]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/filemap.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115 {
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 } else {
136 /* DAX can replace empty locked entry with a hole */
137 WARN_ON_ONCE(p !=
138 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139 /* Wakeup waiters for exceptional entry lock */
140 dax_wake_mapping_entry_waiter(mapping, page->index, p,
141 false);
142 }
143 }
144 __radix_tree_replace(&mapping->page_tree, node, slot, page,
145 workingset_update_node, mapping);
146 mapping->nrpages++;
147 return 0;
148 }
149
150 static void page_cache_tree_delete(struct address_space *mapping,
151 struct page *page, void *shadow)
152 {
153 int i, nr;
154
155 /* hugetlb pages are represented by one entry in the radix tree */
156 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
157
158 VM_BUG_ON_PAGE(!PageLocked(page), page);
159 VM_BUG_ON_PAGE(PageTail(page), page);
160 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
161
162 for (i = 0; i < nr; i++) {
163 struct radix_tree_node *node;
164 void **slot;
165
166 __radix_tree_lookup(&mapping->page_tree, page->index + i,
167 &node, &slot);
168
169 VM_BUG_ON_PAGE(!node && nr != 1, page);
170
171 radix_tree_clear_tags(&mapping->page_tree, node, slot);
172 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173 workingset_update_node, mapping);
174 }
175
176 if (shadow) {
177 mapping->nrexceptional += nr;
178 /*
179 * Make sure the nrexceptional update is committed before
180 * the nrpages update so that final truncate racing
181 * with reclaim does not see both counters 0 at the
182 * same time and miss a shadow entry.
183 */
184 smp_wmb();
185 }
186 mapping->nrpages -= nr;
187 }
188
189 /*
190 * Delete a page from the page cache and free it. Caller has to make
191 * sure the page is locked and that nobody else uses it - or that usage
192 * is safe. The caller must hold the mapping's tree_lock.
193 */
194 void __delete_from_page_cache(struct page *page, void *shadow)
195 {
196 struct address_space *mapping = page->mapping;
197 int nr = hpage_nr_pages(page);
198
199 trace_mm_filemap_delete_from_page_cache(page);
200 /*
201 * if we're uptodate, flush out into the cleancache, otherwise
202 * invalidate any existing cleancache entries. We can't leave
203 * stale data around in the cleancache once our page is gone
204 */
205 if (PageUptodate(page) && PageMappedToDisk(page))
206 cleancache_put_page(page);
207 else
208 cleancache_invalidate_page(mapping, page);
209
210 VM_BUG_ON_PAGE(PageTail(page), page);
211 VM_BUG_ON_PAGE(page_mapped(page), page);
212 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213 int mapcount;
214
215 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
216 current->comm, page_to_pfn(page));
217 dump_page(page, "still mapped when deleted");
218 dump_stack();
219 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220
221 mapcount = page_mapcount(page);
222 if (mapping_exiting(mapping) &&
223 page_count(page) >= mapcount + 2) {
224 /*
225 * All vmas have already been torn down, so it's
226 * a good bet that actually the page is unmapped,
227 * and we'd prefer not to leak it: if we're wrong,
228 * some other bad page check should catch it later.
229 */
230 page_mapcount_reset(page);
231 page_ref_sub(page, mapcount);
232 }
233 }
234
235 page_cache_tree_delete(mapping, page, shadow);
236
237 page->mapping = NULL;
238 /* Leave page->index set: truncation lookup relies upon it */
239
240 /* hugetlb pages do not participate in page cache accounting. */
241 if (!PageHuge(page))
242 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243 if (PageSwapBacked(page)) {
244 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245 if (PageTransHuge(page))
246 __dec_node_page_state(page, NR_SHMEM_THPS);
247 } else {
248 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249 }
250
251 /*
252 * At this point page must be either written or cleaned by truncate.
253 * Dirty page here signals a bug and loss of unwritten data.
254 *
255 * This fixes dirty accounting after removing the page entirely but
256 * leaves PageDirty set: it has no effect for truncated page and
257 * anyway will be cleared before returning page into buddy allocator.
258 */
259 if (WARN_ON_ONCE(PageDirty(page)))
260 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
261 }
262
263 /**
264 * delete_from_page_cache - delete page from page cache
265 * @page: the page which the kernel is trying to remove from page cache
266 *
267 * This must be called only on pages that have been verified to be in the page
268 * cache and locked. It will never put the page into the free list, the caller
269 * has a reference on the page.
270 */
271 void delete_from_page_cache(struct page *page)
272 {
273 struct address_space *mapping = page_mapping(page);
274 unsigned long flags;
275 void (*freepage)(struct page *);
276
277 BUG_ON(!PageLocked(page));
278
279 freepage = mapping->a_ops->freepage;
280
281 spin_lock_irqsave(&mapping->tree_lock, flags);
282 __delete_from_page_cache(page, NULL);
283 spin_unlock_irqrestore(&mapping->tree_lock, flags);
284
285 if (freepage)
286 freepage(page);
287
288 if (PageTransHuge(page) && !PageHuge(page)) {
289 page_ref_sub(page, HPAGE_PMD_NR);
290 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291 } else {
292 put_page(page);
293 }
294 }
295 EXPORT_SYMBOL(delete_from_page_cache);
296
297 int filemap_check_errors(struct address_space *mapping)
298 {
299 int ret = 0;
300 /* Check for outstanding write errors */
301 if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 ret = -ENOSPC;
304 if (test_bit(AS_EIO, &mapping->flags) &&
305 test_and_clear_bit(AS_EIO, &mapping->flags))
306 ret = -EIO;
307 return ret;
308 }
309 EXPORT_SYMBOL(filemap_check_errors);
310
311 /**
312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313 * @mapping: address space structure to write
314 * @start: offset in bytes where the range starts
315 * @end: offset in bytes where the range ends (inclusive)
316 * @sync_mode: enable synchronous operation
317 *
318 * Start writeback against all of a mapping's dirty pages that lie
319 * within the byte offsets <start, end> inclusive.
320 *
321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322 * opposed to a regular memory cleansing writeback. The difference between
323 * these two operations is that if a dirty page/buffer is encountered, it must
324 * be waited upon, and not just skipped over.
325 */
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327 loff_t end, int sync_mode)
328 {
329 int ret;
330 struct writeback_control wbc = {
331 .sync_mode = sync_mode,
332 .nr_to_write = LONG_MAX,
333 .range_start = start,
334 .range_end = end,
335 };
336
337 if (!mapping_cap_writeback_dirty(mapping))
338 return 0;
339
340 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341 ret = do_writepages(mapping, &wbc);
342 wbc_detach_inode(&wbc);
343 return ret;
344 }
345
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347 int sync_mode)
348 {
349 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
350 }
351
352 int filemap_fdatawrite(struct address_space *mapping)
353 {
354 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355 }
356 EXPORT_SYMBOL(filemap_fdatawrite);
357
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359 loff_t end)
360 {
361 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
364
365 /**
366 * filemap_flush - mostly a non-blocking flush
367 * @mapping: target address_space
368 *
369 * This is a mostly non-blocking flush. Not suitable for data-integrity
370 * purposes - I/O may not be started against all dirty pages.
371 */
372 int filemap_flush(struct address_space *mapping)
373 {
374 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375 }
376 EXPORT_SYMBOL(filemap_flush);
377
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379 loff_t start_byte, loff_t end_byte)
380 {
381 pgoff_t index = start_byte >> PAGE_SHIFT;
382 pgoff_t end = end_byte >> PAGE_SHIFT;
383 struct pagevec pvec;
384 int nr_pages;
385 int ret = 0;
386
387 if (end_byte < start_byte)
388 goto out;
389
390 pagevec_init(&pvec, 0);
391 while ((index <= end) &&
392 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 PAGECACHE_TAG_WRITEBACK,
394 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395 unsigned i;
396
397 for (i = 0; i < nr_pages; i++) {
398 struct page *page = pvec.pages[i];
399
400 /* until radix tree lookup accepts end_index */
401 if (page->index > end)
402 continue;
403
404 wait_on_page_writeback(page);
405 if (TestClearPageError(page))
406 ret = -EIO;
407 }
408 pagevec_release(&pvec);
409 cond_resched();
410 }
411 out:
412 return ret;
413 }
414
415 /**
416 * filemap_fdatawait_range - wait for writeback to complete
417 * @mapping: address space structure to wait for
418 * @start_byte: offset in bytes where the range starts
419 * @end_byte: offset in bytes where the range ends (inclusive)
420 *
421 * Walk the list of under-writeback pages of the given address space
422 * in the given range and wait for all of them. Check error status of
423 * the address space and return it.
424 *
425 * Since the error status of the address space is cleared by this function,
426 * callers are responsible for checking the return value and handling and/or
427 * reporting the error.
428 */
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430 loff_t end_byte)
431 {
432 int ret, ret2;
433
434 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435 ret2 = filemap_check_errors(mapping);
436 if (!ret)
437 ret = ret2;
438
439 return ret;
440 }
441 EXPORT_SYMBOL(filemap_fdatawait_range);
442
443 /**
444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445 * @mapping: address space structure to wait for
446 *
447 * Walk the list of under-writeback pages of the given address space
448 * and wait for all of them. Unlike filemap_fdatawait(), this function
449 * does not clear error status of the address space.
450 *
451 * Use this function if callers don't handle errors themselves. Expected
452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453 * fsfreeze(8)
454 */
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
456 {
457 loff_t i_size = i_size_read(mapping->host);
458
459 if (i_size == 0)
460 return;
461
462 __filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464
465 /**
466 * filemap_fdatawait - wait for all under-writeback pages to complete
467 * @mapping: address space structure to wait for
468 *
469 * Walk the list of under-writeback pages of the given address space
470 * and wait for all of them. Check error status of the address space
471 * and return it.
472 *
473 * Since the error status of the address space is cleared by this function,
474 * callers are responsible for checking the return value and handling and/or
475 * reporting the error.
476 */
477 int filemap_fdatawait(struct address_space *mapping)
478 {
479 loff_t i_size = i_size_read(mapping->host);
480
481 if (i_size == 0)
482 return 0;
483
484 return filemap_fdatawait_range(mapping, 0, i_size - 1);
485 }
486 EXPORT_SYMBOL(filemap_fdatawait);
487
488 int filemap_write_and_wait(struct address_space *mapping)
489 {
490 int err = 0;
491
492 if ((!dax_mapping(mapping) && mapping->nrpages) ||
493 (dax_mapping(mapping) && mapping->nrexceptional)) {
494 err = filemap_fdatawrite(mapping);
495 /*
496 * Even if the above returned error, the pages may be
497 * written partially (e.g. -ENOSPC), so we wait for it.
498 * But the -EIO is special case, it may indicate the worst
499 * thing (e.g. bug) happened, so we avoid waiting for it.
500 */
501 if (err != -EIO) {
502 int err2 = filemap_fdatawait(mapping);
503 if (!err)
504 err = err2;
505 }
506 } else {
507 err = filemap_check_errors(mapping);
508 }
509 return err;
510 }
511 EXPORT_SYMBOL(filemap_write_and_wait);
512
513 /**
514 * filemap_write_and_wait_range - write out & wait on a file range
515 * @mapping: the address_space for the pages
516 * @lstart: offset in bytes where the range starts
517 * @lend: offset in bytes where the range ends (inclusive)
518 *
519 * Write out and wait upon file offsets lstart->lend, inclusive.
520 *
521 * Note that `lend' is inclusive (describes the last byte to be written) so
522 * that this function can be used to write to the very end-of-file (end = -1).
523 */
524 int filemap_write_and_wait_range(struct address_space *mapping,
525 loff_t lstart, loff_t lend)
526 {
527 int err = 0;
528
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
531 err = __filemap_fdatawrite_range(mapping, lstart, lend,
532 WB_SYNC_ALL);
533 /* See comment of filemap_write_and_wait() */
534 if (err != -EIO) {
535 int err2 = filemap_fdatawait_range(mapping,
536 lstart, lend);
537 if (!err)
538 err = err2;
539 }
540 } else {
541 err = filemap_check_errors(mapping);
542 }
543 return err;
544 }
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
546
547 /**
548 * replace_page_cache_page - replace a pagecache page with a new one
549 * @old: page to be replaced
550 * @new: page to replace with
551 * @gfp_mask: allocation mode
552 *
553 * This function replaces a page in the pagecache with a new one. On
554 * success it acquires the pagecache reference for the new page and
555 * drops it for the old page. Both the old and new pages must be
556 * locked. This function does not add the new page to the LRU, the
557 * caller must do that.
558 *
559 * The remove + add is atomic. The only way this function can fail is
560 * memory allocation failure.
561 */
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563 {
564 int error;
565
566 VM_BUG_ON_PAGE(!PageLocked(old), old);
567 VM_BUG_ON_PAGE(!PageLocked(new), new);
568 VM_BUG_ON_PAGE(new->mapping, new);
569
570 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571 if (!error) {
572 struct address_space *mapping = old->mapping;
573 void (*freepage)(struct page *);
574 unsigned long flags;
575
576 pgoff_t offset = old->index;
577 freepage = mapping->a_ops->freepage;
578
579 get_page(new);
580 new->mapping = mapping;
581 new->index = offset;
582
583 spin_lock_irqsave(&mapping->tree_lock, flags);
584 __delete_from_page_cache(old, NULL);
585 error = page_cache_tree_insert(mapping, new, NULL);
586 BUG_ON(error);
587
588 /*
589 * hugetlb pages do not participate in page cache accounting.
590 */
591 if (!PageHuge(new))
592 __inc_node_page_state(new, NR_FILE_PAGES);
593 if (PageSwapBacked(new))
594 __inc_node_page_state(new, NR_SHMEM);
595 spin_unlock_irqrestore(&mapping->tree_lock, flags);
596 mem_cgroup_migrate(old, new);
597 radix_tree_preload_end();
598 if (freepage)
599 freepage(old);
600 put_page(old);
601 }
602
603 return error;
604 }
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
606
607 static int __add_to_page_cache_locked(struct page *page,
608 struct address_space *mapping,
609 pgoff_t offset, gfp_t gfp_mask,
610 void **shadowp)
611 {
612 int huge = PageHuge(page);
613 struct mem_cgroup *memcg;
614 int error;
615
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618
619 if (!huge) {
620 error = mem_cgroup_try_charge(page, current->mm,
621 gfp_mask, &memcg, false);
622 if (error)
623 return error;
624 }
625
626 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627 if (error) {
628 if (!huge)
629 mem_cgroup_cancel_charge(page, memcg, false);
630 return error;
631 }
632
633 get_page(page);
634 page->mapping = mapping;
635 page->index = offset;
636
637 spin_lock_irq(&mapping->tree_lock);
638 error = page_cache_tree_insert(mapping, page, shadowp);
639 radix_tree_preload_end();
640 if (unlikely(error))
641 goto err_insert;
642
643 /* hugetlb pages do not participate in page cache accounting. */
644 if (!huge)
645 __inc_node_page_state(page, NR_FILE_PAGES);
646 spin_unlock_irq(&mapping->tree_lock);
647 if (!huge)
648 mem_cgroup_commit_charge(page, memcg, false, false);
649 trace_mm_filemap_add_to_page_cache(page);
650 return 0;
651 err_insert:
652 page->mapping = NULL;
653 /* Leave page->index set: truncation relies upon it */
654 spin_unlock_irq(&mapping->tree_lock);
655 if (!huge)
656 mem_cgroup_cancel_charge(page, memcg, false);
657 put_page(page);
658 return error;
659 }
660
661 /**
662 * add_to_page_cache_locked - add a locked page to the pagecache
663 * @page: page to add
664 * @mapping: the page's address_space
665 * @offset: page index
666 * @gfp_mask: page allocation mode
667 *
668 * This function is used to add a page to the pagecache. It must be locked.
669 * This function does not add the page to the LRU. The caller must do that.
670 */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 pgoff_t offset, gfp_t gfp_mask)
673 {
674 return __add_to_page_cache_locked(page, mapping, offset,
675 gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680 pgoff_t offset, gfp_t gfp_mask)
681 {
682 void *shadow = NULL;
683 int ret;
684
685 __SetPageLocked(page);
686 ret = __add_to_page_cache_locked(page, mapping, offset,
687 gfp_mask, &shadow);
688 if (unlikely(ret))
689 __ClearPageLocked(page);
690 else {
691 /*
692 * The page might have been evicted from cache only
693 * recently, in which case it should be activated like
694 * any other repeatedly accessed page.
695 * The exception is pages getting rewritten; evicting other
696 * data from the working set, only to cache data that will
697 * get overwritten with something else, is a waste of memory.
698 */
699 if (!(gfp_mask & __GFP_WRITE) &&
700 shadow && workingset_refault(shadow)) {
701 SetPageActive(page);
702 workingset_activation(page);
703 } else
704 ClearPageActive(page);
705 lru_cache_add(page);
706 }
707 return ret;
708 }
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
710
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
713 {
714 int n;
715 struct page *page;
716
717 if (cpuset_do_page_mem_spread()) {
718 unsigned int cpuset_mems_cookie;
719 do {
720 cpuset_mems_cookie = read_mems_allowed_begin();
721 n = cpuset_mem_spread_node();
722 page = __alloc_pages_node(n, gfp, 0);
723 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
724
725 return page;
726 }
727 return alloc_pages(gfp, 0);
728 }
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
731
732 /*
733 * In order to wait for pages to become available there must be
734 * waitqueues associated with pages. By using a hash table of
735 * waitqueues where the bucket discipline is to maintain all
736 * waiters on the same queue and wake all when any of the pages
737 * become available, and for the woken contexts to check to be
738 * sure the appropriate page became available, this saves space
739 * at a cost of "thundering herd" phenomena during rare hash
740 * collisions.
741 */
742 wait_queue_head_t *page_waitqueue(struct page *page)
743 {
744 return bit_waitqueue(page, 0);
745 }
746 EXPORT_SYMBOL(page_waitqueue);
747
748 void wait_on_page_bit(struct page *page, int bit_nr)
749 {
750 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
751
752 if (test_bit(bit_nr, &page->flags))
753 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
754 TASK_UNINTERRUPTIBLE);
755 }
756 EXPORT_SYMBOL(wait_on_page_bit);
757
758 int wait_on_page_bit_killable(struct page *page, int bit_nr)
759 {
760 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
761
762 if (!test_bit(bit_nr, &page->flags))
763 return 0;
764
765 return __wait_on_bit(page_waitqueue(page), &wait,
766 bit_wait_io, TASK_KILLABLE);
767 }
768
769 int wait_on_page_bit_killable_timeout(struct page *page,
770 int bit_nr, unsigned long timeout)
771 {
772 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
773
774 wait.key.timeout = jiffies + timeout;
775 if (!test_bit(bit_nr, &page->flags))
776 return 0;
777 return __wait_on_bit(page_waitqueue(page), &wait,
778 bit_wait_io_timeout, TASK_KILLABLE);
779 }
780 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
781
782 /**
783 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
784 * @page: Page defining the wait queue of interest
785 * @waiter: Waiter to add to the queue
786 *
787 * Add an arbitrary @waiter to the wait queue for the nominated @page.
788 */
789 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
790 {
791 wait_queue_head_t *q = page_waitqueue(page);
792 unsigned long flags;
793
794 spin_lock_irqsave(&q->lock, flags);
795 __add_wait_queue(q, waiter);
796 spin_unlock_irqrestore(&q->lock, flags);
797 }
798 EXPORT_SYMBOL_GPL(add_page_wait_queue);
799
800 /**
801 * unlock_page - unlock a locked page
802 * @page: the page
803 *
804 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
805 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
806 * mechanism between PageLocked pages and PageWriteback pages is shared.
807 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
808 *
809 * The mb is necessary to enforce ordering between the clear_bit and the read
810 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
811 */
812 void unlock_page(struct page *page)
813 {
814 page = compound_head(page);
815 VM_BUG_ON_PAGE(!PageLocked(page), page);
816 clear_bit_unlock(PG_locked, &page->flags);
817 smp_mb__after_atomic();
818 wake_up_page(page, PG_locked);
819 }
820 EXPORT_SYMBOL(unlock_page);
821
822 /**
823 * end_page_writeback - end writeback against a page
824 * @page: the page
825 */
826 void end_page_writeback(struct page *page)
827 {
828 /*
829 * TestClearPageReclaim could be used here but it is an atomic
830 * operation and overkill in this particular case. Failing to
831 * shuffle a page marked for immediate reclaim is too mild to
832 * justify taking an atomic operation penalty at the end of
833 * ever page writeback.
834 */
835 if (PageReclaim(page)) {
836 ClearPageReclaim(page);
837 rotate_reclaimable_page(page);
838 }
839
840 if (!test_clear_page_writeback(page))
841 BUG();
842
843 smp_mb__after_atomic();
844 wake_up_page(page, PG_writeback);
845 }
846 EXPORT_SYMBOL(end_page_writeback);
847
848 /*
849 * After completing I/O on a page, call this routine to update the page
850 * flags appropriately
851 */
852 void page_endio(struct page *page, bool is_write, int err)
853 {
854 if (!is_write) {
855 if (!err) {
856 SetPageUptodate(page);
857 } else {
858 ClearPageUptodate(page);
859 SetPageError(page);
860 }
861 unlock_page(page);
862 } else {
863 if (err) {
864 SetPageError(page);
865 if (page->mapping)
866 mapping_set_error(page->mapping, err);
867 }
868 end_page_writeback(page);
869 }
870 }
871 EXPORT_SYMBOL_GPL(page_endio);
872
873 /**
874 * __lock_page - get a lock on the page, assuming we need to sleep to get it
875 * @page: the page to lock
876 */
877 void __lock_page(struct page *page)
878 {
879 struct page *page_head = compound_head(page);
880 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
881
882 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
883 TASK_UNINTERRUPTIBLE);
884 }
885 EXPORT_SYMBOL(__lock_page);
886
887 int __lock_page_killable(struct page *page)
888 {
889 struct page *page_head = compound_head(page);
890 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
891
892 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
893 bit_wait_io, TASK_KILLABLE);
894 }
895 EXPORT_SYMBOL_GPL(__lock_page_killable);
896
897 /*
898 * Return values:
899 * 1 - page is locked; mmap_sem is still held.
900 * 0 - page is not locked.
901 * mmap_sem has been released (up_read()), unless flags had both
902 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
903 * which case mmap_sem is still held.
904 *
905 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
906 * with the page locked and the mmap_sem unperturbed.
907 */
908 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
909 unsigned int flags)
910 {
911 if (flags & FAULT_FLAG_ALLOW_RETRY) {
912 /*
913 * CAUTION! In this case, mmap_sem is not released
914 * even though return 0.
915 */
916 if (flags & FAULT_FLAG_RETRY_NOWAIT)
917 return 0;
918
919 up_read(&mm->mmap_sem);
920 if (flags & FAULT_FLAG_KILLABLE)
921 wait_on_page_locked_killable(page);
922 else
923 wait_on_page_locked(page);
924 return 0;
925 } else {
926 if (flags & FAULT_FLAG_KILLABLE) {
927 int ret;
928
929 ret = __lock_page_killable(page);
930 if (ret) {
931 up_read(&mm->mmap_sem);
932 return 0;
933 }
934 } else
935 __lock_page(page);
936 return 1;
937 }
938 }
939
940 /**
941 * page_cache_next_hole - find the next hole (not-present entry)
942 * @mapping: mapping
943 * @index: index
944 * @max_scan: maximum range to search
945 *
946 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
947 * lowest indexed hole.
948 *
949 * Returns: the index of the hole if found, otherwise returns an index
950 * outside of the set specified (in which case 'return - index >=
951 * max_scan' will be true). In rare cases of index wrap-around, 0 will
952 * be returned.
953 *
954 * page_cache_next_hole may be called under rcu_read_lock. However,
955 * like radix_tree_gang_lookup, this will not atomically search a
956 * snapshot of the tree at a single point in time. For example, if a
957 * hole is created at index 5, then subsequently a hole is created at
958 * index 10, page_cache_next_hole covering both indexes may return 10
959 * if called under rcu_read_lock.
960 */
961 pgoff_t page_cache_next_hole(struct address_space *mapping,
962 pgoff_t index, unsigned long max_scan)
963 {
964 unsigned long i;
965
966 for (i = 0; i < max_scan; i++) {
967 struct page *page;
968
969 page = radix_tree_lookup(&mapping->page_tree, index);
970 if (!page || radix_tree_exceptional_entry(page))
971 break;
972 index++;
973 if (index == 0)
974 break;
975 }
976
977 return index;
978 }
979 EXPORT_SYMBOL(page_cache_next_hole);
980
981 /**
982 * page_cache_prev_hole - find the prev hole (not-present entry)
983 * @mapping: mapping
984 * @index: index
985 * @max_scan: maximum range to search
986 *
987 * Search backwards in the range [max(index-max_scan+1, 0), index] for
988 * the first hole.
989 *
990 * Returns: the index of the hole if found, otherwise returns an index
991 * outside of the set specified (in which case 'index - return >=
992 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
993 * will be returned.
994 *
995 * page_cache_prev_hole may be called under rcu_read_lock. However,
996 * like radix_tree_gang_lookup, this will not atomically search a
997 * snapshot of the tree at a single point in time. For example, if a
998 * hole is created at index 10, then subsequently a hole is created at
999 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1000 * called under rcu_read_lock.
1001 */
1002 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1003 pgoff_t index, unsigned long max_scan)
1004 {
1005 unsigned long i;
1006
1007 for (i = 0; i < max_scan; i++) {
1008 struct page *page;
1009
1010 page = radix_tree_lookup(&mapping->page_tree, index);
1011 if (!page || radix_tree_exceptional_entry(page))
1012 break;
1013 index--;
1014 if (index == ULONG_MAX)
1015 break;
1016 }
1017
1018 return index;
1019 }
1020 EXPORT_SYMBOL(page_cache_prev_hole);
1021
1022 /**
1023 * find_get_entry - find and get a page cache entry
1024 * @mapping: the address_space to search
1025 * @offset: the page cache index
1026 *
1027 * Looks up the page cache slot at @mapping & @offset. If there is a
1028 * page cache page, it is returned with an increased refcount.
1029 *
1030 * If the slot holds a shadow entry of a previously evicted page, or a
1031 * swap entry from shmem/tmpfs, it is returned.
1032 *
1033 * Otherwise, %NULL is returned.
1034 */
1035 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1036 {
1037 void **pagep;
1038 struct page *head, *page;
1039
1040 rcu_read_lock();
1041 repeat:
1042 page = NULL;
1043 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1044 if (pagep) {
1045 page = radix_tree_deref_slot(pagep);
1046 if (unlikely(!page))
1047 goto out;
1048 if (radix_tree_exception(page)) {
1049 if (radix_tree_deref_retry(page))
1050 goto repeat;
1051 /*
1052 * A shadow entry of a recently evicted page,
1053 * or a swap entry from shmem/tmpfs. Return
1054 * it without attempting to raise page count.
1055 */
1056 goto out;
1057 }
1058
1059 head = compound_head(page);
1060 if (!page_cache_get_speculative(head))
1061 goto repeat;
1062
1063 /* The page was split under us? */
1064 if (compound_head(page) != head) {
1065 put_page(head);
1066 goto repeat;
1067 }
1068
1069 /*
1070 * Has the page moved?
1071 * This is part of the lockless pagecache protocol. See
1072 * include/linux/pagemap.h for details.
1073 */
1074 if (unlikely(page != *pagep)) {
1075 put_page(head);
1076 goto repeat;
1077 }
1078 }
1079 out:
1080 rcu_read_unlock();
1081
1082 return page;
1083 }
1084 EXPORT_SYMBOL(find_get_entry);
1085
1086 /**
1087 * find_lock_entry - locate, pin and lock a page cache entry
1088 * @mapping: the address_space to search
1089 * @offset: the page cache index
1090 *
1091 * Looks up the page cache slot at @mapping & @offset. If there is a
1092 * page cache page, it is returned locked and with an increased
1093 * refcount.
1094 *
1095 * If the slot holds a shadow entry of a previously evicted page, or a
1096 * swap entry from shmem/tmpfs, it is returned.
1097 *
1098 * Otherwise, %NULL is returned.
1099 *
1100 * find_lock_entry() may sleep.
1101 */
1102 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1103 {
1104 struct page *page;
1105
1106 repeat:
1107 page = find_get_entry(mapping, offset);
1108 if (page && !radix_tree_exception(page)) {
1109 lock_page(page);
1110 /* Has the page been truncated? */
1111 if (unlikely(page_mapping(page) != mapping)) {
1112 unlock_page(page);
1113 put_page(page);
1114 goto repeat;
1115 }
1116 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1117 }
1118 return page;
1119 }
1120 EXPORT_SYMBOL(find_lock_entry);
1121
1122 /**
1123 * pagecache_get_page - find and get a page reference
1124 * @mapping: the address_space to search
1125 * @offset: the page index
1126 * @fgp_flags: PCG flags
1127 * @gfp_mask: gfp mask to use for the page cache data page allocation
1128 *
1129 * Looks up the page cache slot at @mapping & @offset.
1130 *
1131 * PCG flags modify how the page is returned.
1132 *
1133 * FGP_ACCESSED: the page will be marked accessed
1134 * FGP_LOCK: Page is return locked
1135 * FGP_CREAT: If page is not present then a new page is allocated using
1136 * @gfp_mask and added to the page cache and the VM's LRU
1137 * list. The page is returned locked and with an increased
1138 * refcount. Otherwise, %NULL is returned.
1139 *
1140 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1141 * if the GFP flags specified for FGP_CREAT are atomic.
1142 *
1143 * If there is a page cache page, it is returned with an increased refcount.
1144 */
1145 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1146 int fgp_flags, gfp_t gfp_mask)
1147 {
1148 struct page *page;
1149
1150 repeat:
1151 page = find_get_entry(mapping, offset);
1152 if (radix_tree_exceptional_entry(page))
1153 page = NULL;
1154 if (!page)
1155 goto no_page;
1156
1157 if (fgp_flags & FGP_LOCK) {
1158 if (fgp_flags & FGP_NOWAIT) {
1159 if (!trylock_page(page)) {
1160 put_page(page);
1161 return NULL;
1162 }
1163 } else {
1164 lock_page(page);
1165 }
1166
1167 /* Has the page been truncated? */
1168 if (unlikely(page->mapping != mapping)) {
1169 unlock_page(page);
1170 put_page(page);
1171 goto repeat;
1172 }
1173 VM_BUG_ON_PAGE(page->index != offset, page);
1174 }
1175
1176 if (page && (fgp_flags & FGP_ACCESSED))
1177 mark_page_accessed(page);
1178
1179 no_page:
1180 if (!page && (fgp_flags & FGP_CREAT)) {
1181 int err;
1182 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1183 gfp_mask |= __GFP_WRITE;
1184 if (fgp_flags & FGP_NOFS)
1185 gfp_mask &= ~__GFP_FS;
1186
1187 page = __page_cache_alloc(gfp_mask);
1188 if (!page)
1189 return NULL;
1190
1191 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1192 fgp_flags |= FGP_LOCK;
1193
1194 /* Init accessed so avoid atomic mark_page_accessed later */
1195 if (fgp_flags & FGP_ACCESSED)
1196 __SetPageReferenced(page);
1197
1198 err = add_to_page_cache_lru(page, mapping, offset,
1199 gfp_mask & GFP_RECLAIM_MASK);
1200 if (unlikely(err)) {
1201 put_page(page);
1202 page = NULL;
1203 if (err == -EEXIST)
1204 goto repeat;
1205 }
1206 }
1207
1208 return page;
1209 }
1210 EXPORT_SYMBOL(pagecache_get_page);
1211
1212 /**
1213 * find_get_entries - gang pagecache lookup
1214 * @mapping: The address_space to search
1215 * @start: The starting page cache index
1216 * @nr_entries: The maximum number of entries
1217 * @entries: Where the resulting entries are placed
1218 * @indices: The cache indices corresponding to the entries in @entries
1219 *
1220 * find_get_entries() will search for and return a group of up to
1221 * @nr_entries entries in the mapping. The entries are placed at
1222 * @entries. find_get_entries() takes a reference against any actual
1223 * pages it returns.
1224 *
1225 * The search returns a group of mapping-contiguous page cache entries
1226 * with ascending indexes. There may be holes in the indices due to
1227 * not-present pages.
1228 *
1229 * Any shadow entries of evicted pages, or swap entries from
1230 * shmem/tmpfs, are included in the returned array.
1231 *
1232 * find_get_entries() returns the number of pages and shadow entries
1233 * which were found.
1234 */
1235 unsigned find_get_entries(struct address_space *mapping,
1236 pgoff_t start, unsigned int nr_entries,
1237 struct page **entries, pgoff_t *indices)
1238 {
1239 void **slot;
1240 unsigned int ret = 0;
1241 struct radix_tree_iter iter;
1242
1243 if (!nr_entries)
1244 return 0;
1245
1246 rcu_read_lock();
1247 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1248 struct page *head, *page;
1249 repeat:
1250 page = radix_tree_deref_slot(slot);
1251 if (unlikely(!page))
1252 continue;
1253 if (radix_tree_exception(page)) {
1254 if (radix_tree_deref_retry(page)) {
1255 slot = radix_tree_iter_retry(&iter);
1256 continue;
1257 }
1258 /*
1259 * A shadow entry of a recently evicted page, a swap
1260 * entry from shmem/tmpfs or a DAX entry. Return it
1261 * without attempting to raise page count.
1262 */
1263 goto export;
1264 }
1265
1266 head = compound_head(page);
1267 if (!page_cache_get_speculative(head))
1268 goto repeat;
1269
1270 /* The page was split under us? */
1271 if (compound_head(page) != head) {
1272 put_page(head);
1273 goto repeat;
1274 }
1275
1276 /* Has the page moved? */
1277 if (unlikely(page != *slot)) {
1278 put_page(head);
1279 goto repeat;
1280 }
1281 export:
1282 indices[ret] = iter.index;
1283 entries[ret] = page;
1284 if (++ret == nr_entries)
1285 break;
1286 }
1287 rcu_read_unlock();
1288 return ret;
1289 }
1290
1291 /**
1292 * find_get_pages - gang pagecache lookup
1293 * @mapping: The address_space to search
1294 * @start: The starting page index
1295 * @nr_pages: The maximum number of pages
1296 * @pages: Where the resulting pages are placed
1297 *
1298 * find_get_pages() will search for and return a group of up to
1299 * @nr_pages pages in the mapping. The pages are placed at @pages.
1300 * find_get_pages() takes a reference against the returned pages.
1301 *
1302 * The search returns a group of mapping-contiguous pages with ascending
1303 * indexes. There may be holes in the indices due to not-present pages.
1304 *
1305 * find_get_pages() returns the number of pages which were found.
1306 */
1307 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1308 unsigned int nr_pages, struct page **pages)
1309 {
1310 struct radix_tree_iter iter;
1311 void **slot;
1312 unsigned ret = 0;
1313
1314 if (unlikely(!nr_pages))
1315 return 0;
1316
1317 rcu_read_lock();
1318 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1319 struct page *head, *page;
1320 repeat:
1321 page = radix_tree_deref_slot(slot);
1322 if (unlikely(!page))
1323 continue;
1324
1325 if (radix_tree_exception(page)) {
1326 if (radix_tree_deref_retry(page)) {
1327 slot = radix_tree_iter_retry(&iter);
1328 continue;
1329 }
1330 /*
1331 * A shadow entry of a recently evicted page,
1332 * or a swap entry from shmem/tmpfs. Skip
1333 * over it.
1334 */
1335 continue;
1336 }
1337
1338 head = compound_head(page);
1339 if (!page_cache_get_speculative(head))
1340 goto repeat;
1341
1342 /* The page was split under us? */
1343 if (compound_head(page) != head) {
1344 put_page(head);
1345 goto repeat;
1346 }
1347
1348 /* Has the page moved? */
1349 if (unlikely(page != *slot)) {
1350 put_page(head);
1351 goto repeat;
1352 }
1353
1354 pages[ret] = page;
1355 if (++ret == nr_pages)
1356 break;
1357 }
1358
1359 rcu_read_unlock();
1360 return ret;
1361 }
1362
1363 /**
1364 * find_get_pages_contig - gang contiguous pagecache lookup
1365 * @mapping: The address_space to search
1366 * @index: The starting page index
1367 * @nr_pages: The maximum number of pages
1368 * @pages: Where the resulting pages are placed
1369 *
1370 * find_get_pages_contig() works exactly like find_get_pages(), except
1371 * that the returned number of pages are guaranteed to be contiguous.
1372 *
1373 * find_get_pages_contig() returns the number of pages which were found.
1374 */
1375 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1376 unsigned int nr_pages, struct page **pages)
1377 {
1378 struct radix_tree_iter iter;
1379 void **slot;
1380 unsigned int ret = 0;
1381
1382 if (unlikely(!nr_pages))
1383 return 0;
1384
1385 rcu_read_lock();
1386 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1387 struct page *head, *page;
1388 repeat:
1389 page = radix_tree_deref_slot(slot);
1390 /* The hole, there no reason to continue */
1391 if (unlikely(!page))
1392 break;
1393
1394 if (radix_tree_exception(page)) {
1395 if (radix_tree_deref_retry(page)) {
1396 slot = radix_tree_iter_retry(&iter);
1397 continue;
1398 }
1399 /*
1400 * A shadow entry of a recently evicted page,
1401 * or a swap entry from shmem/tmpfs. Stop
1402 * looking for contiguous pages.
1403 */
1404 break;
1405 }
1406
1407 head = compound_head(page);
1408 if (!page_cache_get_speculative(head))
1409 goto repeat;
1410
1411 /* The page was split under us? */
1412 if (compound_head(page) != head) {
1413 put_page(head);
1414 goto repeat;
1415 }
1416
1417 /* Has the page moved? */
1418 if (unlikely(page != *slot)) {
1419 put_page(head);
1420 goto repeat;
1421 }
1422
1423 /*
1424 * must check mapping and index after taking the ref.
1425 * otherwise we can get both false positives and false
1426 * negatives, which is just confusing to the caller.
1427 */
1428 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1429 put_page(page);
1430 break;
1431 }
1432
1433 pages[ret] = page;
1434 if (++ret == nr_pages)
1435 break;
1436 }
1437 rcu_read_unlock();
1438 return ret;
1439 }
1440 EXPORT_SYMBOL(find_get_pages_contig);
1441
1442 /**
1443 * find_get_pages_tag - find and return pages that match @tag
1444 * @mapping: the address_space to search
1445 * @index: the starting page index
1446 * @tag: the tag index
1447 * @nr_pages: the maximum number of pages
1448 * @pages: where the resulting pages are placed
1449 *
1450 * Like find_get_pages, except we only return pages which are tagged with
1451 * @tag. We update @index to index the next page for the traversal.
1452 */
1453 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1454 int tag, unsigned int nr_pages, struct page **pages)
1455 {
1456 struct radix_tree_iter iter;
1457 void **slot;
1458 unsigned ret = 0;
1459
1460 if (unlikely(!nr_pages))
1461 return 0;
1462
1463 rcu_read_lock();
1464 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1465 &iter, *index, tag) {
1466 struct page *head, *page;
1467 repeat:
1468 page = radix_tree_deref_slot(slot);
1469 if (unlikely(!page))
1470 continue;
1471
1472 if (radix_tree_exception(page)) {
1473 if (radix_tree_deref_retry(page)) {
1474 slot = radix_tree_iter_retry(&iter);
1475 continue;
1476 }
1477 /*
1478 * A shadow entry of a recently evicted page.
1479 *
1480 * Those entries should never be tagged, but
1481 * this tree walk is lockless and the tags are
1482 * looked up in bulk, one radix tree node at a
1483 * time, so there is a sizable window for page
1484 * reclaim to evict a page we saw tagged.
1485 *
1486 * Skip over it.
1487 */
1488 continue;
1489 }
1490
1491 head = compound_head(page);
1492 if (!page_cache_get_speculative(head))
1493 goto repeat;
1494
1495 /* The page was split under us? */
1496 if (compound_head(page) != head) {
1497 put_page(head);
1498 goto repeat;
1499 }
1500
1501 /* Has the page moved? */
1502 if (unlikely(page != *slot)) {
1503 put_page(head);
1504 goto repeat;
1505 }
1506
1507 pages[ret] = page;
1508 if (++ret == nr_pages)
1509 break;
1510 }
1511
1512 rcu_read_unlock();
1513
1514 if (ret)
1515 *index = pages[ret - 1]->index + 1;
1516
1517 return ret;
1518 }
1519 EXPORT_SYMBOL(find_get_pages_tag);
1520
1521 /**
1522 * find_get_entries_tag - find and return entries that match @tag
1523 * @mapping: the address_space to search
1524 * @start: the starting page cache index
1525 * @tag: the tag index
1526 * @nr_entries: the maximum number of entries
1527 * @entries: where the resulting entries are placed
1528 * @indices: the cache indices corresponding to the entries in @entries
1529 *
1530 * Like find_get_entries, except we only return entries which are tagged with
1531 * @tag.
1532 */
1533 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1534 int tag, unsigned int nr_entries,
1535 struct page **entries, pgoff_t *indices)
1536 {
1537 void **slot;
1538 unsigned int ret = 0;
1539 struct radix_tree_iter iter;
1540
1541 if (!nr_entries)
1542 return 0;
1543
1544 rcu_read_lock();
1545 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1546 &iter, start, tag) {
1547 struct page *head, *page;
1548 repeat:
1549 page = radix_tree_deref_slot(slot);
1550 if (unlikely(!page))
1551 continue;
1552 if (radix_tree_exception(page)) {
1553 if (radix_tree_deref_retry(page)) {
1554 slot = radix_tree_iter_retry(&iter);
1555 continue;
1556 }
1557
1558 /*
1559 * A shadow entry of a recently evicted page, a swap
1560 * entry from shmem/tmpfs or a DAX entry. Return it
1561 * without attempting to raise page count.
1562 */
1563 goto export;
1564 }
1565
1566 head = compound_head(page);
1567 if (!page_cache_get_speculative(head))
1568 goto repeat;
1569
1570 /* The page was split under us? */
1571 if (compound_head(page) != head) {
1572 put_page(head);
1573 goto repeat;
1574 }
1575
1576 /* Has the page moved? */
1577 if (unlikely(page != *slot)) {
1578 put_page(head);
1579 goto repeat;
1580 }
1581 export:
1582 indices[ret] = iter.index;
1583 entries[ret] = page;
1584 if (++ret == nr_entries)
1585 break;
1586 }
1587 rcu_read_unlock();
1588 return ret;
1589 }
1590 EXPORT_SYMBOL(find_get_entries_tag);
1591
1592 /*
1593 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1594 * a _large_ part of the i/o request. Imagine the worst scenario:
1595 *
1596 * ---R__________________________________________B__________
1597 * ^ reading here ^ bad block(assume 4k)
1598 *
1599 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1600 * => failing the whole request => read(R) => read(R+1) =>
1601 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1602 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1603 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1604 *
1605 * It is going insane. Fix it by quickly scaling down the readahead size.
1606 */
1607 static void shrink_readahead_size_eio(struct file *filp,
1608 struct file_ra_state *ra)
1609 {
1610 ra->ra_pages /= 4;
1611 }
1612
1613 /**
1614 * do_generic_file_read - generic file read routine
1615 * @filp: the file to read
1616 * @ppos: current file position
1617 * @iter: data destination
1618 * @written: already copied
1619 *
1620 * This is a generic file read routine, and uses the
1621 * mapping->a_ops->readpage() function for the actual low-level stuff.
1622 *
1623 * This is really ugly. But the goto's actually try to clarify some
1624 * of the logic when it comes to error handling etc.
1625 */
1626 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1627 struct iov_iter *iter, ssize_t written)
1628 {
1629 struct address_space *mapping = filp->f_mapping;
1630 struct inode *inode = mapping->host;
1631 struct file_ra_state *ra = &filp->f_ra;
1632 pgoff_t index;
1633 pgoff_t last_index;
1634 pgoff_t prev_index;
1635 unsigned long offset; /* offset into pagecache page */
1636 unsigned int prev_offset;
1637 int error = 0;
1638
1639 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1640 return -EINVAL;
1641 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1642
1643 index = *ppos >> PAGE_SHIFT;
1644 prev_index = ra->prev_pos >> PAGE_SHIFT;
1645 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1646 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1647 offset = *ppos & ~PAGE_MASK;
1648
1649 for (;;) {
1650 struct page *page;
1651 pgoff_t end_index;
1652 loff_t isize;
1653 unsigned long nr, ret;
1654
1655 cond_resched();
1656 find_page:
1657 page = find_get_page(mapping, index);
1658 if (!page) {
1659 page_cache_sync_readahead(mapping,
1660 ra, filp,
1661 index, last_index - index);
1662 page = find_get_page(mapping, index);
1663 if (unlikely(page == NULL))
1664 goto no_cached_page;
1665 }
1666 if (PageReadahead(page)) {
1667 page_cache_async_readahead(mapping,
1668 ra, filp, page,
1669 index, last_index - index);
1670 }
1671 if (!PageUptodate(page)) {
1672 /*
1673 * See comment in do_read_cache_page on why
1674 * wait_on_page_locked is used to avoid unnecessarily
1675 * serialisations and why it's safe.
1676 */
1677 error = wait_on_page_locked_killable(page);
1678 if (unlikely(error))
1679 goto readpage_error;
1680 if (PageUptodate(page))
1681 goto page_ok;
1682
1683 if (inode->i_blkbits == PAGE_SHIFT ||
1684 !mapping->a_ops->is_partially_uptodate)
1685 goto page_not_up_to_date;
1686 /* pipes can't handle partially uptodate pages */
1687 if (unlikely(iter->type & ITER_PIPE))
1688 goto page_not_up_to_date;
1689 if (!trylock_page(page))
1690 goto page_not_up_to_date;
1691 /* Did it get truncated before we got the lock? */
1692 if (!page->mapping)
1693 goto page_not_up_to_date_locked;
1694 if (!mapping->a_ops->is_partially_uptodate(page,
1695 offset, iter->count))
1696 goto page_not_up_to_date_locked;
1697 unlock_page(page);
1698 }
1699 page_ok:
1700 /*
1701 * i_size must be checked after we know the page is Uptodate.
1702 *
1703 * Checking i_size after the check allows us to calculate
1704 * the correct value for "nr", which means the zero-filled
1705 * part of the page is not copied back to userspace (unless
1706 * another truncate extends the file - this is desired though).
1707 */
1708
1709 isize = i_size_read(inode);
1710 end_index = (isize - 1) >> PAGE_SHIFT;
1711 if (unlikely(!isize || index > end_index)) {
1712 put_page(page);
1713 goto out;
1714 }
1715
1716 /* nr is the maximum number of bytes to copy from this page */
1717 nr = PAGE_SIZE;
1718 if (index == end_index) {
1719 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1720 if (nr <= offset) {
1721 put_page(page);
1722 goto out;
1723 }
1724 }
1725 nr = nr - offset;
1726
1727 /* If users can be writing to this page using arbitrary
1728 * virtual addresses, take care about potential aliasing
1729 * before reading the page on the kernel side.
1730 */
1731 if (mapping_writably_mapped(mapping))
1732 flush_dcache_page(page);
1733
1734 /*
1735 * When a sequential read accesses a page several times,
1736 * only mark it as accessed the first time.
1737 */
1738 if (prev_index != index || offset != prev_offset)
1739 mark_page_accessed(page);
1740 prev_index = index;
1741
1742 /*
1743 * Ok, we have the page, and it's up-to-date, so
1744 * now we can copy it to user space...
1745 */
1746
1747 ret = copy_page_to_iter(page, offset, nr, iter);
1748 offset += ret;
1749 index += offset >> PAGE_SHIFT;
1750 offset &= ~PAGE_MASK;
1751 prev_offset = offset;
1752
1753 put_page(page);
1754 written += ret;
1755 if (!iov_iter_count(iter))
1756 goto out;
1757 if (ret < nr) {
1758 error = -EFAULT;
1759 goto out;
1760 }
1761 continue;
1762
1763 page_not_up_to_date:
1764 /* Get exclusive access to the page ... */
1765 error = lock_page_killable(page);
1766 if (unlikely(error))
1767 goto readpage_error;
1768
1769 page_not_up_to_date_locked:
1770 /* Did it get truncated before we got the lock? */
1771 if (!page->mapping) {
1772 unlock_page(page);
1773 put_page(page);
1774 continue;
1775 }
1776
1777 /* Did somebody else fill it already? */
1778 if (PageUptodate(page)) {
1779 unlock_page(page);
1780 goto page_ok;
1781 }
1782
1783 readpage:
1784 /*
1785 * A previous I/O error may have been due to temporary
1786 * failures, eg. multipath errors.
1787 * PG_error will be set again if readpage fails.
1788 */
1789 ClearPageError(page);
1790 /* Start the actual read. The read will unlock the page. */
1791 error = mapping->a_ops->readpage(filp, page);
1792
1793 if (unlikely(error)) {
1794 if (error == AOP_TRUNCATED_PAGE) {
1795 put_page(page);
1796 error = 0;
1797 goto find_page;
1798 }
1799 goto readpage_error;
1800 }
1801
1802 if (!PageUptodate(page)) {
1803 error = lock_page_killable(page);
1804 if (unlikely(error))
1805 goto readpage_error;
1806 if (!PageUptodate(page)) {
1807 if (page->mapping == NULL) {
1808 /*
1809 * invalidate_mapping_pages got it
1810 */
1811 unlock_page(page);
1812 put_page(page);
1813 goto find_page;
1814 }
1815 unlock_page(page);
1816 shrink_readahead_size_eio(filp, ra);
1817 error = -EIO;
1818 goto readpage_error;
1819 }
1820 unlock_page(page);
1821 }
1822
1823 goto page_ok;
1824
1825 readpage_error:
1826 /* UHHUH! A synchronous read error occurred. Report it */
1827 put_page(page);
1828 goto out;
1829
1830 no_cached_page:
1831 /*
1832 * Ok, it wasn't cached, so we need to create a new
1833 * page..
1834 */
1835 page = page_cache_alloc_cold(mapping);
1836 if (!page) {
1837 error = -ENOMEM;
1838 goto out;
1839 }
1840 error = add_to_page_cache_lru(page, mapping, index,
1841 mapping_gfp_constraint(mapping, GFP_KERNEL));
1842 if (error) {
1843 put_page(page);
1844 if (error == -EEXIST) {
1845 error = 0;
1846 goto find_page;
1847 }
1848 goto out;
1849 }
1850 goto readpage;
1851 }
1852
1853 out:
1854 ra->prev_pos = prev_index;
1855 ra->prev_pos <<= PAGE_SHIFT;
1856 ra->prev_pos |= prev_offset;
1857
1858 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1859 file_accessed(filp);
1860 return written ? written : error;
1861 }
1862
1863 /**
1864 * generic_file_read_iter - generic filesystem read routine
1865 * @iocb: kernel I/O control block
1866 * @iter: destination for the data read
1867 *
1868 * This is the "read_iter()" routine for all filesystems
1869 * that can use the page cache directly.
1870 */
1871 ssize_t
1872 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1873 {
1874 struct file *file = iocb->ki_filp;
1875 ssize_t retval = 0;
1876 size_t count = iov_iter_count(iter);
1877
1878 if (!count)
1879 goto out; /* skip atime */
1880
1881 if (iocb->ki_flags & IOCB_DIRECT) {
1882 struct address_space *mapping = file->f_mapping;
1883 struct inode *inode = mapping->host;
1884 struct iov_iter data = *iter;
1885 loff_t size;
1886
1887 size = i_size_read(inode);
1888 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1889 iocb->ki_pos + count - 1);
1890 if (retval < 0)
1891 goto out;
1892
1893 file_accessed(file);
1894
1895 retval = mapping->a_ops->direct_IO(iocb, &data);
1896 if (retval >= 0) {
1897 iocb->ki_pos += retval;
1898 iov_iter_advance(iter, retval);
1899 }
1900
1901 /*
1902 * Btrfs can have a short DIO read if we encounter
1903 * compressed extents, so if there was an error, or if
1904 * we've already read everything we wanted to, or if
1905 * there was a short read because we hit EOF, go ahead
1906 * and return. Otherwise fallthrough to buffered io for
1907 * the rest of the read. Buffered reads will not work for
1908 * DAX files, so don't bother trying.
1909 */
1910 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1911 IS_DAX(inode))
1912 goto out;
1913 }
1914
1915 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1916 out:
1917 return retval;
1918 }
1919 EXPORT_SYMBOL(generic_file_read_iter);
1920
1921 #ifdef CONFIG_MMU
1922 /**
1923 * page_cache_read - adds requested page to the page cache if not already there
1924 * @file: file to read
1925 * @offset: page index
1926 * @gfp_mask: memory allocation flags
1927 *
1928 * This adds the requested page to the page cache if it isn't already there,
1929 * and schedules an I/O to read in its contents from disk.
1930 */
1931 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1932 {
1933 struct address_space *mapping = file->f_mapping;
1934 struct page *page;
1935 int ret;
1936
1937 do {
1938 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1939 if (!page)
1940 return -ENOMEM;
1941
1942 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1943 if (ret == 0)
1944 ret = mapping->a_ops->readpage(file, page);
1945 else if (ret == -EEXIST)
1946 ret = 0; /* losing race to add is OK */
1947
1948 put_page(page);
1949
1950 } while (ret == AOP_TRUNCATED_PAGE);
1951
1952 return ret;
1953 }
1954
1955 #define MMAP_LOTSAMISS (100)
1956
1957 /*
1958 * Synchronous readahead happens when we don't even find
1959 * a page in the page cache at all.
1960 */
1961 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1962 struct file_ra_state *ra,
1963 struct file *file,
1964 pgoff_t offset)
1965 {
1966 struct address_space *mapping = file->f_mapping;
1967
1968 /* If we don't want any read-ahead, don't bother */
1969 if (vma->vm_flags & VM_RAND_READ)
1970 return;
1971 if (!ra->ra_pages)
1972 return;
1973
1974 if (vma->vm_flags & VM_SEQ_READ) {
1975 page_cache_sync_readahead(mapping, ra, file, offset,
1976 ra->ra_pages);
1977 return;
1978 }
1979
1980 /* Avoid banging the cache line if not needed */
1981 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1982 ra->mmap_miss++;
1983
1984 /*
1985 * Do we miss much more than hit in this file? If so,
1986 * stop bothering with read-ahead. It will only hurt.
1987 */
1988 if (ra->mmap_miss > MMAP_LOTSAMISS)
1989 return;
1990
1991 /*
1992 * mmap read-around
1993 */
1994 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1995 ra->size = ra->ra_pages;
1996 ra->async_size = ra->ra_pages / 4;
1997 ra_submit(ra, mapping, file);
1998 }
1999
2000 /*
2001 * Asynchronous readahead happens when we find the page and PG_readahead,
2002 * so we want to possibly extend the readahead further..
2003 */
2004 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2005 struct file_ra_state *ra,
2006 struct file *file,
2007 struct page *page,
2008 pgoff_t offset)
2009 {
2010 struct address_space *mapping = file->f_mapping;
2011
2012 /* If we don't want any read-ahead, don't bother */
2013 if (vma->vm_flags & VM_RAND_READ)
2014 return;
2015 if (ra->mmap_miss > 0)
2016 ra->mmap_miss--;
2017 if (PageReadahead(page))
2018 page_cache_async_readahead(mapping, ra, file,
2019 page, offset, ra->ra_pages);
2020 }
2021
2022 /**
2023 * filemap_fault - read in file data for page fault handling
2024 * @vma: vma in which the fault was taken
2025 * @vmf: struct vm_fault containing details of the fault
2026 *
2027 * filemap_fault() is invoked via the vma operations vector for a
2028 * mapped memory region to read in file data during a page fault.
2029 *
2030 * The goto's are kind of ugly, but this streamlines the normal case of having
2031 * it in the page cache, and handles the special cases reasonably without
2032 * having a lot of duplicated code.
2033 *
2034 * vma->vm_mm->mmap_sem must be held on entry.
2035 *
2036 * If our return value has VM_FAULT_RETRY set, it's because
2037 * lock_page_or_retry() returned 0.
2038 * The mmap_sem has usually been released in this case.
2039 * See __lock_page_or_retry() for the exception.
2040 *
2041 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2042 * has not been released.
2043 *
2044 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2045 */
2046 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2047 {
2048 int error;
2049 struct file *file = vma->vm_file;
2050 struct address_space *mapping = file->f_mapping;
2051 struct file_ra_state *ra = &file->f_ra;
2052 struct inode *inode = mapping->host;
2053 pgoff_t offset = vmf->pgoff;
2054 struct page *page;
2055 loff_t size;
2056 int ret = 0;
2057
2058 size = round_up(i_size_read(inode), PAGE_SIZE);
2059 if (offset >= size >> PAGE_SHIFT)
2060 return VM_FAULT_SIGBUS;
2061
2062 /*
2063 * Do we have something in the page cache already?
2064 */
2065 page = find_get_page(mapping, offset);
2066 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2067 /*
2068 * We found the page, so try async readahead before
2069 * waiting for the lock.
2070 */
2071 do_async_mmap_readahead(vma, ra, file, page, offset);
2072 } else if (!page) {
2073 /* No page in the page cache at all */
2074 do_sync_mmap_readahead(vma, ra, file, offset);
2075 count_vm_event(PGMAJFAULT);
2076 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2077 ret = VM_FAULT_MAJOR;
2078 retry_find:
2079 page = find_get_page(mapping, offset);
2080 if (!page)
2081 goto no_cached_page;
2082 }
2083
2084 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2085 put_page(page);
2086 return ret | VM_FAULT_RETRY;
2087 }
2088
2089 /* Did it get truncated? */
2090 if (unlikely(page->mapping != mapping)) {
2091 unlock_page(page);
2092 put_page(page);
2093 goto retry_find;
2094 }
2095 VM_BUG_ON_PAGE(page->index != offset, page);
2096
2097 /*
2098 * We have a locked page in the page cache, now we need to check
2099 * that it's up-to-date. If not, it is going to be due to an error.
2100 */
2101 if (unlikely(!PageUptodate(page)))
2102 goto page_not_uptodate;
2103
2104 /*
2105 * Found the page and have a reference on it.
2106 * We must recheck i_size under page lock.
2107 */
2108 size = round_up(i_size_read(inode), PAGE_SIZE);
2109 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2110 unlock_page(page);
2111 put_page(page);
2112 return VM_FAULT_SIGBUS;
2113 }
2114
2115 vmf->page = page;
2116 return ret | VM_FAULT_LOCKED;
2117
2118 no_cached_page:
2119 /*
2120 * We're only likely to ever get here if MADV_RANDOM is in
2121 * effect.
2122 */
2123 error = page_cache_read(file, offset, vmf->gfp_mask);
2124
2125 /*
2126 * The page we want has now been added to the page cache.
2127 * In the unlikely event that someone removed it in the
2128 * meantime, we'll just come back here and read it again.
2129 */
2130 if (error >= 0)
2131 goto retry_find;
2132
2133 /*
2134 * An error return from page_cache_read can result if the
2135 * system is low on memory, or a problem occurs while trying
2136 * to schedule I/O.
2137 */
2138 if (error == -ENOMEM)
2139 return VM_FAULT_OOM;
2140 return VM_FAULT_SIGBUS;
2141
2142 page_not_uptodate:
2143 /*
2144 * Umm, take care of errors if the page isn't up-to-date.
2145 * Try to re-read it _once_. We do this synchronously,
2146 * because there really aren't any performance issues here
2147 * and we need to check for errors.
2148 */
2149 ClearPageError(page);
2150 error = mapping->a_ops->readpage(file, page);
2151 if (!error) {
2152 wait_on_page_locked(page);
2153 if (!PageUptodate(page))
2154 error = -EIO;
2155 }
2156 put_page(page);
2157
2158 if (!error || error == AOP_TRUNCATED_PAGE)
2159 goto retry_find;
2160
2161 /* Things didn't work out. Return zero to tell the mm layer so. */
2162 shrink_readahead_size_eio(file, ra);
2163 return VM_FAULT_SIGBUS;
2164 }
2165 EXPORT_SYMBOL(filemap_fault);
2166
2167 void filemap_map_pages(struct fault_env *fe,
2168 pgoff_t start_pgoff, pgoff_t end_pgoff)
2169 {
2170 struct radix_tree_iter iter;
2171 void **slot;
2172 struct file *file = fe->vma->vm_file;
2173 struct address_space *mapping = file->f_mapping;
2174 pgoff_t last_pgoff = start_pgoff;
2175 loff_t size;
2176 struct page *head, *page;
2177
2178 rcu_read_lock();
2179 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2180 start_pgoff) {
2181 if (iter.index > end_pgoff)
2182 break;
2183 repeat:
2184 page = radix_tree_deref_slot(slot);
2185 if (unlikely(!page))
2186 goto next;
2187 if (radix_tree_exception(page)) {
2188 if (radix_tree_deref_retry(page)) {
2189 slot = radix_tree_iter_retry(&iter);
2190 continue;
2191 }
2192 goto next;
2193 }
2194
2195 head = compound_head(page);
2196 if (!page_cache_get_speculative(head))
2197 goto repeat;
2198
2199 /* The page was split under us? */
2200 if (compound_head(page) != head) {
2201 put_page(head);
2202 goto repeat;
2203 }
2204
2205 /* Has the page moved? */
2206 if (unlikely(page != *slot)) {
2207 put_page(head);
2208 goto repeat;
2209 }
2210
2211 if (!PageUptodate(page) ||
2212 PageReadahead(page) ||
2213 PageHWPoison(page))
2214 goto skip;
2215 if (!trylock_page(page))
2216 goto skip;
2217
2218 if (page->mapping != mapping || !PageUptodate(page))
2219 goto unlock;
2220
2221 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2222 if (page->index >= size >> PAGE_SHIFT)
2223 goto unlock;
2224
2225 if (file->f_ra.mmap_miss > 0)
2226 file->f_ra.mmap_miss--;
2227
2228 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2229 if (fe->pte)
2230 fe->pte += iter.index - last_pgoff;
2231 last_pgoff = iter.index;
2232 if (alloc_set_pte(fe, NULL, page))
2233 goto unlock;
2234 unlock_page(page);
2235 goto next;
2236 unlock:
2237 unlock_page(page);
2238 skip:
2239 put_page(page);
2240 next:
2241 /* Huge page is mapped? No need to proceed. */
2242 if (pmd_trans_huge(*fe->pmd))
2243 break;
2244 if (iter.index == end_pgoff)
2245 break;
2246 }
2247 rcu_read_unlock();
2248 }
2249 EXPORT_SYMBOL(filemap_map_pages);
2250
2251 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2252 {
2253 struct page *page = vmf->page;
2254 struct inode *inode = file_inode(vma->vm_file);
2255 int ret = VM_FAULT_LOCKED;
2256
2257 sb_start_pagefault(inode->i_sb);
2258 file_update_time(vma->vm_file);
2259 lock_page(page);
2260 if (page->mapping != inode->i_mapping) {
2261 unlock_page(page);
2262 ret = VM_FAULT_NOPAGE;
2263 goto out;
2264 }
2265 /*
2266 * We mark the page dirty already here so that when freeze is in
2267 * progress, we are guaranteed that writeback during freezing will
2268 * see the dirty page and writeprotect it again.
2269 */
2270 set_page_dirty(page);
2271 wait_for_stable_page(page);
2272 out:
2273 sb_end_pagefault(inode->i_sb);
2274 return ret;
2275 }
2276 EXPORT_SYMBOL(filemap_page_mkwrite);
2277
2278 const struct vm_operations_struct generic_file_vm_ops = {
2279 .fault = filemap_fault,
2280 .map_pages = filemap_map_pages,
2281 .page_mkwrite = filemap_page_mkwrite,
2282 };
2283
2284 /* This is used for a general mmap of a disk file */
2285
2286 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2287 {
2288 struct address_space *mapping = file->f_mapping;
2289
2290 if (!mapping->a_ops->readpage)
2291 return -ENOEXEC;
2292 file_accessed(file);
2293 vma->vm_ops = &generic_file_vm_ops;
2294 return 0;
2295 }
2296
2297 /*
2298 * This is for filesystems which do not implement ->writepage.
2299 */
2300 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2301 {
2302 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2303 return -EINVAL;
2304 return generic_file_mmap(file, vma);
2305 }
2306 #else
2307 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2308 {
2309 return -ENOSYS;
2310 }
2311 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2312 {
2313 return -ENOSYS;
2314 }
2315 #endif /* CONFIG_MMU */
2316
2317 EXPORT_SYMBOL(generic_file_mmap);
2318 EXPORT_SYMBOL(generic_file_readonly_mmap);
2319
2320 static struct page *wait_on_page_read(struct page *page)
2321 {
2322 if (!IS_ERR(page)) {
2323 wait_on_page_locked(page);
2324 if (!PageUptodate(page)) {
2325 put_page(page);
2326 page = ERR_PTR(-EIO);
2327 }
2328 }
2329 return page;
2330 }
2331
2332 static struct page *do_read_cache_page(struct address_space *mapping,
2333 pgoff_t index,
2334 int (*filler)(void *, struct page *),
2335 void *data,
2336 gfp_t gfp)
2337 {
2338 struct page *page;
2339 int err;
2340 repeat:
2341 page = find_get_page(mapping, index);
2342 if (!page) {
2343 page = __page_cache_alloc(gfp | __GFP_COLD);
2344 if (!page)
2345 return ERR_PTR(-ENOMEM);
2346 err = add_to_page_cache_lru(page, mapping, index, gfp);
2347 if (unlikely(err)) {
2348 put_page(page);
2349 if (err == -EEXIST)
2350 goto repeat;
2351 /* Presumably ENOMEM for radix tree node */
2352 return ERR_PTR(err);
2353 }
2354
2355 filler:
2356 err = filler(data, page);
2357 if (err < 0) {
2358 put_page(page);
2359 return ERR_PTR(err);
2360 }
2361
2362 page = wait_on_page_read(page);
2363 if (IS_ERR(page))
2364 return page;
2365 goto out;
2366 }
2367 if (PageUptodate(page))
2368 goto out;
2369
2370 /*
2371 * Page is not up to date and may be locked due one of the following
2372 * case a: Page is being filled and the page lock is held
2373 * case b: Read/write error clearing the page uptodate status
2374 * case c: Truncation in progress (page locked)
2375 * case d: Reclaim in progress
2376 *
2377 * Case a, the page will be up to date when the page is unlocked.
2378 * There is no need to serialise on the page lock here as the page
2379 * is pinned so the lock gives no additional protection. Even if the
2380 * the page is truncated, the data is still valid if PageUptodate as
2381 * it's a race vs truncate race.
2382 * Case b, the page will not be up to date
2383 * Case c, the page may be truncated but in itself, the data may still
2384 * be valid after IO completes as it's a read vs truncate race. The
2385 * operation must restart if the page is not uptodate on unlock but
2386 * otherwise serialising on page lock to stabilise the mapping gives
2387 * no additional guarantees to the caller as the page lock is
2388 * released before return.
2389 * Case d, similar to truncation. If reclaim holds the page lock, it
2390 * will be a race with remove_mapping that determines if the mapping
2391 * is valid on unlock but otherwise the data is valid and there is
2392 * no need to serialise with page lock.
2393 *
2394 * As the page lock gives no additional guarantee, we optimistically
2395 * wait on the page to be unlocked and check if it's up to date and
2396 * use the page if it is. Otherwise, the page lock is required to
2397 * distinguish between the different cases. The motivation is that we
2398 * avoid spurious serialisations and wakeups when multiple processes
2399 * wait on the same page for IO to complete.
2400 */
2401 wait_on_page_locked(page);
2402 if (PageUptodate(page))
2403 goto out;
2404
2405 /* Distinguish between all the cases under the safety of the lock */
2406 lock_page(page);
2407
2408 /* Case c or d, restart the operation */
2409 if (!page->mapping) {
2410 unlock_page(page);
2411 put_page(page);
2412 goto repeat;
2413 }
2414
2415 /* Someone else locked and filled the page in a very small window */
2416 if (PageUptodate(page)) {
2417 unlock_page(page);
2418 goto out;
2419 }
2420 goto filler;
2421
2422 out:
2423 mark_page_accessed(page);
2424 return page;
2425 }
2426
2427 /**
2428 * read_cache_page - read into page cache, fill it if needed
2429 * @mapping: the page's address_space
2430 * @index: the page index
2431 * @filler: function to perform the read
2432 * @data: first arg to filler(data, page) function, often left as NULL
2433 *
2434 * Read into the page cache. If a page already exists, and PageUptodate() is
2435 * not set, try to fill the page and wait for it to become unlocked.
2436 *
2437 * If the page does not get brought uptodate, return -EIO.
2438 */
2439 struct page *read_cache_page(struct address_space *mapping,
2440 pgoff_t index,
2441 int (*filler)(void *, struct page *),
2442 void *data)
2443 {
2444 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2445 }
2446 EXPORT_SYMBOL(read_cache_page);
2447
2448 /**
2449 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2450 * @mapping: the page's address_space
2451 * @index: the page index
2452 * @gfp: the page allocator flags to use if allocating
2453 *
2454 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2455 * any new page allocations done using the specified allocation flags.
2456 *
2457 * If the page does not get brought uptodate, return -EIO.
2458 */
2459 struct page *read_cache_page_gfp(struct address_space *mapping,
2460 pgoff_t index,
2461 gfp_t gfp)
2462 {
2463 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2464
2465 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2466 }
2467 EXPORT_SYMBOL(read_cache_page_gfp);
2468
2469 /*
2470 * Performs necessary checks before doing a write
2471 *
2472 * Can adjust writing position or amount of bytes to write.
2473 * Returns appropriate error code that caller should return or
2474 * zero in case that write should be allowed.
2475 */
2476 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2477 {
2478 struct file *file = iocb->ki_filp;
2479 struct inode *inode = file->f_mapping->host;
2480 unsigned long limit = rlimit(RLIMIT_FSIZE);
2481 loff_t pos;
2482
2483 if (!iov_iter_count(from))
2484 return 0;
2485
2486 /* FIXME: this is for backwards compatibility with 2.4 */
2487 if (iocb->ki_flags & IOCB_APPEND)
2488 iocb->ki_pos = i_size_read(inode);
2489
2490 pos = iocb->ki_pos;
2491
2492 if (limit != RLIM_INFINITY) {
2493 if (iocb->ki_pos >= limit) {
2494 send_sig(SIGXFSZ, current, 0);
2495 return -EFBIG;
2496 }
2497 iov_iter_truncate(from, limit - (unsigned long)pos);
2498 }
2499
2500 /*
2501 * LFS rule
2502 */
2503 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2504 !(file->f_flags & O_LARGEFILE))) {
2505 if (pos >= MAX_NON_LFS)
2506 return -EFBIG;
2507 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2508 }
2509
2510 /*
2511 * Are we about to exceed the fs block limit ?
2512 *
2513 * If we have written data it becomes a short write. If we have
2514 * exceeded without writing data we send a signal and return EFBIG.
2515 * Linus frestrict idea will clean these up nicely..
2516 */
2517 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2518 return -EFBIG;
2519
2520 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2521 return iov_iter_count(from);
2522 }
2523 EXPORT_SYMBOL(generic_write_checks);
2524
2525 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2526 loff_t pos, unsigned len, unsigned flags,
2527 struct page **pagep, void **fsdata)
2528 {
2529 const struct address_space_operations *aops = mapping->a_ops;
2530
2531 return aops->write_begin(file, mapping, pos, len, flags,
2532 pagep, fsdata);
2533 }
2534 EXPORT_SYMBOL(pagecache_write_begin);
2535
2536 int pagecache_write_end(struct file *file, struct address_space *mapping,
2537 loff_t pos, unsigned len, unsigned copied,
2538 struct page *page, void *fsdata)
2539 {
2540 const struct address_space_operations *aops = mapping->a_ops;
2541
2542 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2543 }
2544 EXPORT_SYMBOL(pagecache_write_end);
2545
2546 ssize_t
2547 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2548 {
2549 struct file *file = iocb->ki_filp;
2550 struct address_space *mapping = file->f_mapping;
2551 struct inode *inode = mapping->host;
2552 loff_t pos = iocb->ki_pos;
2553 ssize_t written;
2554 size_t write_len;
2555 pgoff_t end;
2556 struct iov_iter data;
2557
2558 write_len = iov_iter_count(from);
2559 end = (pos + write_len - 1) >> PAGE_SHIFT;
2560
2561 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2562 if (written)
2563 goto out;
2564
2565 /*
2566 * After a write we want buffered reads to be sure to go to disk to get
2567 * the new data. We invalidate clean cached page from the region we're
2568 * about to write. We do this *before* the write so that we can return
2569 * without clobbering -EIOCBQUEUED from ->direct_IO().
2570 */
2571 if (mapping->nrpages) {
2572 written = invalidate_inode_pages2_range(mapping,
2573 pos >> PAGE_SHIFT, end);
2574 /*
2575 * If a page can not be invalidated, return 0 to fall back
2576 * to buffered write.
2577 */
2578 if (written) {
2579 if (written == -EBUSY)
2580 return 0;
2581 goto out;
2582 }
2583 }
2584
2585 data = *from;
2586 written = mapping->a_ops->direct_IO(iocb, &data);
2587
2588 /*
2589 * Finally, try again to invalidate clean pages which might have been
2590 * cached by non-direct readahead, or faulted in by get_user_pages()
2591 * if the source of the write was an mmap'ed region of the file
2592 * we're writing. Either one is a pretty crazy thing to do,
2593 * so we don't support it 100%. If this invalidation
2594 * fails, tough, the write still worked...
2595 */
2596 if (mapping->nrpages) {
2597 invalidate_inode_pages2_range(mapping,
2598 pos >> PAGE_SHIFT, end);
2599 }
2600
2601 if (written > 0) {
2602 pos += written;
2603 iov_iter_advance(from, written);
2604 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2605 i_size_write(inode, pos);
2606 mark_inode_dirty(inode);
2607 }
2608 iocb->ki_pos = pos;
2609 }
2610 out:
2611 return written;
2612 }
2613 EXPORT_SYMBOL(generic_file_direct_write);
2614
2615 /*
2616 * Find or create a page at the given pagecache position. Return the locked
2617 * page. This function is specifically for buffered writes.
2618 */
2619 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2620 pgoff_t index, unsigned flags)
2621 {
2622 struct page *page;
2623 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2624
2625 if (flags & AOP_FLAG_NOFS)
2626 fgp_flags |= FGP_NOFS;
2627
2628 page = pagecache_get_page(mapping, index, fgp_flags,
2629 mapping_gfp_mask(mapping));
2630 if (page)
2631 wait_for_stable_page(page);
2632
2633 return page;
2634 }
2635 EXPORT_SYMBOL(grab_cache_page_write_begin);
2636
2637 ssize_t generic_perform_write(struct file *file,
2638 struct iov_iter *i, loff_t pos)
2639 {
2640 struct address_space *mapping = file->f_mapping;
2641 const struct address_space_operations *a_ops = mapping->a_ops;
2642 long status = 0;
2643 ssize_t written = 0;
2644 unsigned int flags = 0;
2645
2646 /*
2647 * Copies from kernel address space cannot fail (NFSD is a big user).
2648 */
2649 if (!iter_is_iovec(i))
2650 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2651
2652 do {
2653 struct page *page;
2654 unsigned long offset; /* Offset into pagecache page */
2655 unsigned long bytes; /* Bytes to write to page */
2656 size_t copied; /* Bytes copied from user */
2657 void *fsdata;
2658
2659 offset = (pos & (PAGE_SIZE - 1));
2660 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2661 iov_iter_count(i));
2662
2663 again:
2664 /*
2665 * Bring in the user page that we will copy from _first_.
2666 * Otherwise there's a nasty deadlock on copying from the
2667 * same page as we're writing to, without it being marked
2668 * up-to-date.
2669 *
2670 * Not only is this an optimisation, but it is also required
2671 * to check that the address is actually valid, when atomic
2672 * usercopies are used, below.
2673 */
2674 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2675 status = -EFAULT;
2676 break;
2677 }
2678
2679 if (fatal_signal_pending(current)) {
2680 status = -EINTR;
2681 break;
2682 }
2683
2684 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2685 &page, &fsdata);
2686 if (unlikely(status < 0))
2687 break;
2688
2689 if (mapping_writably_mapped(mapping))
2690 flush_dcache_page(page);
2691
2692 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2693 flush_dcache_page(page);
2694
2695 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2696 page, fsdata);
2697 if (unlikely(status < 0))
2698 break;
2699 copied = status;
2700
2701 cond_resched();
2702
2703 iov_iter_advance(i, copied);
2704 if (unlikely(copied == 0)) {
2705 /*
2706 * If we were unable to copy any data at all, we must
2707 * fall back to a single segment length write.
2708 *
2709 * If we didn't fallback here, we could livelock
2710 * because not all segments in the iov can be copied at
2711 * once without a pagefault.
2712 */
2713 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2714 iov_iter_single_seg_count(i));
2715 goto again;
2716 }
2717 pos += copied;
2718 written += copied;
2719
2720 balance_dirty_pages_ratelimited(mapping);
2721 } while (iov_iter_count(i));
2722
2723 return written ? written : status;
2724 }
2725 EXPORT_SYMBOL(generic_perform_write);
2726
2727 /**
2728 * __generic_file_write_iter - write data to a file
2729 * @iocb: IO state structure (file, offset, etc.)
2730 * @from: iov_iter with data to write
2731 *
2732 * This function does all the work needed for actually writing data to a
2733 * file. It does all basic checks, removes SUID from the file, updates
2734 * modification times and calls proper subroutines depending on whether we
2735 * do direct IO or a standard buffered write.
2736 *
2737 * It expects i_mutex to be grabbed unless we work on a block device or similar
2738 * object which does not need locking at all.
2739 *
2740 * This function does *not* take care of syncing data in case of O_SYNC write.
2741 * A caller has to handle it. This is mainly due to the fact that we want to
2742 * avoid syncing under i_mutex.
2743 */
2744 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2745 {
2746 struct file *file = iocb->ki_filp;
2747 struct address_space * mapping = file->f_mapping;
2748 struct inode *inode = mapping->host;
2749 ssize_t written = 0;
2750 ssize_t err;
2751 ssize_t status;
2752
2753 /* We can write back this queue in page reclaim */
2754 current->backing_dev_info = inode_to_bdi(inode);
2755 err = file_remove_privs(file);
2756 if (err)
2757 goto out;
2758
2759 err = file_update_time(file);
2760 if (err)
2761 goto out;
2762
2763 if (iocb->ki_flags & IOCB_DIRECT) {
2764 loff_t pos, endbyte;
2765
2766 written = generic_file_direct_write(iocb, from);
2767 /*
2768 * If the write stopped short of completing, fall back to
2769 * buffered writes. Some filesystems do this for writes to
2770 * holes, for example. For DAX files, a buffered write will
2771 * not succeed (even if it did, DAX does not handle dirty
2772 * page-cache pages correctly).
2773 */
2774 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2775 goto out;
2776
2777 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2778 /*
2779 * If generic_perform_write() returned a synchronous error
2780 * then we want to return the number of bytes which were
2781 * direct-written, or the error code if that was zero. Note
2782 * that this differs from normal direct-io semantics, which
2783 * will return -EFOO even if some bytes were written.
2784 */
2785 if (unlikely(status < 0)) {
2786 err = status;
2787 goto out;
2788 }
2789 /*
2790 * We need to ensure that the page cache pages are written to
2791 * disk and invalidated to preserve the expected O_DIRECT
2792 * semantics.
2793 */
2794 endbyte = pos + status - 1;
2795 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2796 if (err == 0) {
2797 iocb->ki_pos = endbyte + 1;
2798 written += status;
2799 invalidate_mapping_pages(mapping,
2800 pos >> PAGE_SHIFT,
2801 endbyte >> PAGE_SHIFT);
2802 } else {
2803 /*
2804 * We don't know how much we wrote, so just return
2805 * the number of bytes which were direct-written
2806 */
2807 }
2808 } else {
2809 written = generic_perform_write(file, from, iocb->ki_pos);
2810 if (likely(written > 0))
2811 iocb->ki_pos += written;
2812 }
2813 out:
2814 current->backing_dev_info = NULL;
2815 return written ? written : err;
2816 }
2817 EXPORT_SYMBOL(__generic_file_write_iter);
2818
2819 /**
2820 * generic_file_write_iter - write data to a file
2821 * @iocb: IO state structure
2822 * @from: iov_iter with data to write
2823 *
2824 * This is a wrapper around __generic_file_write_iter() to be used by most
2825 * filesystems. It takes care of syncing the file in case of O_SYNC file
2826 * and acquires i_mutex as needed.
2827 */
2828 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2829 {
2830 struct file *file = iocb->ki_filp;
2831 struct inode *inode = file->f_mapping->host;
2832 ssize_t ret;
2833
2834 inode_lock(inode);
2835 ret = generic_write_checks(iocb, from);
2836 if (ret > 0)
2837 ret = __generic_file_write_iter(iocb, from);
2838 inode_unlock(inode);
2839
2840 if (ret > 0)
2841 ret = generic_write_sync(iocb, ret);
2842 return ret;
2843 }
2844 EXPORT_SYMBOL(generic_file_write_iter);
2845
2846 /**
2847 * try_to_release_page() - release old fs-specific metadata on a page
2848 *
2849 * @page: the page which the kernel is trying to free
2850 * @gfp_mask: memory allocation flags (and I/O mode)
2851 *
2852 * The address_space is to try to release any data against the page
2853 * (presumably at page->private). If the release was successful, return `1'.
2854 * Otherwise return zero.
2855 *
2856 * This may also be called if PG_fscache is set on a page, indicating that the
2857 * page is known to the local caching routines.
2858 *
2859 * The @gfp_mask argument specifies whether I/O may be performed to release
2860 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2861 *
2862 */
2863 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2864 {
2865 struct address_space * const mapping = page->mapping;
2866
2867 BUG_ON(!PageLocked(page));
2868 if (PageWriteback(page))
2869 return 0;
2870
2871 if (mapping && mapping->a_ops->releasepage)
2872 return mapping->a_ops->releasepage(page, gfp_mask);
2873 return try_to_free_buffers(page);
2874 }
2875
2876 EXPORT_SYMBOL(try_to_release_page);