]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/filemap.c
net: wan: x25_asy: mark expected switch fall-through
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63 /*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116 {
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (shadowp)
134 *shadowp = p;
135 }
136 __radix_tree_replace(&mapping->page_tree, node, slot, page,
137 workingset_update_node, mapping);
138 mapping->nrpages++;
139 return 0;
140 }
141
142 static void page_cache_tree_delete(struct address_space *mapping,
143 struct page *page, void *shadow)
144 {
145 int i, nr;
146
147 /* hugetlb pages are represented by one entry in the radix tree */
148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(PageTail(page), page);
152 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153
154 for (i = 0; i < nr; i++) {
155 struct radix_tree_node *node;
156 void **slot;
157
158 __radix_tree_lookup(&mapping->page_tree, page->index + i,
159 &node, &slot);
160
161 VM_BUG_ON_PAGE(!node && nr != 1, page);
162
163 radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 workingset_update_node, mapping);
166 }
167
168 if (shadow) {
169 mapping->nrexceptional += nr;
170 /*
171 * Make sure the nrexceptional update is committed before
172 * the nrpages update so that final truncate racing
173 * with reclaim does not see both counters 0 at the
174 * same time and miss a shadow entry.
175 */
176 smp_wmb();
177 }
178 mapping->nrpages -= nr;
179 }
180
181 /*
182 * Delete a page from the page cache and free it. Caller has to make
183 * sure the page is locked and that nobody else uses it - or that usage
184 * is safe. The caller must hold the mapping's tree_lock.
185 */
186 void __delete_from_page_cache(struct page *page, void *shadow)
187 {
188 struct address_space *mapping = page->mapping;
189 int nr = hpage_nr_pages(page);
190
191 trace_mm_filemap_delete_from_page_cache(page);
192 /*
193 * if we're uptodate, flush out into the cleancache, otherwise
194 * invalidate any existing cleancache entries. We can't leave
195 * stale data around in the cleancache once our page is gone
196 */
197 if (PageUptodate(page) && PageMappedToDisk(page))
198 cleancache_put_page(page);
199 else
200 cleancache_invalidate_page(mapping, page);
201
202 VM_BUG_ON_PAGE(PageTail(page), page);
203 VM_BUG_ON_PAGE(page_mapped(page), page);
204 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
205 int mapcount;
206
207 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
208 current->comm, page_to_pfn(page));
209 dump_page(page, "still mapped when deleted");
210 dump_stack();
211 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
212
213 mapcount = page_mapcount(page);
214 if (mapping_exiting(mapping) &&
215 page_count(page) >= mapcount + 2) {
216 /*
217 * All vmas have already been torn down, so it's
218 * a good bet that actually the page is unmapped,
219 * and we'd prefer not to leak it: if we're wrong,
220 * some other bad page check should catch it later.
221 */
222 page_mapcount_reset(page);
223 page_ref_sub(page, mapcount);
224 }
225 }
226
227 page_cache_tree_delete(mapping, page, shadow);
228
229 page->mapping = NULL;
230 /* Leave page->index set: truncation lookup relies upon it */
231
232 /* hugetlb pages do not participate in page cache accounting. */
233 if (PageHuge(page))
234 return;
235
236 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
237 if (PageSwapBacked(page)) {
238 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
239 if (PageTransHuge(page))
240 __dec_node_page_state(page, NR_SHMEM_THPS);
241 } else {
242 VM_BUG_ON_PAGE(PageTransHuge(page), page);
243 }
244
245 /*
246 * At this point page must be either written or cleaned by truncate.
247 * Dirty page here signals a bug and loss of unwritten data.
248 *
249 * This fixes dirty accounting after removing the page entirely but
250 * leaves PageDirty set: it has no effect for truncated page and
251 * anyway will be cleared before returning page into buddy allocator.
252 */
253 if (WARN_ON_ONCE(PageDirty(page)))
254 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
255 }
256
257 /**
258 * delete_from_page_cache - delete page from page cache
259 * @page: the page which the kernel is trying to remove from page cache
260 *
261 * This must be called only on pages that have been verified to be in the page
262 * cache and locked. It will never put the page into the free list, the caller
263 * has a reference on the page.
264 */
265 void delete_from_page_cache(struct page *page)
266 {
267 struct address_space *mapping = page_mapping(page);
268 unsigned long flags;
269 void (*freepage)(struct page *);
270
271 BUG_ON(!PageLocked(page));
272
273 freepage = mapping->a_ops->freepage;
274
275 spin_lock_irqsave(&mapping->tree_lock, flags);
276 __delete_from_page_cache(page, NULL);
277 spin_unlock_irqrestore(&mapping->tree_lock, flags);
278
279 if (freepage)
280 freepage(page);
281
282 if (PageTransHuge(page) && !PageHuge(page)) {
283 page_ref_sub(page, HPAGE_PMD_NR);
284 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
285 } else {
286 put_page(page);
287 }
288 }
289 EXPORT_SYMBOL(delete_from_page_cache);
290
291 int filemap_check_errors(struct address_space *mapping)
292 {
293 int ret = 0;
294 /* Check for outstanding write errors */
295 if (test_bit(AS_ENOSPC, &mapping->flags) &&
296 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 ret = -ENOSPC;
298 if (test_bit(AS_EIO, &mapping->flags) &&
299 test_and_clear_bit(AS_EIO, &mapping->flags))
300 ret = -EIO;
301 return ret;
302 }
303 EXPORT_SYMBOL(filemap_check_errors);
304
305 static int filemap_check_and_keep_errors(struct address_space *mapping)
306 {
307 /* Check for outstanding write errors */
308 if (test_bit(AS_EIO, &mapping->flags))
309 return -EIO;
310 if (test_bit(AS_ENOSPC, &mapping->flags))
311 return -ENOSPC;
312 return 0;
313 }
314
315 /**
316 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
317 * @mapping: address space structure to write
318 * @start: offset in bytes where the range starts
319 * @end: offset in bytes where the range ends (inclusive)
320 * @sync_mode: enable synchronous operation
321 *
322 * Start writeback against all of a mapping's dirty pages that lie
323 * within the byte offsets <start, end> inclusive.
324 *
325 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
326 * opposed to a regular memory cleansing writeback. The difference between
327 * these two operations is that if a dirty page/buffer is encountered, it must
328 * be waited upon, and not just skipped over.
329 */
330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
331 loff_t end, int sync_mode)
332 {
333 int ret;
334 struct writeback_control wbc = {
335 .sync_mode = sync_mode,
336 .nr_to_write = LONG_MAX,
337 .range_start = start,
338 .range_end = end,
339 };
340
341 if (!mapping_cap_writeback_dirty(mapping))
342 return 0;
343
344 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
345 ret = do_writepages(mapping, &wbc);
346 wbc_detach_inode(&wbc);
347 return ret;
348 }
349
350 static inline int __filemap_fdatawrite(struct address_space *mapping,
351 int sync_mode)
352 {
353 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
354 }
355
356 int filemap_fdatawrite(struct address_space *mapping)
357 {
358 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
359 }
360 EXPORT_SYMBOL(filemap_fdatawrite);
361
362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
363 loff_t end)
364 {
365 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite_range);
368
369 /**
370 * filemap_flush - mostly a non-blocking flush
371 * @mapping: target address_space
372 *
373 * This is a mostly non-blocking flush. Not suitable for data-integrity
374 * purposes - I/O may not be started against all dirty pages.
375 */
376 int filemap_flush(struct address_space *mapping)
377 {
378 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
379 }
380 EXPORT_SYMBOL(filemap_flush);
381
382 /**
383 * filemap_range_has_page - check if a page exists in range.
384 * @mapping: address space within which to check
385 * @start_byte: offset in bytes where the range starts
386 * @end_byte: offset in bytes where the range ends (inclusive)
387 *
388 * Find at least one page in the range supplied, usually used to check if
389 * direct writing in this range will trigger a writeback.
390 */
391 bool filemap_range_has_page(struct address_space *mapping,
392 loff_t start_byte, loff_t end_byte)
393 {
394 pgoff_t index = start_byte >> PAGE_SHIFT;
395 pgoff_t end = end_byte >> PAGE_SHIFT;
396 struct page *page;
397
398 if (end_byte < start_byte)
399 return false;
400
401 if (mapping->nrpages == 0)
402 return false;
403
404 if (!find_get_pages_range(mapping, &index, end, 1, &page))
405 return false;
406 put_page(page);
407 return true;
408 }
409 EXPORT_SYMBOL(filemap_range_has_page);
410
411 static void __filemap_fdatawait_range(struct address_space *mapping,
412 loff_t start_byte, loff_t end_byte)
413 {
414 pgoff_t index = start_byte >> PAGE_SHIFT;
415 pgoff_t end = end_byte >> PAGE_SHIFT;
416 struct pagevec pvec;
417 int nr_pages;
418
419 if (end_byte < start_byte)
420 return;
421
422 pagevec_init(&pvec, 0);
423 while ((index <= end) &&
424 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
425 PAGECACHE_TAG_WRITEBACK,
426 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
427 unsigned i;
428
429 for (i = 0; i < nr_pages; i++) {
430 struct page *page = pvec.pages[i];
431
432 /* until radix tree lookup accepts end_index */
433 if (page->index > end)
434 continue;
435
436 wait_on_page_writeback(page);
437 ClearPageError(page);
438 }
439 pagevec_release(&pvec);
440 cond_resched();
441 }
442 }
443
444 /**
445 * filemap_fdatawait_range - wait for writeback to complete
446 * @mapping: address space structure to wait for
447 * @start_byte: offset in bytes where the range starts
448 * @end_byte: offset in bytes where the range ends (inclusive)
449 *
450 * Walk the list of under-writeback pages of the given address space
451 * in the given range and wait for all of them. Check error status of
452 * the address space and return it.
453 *
454 * Since the error status of the address space is cleared by this function,
455 * callers are responsible for checking the return value and handling and/or
456 * reporting the error.
457 */
458 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
459 loff_t end_byte)
460 {
461 __filemap_fdatawait_range(mapping, start_byte, end_byte);
462 return filemap_check_errors(mapping);
463 }
464 EXPORT_SYMBOL(filemap_fdatawait_range);
465
466 /**
467 * file_fdatawait_range - wait for writeback to complete
468 * @file: file pointing to address space structure to wait for
469 * @start_byte: offset in bytes where the range starts
470 * @end_byte: offset in bytes where the range ends (inclusive)
471 *
472 * Walk the list of under-writeback pages of the address space that file
473 * refers to, in the given range and wait for all of them. Check error
474 * status of the address space vs. the file->f_wb_err cursor and return it.
475 *
476 * Since the error status of the file is advanced by this function,
477 * callers are responsible for checking the return value and handling and/or
478 * reporting the error.
479 */
480 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
481 {
482 struct address_space *mapping = file->f_mapping;
483
484 __filemap_fdatawait_range(mapping, start_byte, end_byte);
485 return file_check_and_advance_wb_err(file);
486 }
487 EXPORT_SYMBOL(file_fdatawait_range);
488
489 /**
490 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
491 * @mapping: address space structure to wait for
492 *
493 * Walk the list of under-writeback pages of the given address space
494 * and wait for all of them. Unlike filemap_fdatawait(), this function
495 * does not clear error status of the address space.
496 *
497 * Use this function if callers don't handle errors themselves. Expected
498 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
499 * fsfreeze(8)
500 */
501 int filemap_fdatawait_keep_errors(struct address_space *mapping)
502 {
503 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
504 return filemap_check_and_keep_errors(mapping);
505 }
506 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
507
508 static bool mapping_needs_writeback(struct address_space *mapping)
509 {
510 return (!dax_mapping(mapping) && mapping->nrpages) ||
511 (dax_mapping(mapping) && mapping->nrexceptional);
512 }
513
514 int filemap_write_and_wait(struct address_space *mapping)
515 {
516 int err = 0;
517
518 if (mapping_needs_writeback(mapping)) {
519 err = filemap_fdatawrite(mapping);
520 /*
521 * Even if the above returned error, the pages may be
522 * written partially (e.g. -ENOSPC), so we wait for it.
523 * But the -EIO is special case, it may indicate the worst
524 * thing (e.g. bug) happened, so we avoid waiting for it.
525 */
526 if (err != -EIO) {
527 int err2 = filemap_fdatawait(mapping);
528 if (!err)
529 err = err2;
530 } else {
531 /* Clear any previously stored errors */
532 filemap_check_errors(mapping);
533 }
534 } else {
535 err = filemap_check_errors(mapping);
536 }
537 return err;
538 }
539 EXPORT_SYMBOL(filemap_write_and_wait);
540
541 /**
542 * filemap_write_and_wait_range - write out & wait on a file range
543 * @mapping: the address_space for the pages
544 * @lstart: offset in bytes where the range starts
545 * @lend: offset in bytes where the range ends (inclusive)
546 *
547 * Write out and wait upon file offsets lstart->lend, inclusive.
548 *
549 * Note that @lend is inclusive (describes the last byte to be written) so
550 * that this function can be used to write to the very end-of-file (end = -1).
551 */
552 int filemap_write_and_wait_range(struct address_space *mapping,
553 loff_t lstart, loff_t lend)
554 {
555 int err = 0;
556
557 if (mapping_needs_writeback(mapping)) {
558 err = __filemap_fdatawrite_range(mapping, lstart, lend,
559 WB_SYNC_ALL);
560 /* See comment of filemap_write_and_wait() */
561 if (err != -EIO) {
562 int err2 = filemap_fdatawait_range(mapping,
563 lstart, lend);
564 if (!err)
565 err = err2;
566 } else {
567 /* Clear any previously stored errors */
568 filemap_check_errors(mapping);
569 }
570 } else {
571 err = filemap_check_errors(mapping);
572 }
573 return err;
574 }
575 EXPORT_SYMBOL(filemap_write_and_wait_range);
576
577 void __filemap_set_wb_err(struct address_space *mapping, int err)
578 {
579 errseq_t eseq = errseq_set(&mapping->wb_err, err);
580
581 trace_filemap_set_wb_err(mapping, eseq);
582 }
583 EXPORT_SYMBOL(__filemap_set_wb_err);
584
585 /**
586 * file_check_and_advance_wb_err - report wb error (if any) that was previously
587 * and advance wb_err to current one
588 * @file: struct file on which the error is being reported
589 *
590 * When userland calls fsync (or something like nfsd does the equivalent), we
591 * want to report any writeback errors that occurred since the last fsync (or
592 * since the file was opened if there haven't been any).
593 *
594 * Grab the wb_err from the mapping. If it matches what we have in the file,
595 * then just quickly return 0. The file is all caught up.
596 *
597 * If it doesn't match, then take the mapping value, set the "seen" flag in
598 * it and try to swap it into place. If it works, or another task beat us
599 * to it with the new value, then update the f_wb_err and return the error
600 * portion. The error at this point must be reported via proper channels
601 * (a'la fsync, or NFS COMMIT operation, etc.).
602 *
603 * While we handle mapping->wb_err with atomic operations, the f_wb_err
604 * value is protected by the f_lock since we must ensure that it reflects
605 * the latest value swapped in for this file descriptor.
606 */
607 int file_check_and_advance_wb_err(struct file *file)
608 {
609 int err = 0;
610 errseq_t old = READ_ONCE(file->f_wb_err);
611 struct address_space *mapping = file->f_mapping;
612
613 /* Locklessly handle the common case where nothing has changed */
614 if (errseq_check(&mapping->wb_err, old)) {
615 /* Something changed, must use slow path */
616 spin_lock(&file->f_lock);
617 old = file->f_wb_err;
618 err = errseq_check_and_advance(&mapping->wb_err,
619 &file->f_wb_err);
620 trace_file_check_and_advance_wb_err(file, old);
621 spin_unlock(&file->f_lock);
622 }
623
624 /*
625 * We're mostly using this function as a drop in replacement for
626 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
627 * that the legacy code would have had on these flags.
628 */
629 clear_bit(AS_EIO, &mapping->flags);
630 clear_bit(AS_ENOSPC, &mapping->flags);
631 return err;
632 }
633 EXPORT_SYMBOL(file_check_and_advance_wb_err);
634
635 /**
636 * file_write_and_wait_range - write out & wait on a file range
637 * @file: file pointing to address_space with pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
640 *
641 * Write out and wait upon file offsets lstart->lend, inclusive.
642 *
643 * Note that @lend is inclusive (describes the last byte to be written) so
644 * that this function can be used to write to the very end-of-file (end = -1).
645 *
646 * After writing out and waiting on the data, we check and advance the
647 * f_wb_err cursor to the latest value, and return any errors detected there.
648 */
649 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
650 {
651 int err = 0, err2;
652 struct address_space *mapping = file->f_mapping;
653
654 if (mapping_needs_writeback(mapping)) {
655 err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 WB_SYNC_ALL);
657 /* See comment of filemap_write_and_wait() */
658 if (err != -EIO)
659 __filemap_fdatawait_range(mapping, lstart, lend);
660 }
661 err2 = file_check_and_advance_wb_err(file);
662 if (!err)
663 err = err2;
664 return err;
665 }
666 EXPORT_SYMBOL(file_write_and_wait_range);
667
668 /**
669 * replace_page_cache_page - replace a pagecache page with a new one
670 * @old: page to be replaced
671 * @new: page to replace with
672 * @gfp_mask: allocation mode
673 *
674 * This function replaces a page in the pagecache with a new one. On
675 * success it acquires the pagecache reference for the new page and
676 * drops it for the old page. Both the old and new pages must be
677 * locked. This function does not add the new page to the LRU, the
678 * caller must do that.
679 *
680 * The remove + add is atomic. The only way this function can fail is
681 * memory allocation failure.
682 */
683 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
684 {
685 int error;
686
687 VM_BUG_ON_PAGE(!PageLocked(old), old);
688 VM_BUG_ON_PAGE(!PageLocked(new), new);
689 VM_BUG_ON_PAGE(new->mapping, new);
690
691 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
692 if (!error) {
693 struct address_space *mapping = old->mapping;
694 void (*freepage)(struct page *);
695 unsigned long flags;
696
697 pgoff_t offset = old->index;
698 freepage = mapping->a_ops->freepage;
699
700 get_page(new);
701 new->mapping = mapping;
702 new->index = offset;
703
704 spin_lock_irqsave(&mapping->tree_lock, flags);
705 __delete_from_page_cache(old, NULL);
706 error = page_cache_tree_insert(mapping, new, NULL);
707 BUG_ON(error);
708
709 /*
710 * hugetlb pages do not participate in page cache accounting.
711 */
712 if (!PageHuge(new))
713 __inc_node_page_state(new, NR_FILE_PAGES);
714 if (PageSwapBacked(new))
715 __inc_node_page_state(new, NR_SHMEM);
716 spin_unlock_irqrestore(&mapping->tree_lock, flags);
717 mem_cgroup_migrate(old, new);
718 radix_tree_preload_end();
719 if (freepage)
720 freepage(old);
721 put_page(old);
722 }
723
724 return error;
725 }
726 EXPORT_SYMBOL_GPL(replace_page_cache_page);
727
728 static int __add_to_page_cache_locked(struct page *page,
729 struct address_space *mapping,
730 pgoff_t offset, gfp_t gfp_mask,
731 void **shadowp)
732 {
733 int huge = PageHuge(page);
734 struct mem_cgroup *memcg;
735 int error;
736
737 VM_BUG_ON_PAGE(!PageLocked(page), page);
738 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
739
740 if (!huge) {
741 error = mem_cgroup_try_charge(page, current->mm,
742 gfp_mask, &memcg, false);
743 if (error)
744 return error;
745 }
746
747 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
748 if (error) {
749 if (!huge)
750 mem_cgroup_cancel_charge(page, memcg, false);
751 return error;
752 }
753
754 get_page(page);
755 page->mapping = mapping;
756 page->index = offset;
757
758 spin_lock_irq(&mapping->tree_lock);
759 error = page_cache_tree_insert(mapping, page, shadowp);
760 radix_tree_preload_end();
761 if (unlikely(error))
762 goto err_insert;
763
764 /* hugetlb pages do not participate in page cache accounting. */
765 if (!huge)
766 __inc_node_page_state(page, NR_FILE_PAGES);
767 spin_unlock_irq(&mapping->tree_lock);
768 if (!huge)
769 mem_cgroup_commit_charge(page, memcg, false, false);
770 trace_mm_filemap_add_to_page_cache(page);
771 return 0;
772 err_insert:
773 page->mapping = NULL;
774 /* Leave page->index set: truncation relies upon it */
775 spin_unlock_irq(&mapping->tree_lock);
776 if (!huge)
777 mem_cgroup_cancel_charge(page, memcg, false);
778 put_page(page);
779 return error;
780 }
781
782 /**
783 * add_to_page_cache_locked - add a locked page to the pagecache
784 * @page: page to add
785 * @mapping: the page's address_space
786 * @offset: page index
787 * @gfp_mask: page allocation mode
788 *
789 * This function is used to add a page to the pagecache. It must be locked.
790 * This function does not add the page to the LRU. The caller must do that.
791 */
792 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
793 pgoff_t offset, gfp_t gfp_mask)
794 {
795 return __add_to_page_cache_locked(page, mapping, offset,
796 gfp_mask, NULL);
797 }
798 EXPORT_SYMBOL(add_to_page_cache_locked);
799
800 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
801 pgoff_t offset, gfp_t gfp_mask)
802 {
803 void *shadow = NULL;
804 int ret;
805
806 __SetPageLocked(page);
807 ret = __add_to_page_cache_locked(page, mapping, offset,
808 gfp_mask, &shadow);
809 if (unlikely(ret))
810 __ClearPageLocked(page);
811 else {
812 /*
813 * The page might have been evicted from cache only
814 * recently, in which case it should be activated like
815 * any other repeatedly accessed page.
816 * The exception is pages getting rewritten; evicting other
817 * data from the working set, only to cache data that will
818 * get overwritten with something else, is a waste of memory.
819 */
820 if (!(gfp_mask & __GFP_WRITE) &&
821 shadow && workingset_refault(shadow)) {
822 SetPageActive(page);
823 workingset_activation(page);
824 } else
825 ClearPageActive(page);
826 lru_cache_add(page);
827 }
828 return ret;
829 }
830 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
831
832 #ifdef CONFIG_NUMA
833 struct page *__page_cache_alloc(gfp_t gfp)
834 {
835 int n;
836 struct page *page;
837
838 if (cpuset_do_page_mem_spread()) {
839 unsigned int cpuset_mems_cookie;
840 do {
841 cpuset_mems_cookie = read_mems_allowed_begin();
842 n = cpuset_mem_spread_node();
843 page = __alloc_pages_node(n, gfp, 0);
844 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
845
846 return page;
847 }
848 return alloc_pages(gfp, 0);
849 }
850 EXPORT_SYMBOL(__page_cache_alloc);
851 #endif
852
853 /*
854 * In order to wait for pages to become available there must be
855 * waitqueues associated with pages. By using a hash table of
856 * waitqueues where the bucket discipline is to maintain all
857 * waiters on the same queue and wake all when any of the pages
858 * become available, and for the woken contexts to check to be
859 * sure the appropriate page became available, this saves space
860 * at a cost of "thundering herd" phenomena during rare hash
861 * collisions.
862 */
863 #define PAGE_WAIT_TABLE_BITS 8
864 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
865 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
866
867 static wait_queue_head_t *page_waitqueue(struct page *page)
868 {
869 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
870 }
871
872 void __init pagecache_init(void)
873 {
874 int i;
875
876 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
877 init_waitqueue_head(&page_wait_table[i]);
878
879 page_writeback_init();
880 }
881
882 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
883 struct wait_page_key {
884 struct page *page;
885 int bit_nr;
886 int page_match;
887 };
888
889 struct wait_page_queue {
890 struct page *page;
891 int bit_nr;
892 wait_queue_entry_t wait;
893 };
894
895 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
896 {
897 struct wait_page_key *key = arg;
898 struct wait_page_queue *wait_page
899 = container_of(wait, struct wait_page_queue, wait);
900
901 if (wait_page->page != key->page)
902 return 0;
903 key->page_match = 1;
904
905 if (wait_page->bit_nr != key->bit_nr)
906 return 0;
907
908 /* Stop walking if it's locked */
909 if (test_bit(key->bit_nr, &key->page->flags))
910 return -1;
911
912 return autoremove_wake_function(wait, mode, sync, key);
913 }
914
915 static void wake_up_page_bit(struct page *page, int bit_nr)
916 {
917 wait_queue_head_t *q = page_waitqueue(page);
918 struct wait_page_key key;
919 unsigned long flags;
920 wait_queue_entry_t bookmark;
921
922 key.page = page;
923 key.bit_nr = bit_nr;
924 key.page_match = 0;
925
926 bookmark.flags = 0;
927 bookmark.private = NULL;
928 bookmark.func = NULL;
929 INIT_LIST_HEAD(&bookmark.entry);
930
931 spin_lock_irqsave(&q->lock, flags);
932 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
933
934 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
935 /*
936 * Take a breather from holding the lock,
937 * allow pages that finish wake up asynchronously
938 * to acquire the lock and remove themselves
939 * from wait queue
940 */
941 spin_unlock_irqrestore(&q->lock, flags);
942 cpu_relax();
943 spin_lock_irqsave(&q->lock, flags);
944 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
945 }
946
947 /*
948 * It is possible for other pages to have collided on the waitqueue
949 * hash, so in that case check for a page match. That prevents a long-
950 * term waiter
951 *
952 * It is still possible to miss a case here, when we woke page waiters
953 * and removed them from the waitqueue, but there are still other
954 * page waiters.
955 */
956 if (!waitqueue_active(q) || !key.page_match) {
957 ClearPageWaiters(page);
958 /*
959 * It's possible to miss clearing Waiters here, when we woke
960 * our page waiters, but the hashed waitqueue has waiters for
961 * other pages on it.
962 *
963 * That's okay, it's a rare case. The next waker will clear it.
964 */
965 }
966 spin_unlock_irqrestore(&q->lock, flags);
967 }
968
969 static void wake_up_page(struct page *page, int bit)
970 {
971 if (!PageWaiters(page))
972 return;
973 wake_up_page_bit(page, bit);
974 }
975
976 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
977 struct page *page, int bit_nr, int state, bool lock)
978 {
979 struct wait_page_queue wait_page;
980 wait_queue_entry_t *wait = &wait_page.wait;
981 int ret = 0;
982
983 init_wait(wait);
984 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
985 wait->func = wake_page_function;
986 wait_page.page = page;
987 wait_page.bit_nr = bit_nr;
988
989 for (;;) {
990 spin_lock_irq(&q->lock);
991
992 if (likely(list_empty(&wait->entry))) {
993 __add_wait_queue_entry_tail(q, wait);
994 SetPageWaiters(page);
995 }
996
997 set_current_state(state);
998
999 spin_unlock_irq(&q->lock);
1000
1001 if (likely(test_bit(bit_nr, &page->flags))) {
1002 io_schedule();
1003 }
1004
1005 if (lock) {
1006 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1007 break;
1008 } else {
1009 if (!test_bit(bit_nr, &page->flags))
1010 break;
1011 }
1012
1013 if (unlikely(signal_pending_state(state, current))) {
1014 ret = -EINTR;
1015 break;
1016 }
1017 }
1018
1019 finish_wait(q, wait);
1020
1021 /*
1022 * A signal could leave PageWaiters set. Clearing it here if
1023 * !waitqueue_active would be possible (by open-coding finish_wait),
1024 * but still fail to catch it in the case of wait hash collision. We
1025 * already can fail to clear wait hash collision cases, so don't
1026 * bother with signals either.
1027 */
1028
1029 return ret;
1030 }
1031
1032 void wait_on_page_bit(struct page *page, int bit_nr)
1033 {
1034 wait_queue_head_t *q = page_waitqueue(page);
1035 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1036 }
1037 EXPORT_SYMBOL(wait_on_page_bit);
1038
1039 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1040 {
1041 wait_queue_head_t *q = page_waitqueue(page);
1042 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1043 }
1044
1045 /**
1046 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1047 * @page: Page defining the wait queue of interest
1048 * @waiter: Waiter to add to the queue
1049 *
1050 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1051 */
1052 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1053 {
1054 wait_queue_head_t *q = page_waitqueue(page);
1055 unsigned long flags;
1056
1057 spin_lock_irqsave(&q->lock, flags);
1058 __add_wait_queue_entry_tail(q, waiter);
1059 SetPageWaiters(page);
1060 spin_unlock_irqrestore(&q->lock, flags);
1061 }
1062 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1063
1064 #ifndef clear_bit_unlock_is_negative_byte
1065
1066 /*
1067 * PG_waiters is the high bit in the same byte as PG_lock.
1068 *
1069 * On x86 (and on many other architectures), we can clear PG_lock and
1070 * test the sign bit at the same time. But if the architecture does
1071 * not support that special operation, we just do this all by hand
1072 * instead.
1073 *
1074 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1075 * being cleared, but a memory barrier should be unneccssary since it is
1076 * in the same byte as PG_locked.
1077 */
1078 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1079 {
1080 clear_bit_unlock(nr, mem);
1081 /* smp_mb__after_atomic(); */
1082 return test_bit(PG_waiters, mem);
1083 }
1084
1085 #endif
1086
1087 /**
1088 * unlock_page - unlock a locked page
1089 * @page: the page
1090 *
1091 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1092 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1093 * mechanism between PageLocked pages and PageWriteback pages is shared.
1094 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1095 *
1096 * Note that this depends on PG_waiters being the sign bit in the byte
1097 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1098 * clear the PG_locked bit and test PG_waiters at the same time fairly
1099 * portably (architectures that do LL/SC can test any bit, while x86 can
1100 * test the sign bit).
1101 */
1102 void unlock_page(struct page *page)
1103 {
1104 BUILD_BUG_ON(PG_waiters != 7);
1105 page = compound_head(page);
1106 VM_BUG_ON_PAGE(!PageLocked(page), page);
1107 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1108 wake_up_page_bit(page, PG_locked);
1109 }
1110 EXPORT_SYMBOL(unlock_page);
1111
1112 /**
1113 * end_page_writeback - end writeback against a page
1114 * @page: the page
1115 */
1116 void end_page_writeback(struct page *page)
1117 {
1118 /*
1119 * TestClearPageReclaim could be used here but it is an atomic
1120 * operation and overkill in this particular case. Failing to
1121 * shuffle a page marked for immediate reclaim is too mild to
1122 * justify taking an atomic operation penalty at the end of
1123 * ever page writeback.
1124 */
1125 if (PageReclaim(page)) {
1126 ClearPageReclaim(page);
1127 rotate_reclaimable_page(page);
1128 }
1129
1130 if (!test_clear_page_writeback(page))
1131 BUG();
1132
1133 smp_mb__after_atomic();
1134 wake_up_page(page, PG_writeback);
1135 }
1136 EXPORT_SYMBOL(end_page_writeback);
1137
1138 /*
1139 * After completing I/O on a page, call this routine to update the page
1140 * flags appropriately
1141 */
1142 void page_endio(struct page *page, bool is_write, int err)
1143 {
1144 if (!is_write) {
1145 if (!err) {
1146 SetPageUptodate(page);
1147 } else {
1148 ClearPageUptodate(page);
1149 SetPageError(page);
1150 }
1151 unlock_page(page);
1152 } else {
1153 if (err) {
1154 struct address_space *mapping;
1155
1156 SetPageError(page);
1157 mapping = page_mapping(page);
1158 if (mapping)
1159 mapping_set_error(mapping, err);
1160 }
1161 end_page_writeback(page);
1162 }
1163 }
1164 EXPORT_SYMBOL_GPL(page_endio);
1165
1166 /**
1167 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1168 * @__page: the page to lock
1169 */
1170 void __lock_page(struct page *__page)
1171 {
1172 struct page *page = compound_head(__page);
1173 wait_queue_head_t *q = page_waitqueue(page);
1174 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1175 }
1176 EXPORT_SYMBOL(__lock_page);
1177
1178 int __lock_page_killable(struct page *__page)
1179 {
1180 struct page *page = compound_head(__page);
1181 wait_queue_head_t *q = page_waitqueue(page);
1182 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1183 }
1184 EXPORT_SYMBOL_GPL(__lock_page_killable);
1185
1186 /*
1187 * Return values:
1188 * 1 - page is locked; mmap_sem is still held.
1189 * 0 - page is not locked.
1190 * mmap_sem has been released (up_read()), unless flags had both
1191 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1192 * which case mmap_sem is still held.
1193 *
1194 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1195 * with the page locked and the mmap_sem unperturbed.
1196 */
1197 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1198 unsigned int flags)
1199 {
1200 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1201 /*
1202 * CAUTION! In this case, mmap_sem is not released
1203 * even though return 0.
1204 */
1205 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1206 return 0;
1207
1208 up_read(&mm->mmap_sem);
1209 if (flags & FAULT_FLAG_KILLABLE)
1210 wait_on_page_locked_killable(page);
1211 else
1212 wait_on_page_locked(page);
1213 return 0;
1214 } else {
1215 if (flags & FAULT_FLAG_KILLABLE) {
1216 int ret;
1217
1218 ret = __lock_page_killable(page);
1219 if (ret) {
1220 up_read(&mm->mmap_sem);
1221 return 0;
1222 }
1223 } else
1224 __lock_page(page);
1225 return 1;
1226 }
1227 }
1228
1229 /**
1230 * page_cache_next_hole - find the next hole (not-present entry)
1231 * @mapping: mapping
1232 * @index: index
1233 * @max_scan: maximum range to search
1234 *
1235 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1236 * lowest indexed hole.
1237 *
1238 * Returns: the index of the hole if found, otherwise returns an index
1239 * outside of the set specified (in which case 'return - index >=
1240 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1241 * be returned.
1242 *
1243 * page_cache_next_hole may be called under rcu_read_lock. However,
1244 * like radix_tree_gang_lookup, this will not atomically search a
1245 * snapshot of the tree at a single point in time. For example, if a
1246 * hole is created at index 5, then subsequently a hole is created at
1247 * index 10, page_cache_next_hole covering both indexes may return 10
1248 * if called under rcu_read_lock.
1249 */
1250 pgoff_t page_cache_next_hole(struct address_space *mapping,
1251 pgoff_t index, unsigned long max_scan)
1252 {
1253 unsigned long i;
1254
1255 for (i = 0; i < max_scan; i++) {
1256 struct page *page;
1257
1258 page = radix_tree_lookup(&mapping->page_tree, index);
1259 if (!page || radix_tree_exceptional_entry(page))
1260 break;
1261 index++;
1262 if (index == 0)
1263 break;
1264 }
1265
1266 return index;
1267 }
1268 EXPORT_SYMBOL(page_cache_next_hole);
1269
1270 /**
1271 * page_cache_prev_hole - find the prev hole (not-present entry)
1272 * @mapping: mapping
1273 * @index: index
1274 * @max_scan: maximum range to search
1275 *
1276 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1277 * the first hole.
1278 *
1279 * Returns: the index of the hole if found, otherwise returns an index
1280 * outside of the set specified (in which case 'index - return >=
1281 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1282 * will be returned.
1283 *
1284 * page_cache_prev_hole may be called under rcu_read_lock. However,
1285 * like radix_tree_gang_lookup, this will not atomically search a
1286 * snapshot of the tree at a single point in time. For example, if a
1287 * hole is created at index 10, then subsequently a hole is created at
1288 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1289 * called under rcu_read_lock.
1290 */
1291 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1292 pgoff_t index, unsigned long max_scan)
1293 {
1294 unsigned long i;
1295
1296 for (i = 0; i < max_scan; i++) {
1297 struct page *page;
1298
1299 page = radix_tree_lookup(&mapping->page_tree, index);
1300 if (!page || radix_tree_exceptional_entry(page))
1301 break;
1302 index--;
1303 if (index == ULONG_MAX)
1304 break;
1305 }
1306
1307 return index;
1308 }
1309 EXPORT_SYMBOL(page_cache_prev_hole);
1310
1311 /**
1312 * find_get_entry - find and get a page cache entry
1313 * @mapping: the address_space to search
1314 * @offset: the page cache index
1315 *
1316 * Looks up the page cache slot at @mapping & @offset. If there is a
1317 * page cache page, it is returned with an increased refcount.
1318 *
1319 * If the slot holds a shadow entry of a previously evicted page, or a
1320 * swap entry from shmem/tmpfs, it is returned.
1321 *
1322 * Otherwise, %NULL is returned.
1323 */
1324 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1325 {
1326 void **pagep;
1327 struct page *head, *page;
1328
1329 rcu_read_lock();
1330 repeat:
1331 page = NULL;
1332 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1333 if (pagep) {
1334 page = radix_tree_deref_slot(pagep);
1335 if (unlikely(!page))
1336 goto out;
1337 if (radix_tree_exception(page)) {
1338 if (radix_tree_deref_retry(page))
1339 goto repeat;
1340 /*
1341 * A shadow entry of a recently evicted page,
1342 * or a swap entry from shmem/tmpfs. Return
1343 * it without attempting to raise page count.
1344 */
1345 goto out;
1346 }
1347
1348 head = compound_head(page);
1349 if (!page_cache_get_speculative(head))
1350 goto repeat;
1351
1352 /* The page was split under us? */
1353 if (compound_head(page) != head) {
1354 put_page(head);
1355 goto repeat;
1356 }
1357
1358 /*
1359 * Has the page moved?
1360 * This is part of the lockless pagecache protocol. See
1361 * include/linux/pagemap.h for details.
1362 */
1363 if (unlikely(page != *pagep)) {
1364 put_page(head);
1365 goto repeat;
1366 }
1367 }
1368 out:
1369 rcu_read_unlock();
1370
1371 return page;
1372 }
1373 EXPORT_SYMBOL(find_get_entry);
1374
1375 /**
1376 * find_lock_entry - locate, pin and lock a page cache entry
1377 * @mapping: the address_space to search
1378 * @offset: the page cache index
1379 *
1380 * Looks up the page cache slot at @mapping & @offset. If there is a
1381 * page cache page, it is returned locked and with an increased
1382 * refcount.
1383 *
1384 * If the slot holds a shadow entry of a previously evicted page, or a
1385 * swap entry from shmem/tmpfs, it is returned.
1386 *
1387 * Otherwise, %NULL is returned.
1388 *
1389 * find_lock_entry() may sleep.
1390 */
1391 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1392 {
1393 struct page *page;
1394
1395 repeat:
1396 page = find_get_entry(mapping, offset);
1397 if (page && !radix_tree_exception(page)) {
1398 lock_page(page);
1399 /* Has the page been truncated? */
1400 if (unlikely(page_mapping(page) != mapping)) {
1401 unlock_page(page);
1402 put_page(page);
1403 goto repeat;
1404 }
1405 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1406 }
1407 return page;
1408 }
1409 EXPORT_SYMBOL(find_lock_entry);
1410
1411 /**
1412 * pagecache_get_page - find and get a page reference
1413 * @mapping: the address_space to search
1414 * @offset: the page index
1415 * @fgp_flags: PCG flags
1416 * @gfp_mask: gfp mask to use for the page cache data page allocation
1417 *
1418 * Looks up the page cache slot at @mapping & @offset.
1419 *
1420 * PCG flags modify how the page is returned.
1421 *
1422 * @fgp_flags can be:
1423 *
1424 * - FGP_ACCESSED: the page will be marked accessed
1425 * - FGP_LOCK: Page is return locked
1426 * - FGP_CREAT: If page is not present then a new page is allocated using
1427 * @gfp_mask and added to the page cache and the VM's LRU
1428 * list. The page is returned locked and with an increased
1429 * refcount. Otherwise, NULL is returned.
1430 *
1431 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1432 * if the GFP flags specified for FGP_CREAT are atomic.
1433 *
1434 * If there is a page cache page, it is returned with an increased refcount.
1435 */
1436 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1437 int fgp_flags, gfp_t gfp_mask)
1438 {
1439 struct page *page;
1440
1441 repeat:
1442 page = find_get_entry(mapping, offset);
1443 if (radix_tree_exceptional_entry(page))
1444 page = NULL;
1445 if (!page)
1446 goto no_page;
1447
1448 if (fgp_flags & FGP_LOCK) {
1449 if (fgp_flags & FGP_NOWAIT) {
1450 if (!trylock_page(page)) {
1451 put_page(page);
1452 return NULL;
1453 }
1454 } else {
1455 lock_page(page);
1456 }
1457
1458 /* Has the page been truncated? */
1459 if (unlikely(page->mapping != mapping)) {
1460 unlock_page(page);
1461 put_page(page);
1462 goto repeat;
1463 }
1464 VM_BUG_ON_PAGE(page->index != offset, page);
1465 }
1466
1467 if (page && (fgp_flags & FGP_ACCESSED))
1468 mark_page_accessed(page);
1469
1470 no_page:
1471 if (!page && (fgp_flags & FGP_CREAT)) {
1472 int err;
1473 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1474 gfp_mask |= __GFP_WRITE;
1475 if (fgp_flags & FGP_NOFS)
1476 gfp_mask &= ~__GFP_FS;
1477
1478 page = __page_cache_alloc(gfp_mask);
1479 if (!page)
1480 return NULL;
1481
1482 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1483 fgp_flags |= FGP_LOCK;
1484
1485 /* Init accessed so avoid atomic mark_page_accessed later */
1486 if (fgp_flags & FGP_ACCESSED)
1487 __SetPageReferenced(page);
1488
1489 err = add_to_page_cache_lru(page, mapping, offset,
1490 gfp_mask & GFP_RECLAIM_MASK);
1491 if (unlikely(err)) {
1492 put_page(page);
1493 page = NULL;
1494 if (err == -EEXIST)
1495 goto repeat;
1496 }
1497 }
1498
1499 return page;
1500 }
1501 EXPORT_SYMBOL(pagecache_get_page);
1502
1503 /**
1504 * find_get_entries - gang pagecache lookup
1505 * @mapping: The address_space to search
1506 * @start: The starting page cache index
1507 * @nr_entries: The maximum number of entries
1508 * @entries: Where the resulting entries are placed
1509 * @indices: The cache indices corresponding to the entries in @entries
1510 *
1511 * find_get_entries() will search for and return a group of up to
1512 * @nr_entries entries in the mapping. The entries are placed at
1513 * @entries. find_get_entries() takes a reference against any actual
1514 * pages it returns.
1515 *
1516 * The search returns a group of mapping-contiguous page cache entries
1517 * with ascending indexes. There may be holes in the indices due to
1518 * not-present pages.
1519 *
1520 * Any shadow entries of evicted pages, or swap entries from
1521 * shmem/tmpfs, are included in the returned array.
1522 *
1523 * find_get_entries() returns the number of pages and shadow entries
1524 * which were found.
1525 */
1526 unsigned find_get_entries(struct address_space *mapping,
1527 pgoff_t start, unsigned int nr_entries,
1528 struct page **entries, pgoff_t *indices)
1529 {
1530 void **slot;
1531 unsigned int ret = 0;
1532 struct radix_tree_iter iter;
1533
1534 if (!nr_entries)
1535 return 0;
1536
1537 rcu_read_lock();
1538 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1539 struct page *head, *page;
1540 repeat:
1541 page = radix_tree_deref_slot(slot);
1542 if (unlikely(!page))
1543 continue;
1544 if (radix_tree_exception(page)) {
1545 if (radix_tree_deref_retry(page)) {
1546 slot = radix_tree_iter_retry(&iter);
1547 continue;
1548 }
1549 /*
1550 * A shadow entry of a recently evicted page, a swap
1551 * entry from shmem/tmpfs or a DAX entry. Return it
1552 * without attempting to raise page count.
1553 */
1554 goto export;
1555 }
1556
1557 head = compound_head(page);
1558 if (!page_cache_get_speculative(head))
1559 goto repeat;
1560
1561 /* The page was split under us? */
1562 if (compound_head(page) != head) {
1563 put_page(head);
1564 goto repeat;
1565 }
1566
1567 /* Has the page moved? */
1568 if (unlikely(page != *slot)) {
1569 put_page(head);
1570 goto repeat;
1571 }
1572 export:
1573 indices[ret] = iter.index;
1574 entries[ret] = page;
1575 if (++ret == nr_entries)
1576 break;
1577 }
1578 rcu_read_unlock();
1579 return ret;
1580 }
1581
1582 /**
1583 * find_get_pages_range - gang pagecache lookup
1584 * @mapping: The address_space to search
1585 * @start: The starting page index
1586 * @end: The final page index (inclusive)
1587 * @nr_pages: The maximum number of pages
1588 * @pages: Where the resulting pages are placed
1589 *
1590 * find_get_pages_range() will search for and return a group of up to @nr_pages
1591 * pages in the mapping starting at index @start and up to index @end
1592 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1593 * a reference against the returned pages.
1594 *
1595 * The search returns a group of mapping-contiguous pages with ascending
1596 * indexes. There may be holes in the indices due to not-present pages.
1597 * We also update @start to index the next page for the traversal.
1598 *
1599 * find_get_pages_range() returns the number of pages which were found. If this
1600 * number is smaller than @nr_pages, the end of specified range has been
1601 * reached.
1602 */
1603 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1604 pgoff_t end, unsigned int nr_pages,
1605 struct page **pages)
1606 {
1607 struct radix_tree_iter iter;
1608 void **slot;
1609 unsigned ret = 0;
1610
1611 if (unlikely(!nr_pages))
1612 return 0;
1613
1614 rcu_read_lock();
1615 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1616 struct page *head, *page;
1617
1618 if (iter.index > end)
1619 break;
1620 repeat:
1621 page = radix_tree_deref_slot(slot);
1622 if (unlikely(!page))
1623 continue;
1624
1625 if (radix_tree_exception(page)) {
1626 if (radix_tree_deref_retry(page)) {
1627 slot = radix_tree_iter_retry(&iter);
1628 continue;
1629 }
1630 /*
1631 * A shadow entry of a recently evicted page,
1632 * or a swap entry from shmem/tmpfs. Skip
1633 * over it.
1634 */
1635 continue;
1636 }
1637
1638 head = compound_head(page);
1639 if (!page_cache_get_speculative(head))
1640 goto repeat;
1641
1642 /* The page was split under us? */
1643 if (compound_head(page) != head) {
1644 put_page(head);
1645 goto repeat;
1646 }
1647
1648 /* Has the page moved? */
1649 if (unlikely(page != *slot)) {
1650 put_page(head);
1651 goto repeat;
1652 }
1653
1654 pages[ret] = page;
1655 if (++ret == nr_pages) {
1656 *start = pages[ret - 1]->index + 1;
1657 goto out;
1658 }
1659 }
1660
1661 /*
1662 * We come here when there is no page beyond @end. We take care to not
1663 * overflow the index @start as it confuses some of the callers. This
1664 * breaks the iteration when there is page at index -1 but that is
1665 * already broken anyway.
1666 */
1667 if (end == (pgoff_t)-1)
1668 *start = (pgoff_t)-1;
1669 else
1670 *start = end + 1;
1671 out:
1672 rcu_read_unlock();
1673
1674 return ret;
1675 }
1676
1677 /**
1678 * find_get_pages_contig - gang contiguous pagecache lookup
1679 * @mapping: The address_space to search
1680 * @index: The starting page index
1681 * @nr_pages: The maximum number of pages
1682 * @pages: Where the resulting pages are placed
1683 *
1684 * find_get_pages_contig() works exactly like find_get_pages(), except
1685 * that the returned number of pages are guaranteed to be contiguous.
1686 *
1687 * find_get_pages_contig() returns the number of pages which were found.
1688 */
1689 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1690 unsigned int nr_pages, struct page **pages)
1691 {
1692 struct radix_tree_iter iter;
1693 void **slot;
1694 unsigned int ret = 0;
1695
1696 if (unlikely(!nr_pages))
1697 return 0;
1698
1699 rcu_read_lock();
1700 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1701 struct page *head, *page;
1702 repeat:
1703 page = radix_tree_deref_slot(slot);
1704 /* The hole, there no reason to continue */
1705 if (unlikely(!page))
1706 break;
1707
1708 if (radix_tree_exception(page)) {
1709 if (radix_tree_deref_retry(page)) {
1710 slot = radix_tree_iter_retry(&iter);
1711 continue;
1712 }
1713 /*
1714 * A shadow entry of a recently evicted page,
1715 * or a swap entry from shmem/tmpfs. Stop
1716 * looking for contiguous pages.
1717 */
1718 break;
1719 }
1720
1721 head = compound_head(page);
1722 if (!page_cache_get_speculative(head))
1723 goto repeat;
1724
1725 /* The page was split under us? */
1726 if (compound_head(page) != head) {
1727 put_page(head);
1728 goto repeat;
1729 }
1730
1731 /* Has the page moved? */
1732 if (unlikely(page != *slot)) {
1733 put_page(head);
1734 goto repeat;
1735 }
1736
1737 /*
1738 * must check mapping and index after taking the ref.
1739 * otherwise we can get both false positives and false
1740 * negatives, which is just confusing to the caller.
1741 */
1742 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1743 put_page(page);
1744 break;
1745 }
1746
1747 pages[ret] = page;
1748 if (++ret == nr_pages)
1749 break;
1750 }
1751 rcu_read_unlock();
1752 return ret;
1753 }
1754 EXPORT_SYMBOL(find_get_pages_contig);
1755
1756 /**
1757 * find_get_pages_tag - find and return pages that match @tag
1758 * @mapping: the address_space to search
1759 * @index: the starting page index
1760 * @tag: the tag index
1761 * @nr_pages: the maximum number of pages
1762 * @pages: where the resulting pages are placed
1763 *
1764 * Like find_get_pages, except we only return pages which are tagged with
1765 * @tag. We update @index to index the next page for the traversal.
1766 */
1767 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1768 int tag, unsigned int nr_pages, struct page **pages)
1769 {
1770 struct radix_tree_iter iter;
1771 void **slot;
1772 unsigned ret = 0;
1773
1774 if (unlikely(!nr_pages))
1775 return 0;
1776
1777 rcu_read_lock();
1778 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1779 &iter, *index, tag) {
1780 struct page *head, *page;
1781 repeat:
1782 page = radix_tree_deref_slot(slot);
1783 if (unlikely(!page))
1784 continue;
1785
1786 if (radix_tree_exception(page)) {
1787 if (radix_tree_deref_retry(page)) {
1788 slot = radix_tree_iter_retry(&iter);
1789 continue;
1790 }
1791 /*
1792 * A shadow entry of a recently evicted page.
1793 *
1794 * Those entries should never be tagged, but
1795 * this tree walk is lockless and the tags are
1796 * looked up in bulk, one radix tree node at a
1797 * time, so there is a sizable window for page
1798 * reclaim to evict a page we saw tagged.
1799 *
1800 * Skip over it.
1801 */
1802 continue;
1803 }
1804
1805 head = compound_head(page);
1806 if (!page_cache_get_speculative(head))
1807 goto repeat;
1808
1809 /* The page was split under us? */
1810 if (compound_head(page) != head) {
1811 put_page(head);
1812 goto repeat;
1813 }
1814
1815 /* Has the page moved? */
1816 if (unlikely(page != *slot)) {
1817 put_page(head);
1818 goto repeat;
1819 }
1820
1821 pages[ret] = page;
1822 if (++ret == nr_pages)
1823 break;
1824 }
1825
1826 rcu_read_unlock();
1827
1828 if (ret)
1829 *index = pages[ret - 1]->index + 1;
1830
1831 return ret;
1832 }
1833 EXPORT_SYMBOL(find_get_pages_tag);
1834
1835 /**
1836 * find_get_entries_tag - find and return entries that match @tag
1837 * @mapping: the address_space to search
1838 * @start: the starting page cache index
1839 * @tag: the tag index
1840 * @nr_entries: the maximum number of entries
1841 * @entries: where the resulting entries are placed
1842 * @indices: the cache indices corresponding to the entries in @entries
1843 *
1844 * Like find_get_entries, except we only return entries which are tagged with
1845 * @tag.
1846 */
1847 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1848 int tag, unsigned int nr_entries,
1849 struct page **entries, pgoff_t *indices)
1850 {
1851 void **slot;
1852 unsigned int ret = 0;
1853 struct radix_tree_iter iter;
1854
1855 if (!nr_entries)
1856 return 0;
1857
1858 rcu_read_lock();
1859 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1860 &iter, start, tag) {
1861 struct page *head, *page;
1862 repeat:
1863 page = radix_tree_deref_slot(slot);
1864 if (unlikely(!page))
1865 continue;
1866 if (radix_tree_exception(page)) {
1867 if (radix_tree_deref_retry(page)) {
1868 slot = radix_tree_iter_retry(&iter);
1869 continue;
1870 }
1871
1872 /*
1873 * A shadow entry of a recently evicted page, a swap
1874 * entry from shmem/tmpfs or a DAX entry. Return it
1875 * without attempting to raise page count.
1876 */
1877 goto export;
1878 }
1879
1880 head = compound_head(page);
1881 if (!page_cache_get_speculative(head))
1882 goto repeat;
1883
1884 /* The page was split under us? */
1885 if (compound_head(page) != head) {
1886 put_page(head);
1887 goto repeat;
1888 }
1889
1890 /* Has the page moved? */
1891 if (unlikely(page != *slot)) {
1892 put_page(head);
1893 goto repeat;
1894 }
1895 export:
1896 indices[ret] = iter.index;
1897 entries[ret] = page;
1898 if (++ret == nr_entries)
1899 break;
1900 }
1901 rcu_read_unlock();
1902 return ret;
1903 }
1904 EXPORT_SYMBOL(find_get_entries_tag);
1905
1906 /*
1907 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1908 * a _large_ part of the i/o request. Imagine the worst scenario:
1909 *
1910 * ---R__________________________________________B__________
1911 * ^ reading here ^ bad block(assume 4k)
1912 *
1913 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1914 * => failing the whole request => read(R) => read(R+1) =>
1915 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1916 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1917 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1918 *
1919 * It is going insane. Fix it by quickly scaling down the readahead size.
1920 */
1921 static void shrink_readahead_size_eio(struct file *filp,
1922 struct file_ra_state *ra)
1923 {
1924 ra->ra_pages /= 4;
1925 }
1926
1927 /**
1928 * generic_file_buffered_read - generic file read routine
1929 * @iocb: the iocb to read
1930 * @iter: data destination
1931 * @written: already copied
1932 *
1933 * This is a generic file read routine, and uses the
1934 * mapping->a_ops->readpage() function for the actual low-level stuff.
1935 *
1936 * This is really ugly. But the goto's actually try to clarify some
1937 * of the logic when it comes to error handling etc.
1938 */
1939 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1940 struct iov_iter *iter, ssize_t written)
1941 {
1942 struct file *filp = iocb->ki_filp;
1943 struct address_space *mapping = filp->f_mapping;
1944 struct inode *inode = mapping->host;
1945 struct file_ra_state *ra = &filp->f_ra;
1946 loff_t *ppos = &iocb->ki_pos;
1947 pgoff_t index;
1948 pgoff_t last_index;
1949 pgoff_t prev_index;
1950 unsigned long offset; /* offset into pagecache page */
1951 unsigned int prev_offset;
1952 int error = 0;
1953
1954 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1955 return 0;
1956 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1957
1958 index = *ppos >> PAGE_SHIFT;
1959 prev_index = ra->prev_pos >> PAGE_SHIFT;
1960 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1961 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1962 offset = *ppos & ~PAGE_MASK;
1963
1964 for (;;) {
1965 struct page *page;
1966 pgoff_t end_index;
1967 loff_t isize;
1968 unsigned long nr, ret;
1969
1970 cond_resched();
1971 find_page:
1972 if (fatal_signal_pending(current)) {
1973 error = -EINTR;
1974 goto out;
1975 }
1976
1977 page = find_get_page(mapping, index);
1978 if (!page) {
1979 if (iocb->ki_flags & IOCB_NOWAIT)
1980 goto would_block;
1981 page_cache_sync_readahead(mapping,
1982 ra, filp,
1983 index, last_index - index);
1984 page = find_get_page(mapping, index);
1985 if (unlikely(page == NULL))
1986 goto no_cached_page;
1987 }
1988 if (PageReadahead(page)) {
1989 page_cache_async_readahead(mapping,
1990 ra, filp, page,
1991 index, last_index - index);
1992 }
1993 if (!PageUptodate(page)) {
1994 if (iocb->ki_flags & IOCB_NOWAIT) {
1995 put_page(page);
1996 goto would_block;
1997 }
1998
1999 /*
2000 * See comment in do_read_cache_page on why
2001 * wait_on_page_locked is used to avoid unnecessarily
2002 * serialisations and why it's safe.
2003 */
2004 error = wait_on_page_locked_killable(page);
2005 if (unlikely(error))
2006 goto readpage_error;
2007 if (PageUptodate(page))
2008 goto page_ok;
2009
2010 if (inode->i_blkbits == PAGE_SHIFT ||
2011 !mapping->a_ops->is_partially_uptodate)
2012 goto page_not_up_to_date;
2013 /* pipes can't handle partially uptodate pages */
2014 if (unlikely(iter->type & ITER_PIPE))
2015 goto page_not_up_to_date;
2016 if (!trylock_page(page))
2017 goto page_not_up_to_date;
2018 /* Did it get truncated before we got the lock? */
2019 if (!page->mapping)
2020 goto page_not_up_to_date_locked;
2021 if (!mapping->a_ops->is_partially_uptodate(page,
2022 offset, iter->count))
2023 goto page_not_up_to_date_locked;
2024 unlock_page(page);
2025 }
2026 page_ok:
2027 /*
2028 * i_size must be checked after we know the page is Uptodate.
2029 *
2030 * Checking i_size after the check allows us to calculate
2031 * the correct value for "nr", which means the zero-filled
2032 * part of the page is not copied back to userspace (unless
2033 * another truncate extends the file - this is desired though).
2034 */
2035
2036 isize = i_size_read(inode);
2037 end_index = (isize - 1) >> PAGE_SHIFT;
2038 if (unlikely(!isize || index > end_index)) {
2039 put_page(page);
2040 goto out;
2041 }
2042
2043 /* nr is the maximum number of bytes to copy from this page */
2044 nr = PAGE_SIZE;
2045 if (index == end_index) {
2046 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2047 if (nr <= offset) {
2048 put_page(page);
2049 goto out;
2050 }
2051 }
2052 nr = nr - offset;
2053
2054 /* If users can be writing to this page using arbitrary
2055 * virtual addresses, take care about potential aliasing
2056 * before reading the page on the kernel side.
2057 */
2058 if (mapping_writably_mapped(mapping))
2059 flush_dcache_page(page);
2060
2061 /*
2062 * When a sequential read accesses a page several times,
2063 * only mark it as accessed the first time.
2064 */
2065 if (prev_index != index || offset != prev_offset)
2066 mark_page_accessed(page);
2067 prev_index = index;
2068
2069 /*
2070 * Ok, we have the page, and it's up-to-date, so
2071 * now we can copy it to user space...
2072 */
2073
2074 ret = copy_page_to_iter(page, offset, nr, iter);
2075 offset += ret;
2076 index += offset >> PAGE_SHIFT;
2077 offset &= ~PAGE_MASK;
2078 prev_offset = offset;
2079
2080 put_page(page);
2081 written += ret;
2082 if (!iov_iter_count(iter))
2083 goto out;
2084 if (ret < nr) {
2085 error = -EFAULT;
2086 goto out;
2087 }
2088 continue;
2089
2090 page_not_up_to_date:
2091 /* Get exclusive access to the page ... */
2092 error = lock_page_killable(page);
2093 if (unlikely(error))
2094 goto readpage_error;
2095
2096 page_not_up_to_date_locked:
2097 /* Did it get truncated before we got the lock? */
2098 if (!page->mapping) {
2099 unlock_page(page);
2100 put_page(page);
2101 continue;
2102 }
2103
2104 /* Did somebody else fill it already? */
2105 if (PageUptodate(page)) {
2106 unlock_page(page);
2107 goto page_ok;
2108 }
2109
2110 readpage:
2111 /*
2112 * A previous I/O error may have been due to temporary
2113 * failures, eg. multipath errors.
2114 * PG_error will be set again if readpage fails.
2115 */
2116 ClearPageError(page);
2117 /* Start the actual read. The read will unlock the page. */
2118 error = mapping->a_ops->readpage(filp, page);
2119
2120 if (unlikely(error)) {
2121 if (error == AOP_TRUNCATED_PAGE) {
2122 put_page(page);
2123 error = 0;
2124 goto find_page;
2125 }
2126 goto readpage_error;
2127 }
2128
2129 if (!PageUptodate(page)) {
2130 error = lock_page_killable(page);
2131 if (unlikely(error))
2132 goto readpage_error;
2133 if (!PageUptodate(page)) {
2134 if (page->mapping == NULL) {
2135 /*
2136 * invalidate_mapping_pages got it
2137 */
2138 unlock_page(page);
2139 put_page(page);
2140 goto find_page;
2141 }
2142 unlock_page(page);
2143 shrink_readahead_size_eio(filp, ra);
2144 error = -EIO;
2145 goto readpage_error;
2146 }
2147 unlock_page(page);
2148 }
2149
2150 goto page_ok;
2151
2152 readpage_error:
2153 /* UHHUH! A synchronous read error occurred. Report it */
2154 put_page(page);
2155 goto out;
2156
2157 no_cached_page:
2158 /*
2159 * Ok, it wasn't cached, so we need to create a new
2160 * page..
2161 */
2162 page = page_cache_alloc_cold(mapping);
2163 if (!page) {
2164 error = -ENOMEM;
2165 goto out;
2166 }
2167 error = add_to_page_cache_lru(page, mapping, index,
2168 mapping_gfp_constraint(mapping, GFP_KERNEL));
2169 if (error) {
2170 put_page(page);
2171 if (error == -EEXIST) {
2172 error = 0;
2173 goto find_page;
2174 }
2175 goto out;
2176 }
2177 goto readpage;
2178 }
2179
2180 would_block:
2181 error = -EAGAIN;
2182 out:
2183 ra->prev_pos = prev_index;
2184 ra->prev_pos <<= PAGE_SHIFT;
2185 ra->prev_pos |= prev_offset;
2186
2187 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2188 file_accessed(filp);
2189 return written ? written : error;
2190 }
2191
2192 /**
2193 * generic_file_read_iter - generic filesystem read routine
2194 * @iocb: kernel I/O control block
2195 * @iter: destination for the data read
2196 *
2197 * This is the "read_iter()" routine for all filesystems
2198 * that can use the page cache directly.
2199 */
2200 ssize_t
2201 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2202 {
2203 size_t count = iov_iter_count(iter);
2204 ssize_t retval = 0;
2205
2206 if (!count)
2207 goto out; /* skip atime */
2208
2209 if (iocb->ki_flags & IOCB_DIRECT) {
2210 struct file *file = iocb->ki_filp;
2211 struct address_space *mapping = file->f_mapping;
2212 struct inode *inode = mapping->host;
2213 loff_t size;
2214
2215 size = i_size_read(inode);
2216 if (iocb->ki_flags & IOCB_NOWAIT) {
2217 if (filemap_range_has_page(mapping, iocb->ki_pos,
2218 iocb->ki_pos + count - 1))
2219 return -EAGAIN;
2220 } else {
2221 retval = filemap_write_and_wait_range(mapping,
2222 iocb->ki_pos,
2223 iocb->ki_pos + count - 1);
2224 if (retval < 0)
2225 goto out;
2226 }
2227
2228 file_accessed(file);
2229
2230 retval = mapping->a_ops->direct_IO(iocb, iter);
2231 if (retval >= 0) {
2232 iocb->ki_pos += retval;
2233 count -= retval;
2234 }
2235 iov_iter_revert(iter, count - iov_iter_count(iter));
2236
2237 /*
2238 * Btrfs can have a short DIO read if we encounter
2239 * compressed extents, so if there was an error, or if
2240 * we've already read everything we wanted to, or if
2241 * there was a short read because we hit EOF, go ahead
2242 * and return. Otherwise fallthrough to buffered io for
2243 * the rest of the read. Buffered reads will not work for
2244 * DAX files, so don't bother trying.
2245 */
2246 if (retval < 0 || !count || iocb->ki_pos >= size ||
2247 IS_DAX(inode))
2248 goto out;
2249 }
2250
2251 retval = generic_file_buffered_read(iocb, iter, retval);
2252 out:
2253 return retval;
2254 }
2255 EXPORT_SYMBOL(generic_file_read_iter);
2256
2257 #ifdef CONFIG_MMU
2258 /**
2259 * page_cache_read - adds requested page to the page cache if not already there
2260 * @file: file to read
2261 * @offset: page index
2262 * @gfp_mask: memory allocation flags
2263 *
2264 * This adds the requested page to the page cache if it isn't already there,
2265 * and schedules an I/O to read in its contents from disk.
2266 */
2267 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2268 {
2269 struct address_space *mapping = file->f_mapping;
2270 struct page *page;
2271 int ret;
2272
2273 do {
2274 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2275 if (!page)
2276 return -ENOMEM;
2277
2278 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2279 if (ret == 0)
2280 ret = mapping->a_ops->readpage(file, page);
2281 else if (ret == -EEXIST)
2282 ret = 0; /* losing race to add is OK */
2283
2284 put_page(page);
2285
2286 } while (ret == AOP_TRUNCATED_PAGE);
2287
2288 return ret;
2289 }
2290
2291 #define MMAP_LOTSAMISS (100)
2292
2293 /*
2294 * Synchronous readahead happens when we don't even find
2295 * a page in the page cache at all.
2296 */
2297 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2298 struct file_ra_state *ra,
2299 struct file *file,
2300 pgoff_t offset)
2301 {
2302 struct address_space *mapping = file->f_mapping;
2303
2304 /* If we don't want any read-ahead, don't bother */
2305 if (vma->vm_flags & VM_RAND_READ)
2306 return;
2307 if (!ra->ra_pages)
2308 return;
2309
2310 if (vma->vm_flags & VM_SEQ_READ) {
2311 page_cache_sync_readahead(mapping, ra, file, offset,
2312 ra->ra_pages);
2313 return;
2314 }
2315
2316 /* Avoid banging the cache line if not needed */
2317 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2318 ra->mmap_miss++;
2319
2320 /*
2321 * Do we miss much more than hit in this file? If so,
2322 * stop bothering with read-ahead. It will only hurt.
2323 */
2324 if (ra->mmap_miss > MMAP_LOTSAMISS)
2325 return;
2326
2327 /*
2328 * mmap read-around
2329 */
2330 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2331 ra->size = ra->ra_pages;
2332 ra->async_size = ra->ra_pages / 4;
2333 ra_submit(ra, mapping, file);
2334 }
2335
2336 /*
2337 * Asynchronous readahead happens when we find the page and PG_readahead,
2338 * so we want to possibly extend the readahead further..
2339 */
2340 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2341 struct file_ra_state *ra,
2342 struct file *file,
2343 struct page *page,
2344 pgoff_t offset)
2345 {
2346 struct address_space *mapping = file->f_mapping;
2347
2348 /* If we don't want any read-ahead, don't bother */
2349 if (vma->vm_flags & VM_RAND_READ)
2350 return;
2351 if (ra->mmap_miss > 0)
2352 ra->mmap_miss--;
2353 if (PageReadahead(page))
2354 page_cache_async_readahead(mapping, ra, file,
2355 page, offset, ra->ra_pages);
2356 }
2357
2358 /**
2359 * filemap_fault - read in file data for page fault handling
2360 * @vmf: struct vm_fault containing details of the fault
2361 *
2362 * filemap_fault() is invoked via the vma operations vector for a
2363 * mapped memory region to read in file data during a page fault.
2364 *
2365 * The goto's are kind of ugly, but this streamlines the normal case of having
2366 * it in the page cache, and handles the special cases reasonably without
2367 * having a lot of duplicated code.
2368 *
2369 * vma->vm_mm->mmap_sem must be held on entry.
2370 *
2371 * If our return value has VM_FAULT_RETRY set, it's because
2372 * lock_page_or_retry() returned 0.
2373 * The mmap_sem has usually been released in this case.
2374 * See __lock_page_or_retry() for the exception.
2375 *
2376 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2377 * has not been released.
2378 *
2379 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2380 */
2381 int filemap_fault(struct vm_fault *vmf)
2382 {
2383 int error;
2384 struct file *file = vmf->vma->vm_file;
2385 struct address_space *mapping = file->f_mapping;
2386 struct file_ra_state *ra = &file->f_ra;
2387 struct inode *inode = mapping->host;
2388 pgoff_t offset = vmf->pgoff;
2389 pgoff_t max_off;
2390 struct page *page;
2391 int ret = 0;
2392
2393 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2394 if (unlikely(offset >= max_off))
2395 return VM_FAULT_SIGBUS;
2396
2397 /*
2398 * Do we have something in the page cache already?
2399 */
2400 page = find_get_page(mapping, offset);
2401 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2402 /*
2403 * We found the page, so try async readahead before
2404 * waiting for the lock.
2405 */
2406 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2407 } else if (!page) {
2408 /* No page in the page cache at all */
2409 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2410 count_vm_event(PGMAJFAULT);
2411 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2412 ret = VM_FAULT_MAJOR;
2413 retry_find:
2414 page = find_get_page(mapping, offset);
2415 if (!page)
2416 goto no_cached_page;
2417 }
2418
2419 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2420 put_page(page);
2421 return ret | VM_FAULT_RETRY;
2422 }
2423
2424 /* Did it get truncated? */
2425 if (unlikely(page->mapping != mapping)) {
2426 unlock_page(page);
2427 put_page(page);
2428 goto retry_find;
2429 }
2430 VM_BUG_ON_PAGE(page->index != offset, page);
2431
2432 /*
2433 * We have a locked page in the page cache, now we need to check
2434 * that it's up-to-date. If not, it is going to be due to an error.
2435 */
2436 if (unlikely(!PageUptodate(page)))
2437 goto page_not_uptodate;
2438
2439 /*
2440 * Found the page and have a reference on it.
2441 * We must recheck i_size under page lock.
2442 */
2443 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2444 if (unlikely(offset >= max_off)) {
2445 unlock_page(page);
2446 put_page(page);
2447 return VM_FAULT_SIGBUS;
2448 }
2449
2450 vmf->page = page;
2451 return ret | VM_FAULT_LOCKED;
2452
2453 no_cached_page:
2454 /*
2455 * We're only likely to ever get here if MADV_RANDOM is in
2456 * effect.
2457 */
2458 error = page_cache_read(file, offset, vmf->gfp_mask);
2459
2460 /*
2461 * The page we want has now been added to the page cache.
2462 * In the unlikely event that someone removed it in the
2463 * meantime, we'll just come back here and read it again.
2464 */
2465 if (error >= 0)
2466 goto retry_find;
2467
2468 /*
2469 * An error return from page_cache_read can result if the
2470 * system is low on memory, or a problem occurs while trying
2471 * to schedule I/O.
2472 */
2473 if (error == -ENOMEM)
2474 return VM_FAULT_OOM;
2475 return VM_FAULT_SIGBUS;
2476
2477 page_not_uptodate:
2478 /*
2479 * Umm, take care of errors if the page isn't up-to-date.
2480 * Try to re-read it _once_. We do this synchronously,
2481 * because there really aren't any performance issues here
2482 * and we need to check for errors.
2483 */
2484 ClearPageError(page);
2485 error = mapping->a_ops->readpage(file, page);
2486 if (!error) {
2487 wait_on_page_locked(page);
2488 if (!PageUptodate(page))
2489 error = -EIO;
2490 }
2491 put_page(page);
2492
2493 if (!error || error == AOP_TRUNCATED_PAGE)
2494 goto retry_find;
2495
2496 /* Things didn't work out. Return zero to tell the mm layer so. */
2497 shrink_readahead_size_eio(file, ra);
2498 return VM_FAULT_SIGBUS;
2499 }
2500 EXPORT_SYMBOL(filemap_fault);
2501
2502 void filemap_map_pages(struct vm_fault *vmf,
2503 pgoff_t start_pgoff, pgoff_t end_pgoff)
2504 {
2505 struct radix_tree_iter iter;
2506 void **slot;
2507 struct file *file = vmf->vma->vm_file;
2508 struct address_space *mapping = file->f_mapping;
2509 pgoff_t last_pgoff = start_pgoff;
2510 unsigned long max_idx;
2511 struct page *head, *page;
2512
2513 rcu_read_lock();
2514 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2515 start_pgoff) {
2516 if (iter.index > end_pgoff)
2517 break;
2518 repeat:
2519 page = radix_tree_deref_slot(slot);
2520 if (unlikely(!page))
2521 goto next;
2522 if (radix_tree_exception(page)) {
2523 if (radix_tree_deref_retry(page)) {
2524 slot = radix_tree_iter_retry(&iter);
2525 continue;
2526 }
2527 goto next;
2528 }
2529
2530 head = compound_head(page);
2531 if (!page_cache_get_speculative(head))
2532 goto repeat;
2533
2534 /* The page was split under us? */
2535 if (compound_head(page) != head) {
2536 put_page(head);
2537 goto repeat;
2538 }
2539
2540 /* Has the page moved? */
2541 if (unlikely(page != *slot)) {
2542 put_page(head);
2543 goto repeat;
2544 }
2545
2546 if (!PageUptodate(page) ||
2547 PageReadahead(page) ||
2548 PageHWPoison(page))
2549 goto skip;
2550 if (!trylock_page(page))
2551 goto skip;
2552
2553 if (page->mapping != mapping || !PageUptodate(page))
2554 goto unlock;
2555
2556 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2557 if (page->index >= max_idx)
2558 goto unlock;
2559
2560 if (file->f_ra.mmap_miss > 0)
2561 file->f_ra.mmap_miss--;
2562
2563 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2564 if (vmf->pte)
2565 vmf->pte += iter.index - last_pgoff;
2566 last_pgoff = iter.index;
2567 if (alloc_set_pte(vmf, NULL, page))
2568 goto unlock;
2569 unlock_page(page);
2570 goto next;
2571 unlock:
2572 unlock_page(page);
2573 skip:
2574 put_page(page);
2575 next:
2576 /* Huge page is mapped? No need to proceed. */
2577 if (pmd_trans_huge(*vmf->pmd))
2578 break;
2579 if (iter.index == end_pgoff)
2580 break;
2581 }
2582 rcu_read_unlock();
2583 }
2584 EXPORT_SYMBOL(filemap_map_pages);
2585
2586 int filemap_page_mkwrite(struct vm_fault *vmf)
2587 {
2588 struct page *page = vmf->page;
2589 struct inode *inode = file_inode(vmf->vma->vm_file);
2590 int ret = VM_FAULT_LOCKED;
2591
2592 sb_start_pagefault(inode->i_sb);
2593 file_update_time(vmf->vma->vm_file);
2594 lock_page(page);
2595 if (page->mapping != inode->i_mapping) {
2596 unlock_page(page);
2597 ret = VM_FAULT_NOPAGE;
2598 goto out;
2599 }
2600 /*
2601 * We mark the page dirty already here so that when freeze is in
2602 * progress, we are guaranteed that writeback during freezing will
2603 * see the dirty page and writeprotect it again.
2604 */
2605 set_page_dirty(page);
2606 wait_for_stable_page(page);
2607 out:
2608 sb_end_pagefault(inode->i_sb);
2609 return ret;
2610 }
2611 EXPORT_SYMBOL(filemap_page_mkwrite);
2612
2613 const struct vm_operations_struct generic_file_vm_ops = {
2614 .fault = filemap_fault,
2615 .map_pages = filemap_map_pages,
2616 .page_mkwrite = filemap_page_mkwrite,
2617 };
2618
2619 /* This is used for a general mmap of a disk file */
2620
2621 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2622 {
2623 struct address_space *mapping = file->f_mapping;
2624
2625 if (!mapping->a_ops->readpage)
2626 return -ENOEXEC;
2627 file_accessed(file);
2628 vma->vm_ops = &generic_file_vm_ops;
2629 return 0;
2630 }
2631
2632 /*
2633 * This is for filesystems which do not implement ->writepage.
2634 */
2635 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2636 {
2637 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2638 return -EINVAL;
2639 return generic_file_mmap(file, vma);
2640 }
2641 #else
2642 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2643 {
2644 return -ENOSYS;
2645 }
2646 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2647 {
2648 return -ENOSYS;
2649 }
2650 #endif /* CONFIG_MMU */
2651
2652 EXPORT_SYMBOL(generic_file_mmap);
2653 EXPORT_SYMBOL(generic_file_readonly_mmap);
2654
2655 static struct page *wait_on_page_read(struct page *page)
2656 {
2657 if (!IS_ERR(page)) {
2658 wait_on_page_locked(page);
2659 if (!PageUptodate(page)) {
2660 put_page(page);
2661 page = ERR_PTR(-EIO);
2662 }
2663 }
2664 return page;
2665 }
2666
2667 static struct page *do_read_cache_page(struct address_space *mapping,
2668 pgoff_t index,
2669 int (*filler)(void *, struct page *),
2670 void *data,
2671 gfp_t gfp)
2672 {
2673 struct page *page;
2674 int err;
2675 repeat:
2676 page = find_get_page(mapping, index);
2677 if (!page) {
2678 page = __page_cache_alloc(gfp | __GFP_COLD);
2679 if (!page)
2680 return ERR_PTR(-ENOMEM);
2681 err = add_to_page_cache_lru(page, mapping, index, gfp);
2682 if (unlikely(err)) {
2683 put_page(page);
2684 if (err == -EEXIST)
2685 goto repeat;
2686 /* Presumably ENOMEM for radix tree node */
2687 return ERR_PTR(err);
2688 }
2689
2690 filler:
2691 err = filler(data, page);
2692 if (err < 0) {
2693 put_page(page);
2694 return ERR_PTR(err);
2695 }
2696
2697 page = wait_on_page_read(page);
2698 if (IS_ERR(page))
2699 return page;
2700 goto out;
2701 }
2702 if (PageUptodate(page))
2703 goto out;
2704
2705 /*
2706 * Page is not up to date and may be locked due one of the following
2707 * case a: Page is being filled and the page lock is held
2708 * case b: Read/write error clearing the page uptodate status
2709 * case c: Truncation in progress (page locked)
2710 * case d: Reclaim in progress
2711 *
2712 * Case a, the page will be up to date when the page is unlocked.
2713 * There is no need to serialise on the page lock here as the page
2714 * is pinned so the lock gives no additional protection. Even if the
2715 * the page is truncated, the data is still valid if PageUptodate as
2716 * it's a race vs truncate race.
2717 * Case b, the page will not be up to date
2718 * Case c, the page may be truncated but in itself, the data may still
2719 * be valid after IO completes as it's a read vs truncate race. The
2720 * operation must restart if the page is not uptodate on unlock but
2721 * otherwise serialising on page lock to stabilise the mapping gives
2722 * no additional guarantees to the caller as the page lock is
2723 * released before return.
2724 * Case d, similar to truncation. If reclaim holds the page lock, it
2725 * will be a race with remove_mapping that determines if the mapping
2726 * is valid on unlock but otherwise the data is valid and there is
2727 * no need to serialise with page lock.
2728 *
2729 * As the page lock gives no additional guarantee, we optimistically
2730 * wait on the page to be unlocked and check if it's up to date and
2731 * use the page if it is. Otherwise, the page lock is required to
2732 * distinguish between the different cases. The motivation is that we
2733 * avoid spurious serialisations and wakeups when multiple processes
2734 * wait on the same page for IO to complete.
2735 */
2736 wait_on_page_locked(page);
2737 if (PageUptodate(page))
2738 goto out;
2739
2740 /* Distinguish between all the cases under the safety of the lock */
2741 lock_page(page);
2742
2743 /* Case c or d, restart the operation */
2744 if (!page->mapping) {
2745 unlock_page(page);
2746 put_page(page);
2747 goto repeat;
2748 }
2749
2750 /* Someone else locked and filled the page in a very small window */
2751 if (PageUptodate(page)) {
2752 unlock_page(page);
2753 goto out;
2754 }
2755 goto filler;
2756
2757 out:
2758 mark_page_accessed(page);
2759 return page;
2760 }
2761
2762 /**
2763 * read_cache_page - read into page cache, fill it if needed
2764 * @mapping: the page's address_space
2765 * @index: the page index
2766 * @filler: function to perform the read
2767 * @data: first arg to filler(data, page) function, often left as NULL
2768 *
2769 * Read into the page cache. If a page already exists, and PageUptodate() is
2770 * not set, try to fill the page and wait for it to become unlocked.
2771 *
2772 * If the page does not get brought uptodate, return -EIO.
2773 */
2774 struct page *read_cache_page(struct address_space *mapping,
2775 pgoff_t index,
2776 int (*filler)(void *, struct page *),
2777 void *data)
2778 {
2779 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2780 }
2781 EXPORT_SYMBOL(read_cache_page);
2782
2783 /**
2784 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2785 * @mapping: the page's address_space
2786 * @index: the page index
2787 * @gfp: the page allocator flags to use if allocating
2788 *
2789 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2790 * any new page allocations done using the specified allocation flags.
2791 *
2792 * If the page does not get brought uptodate, return -EIO.
2793 */
2794 struct page *read_cache_page_gfp(struct address_space *mapping,
2795 pgoff_t index,
2796 gfp_t gfp)
2797 {
2798 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2799
2800 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2801 }
2802 EXPORT_SYMBOL(read_cache_page_gfp);
2803
2804 /*
2805 * Performs necessary checks before doing a write
2806 *
2807 * Can adjust writing position or amount of bytes to write.
2808 * Returns appropriate error code that caller should return or
2809 * zero in case that write should be allowed.
2810 */
2811 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2812 {
2813 struct file *file = iocb->ki_filp;
2814 struct inode *inode = file->f_mapping->host;
2815 unsigned long limit = rlimit(RLIMIT_FSIZE);
2816 loff_t pos;
2817
2818 if (!iov_iter_count(from))
2819 return 0;
2820
2821 /* FIXME: this is for backwards compatibility with 2.4 */
2822 if (iocb->ki_flags & IOCB_APPEND)
2823 iocb->ki_pos = i_size_read(inode);
2824
2825 pos = iocb->ki_pos;
2826
2827 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2828 return -EINVAL;
2829
2830 if (limit != RLIM_INFINITY) {
2831 if (iocb->ki_pos >= limit) {
2832 send_sig(SIGXFSZ, current, 0);
2833 return -EFBIG;
2834 }
2835 iov_iter_truncate(from, limit - (unsigned long)pos);
2836 }
2837
2838 /*
2839 * LFS rule
2840 */
2841 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2842 !(file->f_flags & O_LARGEFILE))) {
2843 if (pos >= MAX_NON_LFS)
2844 return -EFBIG;
2845 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2846 }
2847
2848 /*
2849 * Are we about to exceed the fs block limit ?
2850 *
2851 * If we have written data it becomes a short write. If we have
2852 * exceeded without writing data we send a signal and return EFBIG.
2853 * Linus frestrict idea will clean these up nicely..
2854 */
2855 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2856 return -EFBIG;
2857
2858 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2859 return iov_iter_count(from);
2860 }
2861 EXPORT_SYMBOL(generic_write_checks);
2862
2863 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2864 loff_t pos, unsigned len, unsigned flags,
2865 struct page **pagep, void **fsdata)
2866 {
2867 const struct address_space_operations *aops = mapping->a_ops;
2868
2869 return aops->write_begin(file, mapping, pos, len, flags,
2870 pagep, fsdata);
2871 }
2872 EXPORT_SYMBOL(pagecache_write_begin);
2873
2874 int pagecache_write_end(struct file *file, struct address_space *mapping,
2875 loff_t pos, unsigned len, unsigned copied,
2876 struct page *page, void *fsdata)
2877 {
2878 const struct address_space_operations *aops = mapping->a_ops;
2879
2880 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2881 }
2882 EXPORT_SYMBOL(pagecache_write_end);
2883
2884 ssize_t
2885 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2886 {
2887 struct file *file = iocb->ki_filp;
2888 struct address_space *mapping = file->f_mapping;
2889 struct inode *inode = mapping->host;
2890 loff_t pos = iocb->ki_pos;
2891 ssize_t written;
2892 size_t write_len;
2893 pgoff_t end;
2894
2895 write_len = iov_iter_count(from);
2896 end = (pos + write_len - 1) >> PAGE_SHIFT;
2897
2898 if (iocb->ki_flags & IOCB_NOWAIT) {
2899 /* If there are pages to writeback, return */
2900 if (filemap_range_has_page(inode->i_mapping, pos,
2901 pos + iov_iter_count(from)))
2902 return -EAGAIN;
2903 } else {
2904 written = filemap_write_and_wait_range(mapping, pos,
2905 pos + write_len - 1);
2906 if (written)
2907 goto out;
2908 }
2909
2910 /*
2911 * After a write we want buffered reads to be sure to go to disk to get
2912 * the new data. We invalidate clean cached page from the region we're
2913 * about to write. We do this *before* the write so that we can return
2914 * without clobbering -EIOCBQUEUED from ->direct_IO().
2915 */
2916 written = invalidate_inode_pages2_range(mapping,
2917 pos >> PAGE_SHIFT, end);
2918 /*
2919 * If a page can not be invalidated, return 0 to fall back
2920 * to buffered write.
2921 */
2922 if (written) {
2923 if (written == -EBUSY)
2924 return 0;
2925 goto out;
2926 }
2927
2928 written = mapping->a_ops->direct_IO(iocb, from);
2929
2930 /*
2931 * Finally, try again to invalidate clean pages which might have been
2932 * cached by non-direct readahead, or faulted in by get_user_pages()
2933 * if the source of the write was an mmap'ed region of the file
2934 * we're writing. Either one is a pretty crazy thing to do,
2935 * so we don't support it 100%. If this invalidation
2936 * fails, tough, the write still worked...
2937 *
2938 * Most of the time we do not need this since dio_complete() will do
2939 * the invalidation for us. However there are some file systems that
2940 * do not end up with dio_complete() being called, so let's not break
2941 * them by removing it completely
2942 */
2943 if (mapping->nrpages)
2944 invalidate_inode_pages2_range(mapping,
2945 pos >> PAGE_SHIFT, end);
2946
2947 if (written > 0) {
2948 pos += written;
2949 write_len -= written;
2950 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2951 i_size_write(inode, pos);
2952 mark_inode_dirty(inode);
2953 }
2954 iocb->ki_pos = pos;
2955 }
2956 iov_iter_revert(from, write_len - iov_iter_count(from));
2957 out:
2958 return written;
2959 }
2960 EXPORT_SYMBOL(generic_file_direct_write);
2961
2962 /*
2963 * Find or create a page at the given pagecache position. Return the locked
2964 * page. This function is specifically for buffered writes.
2965 */
2966 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2967 pgoff_t index, unsigned flags)
2968 {
2969 struct page *page;
2970 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2971
2972 if (flags & AOP_FLAG_NOFS)
2973 fgp_flags |= FGP_NOFS;
2974
2975 page = pagecache_get_page(mapping, index, fgp_flags,
2976 mapping_gfp_mask(mapping));
2977 if (page)
2978 wait_for_stable_page(page);
2979
2980 return page;
2981 }
2982 EXPORT_SYMBOL(grab_cache_page_write_begin);
2983
2984 ssize_t generic_perform_write(struct file *file,
2985 struct iov_iter *i, loff_t pos)
2986 {
2987 struct address_space *mapping = file->f_mapping;
2988 const struct address_space_operations *a_ops = mapping->a_ops;
2989 long status = 0;
2990 ssize_t written = 0;
2991 unsigned int flags = 0;
2992
2993 do {
2994 struct page *page;
2995 unsigned long offset; /* Offset into pagecache page */
2996 unsigned long bytes; /* Bytes to write to page */
2997 size_t copied; /* Bytes copied from user */
2998 void *fsdata;
2999
3000 offset = (pos & (PAGE_SIZE - 1));
3001 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3002 iov_iter_count(i));
3003
3004 again:
3005 /*
3006 * Bring in the user page that we will copy from _first_.
3007 * Otherwise there's a nasty deadlock on copying from the
3008 * same page as we're writing to, without it being marked
3009 * up-to-date.
3010 *
3011 * Not only is this an optimisation, but it is also required
3012 * to check that the address is actually valid, when atomic
3013 * usercopies are used, below.
3014 */
3015 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3016 status = -EFAULT;
3017 break;
3018 }
3019
3020 if (fatal_signal_pending(current)) {
3021 status = -EINTR;
3022 break;
3023 }
3024
3025 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3026 &page, &fsdata);
3027 if (unlikely(status < 0))
3028 break;
3029
3030 if (mapping_writably_mapped(mapping))
3031 flush_dcache_page(page);
3032
3033 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3034 flush_dcache_page(page);
3035
3036 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3037 page, fsdata);
3038 if (unlikely(status < 0))
3039 break;
3040 copied = status;
3041
3042 cond_resched();
3043
3044 iov_iter_advance(i, copied);
3045 if (unlikely(copied == 0)) {
3046 /*
3047 * If we were unable to copy any data at all, we must
3048 * fall back to a single segment length write.
3049 *
3050 * If we didn't fallback here, we could livelock
3051 * because not all segments in the iov can be copied at
3052 * once without a pagefault.
3053 */
3054 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3055 iov_iter_single_seg_count(i));
3056 goto again;
3057 }
3058 pos += copied;
3059 written += copied;
3060
3061 balance_dirty_pages_ratelimited(mapping);
3062 } while (iov_iter_count(i));
3063
3064 return written ? written : status;
3065 }
3066 EXPORT_SYMBOL(generic_perform_write);
3067
3068 /**
3069 * __generic_file_write_iter - write data to a file
3070 * @iocb: IO state structure (file, offset, etc.)
3071 * @from: iov_iter with data to write
3072 *
3073 * This function does all the work needed for actually writing data to a
3074 * file. It does all basic checks, removes SUID from the file, updates
3075 * modification times and calls proper subroutines depending on whether we
3076 * do direct IO or a standard buffered write.
3077 *
3078 * It expects i_mutex to be grabbed unless we work on a block device or similar
3079 * object which does not need locking at all.
3080 *
3081 * This function does *not* take care of syncing data in case of O_SYNC write.
3082 * A caller has to handle it. This is mainly due to the fact that we want to
3083 * avoid syncing under i_mutex.
3084 */
3085 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3086 {
3087 struct file *file = iocb->ki_filp;
3088 struct address_space * mapping = file->f_mapping;
3089 struct inode *inode = mapping->host;
3090 ssize_t written = 0;
3091 ssize_t err;
3092 ssize_t status;
3093
3094 /* We can write back this queue in page reclaim */
3095 current->backing_dev_info = inode_to_bdi(inode);
3096 err = file_remove_privs(file);
3097 if (err)
3098 goto out;
3099
3100 err = file_update_time(file);
3101 if (err)
3102 goto out;
3103
3104 if (iocb->ki_flags & IOCB_DIRECT) {
3105 loff_t pos, endbyte;
3106
3107 written = generic_file_direct_write(iocb, from);
3108 /*
3109 * If the write stopped short of completing, fall back to
3110 * buffered writes. Some filesystems do this for writes to
3111 * holes, for example. For DAX files, a buffered write will
3112 * not succeed (even if it did, DAX does not handle dirty
3113 * page-cache pages correctly).
3114 */
3115 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3116 goto out;
3117
3118 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3119 /*
3120 * If generic_perform_write() returned a synchronous error
3121 * then we want to return the number of bytes which were
3122 * direct-written, or the error code if that was zero. Note
3123 * that this differs from normal direct-io semantics, which
3124 * will return -EFOO even if some bytes were written.
3125 */
3126 if (unlikely(status < 0)) {
3127 err = status;
3128 goto out;
3129 }
3130 /*
3131 * We need to ensure that the page cache pages are written to
3132 * disk and invalidated to preserve the expected O_DIRECT
3133 * semantics.
3134 */
3135 endbyte = pos + status - 1;
3136 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3137 if (err == 0) {
3138 iocb->ki_pos = endbyte + 1;
3139 written += status;
3140 invalidate_mapping_pages(mapping,
3141 pos >> PAGE_SHIFT,
3142 endbyte >> PAGE_SHIFT);
3143 } else {
3144 /*
3145 * We don't know how much we wrote, so just return
3146 * the number of bytes which were direct-written
3147 */
3148 }
3149 } else {
3150 written = generic_perform_write(file, from, iocb->ki_pos);
3151 if (likely(written > 0))
3152 iocb->ki_pos += written;
3153 }
3154 out:
3155 current->backing_dev_info = NULL;
3156 return written ? written : err;
3157 }
3158 EXPORT_SYMBOL(__generic_file_write_iter);
3159
3160 /**
3161 * generic_file_write_iter - write data to a file
3162 * @iocb: IO state structure
3163 * @from: iov_iter with data to write
3164 *
3165 * This is a wrapper around __generic_file_write_iter() to be used by most
3166 * filesystems. It takes care of syncing the file in case of O_SYNC file
3167 * and acquires i_mutex as needed.
3168 */
3169 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3170 {
3171 struct file *file = iocb->ki_filp;
3172 struct inode *inode = file->f_mapping->host;
3173 ssize_t ret;
3174
3175 inode_lock(inode);
3176 ret = generic_write_checks(iocb, from);
3177 if (ret > 0)
3178 ret = __generic_file_write_iter(iocb, from);
3179 inode_unlock(inode);
3180
3181 if (ret > 0)
3182 ret = generic_write_sync(iocb, ret);
3183 return ret;
3184 }
3185 EXPORT_SYMBOL(generic_file_write_iter);
3186
3187 /**
3188 * try_to_release_page() - release old fs-specific metadata on a page
3189 *
3190 * @page: the page which the kernel is trying to free
3191 * @gfp_mask: memory allocation flags (and I/O mode)
3192 *
3193 * The address_space is to try to release any data against the page
3194 * (presumably at page->private). If the release was successful, return '1'.
3195 * Otherwise return zero.
3196 *
3197 * This may also be called if PG_fscache is set on a page, indicating that the
3198 * page is known to the local caching routines.
3199 *
3200 * The @gfp_mask argument specifies whether I/O may be performed to release
3201 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3202 *
3203 */
3204 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3205 {
3206 struct address_space * const mapping = page->mapping;
3207
3208 BUG_ON(!PageLocked(page));
3209 if (PageWriteback(page))
3210 return 0;
3211
3212 if (mapping && mapping->a_ops->releasepage)
3213 return mapping->a_ops->releasepage(page, gfp_mask);
3214 return try_to_free_buffers(page);
3215 }
3216
3217 EXPORT_SYMBOL(try_to_release_page);