]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/filemap.c
Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63 /*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116 {
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140 /* Wakeup waiters for exceptional entry lock */
141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
142 true);
143 }
144 }
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
147 mapping->nrpages++;
148 return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153 {
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163 for (i = 0; i < nr; i++) {
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
170 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
175 }
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
188 }
189
190 /*
191 * Delete a page from the page cache and free it. Caller has to make
192 * sure the page is locked and that nobody else uses it - or that usage
193 * is safe. The caller must hold the mapping's tree_lock.
194 */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197 struct address_space *mapping = page->mapping;
198 int nr = hpage_nr_pages(page);
199
200 trace_mm_filemap_delete_from_page_cache(page);
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
209 cleancache_invalidate_page(mapping, page);
210
211 VM_BUG_ON_PAGE(PageTail(page), page);
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
232 page_ref_sub(page, mapcount);
233 }
234 }
235
236 page_cache_tree_delete(mapping, page, shadow);
237
238 page->mapping = NULL;
239 /* Leave page->index set: truncation lookup relies upon it */
240
241 /* hugetlb pages do not participate in page cache accounting. */
242 if (PageHuge(page))
243 return;
244
245 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
246 if (PageSwapBacked(page)) {
247 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
248 if (PageTransHuge(page))
249 __dec_node_page_state(page, NR_SHMEM_THPS);
250 } else {
251 VM_BUG_ON_PAGE(PageTransHuge(page), page);
252 }
253
254 /*
255 * At this point page must be either written or cleaned by truncate.
256 * Dirty page here signals a bug and loss of unwritten data.
257 *
258 * This fixes dirty accounting after removing the page entirely but
259 * leaves PageDirty set: it has no effect for truncated page and
260 * anyway will be cleared before returning page into buddy allocator.
261 */
262 if (WARN_ON_ONCE(PageDirty(page)))
263 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
264 }
265
266 /**
267 * delete_from_page_cache - delete page from page cache
268 * @page: the page which the kernel is trying to remove from page cache
269 *
270 * This must be called only on pages that have been verified to be in the page
271 * cache and locked. It will never put the page into the free list, the caller
272 * has a reference on the page.
273 */
274 void delete_from_page_cache(struct page *page)
275 {
276 struct address_space *mapping = page_mapping(page);
277 unsigned long flags;
278 void (*freepage)(struct page *);
279
280 BUG_ON(!PageLocked(page));
281
282 freepage = mapping->a_ops->freepage;
283
284 spin_lock_irqsave(&mapping->tree_lock, flags);
285 __delete_from_page_cache(page, NULL);
286 spin_unlock_irqrestore(&mapping->tree_lock, flags);
287
288 if (freepage)
289 freepage(page);
290
291 if (PageTransHuge(page) && !PageHuge(page)) {
292 page_ref_sub(page, HPAGE_PMD_NR);
293 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294 } else {
295 put_page(page);
296 }
297 }
298 EXPORT_SYMBOL(delete_from_page_cache);
299
300 int filemap_check_errors(struct address_space *mapping)
301 {
302 int ret = 0;
303 /* Check for outstanding write errors */
304 if (test_bit(AS_ENOSPC, &mapping->flags) &&
305 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
306 ret = -ENOSPC;
307 if (test_bit(AS_EIO, &mapping->flags) &&
308 test_and_clear_bit(AS_EIO, &mapping->flags))
309 ret = -EIO;
310 return ret;
311 }
312 EXPORT_SYMBOL(filemap_check_errors);
313
314 static int filemap_check_and_keep_errors(struct address_space *mapping)
315 {
316 /* Check for outstanding write errors */
317 if (test_bit(AS_EIO, &mapping->flags))
318 return -EIO;
319 if (test_bit(AS_ENOSPC, &mapping->flags))
320 return -ENOSPC;
321 return 0;
322 }
323
324 /**
325 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
326 * @mapping: address space structure to write
327 * @start: offset in bytes where the range starts
328 * @end: offset in bytes where the range ends (inclusive)
329 * @sync_mode: enable synchronous operation
330 *
331 * Start writeback against all of a mapping's dirty pages that lie
332 * within the byte offsets <start, end> inclusive.
333 *
334 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
335 * opposed to a regular memory cleansing writeback. The difference between
336 * these two operations is that if a dirty page/buffer is encountered, it must
337 * be waited upon, and not just skipped over.
338 */
339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340 loff_t end, int sync_mode)
341 {
342 int ret;
343 struct writeback_control wbc = {
344 .sync_mode = sync_mode,
345 .nr_to_write = LONG_MAX,
346 .range_start = start,
347 .range_end = end,
348 };
349
350 if (!mapping_cap_writeback_dirty(mapping))
351 return 0;
352
353 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
354 ret = do_writepages(mapping, &wbc);
355 wbc_detach_inode(&wbc);
356 return ret;
357 }
358
359 static inline int __filemap_fdatawrite(struct address_space *mapping,
360 int sync_mode)
361 {
362 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
363 }
364
365 int filemap_fdatawrite(struct address_space *mapping)
366 {
367 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite);
370
371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
372 loff_t end)
373 {
374 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375 }
376 EXPORT_SYMBOL(filemap_fdatawrite_range);
377
378 /**
379 * filemap_flush - mostly a non-blocking flush
380 * @mapping: target address_space
381 *
382 * This is a mostly non-blocking flush. Not suitable for data-integrity
383 * purposes - I/O may not be started against all dirty pages.
384 */
385 int filemap_flush(struct address_space *mapping)
386 {
387 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388 }
389 EXPORT_SYMBOL(filemap_flush);
390
391 /**
392 * filemap_range_has_page - check if a page exists in range.
393 * @mapping: address space within which to check
394 * @start_byte: offset in bytes where the range starts
395 * @end_byte: offset in bytes where the range ends (inclusive)
396 *
397 * Find at least one page in the range supplied, usually used to check if
398 * direct writing in this range will trigger a writeback.
399 */
400 bool filemap_range_has_page(struct address_space *mapping,
401 loff_t start_byte, loff_t end_byte)
402 {
403 pgoff_t index = start_byte >> PAGE_SHIFT;
404 pgoff_t end = end_byte >> PAGE_SHIFT;
405 struct pagevec pvec;
406 bool ret;
407
408 if (end_byte < start_byte)
409 return false;
410
411 if (mapping->nrpages == 0)
412 return false;
413
414 pagevec_init(&pvec, 0);
415 if (!pagevec_lookup(&pvec, mapping, index, 1))
416 return false;
417 ret = (pvec.pages[0]->index <= end);
418 pagevec_release(&pvec);
419 return ret;
420 }
421 EXPORT_SYMBOL(filemap_range_has_page);
422
423 static void __filemap_fdatawait_range(struct address_space *mapping,
424 loff_t start_byte, loff_t end_byte)
425 {
426 pgoff_t index = start_byte >> PAGE_SHIFT;
427 pgoff_t end = end_byte >> PAGE_SHIFT;
428 struct pagevec pvec;
429 int nr_pages;
430
431 if (end_byte < start_byte)
432 return;
433
434 pagevec_init(&pvec, 0);
435 while ((index <= end) &&
436 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 PAGECACHE_TAG_WRITEBACK,
438 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439 unsigned i;
440
441 for (i = 0; i < nr_pages; i++) {
442 struct page *page = pvec.pages[i];
443
444 /* until radix tree lookup accepts end_index */
445 if (page->index > end)
446 continue;
447
448 wait_on_page_writeback(page);
449 ClearPageError(page);
450 }
451 pagevec_release(&pvec);
452 cond_resched();
453 }
454 }
455
456 /**
457 * filemap_fdatawait_range - wait for writeback to complete
458 * @mapping: address space structure to wait for
459 * @start_byte: offset in bytes where the range starts
460 * @end_byte: offset in bytes where the range ends (inclusive)
461 *
462 * Walk the list of under-writeback pages of the given address space
463 * in the given range and wait for all of them. Check error status of
464 * the address space and return it.
465 *
466 * Since the error status of the address space is cleared by this function,
467 * callers are responsible for checking the return value and handling and/or
468 * reporting the error.
469 */
470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471 loff_t end_byte)
472 {
473 __filemap_fdatawait_range(mapping, start_byte, end_byte);
474 return filemap_check_errors(mapping);
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477
478 /**
479 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480 * @mapping: address space structure to wait for
481 *
482 * Walk the list of under-writeback pages of the given address space
483 * and wait for all of them. Unlike filemap_fdatawait(), this function
484 * does not clear error status of the address space.
485 *
486 * Use this function if callers don't handle errors themselves. Expected
487 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488 * fsfreeze(8)
489 */
490 int filemap_fdatawait_keep_errors(struct address_space *mapping)
491 {
492 loff_t i_size = i_size_read(mapping->host);
493
494 if (i_size == 0)
495 return 0;
496
497 __filemap_fdatawait_range(mapping, 0, i_size - 1);
498 return filemap_check_and_keep_errors(mapping);
499 }
500 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
501
502 /**
503 * filemap_fdatawait - wait for all under-writeback pages to complete
504 * @mapping: address space structure to wait for
505 *
506 * Walk the list of under-writeback pages of the given address space
507 * and wait for all of them. Check error status of the address space
508 * and return it.
509 *
510 * Since the error status of the address space is cleared by this function,
511 * callers are responsible for checking the return value and handling and/or
512 * reporting the error.
513 */
514 int filemap_fdatawait(struct address_space *mapping)
515 {
516 loff_t i_size = i_size_read(mapping->host);
517
518 if (i_size == 0)
519 return 0;
520
521 return filemap_fdatawait_range(mapping, 0, i_size - 1);
522 }
523 EXPORT_SYMBOL(filemap_fdatawait);
524
525 int filemap_write_and_wait(struct address_space *mapping)
526 {
527 int err = 0;
528
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
531 err = filemap_fdatawrite(mapping);
532 /*
533 * Even if the above returned error, the pages may be
534 * written partially (e.g. -ENOSPC), so we wait for it.
535 * But the -EIO is special case, it may indicate the worst
536 * thing (e.g. bug) happened, so we avoid waiting for it.
537 */
538 if (err != -EIO) {
539 int err2 = filemap_fdatawait(mapping);
540 if (!err)
541 err = err2;
542 } else {
543 /* Clear any previously stored errors */
544 filemap_check_errors(mapping);
545 }
546 } else {
547 err = filemap_check_errors(mapping);
548 }
549 return err;
550 }
551 EXPORT_SYMBOL(filemap_write_and_wait);
552
553 /**
554 * filemap_write_and_wait_range - write out & wait on a file range
555 * @mapping: the address_space for the pages
556 * @lstart: offset in bytes where the range starts
557 * @lend: offset in bytes where the range ends (inclusive)
558 *
559 * Write out and wait upon file offsets lstart->lend, inclusive.
560 *
561 * Note that @lend is inclusive (describes the last byte to be written) so
562 * that this function can be used to write to the very end-of-file (end = -1).
563 */
564 int filemap_write_and_wait_range(struct address_space *mapping,
565 loff_t lstart, loff_t lend)
566 {
567 int err = 0;
568
569 if ((!dax_mapping(mapping) && mapping->nrpages) ||
570 (dax_mapping(mapping) && mapping->nrexceptional)) {
571 err = __filemap_fdatawrite_range(mapping, lstart, lend,
572 WB_SYNC_ALL);
573 /* See comment of filemap_write_and_wait() */
574 if (err != -EIO) {
575 int err2 = filemap_fdatawait_range(mapping,
576 lstart, lend);
577 if (!err)
578 err = err2;
579 } else {
580 /* Clear any previously stored errors */
581 filemap_check_errors(mapping);
582 }
583 } else {
584 err = filemap_check_errors(mapping);
585 }
586 return err;
587 }
588 EXPORT_SYMBOL(filemap_write_and_wait_range);
589
590 void __filemap_set_wb_err(struct address_space *mapping, int err)
591 {
592 errseq_t eseq = __errseq_set(&mapping->wb_err, err);
593
594 trace_filemap_set_wb_err(mapping, eseq);
595 }
596 EXPORT_SYMBOL(__filemap_set_wb_err);
597
598 /**
599 * file_check_and_advance_wb_err - report wb error (if any) that was previously
600 * and advance wb_err to current one
601 * @file: struct file on which the error is being reported
602 *
603 * When userland calls fsync (or something like nfsd does the equivalent), we
604 * want to report any writeback errors that occurred since the last fsync (or
605 * since the file was opened if there haven't been any).
606 *
607 * Grab the wb_err from the mapping. If it matches what we have in the file,
608 * then just quickly return 0. The file is all caught up.
609 *
610 * If it doesn't match, then take the mapping value, set the "seen" flag in
611 * it and try to swap it into place. If it works, or another task beat us
612 * to it with the new value, then update the f_wb_err and return the error
613 * portion. The error at this point must be reported via proper channels
614 * (a'la fsync, or NFS COMMIT operation, etc.).
615 *
616 * While we handle mapping->wb_err with atomic operations, the f_wb_err
617 * value is protected by the f_lock since we must ensure that it reflects
618 * the latest value swapped in for this file descriptor.
619 */
620 int file_check_and_advance_wb_err(struct file *file)
621 {
622 int err = 0;
623 errseq_t old = READ_ONCE(file->f_wb_err);
624 struct address_space *mapping = file->f_mapping;
625
626 /* Locklessly handle the common case where nothing has changed */
627 if (errseq_check(&mapping->wb_err, old)) {
628 /* Something changed, must use slow path */
629 spin_lock(&file->f_lock);
630 old = file->f_wb_err;
631 err = errseq_check_and_advance(&mapping->wb_err,
632 &file->f_wb_err);
633 trace_file_check_and_advance_wb_err(file, old);
634 spin_unlock(&file->f_lock);
635 }
636 return err;
637 }
638 EXPORT_SYMBOL(file_check_and_advance_wb_err);
639
640 /**
641 * file_write_and_wait_range - write out & wait on a file range
642 * @file: file pointing to address_space with pages
643 * @lstart: offset in bytes where the range starts
644 * @lend: offset in bytes where the range ends (inclusive)
645 *
646 * Write out and wait upon file offsets lstart->lend, inclusive.
647 *
648 * Note that @lend is inclusive (describes the last byte to be written) so
649 * that this function can be used to write to the very end-of-file (end = -1).
650 *
651 * After writing out and waiting on the data, we check and advance the
652 * f_wb_err cursor to the latest value, and return any errors detected there.
653 */
654 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
655 {
656 int err = 0, err2;
657 struct address_space *mapping = file->f_mapping;
658
659 if ((!dax_mapping(mapping) && mapping->nrpages) ||
660 (dax_mapping(mapping) && mapping->nrexceptional)) {
661 err = __filemap_fdatawrite_range(mapping, lstart, lend,
662 WB_SYNC_ALL);
663 /* See comment of filemap_write_and_wait() */
664 if (err != -EIO)
665 __filemap_fdatawait_range(mapping, lstart, lend);
666 }
667 err2 = file_check_and_advance_wb_err(file);
668 if (!err)
669 err = err2;
670 return err;
671 }
672 EXPORT_SYMBOL(file_write_and_wait_range);
673
674 /**
675 * replace_page_cache_page - replace a pagecache page with a new one
676 * @old: page to be replaced
677 * @new: page to replace with
678 * @gfp_mask: allocation mode
679 *
680 * This function replaces a page in the pagecache with a new one. On
681 * success it acquires the pagecache reference for the new page and
682 * drops it for the old page. Both the old and new pages must be
683 * locked. This function does not add the new page to the LRU, the
684 * caller must do that.
685 *
686 * The remove + add is atomic. The only way this function can fail is
687 * memory allocation failure.
688 */
689 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
690 {
691 int error;
692
693 VM_BUG_ON_PAGE(!PageLocked(old), old);
694 VM_BUG_ON_PAGE(!PageLocked(new), new);
695 VM_BUG_ON_PAGE(new->mapping, new);
696
697 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
698 if (!error) {
699 struct address_space *mapping = old->mapping;
700 void (*freepage)(struct page *);
701 unsigned long flags;
702
703 pgoff_t offset = old->index;
704 freepage = mapping->a_ops->freepage;
705
706 get_page(new);
707 new->mapping = mapping;
708 new->index = offset;
709
710 spin_lock_irqsave(&mapping->tree_lock, flags);
711 __delete_from_page_cache(old, NULL);
712 error = page_cache_tree_insert(mapping, new, NULL);
713 BUG_ON(error);
714
715 /*
716 * hugetlb pages do not participate in page cache accounting.
717 */
718 if (!PageHuge(new))
719 __inc_node_page_state(new, NR_FILE_PAGES);
720 if (PageSwapBacked(new))
721 __inc_node_page_state(new, NR_SHMEM);
722 spin_unlock_irqrestore(&mapping->tree_lock, flags);
723 mem_cgroup_migrate(old, new);
724 radix_tree_preload_end();
725 if (freepage)
726 freepage(old);
727 put_page(old);
728 }
729
730 return error;
731 }
732 EXPORT_SYMBOL_GPL(replace_page_cache_page);
733
734 static int __add_to_page_cache_locked(struct page *page,
735 struct address_space *mapping,
736 pgoff_t offset, gfp_t gfp_mask,
737 void **shadowp)
738 {
739 int huge = PageHuge(page);
740 struct mem_cgroup *memcg;
741 int error;
742
743 VM_BUG_ON_PAGE(!PageLocked(page), page);
744 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
745
746 if (!huge) {
747 error = mem_cgroup_try_charge(page, current->mm,
748 gfp_mask, &memcg, false);
749 if (error)
750 return error;
751 }
752
753 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
754 if (error) {
755 if (!huge)
756 mem_cgroup_cancel_charge(page, memcg, false);
757 return error;
758 }
759
760 get_page(page);
761 page->mapping = mapping;
762 page->index = offset;
763
764 spin_lock_irq(&mapping->tree_lock);
765 error = page_cache_tree_insert(mapping, page, shadowp);
766 radix_tree_preload_end();
767 if (unlikely(error))
768 goto err_insert;
769
770 /* hugetlb pages do not participate in page cache accounting. */
771 if (!huge)
772 __inc_node_page_state(page, NR_FILE_PAGES);
773 spin_unlock_irq(&mapping->tree_lock);
774 if (!huge)
775 mem_cgroup_commit_charge(page, memcg, false, false);
776 trace_mm_filemap_add_to_page_cache(page);
777 return 0;
778 err_insert:
779 page->mapping = NULL;
780 /* Leave page->index set: truncation relies upon it */
781 spin_unlock_irq(&mapping->tree_lock);
782 if (!huge)
783 mem_cgroup_cancel_charge(page, memcg, false);
784 put_page(page);
785 return error;
786 }
787
788 /**
789 * add_to_page_cache_locked - add a locked page to the pagecache
790 * @page: page to add
791 * @mapping: the page's address_space
792 * @offset: page index
793 * @gfp_mask: page allocation mode
794 *
795 * This function is used to add a page to the pagecache. It must be locked.
796 * This function does not add the page to the LRU. The caller must do that.
797 */
798 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
799 pgoff_t offset, gfp_t gfp_mask)
800 {
801 return __add_to_page_cache_locked(page, mapping, offset,
802 gfp_mask, NULL);
803 }
804 EXPORT_SYMBOL(add_to_page_cache_locked);
805
806 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
807 pgoff_t offset, gfp_t gfp_mask)
808 {
809 void *shadow = NULL;
810 int ret;
811
812 __SetPageLocked(page);
813 ret = __add_to_page_cache_locked(page, mapping, offset,
814 gfp_mask, &shadow);
815 if (unlikely(ret))
816 __ClearPageLocked(page);
817 else {
818 /*
819 * The page might have been evicted from cache only
820 * recently, in which case it should be activated like
821 * any other repeatedly accessed page.
822 * The exception is pages getting rewritten; evicting other
823 * data from the working set, only to cache data that will
824 * get overwritten with something else, is a waste of memory.
825 */
826 if (!(gfp_mask & __GFP_WRITE) &&
827 shadow && workingset_refault(shadow)) {
828 SetPageActive(page);
829 workingset_activation(page);
830 } else
831 ClearPageActive(page);
832 lru_cache_add(page);
833 }
834 return ret;
835 }
836 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
837
838 #ifdef CONFIG_NUMA
839 struct page *__page_cache_alloc(gfp_t gfp)
840 {
841 int n;
842 struct page *page;
843
844 if (cpuset_do_page_mem_spread()) {
845 unsigned int cpuset_mems_cookie;
846 do {
847 cpuset_mems_cookie = read_mems_allowed_begin();
848 n = cpuset_mem_spread_node();
849 page = __alloc_pages_node(n, gfp, 0);
850 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
851
852 return page;
853 }
854 return alloc_pages(gfp, 0);
855 }
856 EXPORT_SYMBOL(__page_cache_alloc);
857 #endif
858
859 /*
860 * In order to wait for pages to become available there must be
861 * waitqueues associated with pages. By using a hash table of
862 * waitqueues where the bucket discipline is to maintain all
863 * waiters on the same queue and wake all when any of the pages
864 * become available, and for the woken contexts to check to be
865 * sure the appropriate page became available, this saves space
866 * at a cost of "thundering herd" phenomena during rare hash
867 * collisions.
868 */
869 #define PAGE_WAIT_TABLE_BITS 8
870 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
871 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
872
873 static wait_queue_head_t *page_waitqueue(struct page *page)
874 {
875 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
876 }
877
878 void __init pagecache_init(void)
879 {
880 int i;
881
882 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
883 init_waitqueue_head(&page_wait_table[i]);
884
885 page_writeback_init();
886 }
887
888 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
889 struct wait_page_key {
890 struct page *page;
891 int bit_nr;
892 int page_match;
893 };
894
895 struct wait_page_queue {
896 struct page *page;
897 int bit_nr;
898 wait_queue_entry_t wait;
899 };
900
901 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
902 {
903 struct wait_page_key *key = arg;
904 struct wait_page_queue *wait_page
905 = container_of(wait, struct wait_page_queue, wait);
906
907 if (wait_page->page != key->page)
908 return 0;
909 key->page_match = 1;
910
911 if (wait_page->bit_nr != key->bit_nr)
912 return 0;
913
914 /* Stop walking if it's locked */
915 if (test_bit(key->bit_nr, &key->page->flags))
916 return -1;
917
918 return autoremove_wake_function(wait, mode, sync, key);
919 }
920
921 static void wake_up_page_bit(struct page *page, int bit_nr)
922 {
923 wait_queue_head_t *q = page_waitqueue(page);
924 struct wait_page_key key;
925 unsigned long flags;
926
927 key.page = page;
928 key.bit_nr = bit_nr;
929 key.page_match = 0;
930
931 spin_lock_irqsave(&q->lock, flags);
932 __wake_up_locked_key(q, TASK_NORMAL, &key);
933 /*
934 * It is possible for other pages to have collided on the waitqueue
935 * hash, so in that case check for a page match. That prevents a long-
936 * term waiter
937 *
938 * It is still possible to miss a case here, when we woke page waiters
939 * and removed them from the waitqueue, but there are still other
940 * page waiters.
941 */
942 if (!waitqueue_active(q) || !key.page_match) {
943 ClearPageWaiters(page);
944 /*
945 * It's possible to miss clearing Waiters here, when we woke
946 * our page waiters, but the hashed waitqueue has waiters for
947 * other pages on it.
948 *
949 * That's okay, it's a rare case. The next waker will clear it.
950 */
951 }
952 spin_unlock_irqrestore(&q->lock, flags);
953 }
954
955 static void wake_up_page(struct page *page, int bit)
956 {
957 if (!PageWaiters(page))
958 return;
959 wake_up_page_bit(page, bit);
960 }
961
962 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
963 struct page *page, int bit_nr, int state, bool lock)
964 {
965 struct wait_page_queue wait_page;
966 wait_queue_entry_t *wait = &wait_page.wait;
967 int ret = 0;
968
969 init_wait(wait);
970 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
971 wait->func = wake_page_function;
972 wait_page.page = page;
973 wait_page.bit_nr = bit_nr;
974
975 for (;;) {
976 spin_lock_irq(&q->lock);
977
978 if (likely(list_empty(&wait->entry))) {
979 __add_wait_queue_entry_tail(q, wait);
980 SetPageWaiters(page);
981 }
982
983 set_current_state(state);
984
985 spin_unlock_irq(&q->lock);
986
987 if (likely(test_bit(bit_nr, &page->flags))) {
988 io_schedule();
989 }
990
991 if (lock) {
992 if (!test_and_set_bit_lock(bit_nr, &page->flags))
993 break;
994 } else {
995 if (!test_bit(bit_nr, &page->flags))
996 break;
997 }
998
999 if (unlikely(signal_pending_state(state, current))) {
1000 ret = -EINTR;
1001 break;
1002 }
1003 }
1004
1005 finish_wait(q, wait);
1006
1007 /*
1008 * A signal could leave PageWaiters set. Clearing it here if
1009 * !waitqueue_active would be possible (by open-coding finish_wait),
1010 * but still fail to catch it in the case of wait hash collision. We
1011 * already can fail to clear wait hash collision cases, so don't
1012 * bother with signals either.
1013 */
1014
1015 return ret;
1016 }
1017
1018 void wait_on_page_bit(struct page *page, int bit_nr)
1019 {
1020 wait_queue_head_t *q = page_waitqueue(page);
1021 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1022 }
1023 EXPORT_SYMBOL(wait_on_page_bit);
1024
1025 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1026 {
1027 wait_queue_head_t *q = page_waitqueue(page);
1028 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1029 }
1030
1031 /**
1032 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1033 * @page: Page defining the wait queue of interest
1034 * @waiter: Waiter to add to the queue
1035 *
1036 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1037 */
1038 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1039 {
1040 wait_queue_head_t *q = page_waitqueue(page);
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&q->lock, flags);
1044 __add_wait_queue_entry_tail(q, waiter);
1045 SetPageWaiters(page);
1046 spin_unlock_irqrestore(&q->lock, flags);
1047 }
1048 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1049
1050 #ifndef clear_bit_unlock_is_negative_byte
1051
1052 /*
1053 * PG_waiters is the high bit in the same byte as PG_lock.
1054 *
1055 * On x86 (and on many other architectures), we can clear PG_lock and
1056 * test the sign bit at the same time. But if the architecture does
1057 * not support that special operation, we just do this all by hand
1058 * instead.
1059 *
1060 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1061 * being cleared, but a memory barrier should be unneccssary since it is
1062 * in the same byte as PG_locked.
1063 */
1064 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1065 {
1066 clear_bit_unlock(nr, mem);
1067 /* smp_mb__after_atomic(); */
1068 return test_bit(PG_waiters, mem);
1069 }
1070
1071 #endif
1072
1073 /**
1074 * unlock_page - unlock a locked page
1075 * @page: the page
1076 *
1077 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1078 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1079 * mechanism between PageLocked pages and PageWriteback pages is shared.
1080 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1081 *
1082 * Note that this depends on PG_waiters being the sign bit in the byte
1083 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1084 * clear the PG_locked bit and test PG_waiters at the same time fairly
1085 * portably (architectures that do LL/SC can test any bit, while x86 can
1086 * test the sign bit).
1087 */
1088 void unlock_page(struct page *page)
1089 {
1090 BUILD_BUG_ON(PG_waiters != 7);
1091 page = compound_head(page);
1092 VM_BUG_ON_PAGE(!PageLocked(page), page);
1093 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1094 wake_up_page_bit(page, PG_locked);
1095 }
1096 EXPORT_SYMBOL(unlock_page);
1097
1098 /**
1099 * end_page_writeback - end writeback against a page
1100 * @page: the page
1101 */
1102 void end_page_writeback(struct page *page)
1103 {
1104 /*
1105 * TestClearPageReclaim could be used here but it is an atomic
1106 * operation and overkill in this particular case. Failing to
1107 * shuffle a page marked for immediate reclaim is too mild to
1108 * justify taking an atomic operation penalty at the end of
1109 * ever page writeback.
1110 */
1111 if (PageReclaim(page)) {
1112 ClearPageReclaim(page);
1113 rotate_reclaimable_page(page);
1114 }
1115
1116 if (!test_clear_page_writeback(page))
1117 BUG();
1118
1119 smp_mb__after_atomic();
1120 wake_up_page(page, PG_writeback);
1121 }
1122 EXPORT_SYMBOL(end_page_writeback);
1123
1124 /*
1125 * After completing I/O on a page, call this routine to update the page
1126 * flags appropriately
1127 */
1128 void page_endio(struct page *page, bool is_write, int err)
1129 {
1130 if (!is_write) {
1131 if (!err) {
1132 SetPageUptodate(page);
1133 } else {
1134 ClearPageUptodate(page);
1135 SetPageError(page);
1136 }
1137 unlock_page(page);
1138 } else {
1139 if (err) {
1140 struct address_space *mapping;
1141
1142 SetPageError(page);
1143 mapping = page_mapping(page);
1144 if (mapping)
1145 mapping_set_error(mapping, err);
1146 }
1147 end_page_writeback(page);
1148 }
1149 }
1150 EXPORT_SYMBOL_GPL(page_endio);
1151
1152 /**
1153 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1154 * @__page: the page to lock
1155 */
1156 void __lock_page(struct page *__page)
1157 {
1158 struct page *page = compound_head(__page);
1159 wait_queue_head_t *q = page_waitqueue(page);
1160 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1161 }
1162 EXPORT_SYMBOL(__lock_page);
1163
1164 int __lock_page_killable(struct page *__page)
1165 {
1166 struct page *page = compound_head(__page);
1167 wait_queue_head_t *q = page_waitqueue(page);
1168 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1169 }
1170 EXPORT_SYMBOL_GPL(__lock_page_killable);
1171
1172 /*
1173 * Return values:
1174 * 1 - page is locked; mmap_sem is still held.
1175 * 0 - page is not locked.
1176 * mmap_sem has been released (up_read()), unless flags had both
1177 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1178 * which case mmap_sem is still held.
1179 *
1180 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1181 * with the page locked and the mmap_sem unperturbed.
1182 */
1183 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1184 unsigned int flags)
1185 {
1186 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1187 /*
1188 * CAUTION! In this case, mmap_sem is not released
1189 * even though return 0.
1190 */
1191 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1192 return 0;
1193
1194 up_read(&mm->mmap_sem);
1195 if (flags & FAULT_FLAG_KILLABLE)
1196 wait_on_page_locked_killable(page);
1197 else
1198 wait_on_page_locked(page);
1199 return 0;
1200 } else {
1201 if (flags & FAULT_FLAG_KILLABLE) {
1202 int ret;
1203
1204 ret = __lock_page_killable(page);
1205 if (ret) {
1206 up_read(&mm->mmap_sem);
1207 return 0;
1208 }
1209 } else
1210 __lock_page(page);
1211 return 1;
1212 }
1213 }
1214
1215 /**
1216 * page_cache_next_hole - find the next hole (not-present entry)
1217 * @mapping: mapping
1218 * @index: index
1219 * @max_scan: maximum range to search
1220 *
1221 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1222 * lowest indexed hole.
1223 *
1224 * Returns: the index of the hole if found, otherwise returns an index
1225 * outside of the set specified (in which case 'return - index >=
1226 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1227 * be returned.
1228 *
1229 * page_cache_next_hole may be called under rcu_read_lock. However,
1230 * like radix_tree_gang_lookup, this will not atomically search a
1231 * snapshot of the tree at a single point in time. For example, if a
1232 * hole is created at index 5, then subsequently a hole is created at
1233 * index 10, page_cache_next_hole covering both indexes may return 10
1234 * if called under rcu_read_lock.
1235 */
1236 pgoff_t page_cache_next_hole(struct address_space *mapping,
1237 pgoff_t index, unsigned long max_scan)
1238 {
1239 unsigned long i;
1240
1241 for (i = 0; i < max_scan; i++) {
1242 struct page *page;
1243
1244 page = radix_tree_lookup(&mapping->page_tree, index);
1245 if (!page || radix_tree_exceptional_entry(page))
1246 break;
1247 index++;
1248 if (index == 0)
1249 break;
1250 }
1251
1252 return index;
1253 }
1254 EXPORT_SYMBOL(page_cache_next_hole);
1255
1256 /**
1257 * page_cache_prev_hole - find the prev hole (not-present entry)
1258 * @mapping: mapping
1259 * @index: index
1260 * @max_scan: maximum range to search
1261 *
1262 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1263 * the first hole.
1264 *
1265 * Returns: the index of the hole if found, otherwise returns an index
1266 * outside of the set specified (in which case 'index - return >=
1267 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1268 * will be returned.
1269 *
1270 * page_cache_prev_hole may be called under rcu_read_lock. However,
1271 * like radix_tree_gang_lookup, this will not atomically search a
1272 * snapshot of the tree at a single point in time. For example, if a
1273 * hole is created at index 10, then subsequently a hole is created at
1274 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1275 * called under rcu_read_lock.
1276 */
1277 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1278 pgoff_t index, unsigned long max_scan)
1279 {
1280 unsigned long i;
1281
1282 for (i = 0; i < max_scan; i++) {
1283 struct page *page;
1284
1285 page = radix_tree_lookup(&mapping->page_tree, index);
1286 if (!page || radix_tree_exceptional_entry(page))
1287 break;
1288 index--;
1289 if (index == ULONG_MAX)
1290 break;
1291 }
1292
1293 return index;
1294 }
1295 EXPORT_SYMBOL(page_cache_prev_hole);
1296
1297 /**
1298 * find_get_entry - find and get a page cache entry
1299 * @mapping: the address_space to search
1300 * @offset: the page cache index
1301 *
1302 * Looks up the page cache slot at @mapping & @offset. If there is a
1303 * page cache page, it is returned with an increased refcount.
1304 *
1305 * If the slot holds a shadow entry of a previously evicted page, or a
1306 * swap entry from shmem/tmpfs, it is returned.
1307 *
1308 * Otherwise, %NULL is returned.
1309 */
1310 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1311 {
1312 void **pagep;
1313 struct page *head, *page;
1314
1315 rcu_read_lock();
1316 repeat:
1317 page = NULL;
1318 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1319 if (pagep) {
1320 page = radix_tree_deref_slot(pagep);
1321 if (unlikely(!page))
1322 goto out;
1323 if (radix_tree_exception(page)) {
1324 if (radix_tree_deref_retry(page))
1325 goto repeat;
1326 /*
1327 * A shadow entry of a recently evicted page,
1328 * or a swap entry from shmem/tmpfs. Return
1329 * it without attempting to raise page count.
1330 */
1331 goto out;
1332 }
1333
1334 head = compound_head(page);
1335 if (!page_cache_get_speculative(head))
1336 goto repeat;
1337
1338 /* The page was split under us? */
1339 if (compound_head(page) != head) {
1340 put_page(head);
1341 goto repeat;
1342 }
1343
1344 /*
1345 * Has the page moved?
1346 * This is part of the lockless pagecache protocol. See
1347 * include/linux/pagemap.h for details.
1348 */
1349 if (unlikely(page != *pagep)) {
1350 put_page(head);
1351 goto repeat;
1352 }
1353 }
1354 out:
1355 rcu_read_unlock();
1356
1357 return page;
1358 }
1359 EXPORT_SYMBOL(find_get_entry);
1360
1361 /**
1362 * find_lock_entry - locate, pin and lock a page cache entry
1363 * @mapping: the address_space to search
1364 * @offset: the page cache index
1365 *
1366 * Looks up the page cache slot at @mapping & @offset. If there is a
1367 * page cache page, it is returned locked and with an increased
1368 * refcount.
1369 *
1370 * If the slot holds a shadow entry of a previously evicted page, or a
1371 * swap entry from shmem/tmpfs, it is returned.
1372 *
1373 * Otherwise, %NULL is returned.
1374 *
1375 * find_lock_entry() may sleep.
1376 */
1377 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1378 {
1379 struct page *page;
1380
1381 repeat:
1382 page = find_get_entry(mapping, offset);
1383 if (page && !radix_tree_exception(page)) {
1384 lock_page(page);
1385 /* Has the page been truncated? */
1386 if (unlikely(page_mapping(page) != mapping)) {
1387 unlock_page(page);
1388 put_page(page);
1389 goto repeat;
1390 }
1391 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1392 }
1393 return page;
1394 }
1395 EXPORT_SYMBOL(find_lock_entry);
1396
1397 /**
1398 * pagecache_get_page - find and get a page reference
1399 * @mapping: the address_space to search
1400 * @offset: the page index
1401 * @fgp_flags: PCG flags
1402 * @gfp_mask: gfp mask to use for the page cache data page allocation
1403 *
1404 * Looks up the page cache slot at @mapping & @offset.
1405 *
1406 * PCG flags modify how the page is returned.
1407 *
1408 * @fgp_flags can be:
1409 *
1410 * - FGP_ACCESSED: the page will be marked accessed
1411 * - FGP_LOCK: Page is return locked
1412 * - FGP_CREAT: If page is not present then a new page is allocated using
1413 * @gfp_mask and added to the page cache and the VM's LRU
1414 * list. The page is returned locked and with an increased
1415 * refcount. Otherwise, NULL is returned.
1416 *
1417 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1418 * if the GFP flags specified for FGP_CREAT are atomic.
1419 *
1420 * If there is a page cache page, it is returned with an increased refcount.
1421 */
1422 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1423 int fgp_flags, gfp_t gfp_mask)
1424 {
1425 struct page *page;
1426
1427 repeat:
1428 page = find_get_entry(mapping, offset);
1429 if (radix_tree_exceptional_entry(page))
1430 page = NULL;
1431 if (!page)
1432 goto no_page;
1433
1434 if (fgp_flags & FGP_LOCK) {
1435 if (fgp_flags & FGP_NOWAIT) {
1436 if (!trylock_page(page)) {
1437 put_page(page);
1438 return NULL;
1439 }
1440 } else {
1441 lock_page(page);
1442 }
1443
1444 /* Has the page been truncated? */
1445 if (unlikely(page->mapping != mapping)) {
1446 unlock_page(page);
1447 put_page(page);
1448 goto repeat;
1449 }
1450 VM_BUG_ON_PAGE(page->index != offset, page);
1451 }
1452
1453 if (page && (fgp_flags & FGP_ACCESSED))
1454 mark_page_accessed(page);
1455
1456 no_page:
1457 if (!page && (fgp_flags & FGP_CREAT)) {
1458 int err;
1459 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1460 gfp_mask |= __GFP_WRITE;
1461 if (fgp_flags & FGP_NOFS)
1462 gfp_mask &= ~__GFP_FS;
1463
1464 page = __page_cache_alloc(gfp_mask);
1465 if (!page)
1466 return NULL;
1467
1468 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1469 fgp_flags |= FGP_LOCK;
1470
1471 /* Init accessed so avoid atomic mark_page_accessed later */
1472 if (fgp_flags & FGP_ACCESSED)
1473 __SetPageReferenced(page);
1474
1475 err = add_to_page_cache_lru(page, mapping, offset,
1476 gfp_mask & GFP_RECLAIM_MASK);
1477 if (unlikely(err)) {
1478 put_page(page);
1479 page = NULL;
1480 if (err == -EEXIST)
1481 goto repeat;
1482 }
1483 }
1484
1485 return page;
1486 }
1487 EXPORT_SYMBOL(pagecache_get_page);
1488
1489 /**
1490 * find_get_entries - gang pagecache lookup
1491 * @mapping: The address_space to search
1492 * @start: The starting page cache index
1493 * @nr_entries: The maximum number of entries
1494 * @entries: Where the resulting entries are placed
1495 * @indices: The cache indices corresponding to the entries in @entries
1496 *
1497 * find_get_entries() will search for and return a group of up to
1498 * @nr_entries entries in the mapping. The entries are placed at
1499 * @entries. find_get_entries() takes a reference against any actual
1500 * pages it returns.
1501 *
1502 * The search returns a group of mapping-contiguous page cache entries
1503 * with ascending indexes. There may be holes in the indices due to
1504 * not-present pages.
1505 *
1506 * Any shadow entries of evicted pages, or swap entries from
1507 * shmem/tmpfs, are included in the returned array.
1508 *
1509 * find_get_entries() returns the number of pages and shadow entries
1510 * which were found.
1511 */
1512 unsigned find_get_entries(struct address_space *mapping,
1513 pgoff_t start, unsigned int nr_entries,
1514 struct page **entries, pgoff_t *indices)
1515 {
1516 void **slot;
1517 unsigned int ret = 0;
1518 struct radix_tree_iter iter;
1519
1520 if (!nr_entries)
1521 return 0;
1522
1523 rcu_read_lock();
1524 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1525 struct page *head, *page;
1526 repeat:
1527 page = radix_tree_deref_slot(slot);
1528 if (unlikely(!page))
1529 continue;
1530 if (radix_tree_exception(page)) {
1531 if (radix_tree_deref_retry(page)) {
1532 slot = radix_tree_iter_retry(&iter);
1533 continue;
1534 }
1535 /*
1536 * A shadow entry of a recently evicted page, a swap
1537 * entry from shmem/tmpfs or a DAX entry. Return it
1538 * without attempting to raise page count.
1539 */
1540 goto export;
1541 }
1542
1543 head = compound_head(page);
1544 if (!page_cache_get_speculative(head))
1545 goto repeat;
1546
1547 /* The page was split under us? */
1548 if (compound_head(page) != head) {
1549 put_page(head);
1550 goto repeat;
1551 }
1552
1553 /* Has the page moved? */
1554 if (unlikely(page != *slot)) {
1555 put_page(head);
1556 goto repeat;
1557 }
1558 export:
1559 indices[ret] = iter.index;
1560 entries[ret] = page;
1561 if (++ret == nr_entries)
1562 break;
1563 }
1564 rcu_read_unlock();
1565 return ret;
1566 }
1567
1568 /**
1569 * find_get_pages - gang pagecache lookup
1570 * @mapping: The address_space to search
1571 * @start: The starting page index
1572 * @nr_pages: The maximum number of pages
1573 * @pages: Where the resulting pages are placed
1574 *
1575 * find_get_pages() will search for and return a group of up to
1576 * @nr_pages pages in the mapping. The pages are placed at @pages.
1577 * find_get_pages() takes a reference against the returned pages.
1578 *
1579 * The search returns a group of mapping-contiguous pages with ascending
1580 * indexes. There may be holes in the indices due to not-present pages.
1581 *
1582 * find_get_pages() returns the number of pages which were found.
1583 */
1584 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1585 unsigned int nr_pages, struct page **pages)
1586 {
1587 struct radix_tree_iter iter;
1588 void **slot;
1589 unsigned ret = 0;
1590
1591 if (unlikely(!nr_pages))
1592 return 0;
1593
1594 rcu_read_lock();
1595 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1596 struct page *head, *page;
1597 repeat:
1598 page = radix_tree_deref_slot(slot);
1599 if (unlikely(!page))
1600 continue;
1601
1602 if (radix_tree_exception(page)) {
1603 if (radix_tree_deref_retry(page)) {
1604 slot = radix_tree_iter_retry(&iter);
1605 continue;
1606 }
1607 /*
1608 * A shadow entry of a recently evicted page,
1609 * or a swap entry from shmem/tmpfs. Skip
1610 * over it.
1611 */
1612 continue;
1613 }
1614
1615 head = compound_head(page);
1616 if (!page_cache_get_speculative(head))
1617 goto repeat;
1618
1619 /* The page was split under us? */
1620 if (compound_head(page) != head) {
1621 put_page(head);
1622 goto repeat;
1623 }
1624
1625 /* Has the page moved? */
1626 if (unlikely(page != *slot)) {
1627 put_page(head);
1628 goto repeat;
1629 }
1630
1631 pages[ret] = page;
1632 if (++ret == nr_pages)
1633 break;
1634 }
1635
1636 rcu_read_unlock();
1637 return ret;
1638 }
1639
1640 /**
1641 * find_get_pages_contig - gang contiguous pagecache lookup
1642 * @mapping: The address_space to search
1643 * @index: The starting page index
1644 * @nr_pages: The maximum number of pages
1645 * @pages: Where the resulting pages are placed
1646 *
1647 * find_get_pages_contig() works exactly like find_get_pages(), except
1648 * that the returned number of pages are guaranteed to be contiguous.
1649 *
1650 * find_get_pages_contig() returns the number of pages which were found.
1651 */
1652 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1653 unsigned int nr_pages, struct page **pages)
1654 {
1655 struct radix_tree_iter iter;
1656 void **slot;
1657 unsigned int ret = 0;
1658
1659 if (unlikely(!nr_pages))
1660 return 0;
1661
1662 rcu_read_lock();
1663 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1664 struct page *head, *page;
1665 repeat:
1666 page = radix_tree_deref_slot(slot);
1667 /* The hole, there no reason to continue */
1668 if (unlikely(!page))
1669 break;
1670
1671 if (radix_tree_exception(page)) {
1672 if (radix_tree_deref_retry(page)) {
1673 slot = radix_tree_iter_retry(&iter);
1674 continue;
1675 }
1676 /*
1677 * A shadow entry of a recently evicted page,
1678 * or a swap entry from shmem/tmpfs. Stop
1679 * looking for contiguous pages.
1680 */
1681 break;
1682 }
1683
1684 head = compound_head(page);
1685 if (!page_cache_get_speculative(head))
1686 goto repeat;
1687
1688 /* The page was split under us? */
1689 if (compound_head(page) != head) {
1690 put_page(head);
1691 goto repeat;
1692 }
1693
1694 /* Has the page moved? */
1695 if (unlikely(page != *slot)) {
1696 put_page(head);
1697 goto repeat;
1698 }
1699
1700 /*
1701 * must check mapping and index after taking the ref.
1702 * otherwise we can get both false positives and false
1703 * negatives, which is just confusing to the caller.
1704 */
1705 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1706 put_page(page);
1707 break;
1708 }
1709
1710 pages[ret] = page;
1711 if (++ret == nr_pages)
1712 break;
1713 }
1714 rcu_read_unlock();
1715 return ret;
1716 }
1717 EXPORT_SYMBOL(find_get_pages_contig);
1718
1719 /**
1720 * find_get_pages_tag - find and return pages that match @tag
1721 * @mapping: the address_space to search
1722 * @index: the starting page index
1723 * @tag: the tag index
1724 * @nr_pages: the maximum number of pages
1725 * @pages: where the resulting pages are placed
1726 *
1727 * Like find_get_pages, except we only return pages which are tagged with
1728 * @tag. We update @index to index the next page for the traversal.
1729 */
1730 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1731 int tag, unsigned int nr_pages, struct page **pages)
1732 {
1733 struct radix_tree_iter iter;
1734 void **slot;
1735 unsigned ret = 0;
1736
1737 if (unlikely(!nr_pages))
1738 return 0;
1739
1740 rcu_read_lock();
1741 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1742 &iter, *index, tag) {
1743 struct page *head, *page;
1744 repeat:
1745 page = radix_tree_deref_slot(slot);
1746 if (unlikely(!page))
1747 continue;
1748
1749 if (radix_tree_exception(page)) {
1750 if (radix_tree_deref_retry(page)) {
1751 slot = radix_tree_iter_retry(&iter);
1752 continue;
1753 }
1754 /*
1755 * A shadow entry of a recently evicted page.
1756 *
1757 * Those entries should never be tagged, but
1758 * this tree walk is lockless and the tags are
1759 * looked up in bulk, one radix tree node at a
1760 * time, so there is a sizable window for page
1761 * reclaim to evict a page we saw tagged.
1762 *
1763 * Skip over it.
1764 */
1765 continue;
1766 }
1767
1768 head = compound_head(page);
1769 if (!page_cache_get_speculative(head))
1770 goto repeat;
1771
1772 /* The page was split under us? */
1773 if (compound_head(page) != head) {
1774 put_page(head);
1775 goto repeat;
1776 }
1777
1778 /* Has the page moved? */
1779 if (unlikely(page != *slot)) {
1780 put_page(head);
1781 goto repeat;
1782 }
1783
1784 pages[ret] = page;
1785 if (++ret == nr_pages)
1786 break;
1787 }
1788
1789 rcu_read_unlock();
1790
1791 if (ret)
1792 *index = pages[ret - 1]->index + 1;
1793
1794 return ret;
1795 }
1796 EXPORT_SYMBOL(find_get_pages_tag);
1797
1798 /**
1799 * find_get_entries_tag - find and return entries that match @tag
1800 * @mapping: the address_space to search
1801 * @start: the starting page cache index
1802 * @tag: the tag index
1803 * @nr_entries: the maximum number of entries
1804 * @entries: where the resulting entries are placed
1805 * @indices: the cache indices corresponding to the entries in @entries
1806 *
1807 * Like find_get_entries, except we only return entries which are tagged with
1808 * @tag.
1809 */
1810 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1811 int tag, unsigned int nr_entries,
1812 struct page **entries, pgoff_t *indices)
1813 {
1814 void **slot;
1815 unsigned int ret = 0;
1816 struct radix_tree_iter iter;
1817
1818 if (!nr_entries)
1819 return 0;
1820
1821 rcu_read_lock();
1822 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1823 &iter, start, tag) {
1824 struct page *head, *page;
1825 repeat:
1826 page = radix_tree_deref_slot(slot);
1827 if (unlikely(!page))
1828 continue;
1829 if (radix_tree_exception(page)) {
1830 if (radix_tree_deref_retry(page)) {
1831 slot = radix_tree_iter_retry(&iter);
1832 continue;
1833 }
1834
1835 /*
1836 * A shadow entry of a recently evicted page, a swap
1837 * entry from shmem/tmpfs or a DAX entry. Return it
1838 * without attempting to raise page count.
1839 */
1840 goto export;
1841 }
1842
1843 head = compound_head(page);
1844 if (!page_cache_get_speculative(head))
1845 goto repeat;
1846
1847 /* The page was split under us? */
1848 if (compound_head(page) != head) {
1849 put_page(head);
1850 goto repeat;
1851 }
1852
1853 /* Has the page moved? */
1854 if (unlikely(page != *slot)) {
1855 put_page(head);
1856 goto repeat;
1857 }
1858 export:
1859 indices[ret] = iter.index;
1860 entries[ret] = page;
1861 if (++ret == nr_entries)
1862 break;
1863 }
1864 rcu_read_unlock();
1865 return ret;
1866 }
1867 EXPORT_SYMBOL(find_get_entries_tag);
1868
1869 /*
1870 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1871 * a _large_ part of the i/o request. Imagine the worst scenario:
1872 *
1873 * ---R__________________________________________B__________
1874 * ^ reading here ^ bad block(assume 4k)
1875 *
1876 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1877 * => failing the whole request => read(R) => read(R+1) =>
1878 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1879 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1880 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1881 *
1882 * It is going insane. Fix it by quickly scaling down the readahead size.
1883 */
1884 static void shrink_readahead_size_eio(struct file *filp,
1885 struct file_ra_state *ra)
1886 {
1887 ra->ra_pages /= 4;
1888 }
1889
1890 /**
1891 * do_generic_file_read - generic file read routine
1892 * @filp: the file to read
1893 * @ppos: current file position
1894 * @iter: data destination
1895 * @written: already copied
1896 *
1897 * This is a generic file read routine, and uses the
1898 * mapping->a_ops->readpage() function for the actual low-level stuff.
1899 *
1900 * This is really ugly. But the goto's actually try to clarify some
1901 * of the logic when it comes to error handling etc.
1902 */
1903 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1904 struct iov_iter *iter, ssize_t written)
1905 {
1906 struct address_space *mapping = filp->f_mapping;
1907 struct inode *inode = mapping->host;
1908 struct file_ra_state *ra = &filp->f_ra;
1909 pgoff_t index;
1910 pgoff_t last_index;
1911 pgoff_t prev_index;
1912 unsigned long offset; /* offset into pagecache page */
1913 unsigned int prev_offset;
1914 int error = 0;
1915
1916 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1917 return 0;
1918 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1919
1920 index = *ppos >> PAGE_SHIFT;
1921 prev_index = ra->prev_pos >> PAGE_SHIFT;
1922 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1923 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1924 offset = *ppos & ~PAGE_MASK;
1925
1926 for (;;) {
1927 struct page *page;
1928 pgoff_t end_index;
1929 loff_t isize;
1930 unsigned long nr, ret;
1931
1932 cond_resched();
1933 find_page:
1934 if (fatal_signal_pending(current)) {
1935 error = -EINTR;
1936 goto out;
1937 }
1938
1939 page = find_get_page(mapping, index);
1940 if (!page) {
1941 page_cache_sync_readahead(mapping,
1942 ra, filp,
1943 index, last_index - index);
1944 page = find_get_page(mapping, index);
1945 if (unlikely(page == NULL))
1946 goto no_cached_page;
1947 }
1948 if (PageReadahead(page)) {
1949 page_cache_async_readahead(mapping,
1950 ra, filp, page,
1951 index, last_index - index);
1952 }
1953 if (!PageUptodate(page)) {
1954 /*
1955 * See comment in do_read_cache_page on why
1956 * wait_on_page_locked is used to avoid unnecessarily
1957 * serialisations and why it's safe.
1958 */
1959 error = wait_on_page_locked_killable(page);
1960 if (unlikely(error))
1961 goto readpage_error;
1962 if (PageUptodate(page))
1963 goto page_ok;
1964
1965 if (inode->i_blkbits == PAGE_SHIFT ||
1966 !mapping->a_ops->is_partially_uptodate)
1967 goto page_not_up_to_date;
1968 /* pipes can't handle partially uptodate pages */
1969 if (unlikely(iter->type & ITER_PIPE))
1970 goto page_not_up_to_date;
1971 if (!trylock_page(page))
1972 goto page_not_up_to_date;
1973 /* Did it get truncated before we got the lock? */
1974 if (!page->mapping)
1975 goto page_not_up_to_date_locked;
1976 if (!mapping->a_ops->is_partially_uptodate(page,
1977 offset, iter->count))
1978 goto page_not_up_to_date_locked;
1979 unlock_page(page);
1980 }
1981 page_ok:
1982 /*
1983 * i_size must be checked after we know the page is Uptodate.
1984 *
1985 * Checking i_size after the check allows us to calculate
1986 * the correct value for "nr", which means the zero-filled
1987 * part of the page is not copied back to userspace (unless
1988 * another truncate extends the file - this is desired though).
1989 */
1990
1991 isize = i_size_read(inode);
1992 end_index = (isize - 1) >> PAGE_SHIFT;
1993 if (unlikely(!isize || index > end_index)) {
1994 put_page(page);
1995 goto out;
1996 }
1997
1998 /* nr is the maximum number of bytes to copy from this page */
1999 nr = PAGE_SIZE;
2000 if (index == end_index) {
2001 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2002 if (nr <= offset) {
2003 put_page(page);
2004 goto out;
2005 }
2006 }
2007 nr = nr - offset;
2008
2009 /* If users can be writing to this page using arbitrary
2010 * virtual addresses, take care about potential aliasing
2011 * before reading the page on the kernel side.
2012 */
2013 if (mapping_writably_mapped(mapping))
2014 flush_dcache_page(page);
2015
2016 /*
2017 * When a sequential read accesses a page several times,
2018 * only mark it as accessed the first time.
2019 */
2020 if (prev_index != index || offset != prev_offset)
2021 mark_page_accessed(page);
2022 prev_index = index;
2023
2024 /*
2025 * Ok, we have the page, and it's up-to-date, so
2026 * now we can copy it to user space...
2027 */
2028
2029 ret = copy_page_to_iter(page, offset, nr, iter);
2030 offset += ret;
2031 index += offset >> PAGE_SHIFT;
2032 offset &= ~PAGE_MASK;
2033 prev_offset = offset;
2034
2035 put_page(page);
2036 written += ret;
2037 if (!iov_iter_count(iter))
2038 goto out;
2039 if (ret < nr) {
2040 error = -EFAULT;
2041 goto out;
2042 }
2043 continue;
2044
2045 page_not_up_to_date:
2046 /* Get exclusive access to the page ... */
2047 error = lock_page_killable(page);
2048 if (unlikely(error))
2049 goto readpage_error;
2050
2051 page_not_up_to_date_locked:
2052 /* Did it get truncated before we got the lock? */
2053 if (!page->mapping) {
2054 unlock_page(page);
2055 put_page(page);
2056 continue;
2057 }
2058
2059 /* Did somebody else fill it already? */
2060 if (PageUptodate(page)) {
2061 unlock_page(page);
2062 goto page_ok;
2063 }
2064
2065 readpage:
2066 /*
2067 * A previous I/O error may have been due to temporary
2068 * failures, eg. multipath errors.
2069 * PG_error will be set again if readpage fails.
2070 */
2071 ClearPageError(page);
2072 /* Start the actual read. The read will unlock the page. */
2073 error = mapping->a_ops->readpage(filp, page);
2074
2075 if (unlikely(error)) {
2076 if (error == AOP_TRUNCATED_PAGE) {
2077 put_page(page);
2078 error = 0;
2079 goto find_page;
2080 }
2081 goto readpage_error;
2082 }
2083
2084 if (!PageUptodate(page)) {
2085 error = lock_page_killable(page);
2086 if (unlikely(error))
2087 goto readpage_error;
2088 if (!PageUptodate(page)) {
2089 if (page->mapping == NULL) {
2090 /*
2091 * invalidate_mapping_pages got it
2092 */
2093 unlock_page(page);
2094 put_page(page);
2095 goto find_page;
2096 }
2097 unlock_page(page);
2098 shrink_readahead_size_eio(filp, ra);
2099 error = -EIO;
2100 goto readpage_error;
2101 }
2102 unlock_page(page);
2103 }
2104
2105 goto page_ok;
2106
2107 readpage_error:
2108 /* UHHUH! A synchronous read error occurred. Report it */
2109 put_page(page);
2110 goto out;
2111
2112 no_cached_page:
2113 /*
2114 * Ok, it wasn't cached, so we need to create a new
2115 * page..
2116 */
2117 page = page_cache_alloc_cold(mapping);
2118 if (!page) {
2119 error = -ENOMEM;
2120 goto out;
2121 }
2122 error = add_to_page_cache_lru(page, mapping, index,
2123 mapping_gfp_constraint(mapping, GFP_KERNEL));
2124 if (error) {
2125 put_page(page);
2126 if (error == -EEXIST) {
2127 error = 0;
2128 goto find_page;
2129 }
2130 goto out;
2131 }
2132 goto readpage;
2133 }
2134
2135 out:
2136 ra->prev_pos = prev_index;
2137 ra->prev_pos <<= PAGE_SHIFT;
2138 ra->prev_pos |= prev_offset;
2139
2140 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2141 file_accessed(filp);
2142 return written ? written : error;
2143 }
2144
2145 /**
2146 * generic_file_read_iter - generic filesystem read routine
2147 * @iocb: kernel I/O control block
2148 * @iter: destination for the data read
2149 *
2150 * This is the "read_iter()" routine for all filesystems
2151 * that can use the page cache directly.
2152 */
2153 ssize_t
2154 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2155 {
2156 struct file *file = iocb->ki_filp;
2157 ssize_t retval = 0;
2158 size_t count = iov_iter_count(iter);
2159
2160 if (!count)
2161 goto out; /* skip atime */
2162
2163 if (iocb->ki_flags & IOCB_DIRECT) {
2164 struct address_space *mapping = file->f_mapping;
2165 struct inode *inode = mapping->host;
2166 loff_t size;
2167
2168 size = i_size_read(inode);
2169 if (iocb->ki_flags & IOCB_NOWAIT) {
2170 if (filemap_range_has_page(mapping, iocb->ki_pos,
2171 iocb->ki_pos + count - 1))
2172 return -EAGAIN;
2173 } else {
2174 retval = filemap_write_and_wait_range(mapping,
2175 iocb->ki_pos,
2176 iocb->ki_pos + count - 1);
2177 if (retval < 0)
2178 goto out;
2179 }
2180
2181 file_accessed(file);
2182
2183 retval = mapping->a_ops->direct_IO(iocb, iter);
2184 if (retval >= 0) {
2185 iocb->ki_pos += retval;
2186 count -= retval;
2187 }
2188 iov_iter_revert(iter, count - iov_iter_count(iter));
2189
2190 /*
2191 * Btrfs can have a short DIO read if we encounter
2192 * compressed extents, so if there was an error, or if
2193 * we've already read everything we wanted to, or if
2194 * there was a short read because we hit EOF, go ahead
2195 * and return. Otherwise fallthrough to buffered io for
2196 * the rest of the read. Buffered reads will not work for
2197 * DAX files, so don't bother trying.
2198 */
2199 if (retval < 0 || !count || iocb->ki_pos >= size ||
2200 IS_DAX(inode))
2201 goto out;
2202 }
2203
2204 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2205 out:
2206 return retval;
2207 }
2208 EXPORT_SYMBOL(generic_file_read_iter);
2209
2210 #ifdef CONFIG_MMU
2211 /**
2212 * page_cache_read - adds requested page to the page cache if not already there
2213 * @file: file to read
2214 * @offset: page index
2215 * @gfp_mask: memory allocation flags
2216 *
2217 * This adds the requested page to the page cache if it isn't already there,
2218 * and schedules an I/O to read in its contents from disk.
2219 */
2220 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2221 {
2222 struct address_space *mapping = file->f_mapping;
2223 struct page *page;
2224 int ret;
2225
2226 do {
2227 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2228 if (!page)
2229 return -ENOMEM;
2230
2231 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2232 if (ret == 0)
2233 ret = mapping->a_ops->readpage(file, page);
2234 else if (ret == -EEXIST)
2235 ret = 0; /* losing race to add is OK */
2236
2237 put_page(page);
2238
2239 } while (ret == AOP_TRUNCATED_PAGE);
2240
2241 return ret;
2242 }
2243
2244 #define MMAP_LOTSAMISS (100)
2245
2246 /*
2247 * Synchronous readahead happens when we don't even find
2248 * a page in the page cache at all.
2249 */
2250 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2251 struct file_ra_state *ra,
2252 struct file *file,
2253 pgoff_t offset)
2254 {
2255 struct address_space *mapping = file->f_mapping;
2256
2257 /* If we don't want any read-ahead, don't bother */
2258 if (vma->vm_flags & VM_RAND_READ)
2259 return;
2260 if (!ra->ra_pages)
2261 return;
2262
2263 if (vma->vm_flags & VM_SEQ_READ) {
2264 page_cache_sync_readahead(mapping, ra, file, offset,
2265 ra->ra_pages);
2266 return;
2267 }
2268
2269 /* Avoid banging the cache line if not needed */
2270 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2271 ra->mmap_miss++;
2272
2273 /*
2274 * Do we miss much more than hit in this file? If so,
2275 * stop bothering with read-ahead. It will only hurt.
2276 */
2277 if (ra->mmap_miss > MMAP_LOTSAMISS)
2278 return;
2279
2280 /*
2281 * mmap read-around
2282 */
2283 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2284 ra->size = ra->ra_pages;
2285 ra->async_size = ra->ra_pages / 4;
2286 ra_submit(ra, mapping, file);
2287 }
2288
2289 /*
2290 * Asynchronous readahead happens when we find the page and PG_readahead,
2291 * so we want to possibly extend the readahead further..
2292 */
2293 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2294 struct file_ra_state *ra,
2295 struct file *file,
2296 struct page *page,
2297 pgoff_t offset)
2298 {
2299 struct address_space *mapping = file->f_mapping;
2300
2301 /* If we don't want any read-ahead, don't bother */
2302 if (vma->vm_flags & VM_RAND_READ)
2303 return;
2304 if (ra->mmap_miss > 0)
2305 ra->mmap_miss--;
2306 if (PageReadahead(page))
2307 page_cache_async_readahead(mapping, ra, file,
2308 page, offset, ra->ra_pages);
2309 }
2310
2311 /**
2312 * filemap_fault - read in file data for page fault handling
2313 * @vmf: struct vm_fault containing details of the fault
2314 *
2315 * filemap_fault() is invoked via the vma operations vector for a
2316 * mapped memory region to read in file data during a page fault.
2317 *
2318 * The goto's are kind of ugly, but this streamlines the normal case of having
2319 * it in the page cache, and handles the special cases reasonably without
2320 * having a lot of duplicated code.
2321 *
2322 * vma->vm_mm->mmap_sem must be held on entry.
2323 *
2324 * If our return value has VM_FAULT_RETRY set, it's because
2325 * lock_page_or_retry() returned 0.
2326 * The mmap_sem has usually been released in this case.
2327 * See __lock_page_or_retry() for the exception.
2328 *
2329 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2330 * has not been released.
2331 *
2332 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2333 */
2334 int filemap_fault(struct vm_fault *vmf)
2335 {
2336 int error;
2337 struct file *file = vmf->vma->vm_file;
2338 struct address_space *mapping = file->f_mapping;
2339 struct file_ra_state *ra = &file->f_ra;
2340 struct inode *inode = mapping->host;
2341 pgoff_t offset = vmf->pgoff;
2342 pgoff_t max_off;
2343 struct page *page;
2344 int ret = 0;
2345
2346 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2347 if (unlikely(offset >= max_off))
2348 return VM_FAULT_SIGBUS;
2349
2350 /*
2351 * Do we have something in the page cache already?
2352 */
2353 page = find_get_page(mapping, offset);
2354 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2355 /*
2356 * We found the page, so try async readahead before
2357 * waiting for the lock.
2358 */
2359 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2360 } else if (!page) {
2361 /* No page in the page cache at all */
2362 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2363 count_vm_event(PGMAJFAULT);
2364 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2365 ret = VM_FAULT_MAJOR;
2366 retry_find:
2367 page = find_get_page(mapping, offset);
2368 if (!page)
2369 goto no_cached_page;
2370 }
2371
2372 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2373 put_page(page);
2374 return ret | VM_FAULT_RETRY;
2375 }
2376
2377 /* Did it get truncated? */
2378 if (unlikely(page->mapping != mapping)) {
2379 unlock_page(page);
2380 put_page(page);
2381 goto retry_find;
2382 }
2383 VM_BUG_ON_PAGE(page->index != offset, page);
2384
2385 /*
2386 * We have a locked page in the page cache, now we need to check
2387 * that it's up-to-date. If not, it is going to be due to an error.
2388 */
2389 if (unlikely(!PageUptodate(page)))
2390 goto page_not_uptodate;
2391
2392 /*
2393 * Found the page and have a reference on it.
2394 * We must recheck i_size under page lock.
2395 */
2396 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2397 if (unlikely(offset >= max_off)) {
2398 unlock_page(page);
2399 put_page(page);
2400 return VM_FAULT_SIGBUS;
2401 }
2402
2403 vmf->page = page;
2404 return ret | VM_FAULT_LOCKED;
2405
2406 no_cached_page:
2407 /*
2408 * We're only likely to ever get here if MADV_RANDOM is in
2409 * effect.
2410 */
2411 error = page_cache_read(file, offset, vmf->gfp_mask);
2412
2413 /*
2414 * The page we want has now been added to the page cache.
2415 * In the unlikely event that someone removed it in the
2416 * meantime, we'll just come back here and read it again.
2417 */
2418 if (error >= 0)
2419 goto retry_find;
2420
2421 /*
2422 * An error return from page_cache_read can result if the
2423 * system is low on memory, or a problem occurs while trying
2424 * to schedule I/O.
2425 */
2426 if (error == -ENOMEM)
2427 return VM_FAULT_OOM;
2428 return VM_FAULT_SIGBUS;
2429
2430 page_not_uptodate:
2431 /*
2432 * Umm, take care of errors if the page isn't up-to-date.
2433 * Try to re-read it _once_. We do this synchronously,
2434 * because there really aren't any performance issues here
2435 * and we need to check for errors.
2436 */
2437 ClearPageError(page);
2438 error = mapping->a_ops->readpage(file, page);
2439 if (!error) {
2440 wait_on_page_locked(page);
2441 if (!PageUptodate(page))
2442 error = -EIO;
2443 }
2444 put_page(page);
2445
2446 if (!error || error == AOP_TRUNCATED_PAGE)
2447 goto retry_find;
2448
2449 /* Things didn't work out. Return zero to tell the mm layer so. */
2450 shrink_readahead_size_eio(file, ra);
2451 return VM_FAULT_SIGBUS;
2452 }
2453 EXPORT_SYMBOL(filemap_fault);
2454
2455 void filemap_map_pages(struct vm_fault *vmf,
2456 pgoff_t start_pgoff, pgoff_t end_pgoff)
2457 {
2458 struct radix_tree_iter iter;
2459 void **slot;
2460 struct file *file = vmf->vma->vm_file;
2461 struct address_space *mapping = file->f_mapping;
2462 pgoff_t last_pgoff = start_pgoff;
2463 unsigned long max_idx;
2464 struct page *head, *page;
2465
2466 rcu_read_lock();
2467 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2468 start_pgoff) {
2469 if (iter.index > end_pgoff)
2470 break;
2471 repeat:
2472 page = radix_tree_deref_slot(slot);
2473 if (unlikely(!page))
2474 goto next;
2475 if (radix_tree_exception(page)) {
2476 if (radix_tree_deref_retry(page)) {
2477 slot = radix_tree_iter_retry(&iter);
2478 continue;
2479 }
2480 goto next;
2481 }
2482
2483 head = compound_head(page);
2484 if (!page_cache_get_speculative(head))
2485 goto repeat;
2486
2487 /* The page was split under us? */
2488 if (compound_head(page) != head) {
2489 put_page(head);
2490 goto repeat;
2491 }
2492
2493 /* Has the page moved? */
2494 if (unlikely(page != *slot)) {
2495 put_page(head);
2496 goto repeat;
2497 }
2498
2499 if (!PageUptodate(page) ||
2500 PageReadahead(page) ||
2501 PageHWPoison(page))
2502 goto skip;
2503 if (!trylock_page(page))
2504 goto skip;
2505
2506 if (page->mapping != mapping || !PageUptodate(page))
2507 goto unlock;
2508
2509 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2510 if (page->index >= max_idx)
2511 goto unlock;
2512
2513 if (file->f_ra.mmap_miss > 0)
2514 file->f_ra.mmap_miss--;
2515
2516 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2517 if (vmf->pte)
2518 vmf->pte += iter.index - last_pgoff;
2519 last_pgoff = iter.index;
2520 if (alloc_set_pte(vmf, NULL, page))
2521 goto unlock;
2522 unlock_page(page);
2523 goto next;
2524 unlock:
2525 unlock_page(page);
2526 skip:
2527 put_page(page);
2528 next:
2529 /* Huge page is mapped? No need to proceed. */
2530 if (pmd_trans_huge(*vmf->pmd))
2531 break;
2532 if (iter.index == end_pgoff)
2533 break;
2534 }
2535 rcu_read_unlock();
2536 }
2537 EXPORT_SYMBOL(filemap_map_pages);
2538
2539 int filemap_page_mkwrite(struct vm_fault *vmf)
2540 {
2541 struct page *page = vmf->page;
2542 struct inode *inode = file_inode(vmf->vma->vm_file);
2543 int ret = VM_FAULT_LOCKED;
2544
2545 sb_start_pagefault(inode->i_sb);
2546 file_update_time(vmf->vma->vm_file);
2547 lock_page(page);
2548 if (page->mapping != inode->i_mapping) {
2549 unlock_page(page);
2550 ret = VM_FAULT_NOPAGE;
2551 goto out;
2552 }
2553 /*
2554 * We mark the page dirty already here so that when freeze is in
2555 * progress, we are guaranteed that writeback during freezing will
2556 * see the dirty page and writeprotect it again.
2557 */
2558 set_page_dirty(page);
2559 wait_for_stable_page(page);
2560 out:
2561 sb_end_pagefault(inode->i_sb);
2562 return ret;
2563 }
2564 EXPORT_SYMBOL(filemap_page_mkwrite);
2565
2566 const struct vm_operations_struct generic_file_vm_ops = {
2567 .fault = filemap_fault,
2568 .map_pages = filemap_map_pages,
2569 .page_mkwrite = filemap_page_mkwrite,
2570 };
2571
2572 /* This is used for a general mmap of a disk file */
2573
2574 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2575 {
2576 struct address_space *mapping = file->f_mapping;
2577
2578 if (!mapping->a_ops->readpage)
2579 return -ENOEXEC;
2580 file_accessed(file);
2581 vma->vm_ops = &generic_file_vm_ops;
2582 return 0;
2583 }
2584
2585 /*
2586 * This is for filesystems which do not implement ->writepage.
2587 */
2588 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2589 {
2590 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2591 return -EINVAL;
2592 return generic_file_mmap(file, vma);
2593 }
2594 #else
2595 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2596 {
2597 return -ENOSYS;
2598 }
2599 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2600 {
2601 return -ENOSYS;
2602 }
2603 #endif /* CONFIG_MMU */
2604
2605 EXPORT_SYMBOL(generic_file_mmap);
2606 EXPORT_SYMBOL(generic_file_readonly_mmap);
2607
2608 static struct page *wait_on_page_read(struct page *page)
2609 {
2610 if (!IS_ERR(page)) {
2611 wait_on_page_locked(page);
2612 if (!PageUptodate(page)) {
2613 put_page(page);
2614 page = ERR_PTR(-EIO);
2615 }
2616 }
2617 return page;
2618 }
2619
2620 static struct page *do_read_cache_page(struct address_space *mapping,
2621 pgoff_t index,
2622 int (*filler)(void *, struct page *),
2623 void *data,
2624 gfp_t gfp)
2625 {
2626 struct page *page;
2627 int err;
2628 repeat:
2629 page = find_get_page(mapping, index);
2630 if (!page) {
2631 page = __page_cache_alloc(gfp | __GFP_COLD);
2632 if (!page)
2633 return ERR_PTR(-ENOMEM);
2634 err = add_to_page_cache_lru(page, mapping, index, gfp);
2635 if (unlikely(err)) {
2636 put_page(page);
2637 if (err == -EEXIST)
2638 goto repeat;
2639 /* Presumably ENOMEM for radix tree node */
2640 return ERR_PTR(err);
2641 }
2642
2643 filler:
2644 err = filler(data, page);
2645 if (err < 0) {
2646 put_page(page);
2647 return ERR_PTR(err);
2648 }
2649
2650 page = wait_on_page_read(page);
2651 if (IS_ERR(page))
2652 return page;
2653 goto out;
2654 }
2655 if (PageUptodate(page))
2656 goto out;
2657
2658 /*
2659 * Page is not up to date and may be locked due one of the following
2660 * case a: Page is being filled and the page lock is held
2661 * case b: Read/write error clearing the page uptodate status
2662 * case c: Truncation in progress (page locked)
2663 * case d: Reclaim in progress
2664 *
2665 * Case a, the page will be up to date when the page is unlocked.
2666 * There is no need to serialise on the page lock here as the page
2667 * is pinned so the lock gives no additional protection. Even if the
2668 * the page is truncated, the data is still valid if PageUptodate as
2669 * it's a race vs truncate race.
2670 * Case b, the page will not be up to date
2671 * Case c, the page may be truncated but in itself, the data may still
2672 * be valid after IO completes as it's a read vs truncate race. The
2673 * operation must restart if the page is not uptodate on unlock but
2674 * otherwise serialising on page lock to stabilise the mapping gives
2675 * no additional guarantees to the caller as the page lock is
2676 * released before return.
2677 * Case d, similar to truncation. If reclaim holds the page lock, it
2678 * will be a race with remove_mapping that determines if the mapping
2679 * is valid on unlock but otherwise the data is valid and there is
2680 * no need to serialise with page lock.
2681 *
2682 * As the page lock gives no additional guarantee, we optimistically
2683 * wait on the page to be unlocked and check if it's up to date and
2684 * use the page if it is. Otherwise, the page lock is required to
2685 * distinguish between the different cases. The motivation is that we
2686 * avoid spurious serialisations and wakeups when multiple processes
2687 * wait on the same page for IO to complete.
2688 */
2689 wait_on_page_locked(page);
2690 if (PageUptodate(page))
2691 goto out;
2692
2693 /* Distinguish between all the cases under the safety of the lock */
2694 lock_page(page);
2695
2696 /* Case c or d, restart the operation */
2697 if (!page->mapping) {
2698 unlock_page(page);
2699 put_page(page);
2700 goto repeat;
2701 }
2702
2703 /* Someone else locked and filled the page in a very small window */
2704 if (PageUptodate(page)) {
2705 unlock_page(page);
2706 goto out;
2707 }
2708 goto filler;
2709
2710 out:
2711 mark_page_accessed(page);
2712 return page;
2713 }
2714
2715 /**
2716 * read_cache_page - read into page cache, fill it if needed
2717 * @mapping: the page's address_space
2718 * @index: the page index
2719 * @filler: function to perform the read
2720 * @data: first arg to filler(data, page) function, often left as NULL
2721 *
2722 * Read into the page cache. If a page already exists, and PageUptodate() is
2723 * not set, try to fill the page and wait for it to become unlocked.
2724 *
2725 * If the page does not get brought uptodate, return -EIO.
2726 */
2727 struct page *read_cache_page(struct address_space *mapping,
2728 pgoff_t index,
2729 int (*filler)(void *, struct page *),
2730 void *data)
2731 {
2732 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2733 }
2734 EXPORT_SYMBOL(read_cache_page);
2735
2736 /**
2737 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2738 * @mapping: the page's address_space
2739 * @index: the page index
2740 * @gfp: the page allocator flags to use if allocating
2741 *
2742 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2743 * any new page allocations done using the specified allocation flags.
2744 *
2745 * If the page does not get brought uptodate, return -EIO.
2746 */
2747 struct page *read_cache_page_gfp(struct address_space *mapping,
2748 pgoff_t index,
2749 gfp_t gfp)
2750 {
2751 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2752
2753 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2754 }
2755 EXPORT_SYMBOL(read_cache_page_gfp);
2756
2757 /*
2758 * Performs necessary checks before doing a write
2759 *
2760 * Can adjust writing position or amount of bytes to write.
2761 * Returns appropriate error code that caller should return or
2762 * zero in case that write should be allowed.
2763 */
2764 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2765 {
2766 struct file *file = iocb->ki_filp;
2767 struct inode *inode = file->f_mapping->host;
2768 unsigned long limit = rlimit(RLIMIT_FSIZE);
2769 loff_t pos;
2770
2771 if (!iov_iter_count(from))
2772 return 0;
2773
2774 /* FIXME: this is for backwards compatibility with 2.4 */
2775 if (iocb->ki_flags & IOCB_APPEND)
2776 iocb->ki_pos = i_size_read(inode);
2777
2778 pos = iocb->ki_pos;
2779
2780 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2781 return -EINVAL;
2782
2783 if (limit != RLIM_INFINITY) {
2784 if (iocb->ki_pos >= limit) {
2785 send_sig(SIGXFSZ, current, 0);
2786 return -EFBIG;
2787 }
2788 iov_iter_truncate(from, limit - (unsigned long)pos);
2789 }
2790
2791 /*
2792 * LFS rule
2793 */
2794 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2795 !(file->f_flags & O_LARGEFILE))) {
2796 if (pos >= MAX_NON_LFS)
2797 return -EFBIG;
2798 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2799 }
2800
2801 /*
2802 * Are we about to exceed the fs block limit ?
2803 *
2804 * If we have written data it becomes a short write. If we have
2805 * exceeded without writing data we send a signal and return EFBIG.
2806 * Linus frestrict idea will clean these up nicely..
2807 */
2808 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2809 return -EFBIG;
2810
2811 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2812 return iov_iter_count(from);
2813 }
2814 EXPORT_SYMBOL(generic_write_checks);
2815
2816 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2817 loff_t pos, unsigned len, unsigned flags,
2818 struct page **pagep, void **fsdata)
2819 {
2820 const struct address_space_operations *aops = mapping->a_ops;
2821
2822 return aops->write_begin(file, mapping, pos, len, flags,
2823 pagep, fsdata);
2824 }
2825 EXPORT_SYMBOL(pagecache_write_begin);
2826
2827 int pagecache_write_end(struct file *file, struct address_space *mapping,
2828 loff_t pos, unsigned len, unsigned copied,
2829 struct page *page, void *fsdata)
2830 {
2831 const struct address_space_operations *aops = mapping->a_ops;
2832
2833 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2834 }
2835 EXPORT_SYMBOL(pagecache_write_end);
2836
2837 ssize_t
2838 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2839 {
2840 struct file *file = iocb->ki_filp;
2841 struct address_space *mapping = file->f_mapping;
2842 struct inode *inode = mapping->host;
2843 loff_t pos = iocb->ki_pos;
2844 ssize_t written;
2845 size_t write_len;
2846 pgoff_t end;
2847
2848 write_len = iov_iter_count(from);
2849 end = (pos + write_len - 1) >> PAGE_SHIFT;
2850
2851 if (iocb->ki_flags & IOCB_NOWAIT) {
2852 /* If there are pages to writeback, return */
2853 if (filemap_range_has_page(inode->i_mapping, pos,
2854 pos + iov_iter_count(from)))
2855 return -EAGAIN;
2856 } else {
2857 written = filemap_write_and_wait_range(mapping, pos,
2858 pos + write_len - 1);
2859 if (written)
2860 goto out;
2861 }
2862
2863 /*
2864 * After a write we want buffered reads to be sure to go to disk to get
2865 * the new data. We invalidate clean cached page from the region we're
2866 * about to write. We do this *before* the write so that we can return
2867 * without clobbering -EIOCBQUEUED from ->direct_IO().
2868 */
2869 written = invalidate_inode_pages2_range(mapping,
2870 pos >> PAGE_SHIFT, end);
2871 /*
2872 * If a page can not be invalidated, return 0 to fall back
2873 * to buffered write.
2874 */
2875 if (written) {
2876 if (written == -EBUSY)
2877 return 0;
2878 goto out;
2879 }
2880
2881 written = mapping->a_ops->direct_IO(iocb, from);
2882
2883 /*
2884 * Finally, try again to invalidate clean pages which might have been
2885 * cached by non-direct readahead, or faulted in by get_user_pages()
2886 * if the source of the write was an mmap'ed region of the file
2887 * we're writing. Either one is a pretty crazy thing to do,
2888 * so we don't support it 100%. If this invalidation
2889 * fails, tough, the write still worked...
2890 */
2891 invalidate_inode_pages2_range(mapping,
2892 pos >> PAGE_SHIFT, end);
2893
2894 if (written > 0) {
2895 pos += written;
2896 write_len -= written;
2897 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2898 i_size_write(inode, pos);
2899 mark_inode_dirty(inode);
2900 }
2901 iocb->ki_pos = pos;
2902 }
2903 iov_iter_revert(from, write_len - iov_iter_count(from));
2904 out:
2905 return written;
2906 }
2907 EXPORT_SYMBOL(generic_file_direct_write);
2908
2909 /*
2910 * Find or create a page at the given pagecache position. Return the locked
2911 * page. This function is specifically for buffered writes.
2912 */
2913 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2914 pgoff_t index, unsigned flags)
2915 {
2916 struct page *page;
2917 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2918
2919 if (flags & AOP_FLAG_NOFS)
2920 fgp_flags |= FGP_NOFS;
2921
2922 page = pagecache_get_page(mapping, index, fgp_flags,
2923 mapping_gfp_mask(mapping));
2924 if (page)
2925 wait_for_stable_page(page);
2926
2927 return page;
2928 }
2929 EXPORT_SYMBOL(grab_cache_page_write_begin);
2930
2931 ssize_t generic_perform_write(struct file *file,
2932 struct iov_iter *i, loff_t pos)
2933 {
2934 struct address_space *mapping = file->f_mapping;
2935 const struct address_space_operations *a_ops = mapping->a_ops;
2936 long status = 0;
2937 ssize_t written = 0;
2938 unsigned int flags = 0;
2939
2940 do {
2941 struct page *page;
2942 unsigned long offset; /* Offset into pagecache page */
2943 unsigned long bytes; /* Bytes to write to page */
2944 size_t copied; /* Bytes copied from user */
2945 void *fsdata;
2946
2947 offset = (pos & (PAGE_SIZE - 1));
2948 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2949 iov_iter_count(i));
2950
2951 again:
2952 /*
2953 * Bring in the user page that we will copy from _first_.
2954 * Otherwise there's a nasty deadlock on copying from the
2955 * same page as we're writing to, without it being marked
2956 * up-to-date.
2957 *
2958 * Not only is this an optimisation, but it is also required
2959 * to check that the address is actually valid, when atomic
2960 * usercopies are used, below.
2961 */
2962 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2963 status = -EFAULT;
2964 break;
2965 }
2966
2967 if (fatal_signal_pending(current)) {
2968 status = -EINTR;
2969 break;
2970 }
2971
2972 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2973 &page, &fsdata);
2974 if (unlikely(status < 0))
2975 break;
2976
2977 if (mapping_writably_mapped(mapping))
2978 flush_dcache_page(page);
2979
2980 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2981 flush_dcache_page(page);
2982
2983 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2984 page, fsdata);
2985 if (unlikely(status < 0))
2986 break;
2987 copied = status;
2988
2989 cond_resched();
2990
2991 iov_iter_advance(i, copied);
2992 if (unlikely(copied == 0)) {
2993 /*
2994 * If we were unable to copy any data at all, we must
2995 * fall back to a single segment length write.
2996 *
2997 * If we didn't fallback here, we could livelock
2998 * because not all segments in the iov can be copied at
2999 * once without a pagefault.
3000 */
3001 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3002 iov_iter_single_seg_count(i));
3003 goto again;
3004 }
3005 pos += copied;
3006 written += copied;
3007
3008 balance_dirty_pages_ratelimited(mapping);
3009 } while (iov_iter_count(i));
3010
3011 return written ? written : status;
3012 }
3013 EXPORT_SYMBOL(generic_perform_write);
3014
3015 /**
3016 * __generic_file_write_iter - write data to a file
3017 * @iocb: IO state structure (file, offset, etc.)
3018 * @from: iov_iter with data to write
3019 *
3020 * This function does all the work needed for actually writing data to a
3021 * file. It does all basic checks, removes SUID from the file, updates
3022 * modification times and calls proper subroutines depending on whether we
3023 * do direct IO or a standard buffered write.
3024 *
3025 * It expects i_mutex to be grabbed unless we work on a block device or similar
3026 * object which does not need locking at all.
3027 *
3028 * This function does *not* take care of syncing data in case of O_SYNC write.
3029 * A caller has to handle it. This is mainly due to the fact that we want to
3030 * avoid syncing under i_mutex.
3031 */
3032 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3033 {
3034 struct file *file = iocb->ki_filp;
3035 struct address_space * mapping = file->f_mapping;
3036 struct inode *inode = mapping->host;
3037 ssize_t written = 0;
3038 ssize_t err;
3039 ssize_t status;
3040
3041 /* We can write back this queue in page reclaim */
3042 current->backing_dev_info = inode_to_bdi(inode);
3043 err = file_remove_privs(file);
3044 if (err)
3045 goto out;
3046
3047 err = file_update_time(file);
3048 if (err)
3049 goto out;
3050
3051 if (iocb->ki_flags & IOCB_DIRECT) {
3052 loff_t pos, endbyte;
3053
3054 written = generic_file_direct_write(iocb, from);
3055 /*
3056 * If the write stopped short of completing, fall back to
3057 * buffered writes. Some filesystems do this for writes to
3058 * holes, for example. For DAX files, a buffered write will
3059 * not succeed (even if it did, DAX does not handle dirty
3060 * page-cache pages correctly).
3061 */
3062 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3063 goto out;
3064
3065 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3066 /*
3067 * If generic_perform_write() returned a synchronous error
3068 * then we want to return the number of bytes which were
3069 * direct-written, or the error code if that was zero. Note
3070 * that this differs from normal direct-io semantics, which
3071 * will return -EFOO even if some bytes were written.
3072 */
3073 if (unlikely(status < 0)) {
3074 err = status;
3075 goto out;
3076 }
3077 /*
3078 * We need to ensure that the page cache pages are written to
3079 * disk and invalidated to preserve the expected O_DIRECT
3080 * semantics.
3081 */
3082 endbyte = pos + status - 1;
3083 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3084 if (err == 0) {
3085 iocb->ki_pos = endbyte + 1;
3086 written += status;
3087 invalidate_mapping_pages(mapping,
3088 pos >> PAGE_SHIFT,
3089 endbyte >> PAGE_SHIFT);
3090 } else {
3091 /*
3092 * We don't know how much we wrote, so just return
3093 * the number of bytes which were direct-written
3094 */
3095 }
3096 } else {
3097 written = generic_perform_write(file, from, iocb->ki_pos);
3098 if (likely(written > 0))
3099 iocb->ki_pos += written;
3100 }
3101 out:
3102 current->backing_dev_info = NULL;
3103 return written ? written : err;
3104 }
3105 EXPORT_SYMBOL(__generic_file_write_iter);
3106
3107 /**
3108 * generic_file_write_iter - write data to a file
3109 * @iocb: IO state structure
3110 * @from: iov_iter with data to write
3111 *
3112 * This is a wrapper around __generic_file_write_iter() to be used by most
3113 * filesystems. It takes care of syncing the file in case of O_SYNC file
3114 * and acquires i_mutex as needed.
3115 */
3116 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3117 {
3118 struct file *file = iocb->ki_filp;
3119 struct inode *inode = file->f_mapping->host;
3120 ssize_t ret;
3121
3122 inode_lock(inode);
3123 ret = generic_write_checks(iocb, from);
3124 if (ret > 0)
3125 ret = __generic_file_write_iter(iocb, from);
3126 inode_unlock(inode);
3127
3128 if (ret > 0)
3129 ret = generic_write_sync(iocb, ret);
3130 return ret;
3131 }
3132 EXPORT_SYMBOL(generic_file_write_iter);
3133
3134 /**
3135 * try_to_release_page() - release old fs-specific metadata on a page
3136 *
3137 * @page: the page which the kernel is trying to free
3138 * @gfp_mask: memory allocation flags (and I/O mode)
3139 *
3140 * The address_space is to try to release any data against the page
3141 * (presumably at page->private). If the release was successful, return '1'.
3142 * Otherwise return zero.
3143 *
3144 * This may also be called if PG_fscache is set on a page, indicating that the
3145 * page is known to the local caching routines.
3146 *
3147 * The @gfp_mask argument specifies whether I/O may be performed to release
3148 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3149 *
3150 */
3151 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3152 {
3153 struct address_space * const mapping = page->mapping;
3154
3155 BUG_ON(!PageLocked(page));
3156 if (PageWriteback(page))
3157 return 0;
3158
3159 if (mapping && mapping->a_ops->releasepage)
3160 return mapping->a_ops->releasepage(page, gfp_mask);
3161 return try_to_free_buffers(page);
3162 }
3163
3164 EXPORT_SYMBOL(try_to_release_page);