2487 iov_iter_revert(iter, count - iov_iter_count(iter));
2488
2489 /*
2490 * Btrfs can have a short DIO read if we encounter
2491 * compressed extents, so if there was an error, or if
2492 * we've already read everything we wanted to, or if
2493 * there was a short read because we hit EOF, go ahead
2494 * and return. Otherwise fallthrough to buffered io for
2495 * the rest of the read. Buffered reads will not work for
2496 * DAX files, so don't bother trying.
2497 */
2498 if (retval < 0 || !count || iocb->ki_pos >= size ||
2499 IS_DAX(inode))
2500 goto out;
2501 }
2502
2503 retval = generic_file_buffered_read(iocb, iter, retval);
2504 out:
2505 return retval;
2506 }
2507 EXPORT_SYMBOL(generic_file_read_iter);
2508
2509 #ifdef CONFIG_MMU
2510 #define MMAP_LOTSAMISS (100)
2511 /*
2512 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2513 * @vmf - the vm_fault for this fault.
2514 * @page - the page to lock.
2515 * @fpin - the pointer to the file we may pin (or is already pinned).
2516 *
2517 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2518 * It differs in that it actually returns the page locked if it returns 1 and 0
2519 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2520 * will point to the pinned file and needs to be fput()'ed at a later point.
2521 */
2522 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2523 struct file **fpin)
2524 {
2525 if (trylock_page(page))
2526 return 1;
2527
2528 /*
2529 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2530 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2531 * is supposed to work. We have way too many special cases..
2532 */
2533 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2534 return 0;
2535
2536 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2537 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2538 if (__lock_page_killable(page)) {
2539 /*
2540 * We didn't have the right flags to drop the mmap_lock,
2541 * but all fault_handlers only check for fatal signals
2542 * if we return VM_FAULT_RETRY, so we need to drop the
2543 * mmap_lock here and return 0 if we don't have a fpin.
2544 */
2545 if (*fpin == NULL)
2546 mmap_read_unlock(vmf->vma->vm_mm);
2547 return 0;
2548 }
2549 } else
2550 __lock_page(page);
2551 return 1;
2552 }
2553
2554
2555 /*
2556 * Synchronous readahead happens when we don't even find a page in the page
2557 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2558 * to drop the mmap sem we return the file that was pinned in order for us to do
2559 * that. If we didn't pin a file then we return NULL. The file that is
2560 * returned needs to be fput()'ed when we're done with it.
2561 */
2562 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2563 {
2564 struct file *file = vmf->vma->vm_file;
2565 struct file_ra_state *ra = &file->f_ra;
2566 struct address_space *mapping = file->f_mapping;
2567 struct file *fpin = NULL;
2568 pgoff_t offset = vmf->pgoff;
2569 unsigned int mmap_miss;
2570
2571 /* If we don't want any read-ahead, don't bother */
2572 if (vmf->vma->vm_flags & VM_RAND_READ)
2573 return fpin;
2574 if (!ra->ra_pages)
2575 return fpin;
2576
2577 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2578 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2579 page_cache_sync_readahead(mapping, ra, file, offset,
2580 ra->ra_pages);
2581 return fpin;
2582 }
2583
2584 /* Avoid banging the cache line if not needed */
2585 mmap_miss = READ_ONCE(ra->mmap_miss);
2586 if (mmap_miss < MMAP_LOTSAMISS * 10)
2587 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2588
2589 /*
2590 * Do we miss much more than hit in this file? If so,
2591 * stop bothering with read-ahead. It will only hurt.
2592 */
2593 if (mmap_miss > MMAP_LOTSAMISS)
2594 return fpin;
2595
2596 /*
2597 * mmap read-around
2598 */
2599 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2600 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2601 ra->size = ra->ra_pages;
2602 ra->async_size = ra->ra_pages / 4;
2603 ra_submit(ra, mapping, file);
2604 return fpin;
2605 }
2606
2607 /*
2608 * Asynchronous readahead happens when we find the page and PG_readahead,
2609 * so we want to possibly extend the readahead further. We return the file that
2610 * was pinned if we have to drop the mmap_lock in order to do IO.
2611 */
2612 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2613 struct page *page)
2614 {
2615 struct file *file = vmf->vma->vm_file;
2616 struct file_ra_state *ra = &file->f_ra;
2617 struct address_space *mapping = file->f_mapping;
2618 struct file *fpin = NULL;
2619 unsigned int mmap_miss;
2620 pgoff_t offset = vmf->pgoff;
2621
2622 /* If we don't want any read-ahead, don't bother */
2623 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2624 return fpin;
2625 mmap_miss = READ_ONCE(ra->mmap_miss);
2626 if (mmap_miss)
2627 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2628 if (PageReadahead(page)) {
2629 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2630 page_cache_async_readahead(mapping, ra, file,
2631 page, offset, ra->ra_pages);
2632 }
2633 return fpin;
2634 }
2635
2636 /**
2637 * filemap_fault - read in file data for page fault handling
2638 * @vmf: struct vm_fault containing details of the fault
2639 *
2640 * filemap_fault() is invoked via the vma operations vector for a
2641 * mapped memory region to read in file data during a page fault.
2642 *
2643 * The goto's are kind of ugly, but this streamlines the normal case of having
2644 * it in the page cache, and handles the special cases reasonably without
2645 * having a lot of duplicated code.
2646 *
2647 * vma->vm_mm->mmap_lock must be held on entry.
2648 *
2649 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2650 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2651 *
2652 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2653 * has not been released.
2654 *
2655 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2656 *
2657 * Return: bitwise-OR of %VM_FAULT_ codes.
2658 */
2659 vm_fault_t filemap_fault(struct vm_fault *vmf)
2660 {
2661 int error;
2662 struct file *file = vmf->vma->vm_file;
2663 struct file *fpin = NULL;
2664 struct address_space *mapping = file->f_mapping;
2665 struct file_ra_state *ra = &file->f_ra;
2666 struct inode *inode = mapping->host;
2667 pgoff_t offset = vmf->pgoff;
2668 pgoff_t max_off;
2669 struct page *page;
2670 vm_fault_t ret = 0;
2671
2672 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2673 if (unlikely(offset >= max_off))
2674 return VM_FAULT_SIGBUS;
2675
2676 /*
2677 * Do we have something in the page cache already?
2678 */
2679 page = find_get_page(mapping, offset);
2680 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2681 /*
2682 * We found the page, so try async readahead before
2683 * waiting for the lock.
2684 */
2685 fpin = do_async_mmap_readahead(vmf, page);
2686 } else if (!page) {
2687 /* No page in the page cache at all */
2688 count_vm_event(PGMAJFAULT);
2689 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2690 ret = VM_FAULT_MAJOR;
2691 fpin = do_sync_mmap_readahead(vmf);
2692 retry_find:
2693 page = pagecache_get_page(mapping, offset,
2694 FGP_CREAT|FGP_FOR_MMAP,
2695 vmf->gfp_mask);
2696 if (!page) {
2697 if (fpin)
2698 goto out_retry;
2699 return VM_FAULT_OOM;
2700 }
2701 }
2702
2703 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2704 goto out_retry;
2705
2706 /* Did it get truncated? */
2707 if (unlikely(compound_head(page)->mapping != mapping)) {
2708 unlock_page(page);
2709 put_page(page);
2710 goto retry_find;
2711 }
2712 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2713
2714 /*
2715 * We have a locked page in the page cache, now we need to check
2716 * that it's up-to-date. If not, it is going to be due to an error.
2717 */
2718 if (unlikely(!PageUptodate(page)))
2719 goto page_not_uptodate;
2720
2721 /*
2722 * We've made it this far and we had to drop our mmap_lock, now is the
2723 * time to return to the upper layer and have it re-find the vma and
2724 * redo the fault.
2725 */
2726 if (fpin) {
2727 unlock_page(page);
2728 goto out_retry;
2729 }
2730
2731 /*
2732 * Found the page and have a reference on it.
2733 * We must recheck i_size under page lock.
2734 */
2735 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2736 if (unlikely(offset >= max_off)) {
2737 unlock_page(page);
2738 put_page(page);
2739 return VM_FAULT_SIGBUS;
2740 }
2741
2742 vmf->page = page;
2743 return ret | VM_FAULT_LOCKED;
2744
2745 page_not_uptodate:
2746 /*
2747 * Umm, take care of errors if the page isn't up-to-date.
2748 * Try to re-read it _once_. We do this synchronously,
2749 * because there really aren't any performance issues here
2750 * and we need to check for errors.
2751 */
2752 ClearPageError(page);
2753 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2754 error = mapping->a_ops->readpage(file, page);
2755 if (!error) {
2756 wait_on_page_locked(page);
2757 if (!PageUptodate(page))
2758 error = -EIO;
2759 }
2760 if (fpin)
2761 goto out_retry;
2762 put_page(page);
2763
2764 if (!error || error == AOP_TRUNCATED_PAGE)
2765 goto retry_find;
2766
2767 shrink_readahead_size_eio(ra);
2768 return VM_FAULT_SIGBUS;
2769
2770 out_retry:
2771 /*
2772 * We dropped the mmap_lock, we need to return to the fault handler to
2773 * re-find the vma and come back and find our hopefully still populated
2774 * page.
2775 */
2776 if (page)
2777 put_page(page);
2778 if (fpin)
2779 fput(fpin);
2780 return ret | VM_FAULT_RETRY;
2781 }
2782 EXPORT_SYMBOL(filemap_fault);
2783
2784 void filemap_map_pages(struct vm_fault *vmf,
2785 pgoff_t start_pgoff, pgoff_t end_pgoff)
2786 {
2787 struct file *file = vmf->vma->vm_file;
2788 struct address_space *mapping = file->f_mapping;
2789 pgoff_t last_pgoff = start_pgoff;
2790 unsigned long max_idx;
2791 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2792 struct page *page;
2793 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2794
2795 rcu_read_lock();
2796 xas_for_each(&xas, page, end_pgoff) {
2797 if (xas_retry(&xas, page))
2798 continue;
2799 if (xa_is_value(page))
2800 goto next;
2801
2802 /*
2803 * Check for a locked page first, as a speculative
2804 * reference may adversely influence page migration.
2805 */
2806 if (PageLocked(page))
2807 goto next;
2808 if (!page_cache_get_speculative(page))
2809 goto next;
2810
2811 /* Has the page moved or been split? */
2812 if (unlikely(page != xas_reload(&xas)))
2813 goto skip;
2814 page = find_subpage(page, xas.xa_index);
2815
2816 if (!PageUptodate(page) ||
2817 PageReadahead(page) ||
2818 PageHWPoison(page))
2819 goto skip;
2820 if (!trylock_page(page))
2821 goto skip;
2822
2823 if (page->mapping != mapping || !PageUptodate(page))
2824 goto unlock;
2825
2826 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2827 if (page->index >= max_idx)
2828 goto unlock;
2829
2830 if (mmap_miss > 0)
2831 mmap_miss--;
2832
2833 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2834 if (vmf->pte)
2835 vmf->pte += xas.xa_index - last_pgoff;
2836 last_pgoff = xas.xa_index;
2837 if (alloc_set_pte(vmf, page))
2838 goto unlock;
2839 unlock_page(page);
2840 goto next;
2841 unlock:
2842 unlock_page(page);
2843 skip:
2844 put_page(page);
2845 next:
2846 /* Huge page is mapped? No need to proceed. */
2847 if (pmd_trans_huge(*vmf->pmd))
2848 break;
2849 }
2850 rcu_read_unlock();
2851 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2852 }
2853 EXPORT_SYMBOL(filemap_map_pages);
2854
2855 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2856 {
2857 struct page *page = vmf->page;
2858 struct inode *inode = file_inode(vmf->vma->vm_file);
2859 vm_fault_t ret = VM_FAULT_LOCKED;
2860
2861 sb_start_pagefault(inode->i_sb);
2862 file_update_time(vmf->vma->vm_file);
2863 lock_page(page);
2864 if (page->mapping != inode->i_mapping) {
2865 unlock_page(page);
2866 ret = VM_FAULT_NOPAGE;
2867 goto out;
2868 }
2869 /*
2870 * We mark the page dirty already here so that when freeze is in
2871 * progress, we are guaranteed that writeback during freezing will
2872 * see the dirty page and writeprotect it again.
2873 */
2874 set_page_dirty(page);
2875 wait_for_stable_page(page);
2876 out:
2877 sb_end_pagefault(inode->i_sb);
2878 return ret;
2879 }
2880
2881 const struct vm_operations_struct generic_file_vm_ops = {
2882 .fault = filemap_fault,
2883 .map_pages = filemap_map_pages,
2884 .page_mkwrite = filemap_page_mkwrite,
2885 };
2886
2887 /* This is used for a general mmap of a disk file */
2888
2889 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2890 {
2891 struct address_space *mapping = file->f_mapping;
2892
2893 if (!mapping->a_ops->readpage)
2894 return -ENOEXEC;
2895 file_accessed(file);
2896 vma->vm_ops = &generic_file_vm_ops;
2897 return 0;
2898 }
2899
2900 /*
2901 * This is for filesystems which do not implement ->writepage.
2902 */
2903 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2904 {
2905 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2906 return -EINVAL;
2907 return generic_file_mmap(file, vma);
2908 }
2909 #else
2910 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2911 {
2912 return VM_FAULT_SIGBUS;
2913 }
2914 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2915 {
2916 return -ENOSYS;
2917 }
2918 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2919 {
2920 return -ENOSYS;
2921 }
2922 #endif /* CONFIG_MMU */
2923
2924 EXPORT_SYMBOL(filemap_page_mkwrite);
2925 EXPORT_SYMBOL(generic_file_mmap);
2926 EXPORT_SYMBOL(generic_file_readonly_mmap);
2927
2928 static struct page *wait_on_page_read(struct page *page)
2929 {
2930 if (!IS_ERR(page)) {
2931 wait_on_page_locked(page);
2932 if (!PageUptodate(page)) {
2933 put_page(page);
2934 page = ERR_PTR(-EIO);
2935 }
2936 }
2937 return page;
2938 }
2939
2940 static struct page *do_read_cache_page(struct address_space *mapping,
2941 pgoff_t index,
2942 int (*filler)(void *, struct page *),
2943 void *data,
2944 gfp_t gfp)
2945 {
2946 struct page *page;
2947 int err;
2948 repeat:
2949 page = find_get_page(mapping, index);
2950 if (!page) {
2951 page = __page_cache_alloc(gfp);
2952 if (!page)
2953 return ERR_PTR(-ENOMEM);
2954 err = add_to_page_cache_lru(page, mapping, index, gfp);
2955 if (unlikely(err)) {
2956 put_page(page);
2957 if (err == -EEXIST)
2958 goto repeat;
2959 /* Presumably ENOMEM for xarray node */
2960 return ERR_PTR(err);
2961 }
2962
2963 filler:
2964 if (filler)
2965 err = filler(data, page);
2966 else
2967 err = mapping->a_ops->readpage(data, page);
2968
2969 if (err < 0) {
2970 put_page(page);
2971 return ERR_PTR(err);
2972 }
2973
2974 page = wait_on_page_read(page);
2975 if (IS_ERR(page))
2976 return page;
2977 goto out;
2978 }
2979 if (PageUptodate(page))
2980 goto out;
2981
2982 /*
2983 * Page is not up to date and may be locked due one of the following
2984 * case a: Page is being filled and the page lock is held
2985 * case b: Read/write error clearing the page uptodate status
2986 * case c: Truncation in progress (page locked)
2987 * case d: Reclaim in progress
2988 *
2989 * Case a, the page will be up to date when the page is unlocked.
2990 * There is no need to serialise on the page lock here as the page
2991 * is pinned so the lock gives no additional protection. Even if the
2992 * page is truncated, the data is still valid if PageUptodate as
2993 * it's a race vs truncate race.
2994 * Case b, the page will not be up to date
2995 * Case c, the page may be truncated but in itself, the data may still
2996 * be valid after IO completes as it's a read vs truncate race. The
2997 * operation must restart if the page is not uptodate on unlock but
2998 * otherwise serialising on page lock to stabilise the mapping gives
2999 * no additional guarantees to the caller as the page lock is
3000 * released before return.
3001 * Case d, similar to truncation. If reclaim holds the page lock, it
3002 * will be a race with remove_mapping that determines if the mapping
3003 * is valid on unlock but otherwise the data is valid and there is
3004 * no need to serialise with page lock.
3005 *
3006 * As the page lock gives no additional guarantee, we optimistically
3007 * wait on the page to be unlocked and check if it's up to date and
3008 * use the page if it is. Otherwise, the page lock is required to
3009 * distinguish between the different cases. The motivation is that we
3010 * avoid spurious serialisations and wakeups when multiple processes
3011 * wait on the same page for IO to complete.
3012 */
3013 wait_on_page_locked(page);
3014 if (PageUptodate(page))
3015 goto out;
3016
3017 /* Distinguish between all the cases under the safety of the lock */
3018 lock_page(page);
3019
3020 /* Case c or d, restart the operation */
3021 if (!page->mapping) {
3022 unlock_page(page);
3023 put_page(page);
3024 goto repeat;
3025 }
3026
3027 /* Someone else locked and filled the page in a very small window */
3028 if (PageUptodate(page)) {
3029 unlock_page(page);
3030 goto out;
3031 }
3032
3033 /*
3034 * A previous I/O error may have been due to temporary
3035 * failures.
3036 * Clear page error before actual read, PG_error will be
3037 * set again if read page fails.
3038 */
3039 ClearPageError(page);
3040 goto filler;
3041
3042 out:
3043 mark_page_accessed(page);
3044 return page;
3045 }
3046
3047 /**
3048 * read_cache_page - read into page cache, fill it if needed
3049 * @mapping: the page's address_space
3050 * @index: the page index
3051 * @filler: function to perform the read
3052 * @data: first arg to filler(data, page) function, often left as NULL
3053 *
3054 * Read into the page cache. If a page already exists, and PageUptodate() is
3055 * not set, try to fill the page and wait for it to become unlocked.
3056 *
3057 * If the page does not get brought uptodate, return -EIO.
3058 *
3059 * Return: up to date page on success, ERR_PTR() on failure.
3060 */
3061 struct page *read_cache_page(struct address_space *mapping,
3062 pgoff_t index,
3063 int (*filler)(void *, struct page *),
3064 void *data)
3065 {
3066 return do_read_cache_page(mapping, index, filler, data,
3067 mapping_gfp_mask(mapping));
3068 }
3069 EXPORT_SYMBOL(read_cache_page);
3070
3071 /**
3072 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3073 * @mapping: the page's address_space
3074 * @index: the page index
3075 * @gfp: the page allocator flags to use if allocating
3076 *
3077 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3078 * any new page allocations done using the specified allocation flags.
3079 *
3080 * If the page does not get brought uptodate, return -EIO.
3081 *
3082 * Return: up to date page on success, ERR_PTR() on failure.
3083 */
3084 struct page *read_cache_page_gfp(struct address_space *mapping,
3085 pgoff_t index,
3086 gfp_t gfp)
3087 {
3088 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3089 }
3090 EXPORT_SYMBOL(read_cache_page_gfp);
3091
3092 /*
3093 * Don't operate on ranges the page cache doesn't support, and don't exceed the
3094 * LFS limits. If pos is under the limit it becomes a short access. If it
3095 * exceeds the limit we return -EFBIG.
3096 */
3097 static int generic_write_check_limits(struct file *file, loff_t pos,
3098 loff_t *count)
3099 {
3100 struct inode *inode = file->f_mapping->host;
3101 loff_t max_size = inode->i_sb->s_maxbytes;
3102 loff_t limit = rlimit(RLIMIT_FSIZE);
3103
3104 if (limit != RLIM_INFINITY) {
3105 if (pos >= limit) {
3106 send_sig(SIGXFSZ, current, 0);
3107 return -EFBIG;
3108 }
3109 *count = min(*count, limit - pos);
3110 }
3111
3112 if (!(file->f_flags & O_LARGEFILE))
3113 max_size = MAX_NON_LFS;
3114
3115 if (unlikely(pos >= max_size))
3116 return -EFBIG;
3117
3118 *count = min(*count, max_size - pos);
3119
3120 return 0;
3121 }
3122
3123 /*
3124 * Performs necessary checks before doing a write
3125 *
3126 * Can adjust writing position or amount of bytes to write.
3127 * Returns appropriate error code that caller should return or
3128 * zero in case that write should be allowed.
3129 */
3130 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3131 {
3132 struct file *file = iocb->ki_filp;
3133 struct inode *inode = file->f_mapping->host;
3134 loff_t count;
3135 int ret;
3136
3137 if (IS_SWAPFILE(inode))
3138 return -ETXTBSY;
3139
3140 if (!iov_iter_count(from))
3141 return 0;
3142
3143 /* FIXME: this is for backwards compatibility with 2.4 */
3144 if (iocb->ki_flags & IOCB_APPEND)
3145 iocb->ki_pos = i_size_read(inode);
3146
3147 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3148 return -EINVAL;
3149
3150 count = iov_iter_count(from);
3151 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3152 if (ret)
3153 return ret;
3154
3155 iov_iter_truncate(from, count);
3156 return iov_iter_count(from);
3157 }
3158 EXPORT_SYMBOL(generic_write_checks);
3159
3160 /*
3161 * Performs necessary checks before doing a clone.
3162 *
3163 * Can adjust amount of bytes to clone via @req_count argument.
3164 * Returns appropriate error code that caller should return or
3165 * zero in case the clone should be allowed.
3166 */
3167 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3168 struct file *file_out, loff_t pos_out,
3169 loff_t *req_count, unsigned int remap_flags)
3170 {
3171 struct inode *inode_in = file_in->f_mapping->host;
3172 struct inode *inode_out = file_out->f_mapping->host;
3173 uint64_t count = *req_count;
3174 uint64_t bcount;
3175 loff_t size_in, size_out;
3176 loff_t bs = inode_out->i_sb->s_blocksize;
3177 int ret;
3178
3179 /* The start of both ranges must be aligned to an fs block. */
3180 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3181 return -EINVAL;
3182
3183 /* Ensure offsets don't wrap. */
3184 if (pos_in + count < pos_in || pos_out + count < pos_out)
3185 return -EINVAL;
3186
3187 size_in = i_size_read(inode_in);
3188 size_out = i_size_read(inode_out);
3189
3190 /* Dedupe requires both ranges to be within EOF. */
3191 if ((remap_flags & REMAP_FILE_DEDUP) &&
3192 (pos_in >= size_in || pos_in + count > size_in ||
3193 pos_out >= size_out || pos_out + count > size_out))
3194 return -EINVAL;
3195
3196 /* Ensure the infile range is within the infile. */
3197 if (pos_in >= size_in)
3198 return -EINVAL;
3199 count = min(count, size_in - (uint64_t)pos_in);
3200
3201 ret = generic_write_check_limits(file_out, pos_out, &count);
3202 if (ret)
3203 return ret;
3204
3205 /*
3206 * If the user wanted us to link to the infile's EOF, round up to the
3207 * next block boundary for this check.
3208 *
3209 * Otherwise, make sure the count is also block-aligned, having
3210 * already confirmed the starting offsets' block alignment.
3211 */
3212 if (pos_in + count == size_in) {
3213 bcount = ALIGN(size_in, bs) - pos_in;
3214 } else {
3215 if (!IS_ALIGNED(count, bs))
3216 count = ALIGN_DOWN(count, bs);
3217 bcount = count;
3218 }
3219
3220 /* Don't allow overlapped cloning within the same file. */
3221 if (inode_in == inode_out &&
3222 pos_out + bcount > pos_in &&
3223 pos_out < pos_in + bcount)
3224 return -EINVAL;
3225
3226 /*
3227 * We shortened the request but the caller can't deal with that, so
3228 * bounce the request back to userspace.
3229 */
3230 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3231 return -EINVAL;
3232
3233 *req_count = count;
3234 return 0;
3235 }
3236
3237
3238 /*
3239 * Performs common checks before doing a file copy/clone
3240 * from @file_in to @file_out.
3241 */
3242 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3243 {
3244 struct inode *inode_in = file_inode(file_in);
3245 struct inode *inode_out = file_inode(file_out);
3246
3247 /* Don't copy dirs, pipes, sockets... */
3248 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3249 return -EISDIR;
3250 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3251 return -EINVAL;
3252
3253 if (!(file_in->f_mode & FMODE_READ) ||
3254 !(file_out->f_mode & FMODE_WRITE) ||
3255 (file_out->f_flags & O_APPEND))
3256 return -EBADF;
3257
3258 return 0;
3259 }
3260
3261 /*
3262 * Performs necessary checks before doing a file copy
3263 *
3264 * Can adjust amount of bytes to copy via @req_count argument.
3265 * Returns appropriate error code that caller should return or
3266 * zero in case the copy should be allowed.
3267 */
3268 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3269 struct file *file_out, loff_t pos_out,
3270 size_t *req_count, unsigned int flags)
3271 {
3272 struct inode *inode_in = file_inode(file_in);
3273 struct inode *inode_out = file_inode(file_out);
3274 uint64_t count = *req_count;
3275 loff_t size_in;
3276 int ret;
3277
3278 ret = generic_file_rw_checks(file_in, file_out);
3279 if (ret)
3280 return ret;
3281
3282 /* Don't touch certain kinds of inodes */
3283 if (IS_IMMUTABLE(inode_out))
3284 return -EPERM;
3285
3286 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3287 return -ETXTBSY;
3288
3289 /* Ensure offsets don't wrap. */
3290 if (pos_in + count < pos_in || pos_out + count < pos_out)
3291 return -EOVERFLOW;
3292
3293 /* Shorten the copy to EOF */
3294 size_in = i_size_read(inode_in);
3295 if (pos_in >= size_in)
3296 count = 0;
3297 else
3298 count = min(count, size_in - (uint64_t)pos_in);
3299
3300 ret = generic_write_check_limits(file_out, pos_out, &count);
3301 if (ret)
3302 return ret;
3303
3304 /* Don't allow overlapped copying within the same file. */
3305 if (inode_in == inode_out &&
3306 pos_out + count > pos_in &&
3307 pos_out < pos_in + count)
3308 return -EINVAL;
3309
3310 *req_count = count;
3311 return 0;
3312 }
3313
3314 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3315 loff_t pos, unsigned len, unsigned flags,
3316 struct page **pagep, void **fsdata)
3317 {
3318 const struct address_space_operations *aops = mapping->a_ops;
3319
3320 return aops->write_begin(file, mapping, pos, len, flags,
3321 pagep, fsdata);
3322 }
3323 EXPORT_SYMBOL(pagecache_write_begin);
3324
3325 int pagecache_write_end(struct file *file, struct address_space *mapping,
3326 loff_t pos, unsigned len, unsigned copied,
3327 struct page *page, void *fsdata)
3328 {
3329 const struct address_space_operations *aops = mapping->a_ops;
3330
3331 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3332 }
3333 EXPORT_SYMBOL(pagecache_write_end);
3334
3335 /*
3336 * Warn about a page cache invalidation failure during a direct I/O write.
3337 */
3338 void dio_warn_stale_pagecache(struct file *filp)
3339 {
3340 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3341 char pathname[128];
3342 struct inode *inode = file_inode(filp);
3343 char *path;
3344
3345 errseq_set(&inode->i_mapping->wb_err, -EIO);
3346 if (__ratelimit(&_rs)) {
3347 path = file_path(filp, pathname, sizeof(pathname));
3348 if (IS_ERR(path))
3349 path = "(unknown)";
3350 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3351 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3352 current->comm);
3353 }
3354 }
3355
3356 ssize_t
3357 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3358 {
3359 struct file *file = iocb->ki_filp;
3360 struct address_space *mapping = file->f_mapping;
3361 struct inode *inode = mapping->host;
3362 loff_t pos = iocb->ki_pos;
3363 ssize_t written;
3364 size_t write_len;
3365 pgoff_t end;
3366
3367 write_len = iov_iter_count(from);
3368 end = (pos + write_len - 1) >> PAGE_SHIFT;
3369
3370 if (iocb->ki_flags & IOCB_NOWAIT) {
3371 /* If there are pages to writeback, return */
3372 if (filemap_range_has_page(inode->i_mapping, pos,
3373 pos + write_len - 1))
3374 return -EAGAIN;
3375 } else {
3376 written = filemap_write_and_wait_range(mapping, pos,
3377 pos + write_len - 1);
3378 if (written)
3379 goto out;
3380 }
3381
3382 /*
3383 * After a write we want buffered reads to be sure to go to disk to get
3384 * the new data. We invalidate clean cached page from the region we're
3385 * about to write. We do this *before* the write so that we can return
3386 * without clobbering -EIOCBQUEUED from ->direct_IO().
3387 */
3388 written = invalidate_inode_pages2_range(mapping,
3389 pos >> PAGE_SHIFT, end);
3390 /*
3391 * If a page can not be invalidated, return 0 to fall back
3392 * to buffered write.
3393 */
3394 if (written) {
3395 if (written == -EBUSY)
3396 return 0;
3397 goto out;
3398 }
3399
3400 written = mapping->a_ops->direct_IO(iocb, from);
3401
3402 /*
3403 * Finally, try again to invalidate clean pages which might have been
3404 * cached by non-direct readahead, or faulted in by get_user_pages()
3405 * if the source of the write was an mmap'ed region of the file
3406 * we're writing. Either one is a pretty crazy thing to do,
3407 * so we don't support it 100%. If this invalidation
3408 * fails, tough, the write still worked...
3409 *
3410 * Most of the time we do not need this since dio_complete() will do
3411 * the invalidation for us. However there are some file systems that
3412 * do not end up with dio_complete() being called, so let's not break
3413 * them by removing it completely.
3414 *
3415 * Noticeable example is a blkdev_direct_IO().
3416 *
3417 * Skip invalidation for async writes or if mapping has no pages.
3418 */
3419 if (written > 0 && mapping->nrpages &&
3420 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3421 dio_warn_stale_pagecache(file);
3422
3423 if (written > 0) {
3424 pos += written;
3425 write_len -= written;
3426 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3427 i_size_write(inode, pos);
3428 mark_inode_dirty(inode);
3429 }
3430 iocb->ki_pos = pos;
3431 }
3432 iov_iter_revert(from, write_len - iov_iter_count(from));
3433 out:
3434 return written;
3435 }
3436 EXPORT_SYMBOL(generic_file_direct_write);
3437
3438 /*
3439 * Find or create a page at the given pagecache position. Return the locked
3440 * page. This function is specifically for buffered writes.
3441 */
3442 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3443 pgoff_t index, unsigned flags)
3444 {
3445 struct page *page;
3446 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3447
3448 if (flags & AOP_FLAG_NOFS)
3449 fgp_flags |= FGP_NOFS;
3450
3451 page = pagecache_get_page(mapping, index, fgp_flags,
3452 mapping_gfp_mask(mapping));
3453 if (page)
3454 wait_for_stable_page(page);
3455
3456 return page;
3457 }
3458 EXPORT_SYMBOL(grab_cache_page_write_begin);
3459
3460 ssize_t generic_perform_write(struct file *file,
3461 struct iov_iter *i, loff_t pos)
3462 {
3463 struct address_space *mapping = file->f_mapping;
3464 const struct address_space_operations *a_ops = mapping->a_ops;
3465 long status = 0;
3466 ssize_t written = 0;
3467 unsigned int flags = 0;
3468
3469 do {
3470 struct page *page;
3471 unsigned long offset; /* Offset into pagecache page */
3472 unsigned long bytes; /* Bytes to write to page */
3473 size_t copied; /* Bytes copied from user */
3474 void *fsdata;
3475
3476 offset = (pos & (PAGE_SIZE - 1));
3477 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3478 iov_iter_count(i));
3479
3480 again:
3481 /*
3482 * Bring in the user page that we will copy from _first_.
3483 * Otherwise there's a nasty deadlock on copying from the
3484 * same page as we're writing to, without it being marked
3485 * up-to-date.
3486 *
3487 * Not only is this an optimisation, but it is also required
3488 * to check that the address is actually valid, when atomic
3489 * usercopies are used, below.
3490 */
3491 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3492 status = -EFAULT;
3493 break;
3494 }
3495
3496 if (fatal_signal_pending(current)) {
3497 status = -EINTR;
3498 break;
3499 }
3500
3501 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3502 &page, &fsdata);
3503 if (unlikely(status < 0))
3504 break;
3505
3506 if (mapping_writably_mapped(mapping))
3507 flush_dcache_page(page);
3508
3509 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3510 flush_dcache_page(page);
3511
3512 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3513 page, fsdata);
3514 if (unlikely(status < 0))
3515 break;
3516 copied = status;
3517
3518 cond_resched();
3519
3520 iov_iter_advance(i, copied);
3521 if (unlikely(copied == 0)) {
3522 /*
3523 * If we were unable to copy any data at all, we must
3524 * fall back to a single segment length write.
3525 *
3526 * If we didn't fallback here, we could livelock
3527 * because not all segments in the iov can be copied at
3528 * once without a pagefault.
3529 */
3530 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3531 iov_iter_single_seg_count(i));
3532 goto again;
3533 }
3534 pos += copied;
3535 written += copied;
3536
3537 balance_dirty_pages_ratelimited(mapping);
3538 } while (iov_iter_count(i));
3539
3540 return written ? written : status;
3541 }
3542 EXPORT_SYMBOL(generic_perform_write);
3543
3544 /**
3545 * __generic_file_write_iter - write data to a file
3546 * @iocb: IO state structure (file, offset, etc.)
3547 * @from: iov_iter with data to write
3548 *
3549 * This function does all the work needed for actually writing data to a
3550 * file. It does all basic checks, removes SUID from the file, updates
3551 * modification times and calls proper subroutines depending on whether we
3552 * do direct IO or a standard buffered write.
3553 *
3554 * It expects i_mutex to be grabbed unless we work on a block device or similar
3555 * object which does not need locking at all.
3556 *
3557 * This function does *not* take care of syncing data in case of O_SYNC write.
3558 * A caller has to handle it. This is mainly due to the fact that we want to
3559 * avoid syncing under i_mutex.
3560 *
3561 * Return:
3562 * * number of bytes written, even for truncated writes
3563 * * negative error code if no data has been written at all
3564 */
3565 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3566 {
3567 struct file *file = iocb->ki_filp;
3568 struct address_space * mapping = file->f_mapping;
3569 struct inode *inode = mapping->host;
3570 ssize_t written = 0;
3571 ssize_t err;
3572 ssize_t status;
3573
3574 /* We can write back this queue in page reclaim */
3575 current->backing_dev_info = inode_to_bdi(inode);
3576 err = file_remove_privs(file);
3577 if (err)
3578 goto out;
3579
3580 err = file_update_time(file);
3581 if (err)
3582 goto out;
3583
3584 if (iocb->ki_flags & IOCB_DIRECT) {
3585 loff_t pos, endbyte;
3586
3587 written = generic_file_direct_write(iocb, from);
3588 /*
3589 * If the write stopped short of completing, fall back to
3590 * buffered writes. Some filesystems do this for writes to
3591 * holes, for example. For DAX files, a buffered write will
3592 * not succeed (even if it did, DAX does not handle dirty
3593 * page-cache pages correctly).
3594 */
3595 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3596 goto out;
3597
3598 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3599 /*
3600 * If generic_perform_write() returned a synchronous error
3601 * then we want to return the number of bytes which were
3602 * direct-written, or the error code if that was zero. Note
3603 * that this differs from normal direct-io semantics, which
3604 * will return -EFOO even if some bytes were written.
3605 */
3606 if (unlikely(status < 0)) {
3607 err = status;
3608 goto out;
3609 }
3610 /*
3611 * We need to ensure that the page cache pages are written to
3612 * disk and invalidated to preserve the expected O_DIRECT
3613 * semantics.
3614 */
3615 endbyte = pos + status - 1;
3616 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3617 if (err == 0) {
3618 iocb->ki_pos = endbyte + 1;
3619 written += status;
3620 invalidate_mapping_pages(mapping,
3621 pos >> PAGE_SHIFT,
3622 endbyte >> PAGE_SHIFT);
3623 } else {
3624 /*
3625 * We don't know how much we wrote, so just return
3626 * the number of bytes which were direct-written
3627 */
3628 }
3629 } else {
3630 written = generic_perform_write(file, from, iocb->ki_pos);
3631 if (likely(written > 0))
3632 iocb->ki_pos += written;
3633 }
3634 out:
3635 current->backing_dev_info = NULL;
3636 return written ? written : err;
3637 }
3638 EXPORT_SYMBOL(__generic_file_write_iter);
3639
3640 /**
3641 * generic_file_write_iter - write data to a file
3642 * @iocb: IO state structure
3643 * @from: iov_iter with data to write
3644 *
3645 * This is a wrapper around __generic_file_write_iter() to be used by most
3646 * filesystems. It takes care of syncing the file in case of O_SYNC file
3647 * and acquires i_mutex as needed.
3648 * Return:
3649 * * negative error code if no data has been written at all of
3650 * vfs_fsync_range() failed for a synchronous write
3651 * * number of bytes written, even for truncated writes
3652 */
3653 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3654 {
3655 struct file *file = iocb->ki_filp;
3656 struct inode *inode = file->f_mapping->host;
3657 ssize_t ret;
3658
3659 inode_lock(inode);
3660 ret = generic_write_checks(iocb, from);
3661 if (ret > 0)
3662 ret = __generic_file_write_iter(iocb, from);
3663 inode_unlock(inode);
3664
3665 if (ret > 0)
3666 ret = generic_write_sync(iocb, ret);
3667 return ret;
3668 }
3669 EXPORT_SYMBOL(generic_file_write_iter);
3670
3671 /**
3672 * try_to_release_page() - release old fs-specific metadata on a page
3673 *
3674 * @page: the page which the kernel is trying to free
3675 * @gfp_mask: memory allocation flags (and I/O mode)
3676 *
3677 * The address_space is to try to release any data against the page
3678 * (presumably at page->private).
3679 *
3680 * This may also be called if PG_fscache is set on a page, indicating that the
3681 * page is known to the local caching routines.
3682 *
3683 * The @gfp_mask argument specifies whether I/O may be performed to release
3684 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3685 *
3686 * Return: %1 if the release was successful, otherwise return zero.
3687 */
3688 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3689 {
3690 struct address_space * const mapping = page->mapping;
3691
3692 BUG_ON(!PageLocked(page));
3693 if (PageWriteback(page))
3694 return 0;
3695
3696 if (mapping && mapping->a_ops->releasepage)
3697 return mapping->a_ops->releasepage(page, gfp_mask);
3698 return try_to_free_buffers(page);
3699 }
3700
3701 EXPORT_SYMBOL(try_to_release_page);