]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/filemap.c
VFS: Provide empty name qstr
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63 /*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116 {
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140 /* Wakeup waiters for exceptional entry lock */
141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
142 true);
143 }
144 }
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
147 mapping->nrpages++;
148 return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153 {
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163 for (i = 0; i < nr; i++) {
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
170 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
175 }
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
188 }
189
190 /*
191 * Delete a page from the page cache and free it. Caller has to make
192 * sure the page is locked and that nobody else uses it - or that usage
193 * is safe. The caller must hold the mapping's tree_lock.
194 */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197 struct address_space *mapping = page->mapping;
198 int nr = hpage_nr_pages(page);
199
200 trace_mm_filemap_delete_from_page_cache(page);
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
209 cleancache_invalidate_page(mapping, page);
210
211 VM_BUG_ON_PAGE(PageTail(page), page);
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
232 page_ref_sub(page, mapcount);
233 }
234 }
235
236 page_cache_tree_delete(mapping, page, shadow);
237
238 page->mapping = NULL;
239 /* Leave page->index set: truncation lookup relies upon it */
240
241 /* hugetlb pages do not participate in page cache accounting. */
242 if (!PageHuge(page))
243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
244 if (PageSwapBacked(page)) {
245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
246 if (PageTransHuge(page))
247 __dec_node_page_state(page, NR_SHMEM_THPS);
248 } else {
249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250 }
251
252 /*
253 * At this point page must be either written or cleaned by truncate.
254 * Dirty page here signals a bug and loss of unwritten data.
255 *
256 * This fixes dirty accounting after removing the page entirely but
257 * leaves PageDirty set: it has no effect for truncated page and
258 * anyway will be cleared before returning page into buddy allocator.
259 */
260 if (WARN_ON_ONCE(PageDirty(page)))
261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
262 }
263
264 /**
265 * delete_from_page_cache - delete page from page cache
266 * @page: the page which the kernel is trying to remove from page cache
267 *
268 * This must be called only on pages that have been verified to be in the page
269 * cache and locked. It will never put the page into the free list, the caller
270 * has a reference on the page.
271 */
272 void delete_from_page_cache(struct page *page)
273 {
274 struct address_space *mapping = page_mapping(page);
275 unsigned long flags;
276 void (*freepage)(struct page *);
277
278 BUG_ON(!PageLocked(page));
279
280 freepage = mapping->a_ops->freepage;
281
282 spin_lock_irqsave(&mapping->tree_lock, flags);
283 __delete_from_page_cache(page, NULL);
284 spin_unlock_irqrestore(&mapping->tree_lock, flags);
285
286 if (freepage)
287 freepage(page);
288
289 if (PageTransHuge(page) && !PageHuge(page)) {
290 page_ref_sub(page, HPAGE_PMD_NR);
291 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292 } else {
293 put_page(page);
294 }
295 }
296 EXPORT_SYMBOL(delete_from_page_cache);
297
298 int filemap_check_errors(struct address_space *mapping)
299 {
300 int ret = 0;
301 /* Check for outstanding write errors */
302 if (test_bit(AS_ENOSPC, &mapping->flags) &&
303 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304 ret = -ENOSPC;
305 if (test_bit(AS_EIO, &mapping->flags) &&
306 test_and_clear_bit(AS_EIO, &mapping->flags))
307 ret = -EIO;
308 return ret;
309 }
310 EXPORT_SYMBOL(filemap_check_errors);
311
312 /**
313 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
314 * @mapping: address space structure to write
315 * @start: offset in bytes where the range starts
316 * @end: offset in bytes where the range ends (inclusive)
317 * @sync_mode: enable synchronous operation
318 *
319 * Start writeback against all of a mapping's dirty pages that lie
320 * within the byte offsets <start, end> inclusive.
321 *
322 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
323 * opposed to a regular memory cleansing writeback. The difference between
324 * these two operations is that if a dirty page/buffer is encountered, it must
325 * be waited upon, and not just skipped over.
326 */
327 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
328 loff_t end, int sync_mode)
329 {
330 int ret;
331 struct writeback_control wbc = {
332 .sync_mode = sync_mode,
333 .nr_to_write = LONG_MAX,
334 .range_start = start,
335 .range_end = end,
336 };
337
338 if (!mapping_cap_writeback_dirty(mapping))
339 return 0;
340
341 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
342 ret = do_writepages(mapping, &wbc);
343 wbc_detach_inode(&wbc);
344 return ret;
345 }
346
347 static inline int __filemap_fdatawrite(struct address_space *mapping,
348 int sync_mode)
349 {
350 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
351 }
352
353 int filemap_fdatawrite(struct address_space *mapping)
354 {
355 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
356 }
357 EXPORT_SYMBOL(filemap_fdatawrite);
358
359 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
360 loff_t end)
361 {
362 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
363 }
364 EXPORT_SYMBOL(filemap_fdatawrite_range);
365
366 /**
367 * filemap_flush - mostly a non-blocking flush
368 * @mapping: target address_space
369 *
370 * This is a mostly non-blocking flush. Not suitable for data-integrity
371 * purposes - I/O may not be started against all dirty pages.
372 */
373 int filemap_flush(struct address_space *mapping)
374 {
375 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
376 }
377 EXPORT_SYMBOL(filemap_flush);
378
379 static int __filemap_fdatawait_range(struct address_space *mapping,
380 loff_t start_byte, loff_t end_byte)
381 {
382 pgoff_t index = start_byte >> PAGE_SHIFT;
383 pgoff_t end = end_byte >> PAGE_SHIFT;
384 struct pagevec pvec;
385 int nr_pages;
386 int ret = 0;
387
388 if (end_byte < start_byte)
389 goto out;
390
391 pagevec_init(&pvec, 0);
392 while ((index <= end) &&
393 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
394 PAGECACHE_TAG_WRITEBACK,
395 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
396 unsigned i;
397
398 for (i = 0; i < nr_pages; i++) {
399 struct page *page = pvec.pages[i];
400
401 /* until radix tree lookup accepts end_index */
402 if (page->index > end)
403 continue;
404
405 wait_on_page_writeback(page);
406 if (TestClearPageError(page))
407 ret = -EIO;
408 }
409 pagevec_release(&pvec);
410 cond_resched();
411 }
412 out:
413 return ret;
414 }
415
416 /**
417 * filemap_fdatawait_range - wait for writeback to complete
418 * @mapping: address space structure to wait for
419 * @start_byte: offset in bytes where the range starts
420 * @end_byte: offset in bytes where the range ends (inclusive)
421 *
422 * Walk the list of under-writeback pages of the given address space
423 * in the given range and wait for all of them. Check error status of
424 * the address space and return it.
425 *
426 * Since the error status of the address space is cleared by this function,
427 * callers are responsible for checking the return value and handling and/or
428 * reporting the error.
429 */
430 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
431 loff_t end_byte)
432 {
433 int ret, ret2;
434
435 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
436 ret2 = filemap_check_errors(mapping);
437 if (!ret)
438 ret = ret2;
439
440 return ret;
441 }
442 EXPORT_SYMBOL(filemap_fdatawait_range);
443
444 /**
445 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
446 * @mapping: address space structure to wait for
447 *
448 * Walk the list of under-writeback pages of the given address space
449 * and wait for all of them. Unlike filemap_fdatawait(), this function
450 * does not clear error status of the address space.
451 *
452 * Use this function if callers don't handle errors themselves. Expected
453 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
454 * fsfreeze(8)
455 */
456 void filemap_fdatawait_keep_errors(struct address_space *mapping)
457 {
458 loff_t i_size = i_size_read(mapping->host);
459
460 if (i_size == 0)
461 return;
462
463 __filemap_fdatawait_range(mapping, 0, i_size - 1);
464 }
465
466 /**
467 * filemap_fdatawait - wait for all under-writeback pages to complete
468 * @mapping: address space structure to wait for
469 *
470 * Walk the list of under-writeback pages of the given address space
471 * and wait for all of them. Check error status of the address space
472 * and return it.
473 *
474 * Since the error status of the address space is cleared by this function,
475 * callers are responsible for checking the return value and handling and/or
476 * reporting the error.
477 */
478 int filemap_fdatawait(struct address_space *mapping)
479 {
480 loff_t i_size = i_size_read(mapping->host);
481
482 if (i_size == 0)
483 return 0;
484
485 return filemap_fdatawait_range(mapping, 0, i_size - 1);
486 }
487 EXPORT_SYMBOL(filemap_fdatawait);
488
489 int filemap_write_and_wait(struct address_space *mapping)
490 {
491 int err = 0;
492
493 if ((!dax_mapping(mapping) && mapping->nrpages) ||
494 (dax_mapping(mapping) && mapping->nrexceptional)) {
495 err = filemap_fdatawrite(mapping);
496 /*
497 * Even if the above returned error, the pages may be
498 * written partially (e.g. -ENOSPC), so we wait for it.
499 * But the -EIO is special case, it may indicate the worst
500 * thing (e.g. bug) happened, so we avoid waiting for it.
501 */
502 if (err != -EIO) {
503 int err2 = filemap_fdatawait(mapping);
504 if (!err)
505 err = err2;
506 }
507 } else {
508 err = filemap_check_errors(mapping);
509 }
510 return err;
511 }
512 EXPORT_SYMBOL(filemap_write_and_wait);
513
514 /**
515 * filemap_write_and_wait_range - write out & wait on a file range
516 * @mapping: the address_space for the pages
517 * @lstart: offset in bytes where the range starts
518 * @lend: offset in bytes where the range ends (inclusive)
519 *
520 * Write out and wait upon file offsets lstart->lend, inclusive.
521 *
522 * Note that @lend is inclusive (describes the last byte to be written) so
523 * that this function can be used to write to the very end-of-file (end = -1).
524 */
525 int filemap_write_and_wait_range(struct address_space *mapping,
526 loff_t lstart, loff_t lend)
527 {
528 int err = 0;
529
530 if ((!dax_mapping(mapping) && mapping->nrpages) ||
531 (dax_mapping(mapping) && mapping->nrexceptional)) {
532 err = __filemap_fdatawrite_range(mapping, lstart, lend,
533 WB_SYNC_ALL);
534 /* See comment of filemap_write_and_wait() */
535 if (err != -EIO) {
536 int err2 = filemap_fdatawait_range(mapping,
537 lstart, lend);
538 if (!err)
539 err = err2;
540 }
541 } else {
542 err = filemap_check_errors(mapping);
543 }
544 return err;
545 }
546 EXPORT_SYMBOL(filemap_write_and_wait_range);
547
548 /**
549 * replace_page_cache_page - replace a pagecache page with a new one
550 * @old: page to be replaced
551 * @new: page to replace with
552 * @gfp_mask: allocation mode
553 *
554 * This function replaces a page in the pagecache with a new one. On
555 * success it acquires the pagecache reference for the new page and
556 * drops it for the old page. Both the old and new pages must be
557 * locked. This function does not add the new page to the LRU, the
558 * caller must do that.
559 *
560 * The remove + add is atomic. The only way this function can fail is
561 * memory allocation failure.
562 */
563 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
564 {
565 int error;
566
567 VM_BUG_ON_PAGE(!PageLocked(old), old);
568 VM_BUG_ON_PAGE(!PageLocked(new), new);
569 VM_BUG_ON_PAGE(new->mapping, new);
570
571 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
572 if (!error) {
573 struct address_space *mapping = old->mapping;
574 void (*freepage)(struct page *);
575 unsigned long flags;
576
577 pgoff_t offset = old->index;
578 freepage = mapping->a_ops->freepage;
579
580 get_page(new);
581 new->mapping = mapping;
582 new->index = offset;
583
584 spin_lock_irqsave(&mapping->tree_lock, flags);
585 __delete_from_page_cache(old, NULL);
586 error = page_cache_tree_insert(mapping, new, NULL);
587 BUG_ON(error);
588
589 /*
590 * hugetlb pages do not participate in page cache accounting.
591 */
592 if (!PageHuge(new))
593 __inc_node_page_state(new, NR_FILE_PAGES);
594 if (PageSwapBacked(new))
595 __inc_node_page_state(new, NR_SHMEM);
596 spin_unlock_irqrestore(&mapping->tree_lock, flags);
597 mem_cgroup_migrate(old, new);
598 radix_tree_preload_end();
599 if (freepage)
600 freepage(old);
601 put_page(old);
602 }
603
604 return error;
605 }
606 EXPORT_SYMBOL_GPL(replace_page_cache_page);
607
608 static int __add_to_page_cache_locked(struct page *page,
609 struct address_space *mapping,
610 pgoff_t offset, gfp_t gfp_mask,
611 void **shadowp)
612 {
613 int huge = PageHuge(page);
614 struct mem_cgroup *memcg;
615 int error;
616
617 VM_BUG_ON_PAGE(!PageLocked(page), page);
618 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
619
620 if (!huge) {
621 error = mem_cgroup_try_charge(page, current->mm,
622 gfp_mask, &memcg, false);
623 if (error)
624 return error;
625 }
626
627 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
628 if (error) {
629 if (!huge)
630 mem_cgroup_cancel_charge(page, memcg, false);
631 return error;
632 }
633
634 get_page(page);
635 page->mapping = mapping;
636 page->index = offset;
637
638 spin_lock_irq(&mapping->tree_lock);
639 error = page_cache_tree_insert(mapping, page, shadowp);
640 radix_tree_preload_end();
641 if (unlikely(error))
642 goto err_insert;
643
644 /* hugetlb pages do not participate in page cache accounting. */
645 if (!huge)
646 __inc_node_page_state(page, NR_FILE_PAGES);
647 spin_unlock_irq(&mapping->tree_lock);
648 if (!huge)
649 mem_cgroup_commit_charge(page, memcg, false, false);
650 trace_mm_filemap_add_to_page_cache(page);
651 return 0;
652 err_insert:
653 page->mapping = NULL;
654 /* Leave page->index set: truncation relies upon it */
655 spin_unlock_irq(&mapping->tree_lock);
656 if (!huge)
657 mem_cgroup_cancel_charge(page, memcg, false);
658 put_page(page);
659 return error;
660 }
661
662 /**
663 * add_to_page_cache_locked - add a locked page to the pagecache
664 * @page: page to add
665 * @mapping: the page's address_space
666 * @offset: page index
667 * @gfp_mask: page allocation mode
668 *
669 * This function is used to add a page to the pagecache. It must be locked.
670 * This function does not add the page to the LRU. The caller must do that.
671 */
672 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
673 pgoff_t offset, gfp_t gfp_mask)
674 {
675 return __add_to_page_cache_locked(page, mapping, offset,
676 gfp_mask, NULL);
677 }
678 EXPORT_SYMBOL(add_to_page_cache_locked);
679
680 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
681 pgoff_t offset, gfp_t gfp_mask)
682 {
683 void *shadow = NULL;
684 int ret;
685
686 __SetPageLocked(page);
687 ret = __add_to_page_cache_locked(page, mapping, offset,
688 gfp_mask, &shadow);
689 if (unlikely(ret))
690 __ClearPageLocked(page);
691 else {
692 /*
693 * The page might have been evicted from cache only
694 * recently, in which case it should be activated like
695 * any other repeatedly accessed page.
696 * The exception is pages getting rewritten; evicting other
697 * data from the working set, only to cache data that will
698 * get overwritten with something else, is a waste of memory.
699 */
700 if (!(gfp_mask & __GFP_WRITE) &&
701 shadow && workingset_refault(shadow)) {
702 SetPageActive(page);
703 workingset_activation(page);
704 } else
705 ClearPageActive(page);
706 lru_cache_add(page);
707 }
708 return ret;
709 }
710 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
711
712 #ifdef CONFIG_NUMA
713 struct page *__page_cache_alloc(gfp_t gfp)
714 {
715 int n;
716 struct page *page;
717
718 if (cpuset_do_page_mem_spread()) {
719 unsigned int cpuset_mems_cookie;
720 do {
721 cpuset_mems_cookie = read_mems_allowed_begin();
722 n = cpuset_mem_spread_node();
723 page = __alloc_pages_node(n, gfp, 0);
724 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
725
726 return page;
727 }
728 return alloc_pages(gfp, 0);
729 }
730 EXPORT_SYMBOL(__page_cache_alloc);
731 #endif
732
733 /*
734 * In order to wait for pages to become available there must be
735 * waitqueues associated with pages. By using a hash table of
736 * waitqueues where the bucket discipline is to maintain all
737 * waiters on the same queue and wake all when any of the pages
738 * become available, and for the woken contexts to check to be
739 * sure the appropriate page became available, this saves space
740 * at a cost of "thundering herd" phenomena during rare hash
741 * collisions.
742 */
743 #define PAGE_WAIT_TABLE_BITS 8
744 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
745 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
746
747 static wait_queue_head_t *page_waitqueue(struct page *page)
748 {
749 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
750 }
751
752 void __init pagecache_init(void)
753 {
754 int i;
755
756 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
757 init_waitqueue_head(&page_wait_table[i]);
758
759 page_writeback_init();
760 }
761
762 struct wait_page_key {
763 struct page *page;
764 int bit_nr;
765 int page_match;
766 };
767
768 struct wait_page_queue {
769 struct page *page;
770 int bit_nr;
771 wait_queue_t wait;
772 };
773
774 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
775 {
776 struct wait_page_key *key = arg;
777 struct wait_page_queue *wait_page
778 = container_of(wait, struct wait_page_queue, wait);
779
780 if (wait_page->page != key->page)
781 return 0;
782 key->page_match = 1;
783
784 if (wait_page->bit_nr != key->bit_nr)
785 return 0;
786 if (test_bit(key->bit_nr, &key->page->flags))
787 return 0;
788
789 return autoremove_wake_function(wait, mode, sync, key);
790 }
791
792 static void wake_up_page_bit(struct page *page, int bit_nr)
793 {
794 wait_queue_head_t *q = page_waitqueue(page);
795 struct wait_page_key key;
796 unsigned long flags;
797
798 key.page = page;
799 key.bit_nr = bit_nr;
800 key.page_match = 0;
801
802 spin_lock_irqsave(&q->lock, flags);
803 __wake_up_locked_key(q, TASK_NORMAL, &key);
804 /*
805 * It is possible for other pages to have collided on the waitqueue
806 * hash, so in that case check for a page match. That prevents a long-
807 * term waiter
808 *
809 * It is still possible to miss a case here, when we woke page waiters
810 * and removed them from the waitqueue, but there are still other
811 * page waiters.
812 */
813 if (!waitqueue_active(q) || !key.page_match) {
814 ClearPageWaiters(page);
815 /*
816 * It's possible to miss clearing Waiters here, when we woke
817 * our page waiters, but the hashed waitqueue has waiters for
818 * other pages on it.
819 *
820 * That's okay, it's a rare case. The next waker will clear it.
821 */
822 }
823 spin_unlock_irqrestore(&q->lock, flags);
824 }
825
826 static void wake_up_page(struct page *page, int bit)
827 {
828 if (!PageWaiters(page))
829 return;
830 wake_up_page_bit(page, bit);
831 }
832
833 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
834 struct page *page, int bit_nr, int state, bool lock)
835 {
836 struct wait_page_queue wait_page;
837 wait_queue_t *wait = &wait_page.wait;
838 int ret = 0;
839
840 init_wait(wait);
841 wait->func = wake_page_function;
842 wait_page.page = page;
843 wait_page.bit_nr = bit_nr;
844
845 for (;;) {
846 spin_lock_irq(&q->lock);
847
848 if (likely(list_empty(&wait->task_list))) {
849 if (lock)
850 __add_wait_queue_tail_exclusive(q, wait);
851 else
852 __add_wait_queue(q, wait);
853 SetPageWaiters(page);
854 }
855
856 set_current_state(state);
857
858 spin_unlock_irq(&q->lock);
859
860 if (likely(test_bit(bit_nr, &page->flags))) {
861 io_schedule();
862 if (unlikely(signal_pending_state(state, current))) {
863 ret = -EINTR;
864 break;
865 }
866 }
867
868 if (lock) {
869 if (!test_and_set_bit_lock(bit_nr, &page->flags))
870 break;
871 } else {
872 if (!test_bit(bit_nr, &page->flags))
873 break;
874 }
875 }
876
877 finish_wait(q, wait);
878
879 /*
880 * A signal could leave PageWaiters set. Clearing it here if
881 * !waitqueue_active would be possible (by open-coding finish_wait),
882 * but still fail to catch it in the case of wait hash collision. We
883 * already can fail to clear wait hash collision cases, so don't
884 * bother with signals either.
885 */
886
887 return ret;
888 }
889
890 void wait_on_page_bit(struct page *page, int bit_nr)
891 {
892 wait_queue_head_t *q = page_waitqueue(page);
893 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
894 }
895 EXPORT_SYMBOL(wait_on_page_bit);
896
897 int wait_on_page_bit_killable(struct page *page, int bit_nr)
898 {
899 wait_queue_head_t *q = page_waitqueue(page);
900 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
901 }
902
903 /**
904 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
905 * @page: Page defining the wait queue of interest
906 * @waiter: Waiter to add to the queue
907 *
908 * Add an arbitrary @waiter to the wait queue for the nominated @page.
909 */
910 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
911 {
912 wait_queue_head_t *q = page_waitqueue(page);
913 unsigned long flags;
914
915 spin_lock_irqsave(&q->lock, flags);
916 __add_wait_queue(q, waiter);
917 SetPageWaiters(page);
918 spin_unlock_irqrestore(&q->lock, flags);
919 }
920 EXPORT_SYMBOL_GPL(add_page_wait_queue);
921
922 #ifndef clear_bit_unlock_is_negative_byte
923
924 /*
925 * PG_waiters is the high bit in the same byte as PG_lock.
926 *
927 * On x86 (and on many other architectures), we can clear PG_lock and
928 * test the sign bit at the same time. But if the architecture does
929 * not support that special operation, we just do this all by hand
930 * instead.
931 *
932 * The read of PG_waiters has to be after (or concurrently with) PG_locked
933 * being cleared, but a memory barrier should be unneccssary since it is
934 * in the same byte as PG_locked.
935 */
936 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
937 {
938 clear_bit_unlock(nr, mem);
939 /* smp_mb__after_atomic(); */
940 return test_bit(PG_waiters, mem);
941 }
942
943 #endif
944
945 /**
946 * unlock_page - unlock a locked page
947 * @page: the page
948 *
949 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
950 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
951 * mechanism between PageLocked pages and PageWriteback pages is shared.
952 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
953 *
954 * Note that this depends on PG_waiters being the sign bit in the byte
955 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
956 * clear the PG_locked bit and test PG_waiters at the same time fairly
957 * portably (architectures that do LL/SC can test any bit, while x86 can
958 * test the sign bit).
959 */
960 void unlock_page(struct page *page)
961 {
962 BUILD_BUG_ON(PG_waiters != 7);
963 page = compound_head(page);
964 VM_BUG_ON_PAGE(!PageLocked(page), page);
965 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
966 wake_up_page_bit(page, PG_locked);
967 }
968 EXPORT_SYMBOL(unlock_page);
969
970 /**
971 * end_page_writeback - end writeback against a page
972 * @page: the page
973 */
974 void end_page_writeback(struct page *page)
975 {
976 /*
977 * TestClearPageReclaim could be used here but it is an atomic
978 * operation and overkill in this particular case. Failing to
979 * shuffle a page marked for immediate reclaim is too mild to
980 * justify taking an atomic operation penalty at the end of
981 * ever page writeback.
982 */
983 if (PageReclaim(page)) {
984 ClearPageReclaim(page);
985 rotate_reclaimable_page(page);
986 }
987
988 if (!test_clear_page_writeback(page))
989 BUG();
990
991 smp_mb__after_atomic();
992 wake_up_page(page, PG_writeback);
993 }
994 EXPORT_SYMBOL(end_page_writeback);
995
996 /*
997 * After completing I/O on a page, call this routine to update the page
998 * flags appropriately
999 */
1000 void page_endio(struct page *page, bool is_write, int err)
1001 {
1002 if (!is_write) {
1003 if (!err) {
1004 SetPageUptodate(page);
1005 } else {
1006 ClearPageUptodate(page);
1007 SetPageError(page);
1008 }
1009 unlock_page(page);
1010 } else {
1011 if (err) {
1012 struct address_space *mapping;
1013
1014 SetPageError(page);
1015 mapping = page_mapping(page);
1016 if (mapping)
1017 mapping_set_error(mapping, err);
1018 }
1019 end_page_writeback(page);
1020 }
1021 }
1022 EXPORT_SYMBOL_GPL(page_endio);
1023
1024 /**
1025 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1026 * @__page: the page to lock
1027 */
1028 void __lock_page(struct page *__page)
1029 {
1030 struct page *page = compound_head(__page);
1031 wait_queue_head_t *q = page_waitqueue(page);
1032 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1033 }
1034 EXPORT_SYMBOL(__lock_page);
1035
1036 int __lock_page_killable(struct page *__page)
1037 {
1038 struct page *page = compound_head(__page);
1039 wait_queue_head_t *q = page_waitqueue(page);
1040 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1041 }
1042 EXPORT_SYMBOL_GPL(__lock_page_killable);
1043
1044 /*
1045 * Return values:
1046 * 1 - page is locked; mmap_sem is still held.
1047 * 0 - page is not locked.
1048 * mmap_sem has been released (up_read()), unless flags had both
1049 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1050 * which case mmap_sem is still held.
1051 *
1052 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1053 * with the page locked and the mmap_sem unperturbed.
1054 */
1055 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1056 unsigned int flags)
1057 {
1058 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1059 /*
1060 * CAUTION! In this case, mmap_sem is not released
1061 * even though return 0.
1062 */
1063 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1064 return 0;
1065
1066 up_read(&mm->mmap_sem);
1067 if (flags & FAULT_FLAG_KILLABLE)
1068 wait_on_page_locked_killable(page);
1069 else
1070 wait_on_page_locked(page);
1071 return 0;
1072 } else {
1073 if (flags & FAULT_FLAG_KILLABLE) {
1074 int ret;
1075
1076 ret = __lock_page_killable(page);
1077 if (ret) {
1078 up_read(&mm->mmap_sem);
1079 return 0;
1080 }
1081 } else
1082 __lock_page(page);
1083 return 1;
1084 }
1085 }
1086
1087 /**
1088 * page_cache_next_hole - find the next hole (not-present entry)
1089 * @mapping: mapping
1090 * @index: index
1091 * @max_scan: maximum range to search
1092 *
1093 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1094 * lowest indexed hole.
1095 *
1096 * Returns: the index of the hole if found, otherwise returns an index
1097 * outside of the set specified (in which case 'return - index >=
1098 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1099 * be returned.
1100 *
1101 * page_cache_next_hole may be called under rcu_read_lock. However,
1102 * like radix_tree_gang_lookup, this will not atomically search a
1103 * snapshot of the tree at a single point in time. For example, if a
1104 * hole is created at index 5, then subsequently a hole is created at
1105 * index 10, page_cache_next_hole covering both indexes may return 10
1106 * if called under rcu_read_lock.
1107 */
1108 pgoff_t page_cache_next_hole(struct address_space *mapping,
1109 pgoff_t index, unsigned long max_scan)
1110 {
1111 unsigned long i;
1112
1113 for (i = 0; i < max_scan; i++) {
1114 struct page *page;
1115
1116 page = radix_tree_lookup(&mapping->page_tree, index);
1117 if (!page || radix_tree_exceptional_entry(page))
1118 break;
1119 index++;
1120 if (index == 0)
1121 break;
1122 }
1123
1124 return index;
1125 }
1126 EXPORT_SYMBOL(page_cache_next_hole);
1127
1128 /**
1129 * page_cache_prev_hole - find the prev hole (not-present entry)
1130 * @mapping: mapping
1131 * @index: index
1132 * @max_scan: maximum range to search
1133 *
1134 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1135 * the first hole.
1136 *
1137 * Returns: the index of the hole if found, otherwise returns an index
1138 * outside of the set specified (in which case 'index - return >=
1139 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1140 * will be returned.
1141 *
1142 * page_cache_prev_hole may be called under rcu_read_lock. However,
1143 * like radix_tree_gang_lookup, this will not atomically search a
1144 * snapshot of the tree at a single point in time. For example, if a
1145 * hole is created at index 10, then subsequently a hole is created at
1146 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1147 * called under rcu_read_lock.
1148 */
1149 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1150 pgoff_t index, unsigned long max_scan)
1151 {
1152 unsigned long i;
1153
1154 for (i = 0; i < max_scan; i++) {
1155 struct page *page;
1156
1157 page = radix_tree_lookup(&mapping->page_tree, index);
1158 if (!page || radix_tree_exceptional_entry(page))
1159 break;
1160 index--;
1161 if (index == ULONG_MAX)
1162 break;
1163 }
1164
1165 return index;
1166 }
1167 EXPORT_SYMBOL(page_cache_prev_hole);
1168
1169 /**
1170 * find_get_entry - find and get a page cache entry
1171 * @mapping: the address_space to search
1172 * @offset: the page cache index
1173 *
1174 * Looks up the page cache slot at @mapping & @offset. If there is a
1175 * page cache page, it is returned with an increased refcount.
1176 *
1177 * If the slot holds a shadow entry of a previously evicted page, or a
1178 * swap entry from shmem/tmpfs, it is returned.
1179 *
1180 * Otherwise, %NULL is returned.
1181 */
1182 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1183 {
1184 void **pagep;
1185 struct page *head, *page;
1186
1187 rcu_read_lock();
1188 repeat:
1189 page = NULL;
1190 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1191 if (pagep) {
1192 page = radix_tree_deref_slot(pagep);
1193 if (unlikely(!page))
1194 goto out;
1195 if (radix_tree_exception(page)) {
1196 if (radix_tree_deref_retry(page))
1197 goto repeat;
1198 /*
1199 * A shadow entry of a recently evicted page,
1200 * or a swap entry from shmem/tmpfs. Return
1201 * it without attempting to raise page count.
1202 */
1203 goto out;
1204 }
1205
1206 head = compound_head(page);
1207 if (!page_cache_get_speculative(head))
1208 goto repeat;
1209
1210 /* The page was split under us? */
1211 if (compound_head(page) != head) {
1212 put_page(head);
1213 goto repeat;
1214 }
1215
1216 /*
1217 * Has the page moved?
1218 * This is part of the lockless pagecache protocol. See
1219 * include/linux/pagemap.h for details.
1220 */
1221 if (unlikely(page != *pagep)) {
1222 put_page(head);
1223 goto repeat;
1224 }
1225 }
1226 out:
1227 rcu_read_unlock();
1228
1229 return page;
1230 }
1231 EXPORT_SYMBOL(find_get_entry);
1232
1233 /**
1234 * find_lock_entry - locate, pin and lock a page cache entry
1235 * @mapping: the address_space to search
1236 * @offset: the page cache index
1237 *
1238 * Looks up the page cache slot at @mapping & @offset. If there is a
1239 * page cache page, it is returned locked and with an increased
1240 * refcount.
1241 *
1242 * If the slot holds a shadow entry of a previously evicted page, or a
1243 * swap entry from shmem/tmpfs, it is returned.
1244 *
1245 * Otherwise, %NULL is returned.
1246 *
1247 * find_lock_entry() may sleep.
1248 */
1249 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1250 {
1251 struct page *page;
1252
1253 repeat:
1254 page = find_get_entry(mapping, offset);
1255 if (page && !radix_tree_exception(page)) {
1256 lock_page(page);
1257 /* Has the page been truncated? */
1258 if (unlikely(page_mapping(page) != mapping)) {
1259 unlock_page(page);
1260 put_page(page);
1261 goto repeat;
1262 }
1263 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1264 }
1265 return page;
1266 }
1267 EXPORT_SYMBOL(find_lock_entry);
1268
1269 /**
1270 * pagecache_get_page - find and get a page reference
1271 * @mapping: the address_space to search
1272 * @offset: the page index
1273 * @fgp_flags: PCG flags
1274 * @gfp_mask: gfp mask to use for the page cache data page allocation
1275 *
1276 * Looks up the page cache slot at @mapping & @offset.
1277 *
1278 * PCG flags modify how the page is returned.
1279 *
1280 * @fgp_flags can be:
1281 *
1282 * - FGP_ACCESSED: the page will be marked accessed
1283 * - FGP_LOCK: Page is return locked
1284 * - FGP_CREAT: If page is not present then a new page is allocated using
1285 * @gfp_mask and added to the page cache and the VM's LRU
1286 * list. The page is returned locked and with an increased
1287 * refcount. Otherwise, NULL is returned.
1288 *
1289 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1290 * if the GFP flags specified for FGP_CREAT are atomic.
1291 *
1292 * If there is a page cache page, it is returned with an increased refcount.
1293 */
1294 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1295 int fgp_flags, gfp_t gfp_mask)
1296 {
1297 struct page *page;
1298
1299 repeat:
1300 page = find_get_entry(mapping, offset);
1301 if (radix_tree_exceptional_entry(page))
1302 page = NULL;
1303 if (!page)
1304 goto no_page;
1305
1306 if (fgp_flags & FGP_LOCK) {
1307 if (fgp_flags & FGP_NOWAIT) {
1308 if (!trylock_page(page)) {
1309 put_page(page);
1310 return NULL;
1311 }
1312 } else {
1313 lock_page(page);
1314 }
1315
1316 /* Has the page been truncated? */
1317 if (unlikely(page->mapping != mapping)) {
1318 unlock_page(page);
1319 put_page(page);
1320 goto repeat;
1321 }
1322 VM_BUG_ON_PAGE(page->index != offset, page);
1323 }
1324
1325 if (page && (fgp_flags & FGP_ACCESSED))
1326 mark_page_accessed(page);
1327
1328 no_page:
1329 if (!page && (fgp_flags & FGP_CREAT)) {
1330 int err;
1331 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1332 gfp_mask |= __GFP_WRITE;
1333 if (fgp_flags & FGP_NOFS)
1334 gfp_mask &= ~__GFP_FS;
1335
1336 page = __page_cache_alloc(gfp_mask);
1337 if (!page)
1338 return NULL;
1339
1340 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1341 fgp_flags |= FGP_LOCK;
1342
1343 /* Init accessed so avoid atomic mark_page_accessed later */
1344 if (fgp_flags & FGP_ACCESSED)
1345 __SetPageReferenced(page);
1346
1347 err = add_to_page_cache_lru(page, mapping, offset,
1348 gfp_mask & GFP_RECLAIM_MASK);
1349 if (unlikely(err)) {
1350 put_page(page);
1351 page = NULL;
1352 if (err == -EEXIST)
1353 goto repeat;
1354 }
1355 }
1356
1357 return page;
1358 }
1359 EXPORT_SYMBOL(pagecache_get_page);
1360
1361 /**
1362 * find_get_entries - gang pagecache lookup
1363 * @mapping: The address_space to search
1364 * @start: The starting page cache index
1365 * @nr_entries: The maximum number of entries
1366 * @entries: Where the resulting entries are placed
1367 * @indices: The cache indices corresponding to the entries in @entries
1368 *
1369 * find_get_entries() will search for and return a group of up to
1370 * @nr_entries entries in the mapping. The entries are placed at
1371 * @entries. find_get_entries() takes a reference against any actual
1372 * pages it returns.
1373 *
1374 * The search returns a group of mapping-contiguous page cache entries
1375 * with ascending indexes. There may be holes in the indices due to
1376 * not-present pages.
1377 *
1378 * Any shadow entries of evicted pages, or swap entries from
1379 * shmem/tmpfs, are included in the returned array.
1380 *
1381 * find_get_entries() returns the number of pages and shadow entries
1382 * which were found.
1383 */
1384 unsigned find_get_entries(struct address_space *mapping,
1385 pgoff_t start, unsigned int nr_entries,
1386 struct page **entries, pgoff_t *indices)
1387 {
1388 void **slot;
1389 unsigned int ret = 0;
1390 struct radix_tree_iter iter;
1391
1392 if (!nr_entries)
1393 return 0;
1394
1395 rcu_read_lock();
1396 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1397 struct page *head, *page;
1398 repeat:
1399 page = radix_tree_deref_slot(slot);
1400 if (unlikely(!page))
1401 continue;
1402 if (radix_tree_exception(page)) {
1403 if (radix_tree_deref_retry(page)) {
1404 slot = radix_tree_iter_retry(&iter);
1405 continue;
1406 }
1407 /*
1408 * A shadow entry of a recently evicted page, a swap
1409 * entry from shmem/tmpfs or a DAX entry. Return it
1410 * without attempting to raise page count.
1411 */
1412 goto export;
1413 }
1414
1415 head = compound_head(page);
1416 if (!page_cache_get_speculative(head))
1417 goto repeat;
1418
1419 /* The page was split under us? */
1420 if (compound_head(page) != head) {
1421 put_page(head);
1422 goto repeat;
1423 }
1424
1425 /* Has the page moved? */
1426 if (unlikely(page != *slot)) {
1427 put_page(head);
1428 goto repeat;
1429 }
1430 export:
1431 indices[ret] = iter.index;
1432 entries[ret] = page;
1433 if (++ret == nr_entries)
1434 break;
1435 }
1436 rcu_read_unlock();
1437 return ret;
1438 }
1439
1440 /**
1441 * find_get_pages - gang pagecache lookup
1442 * @mapping: The address_space to search
1443 * @start: The starting page index
1444 * @nr_pages: The maximum number of pages
1445 * @pages: Where the resulting pages are placed
1446 *
1447 * find_get_pages() will search for and return a group of up to
1448 * @nr_pages pages in the mapping. The pages are placed at @pages.
1449 * find_get_pages() takes a reference against the returned pages.
1450 *
1451 * The search returns a group of mapping-contiguous pages with ascending
1452 * indexes. There may be holes in the indices due to not-present pages.
1453 *
1454 * find_get_pages() returns the number of pages which were found.
1455 */
1456 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1457 unsigned int nr_pages, struct page **pages)
1458 {
1459 struct radix_tree_iter iter;
1460 void **slot;
1461 unsigned ret = 0;
1462
1463 if (unlikely(!nr_pages))
1464 return 0;
1465
1466 rcu_read_lock();
1467 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1468 struct page *head, *page;
1469 repeat:
1470 page = radix_tree_deref_slot(slot);
1471 if (unlikely(!page))
1472 continue;
1473
1474 if (radix_tree_exception(page)) {
1475 if (radix_tree_deref_retry(page)) {
1476 slot = radix_tree_iter_retry(&iter);
1477 continue;
1478 }
1479 /*
1480 * A shadow entry of a recently evicted page,
1481 * or a swap entry from shmem/tmpfs. Skip
1482 * over it.
1483 */
1484 continue;
1485 }
1486
1487 head = compound_head(page);
1488 if (!page_cache_get_speculative(head))
1489 goto repeat;
1490
1491 /* The page was split under us? */
1492 if (compound_head(page) != head) {
1493 put_page(head);
1494 goto repeat;
1495 }
1496
1497 /* Has the page moved? */
1498 if (unlikely(page != *slot)) {
1499 put_page(head);
1500 goto repeat;
1501 }
1502
1503 pages[ret] = page;
1504 if (++ret == nr_pages)
1505 break;
1506 }
1507
1508 rcu_read_unlock();
1509 return ret;
1510 }
1511
1512 /**
1513 * find_get_pages_contig - gang contiguous pagecache lookup
1514 * @mapping: The address_space to search
1515 * @index: The starting page index
1516 * @nr_pages: The maximum number of pages
1517 * @pages: Where the resulting pages are placed
1518 *
1519 * find_get_pages_contig() works exactly like find_get_pages(), except
1520 * that the returned number of pages are guaranteed to be contiguous.
1521 *
1522 * find_get_pages_contig() returns the number of pages which were found.
1523 */
1524 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1525 unsigned int nr_pages, struct page **pages)
1526 {
1527 struct radix_tree_iter iter;
1528 void **slot;
1529 unsigned int ret = 0;
1530
1531 if (unlikely(!nr_pages))
1532 return 0;
1533
1534 rcu_read_lock();
1535 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1536 struct page *head, *page;
1537 repeat:
1538 page = radix_tree_deref_slot(slot);
1539 /* The hole, there no reason to continue */
1540 if (unlikely(!page))
1541 break;
1542
1543 if (radix_tree_exception(page)) {
1544 if (radix_tree_deref_retry(page)) {
1545 slot = radix_tree_iter_retry(&iter);
1546 continue;
1547 }
1548 /*
1549 * A shadow entry of a recently evicted page,
1550 * or a swap entry from shmem/tmpfs. Stop
1551 * looking for contiguous pages.
1552 */
1553 break;
1554 }
1555
1556 head = compound_head(page);
1557 if (!page_cache_get_speculative(head))
1558 goto repeat;
1559
1560 /* The page was split under us? */
1561 if (compound_head(page) != head) {
1562 put_page(head);
1563 goto repeat;
1564 }
1565
1566 /* Has the page moved? */
1567 if (unlikely(page != *slot)) {
1568 put_page(head);
1569 goto repeat;
1570 }
1571
1572 /*
1573 * must check mapping and index after taking the ref.
1574 * otherwise we can get both false positives and false
1575 * negatives, which is just confusing to the caller.
1576 */
1577 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1578 put_page(page);
1579 break;
1580 }
1581
1582 pages[ret] = page;
1583 if (++ret == nr_pages)
1584 break;
1585 }
1586 rcu_read_unlock();
1587 return ret;
1588 }
1589 EXPORT_SYMBOL(find_get_pages_contig);
1590
1591 /**
1592 * find_get_pages_tag - find and return pages that match @tag
1593 * @mapping: the address_space to search
1594 * @index: the starting page index
1595 * @tag: the tag index
1596 * @nr_pages: the maximum number of pages
1597 * @pages: where the resulting pages are placed
1598 *
1599 * Like find_get_pages, except we only return pages which are tagged with
1600 * @tag. We update @index to index the next page for the traversal.
1601 */
1602 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1603 int tag, unsigned int nr_pages, struct page **pages)
1604 {
1605 struct radix_tree_iter iter;
1606 void **slot;
1607 unsigned ret = 0;
1608
1609 if (unlikely(!nr_pages))
1610 return 0;
1611
1612 rcu_read_lock();
1613 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1614 &iter, *index, tag) {
1615 struct page *head, *page;
1616 repeat:
1617 page = radix_tree_deref_slot(slot);
1618 if (unlikely(!page))
1619 continue;
1620
1621 if (radix_tree_exception(page)) {
1622 if (radix_tree_deref_retry(page)) {
1623 slot = radix_tree_iter_retry(&iter);
1624 continue;
1625 }
1626 /*
1627 * A shadow entry of a recently evicted page.
1628 *
1629 * Those entries should never be tagged, but
1630 * this tree walk is lockless and the tags are
1631 * looked up in bulk, one radix tree node at a
1632 * time, so there is a sizable window for page
1633 * reclaim to evict a page we saw tagged.
1634 *
1635 * Skip over it.
1636 */
1637 continue;
1638 }
1639
1640 head = compound_head(page);
1641 if (!page_cache_get_speculative(head))
1642 goto repeat;
1643
1644 /* The page was split under us? */
1645 if (compound_head(page) != head) {
1646 put_page(head);
1647 goto repeat;
1648 }
1649
1650 /* Has the page moved? */
1651 if (unlikely(page != *slot)) {
1652 put_page(head);
1653 goto repeat;
1654 }
1655
1656 pages[ret] = page;
1657 if (++ret == nr_pages)
1658 break;
1659 }
1660
1661 rcu_read_unlock();
1662
1663 if (ret)
1664 *index = pages[ret - 1]->index + 1;
1665
1666 return ret;
1667 }
1668 EXPORT_SYMBOL(find_get_pages_tag);
1669
1670 /**
1671 * find_get_entries_tag - find and return entries that match @tag
1672 * @mapping: the address_space to search
1673 * @start: the starting page cache index
1674 * @tag: the tag index
1675 * @nr_entries: the maximum number of entries
1676 * @entries: where the resulting entries are placed
1677 * @indices: the cache indices corresponding to the entries in @entries
1678 *
1679 * Like find_get_entries, except we only return entries which are tagged with
1680 * @tag.
1681 */
1682 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1683 int tag, unsigned int nr_entries,
1684 struct page **entries, pgoff_t *indices)
1685 {
1686 void **slot;
1687 unsigned int ret = 0;
1688 struct radix_tree_iter iter;
1689
1690 if (!nr_entries)
1691 return 0;
1692
1693 rcu_read_lock();
1694 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1695 &iter, start, tag) {
1696 struct page *head, *page;
1697 repeat:
1698 page = radix_tree_deref_slot(slot);
1699 if (unlikely(!page))
1700 continue;
1701 if (radix_tree_exception(page)) {
1702 if (radix_tree_deref_retry(page)) {
1703 slot = radix_tree_iter_retry(&iter);
1704 continue;
1705 }
1706
1707 /*
1708 * A shadow entry of a recently evicted page, a swap
1709 * entry from shmem/tmpfs or a DAX entry. Return it
1710 * without attempting to raise page count.
1711 */
1712 goto export;
1713 }
1714
1715 head = compound_head(page);
1716 if (!page_cache_get_speculative(head))
1717 goto repeat;
1718
1719 /* The page was split under us? */
1720 if (compound_head(page) != head) {
1721 put_page(head);
1722 goto repeat;
1723 }
1724
1725 /* Has the page moved? */
1726 if (unlikely(page != *slot)) {
1727 put_page(head);
1728 goto repeat;
1729 }
1730 export:
1731 indices[ret] = iter.index;
1732 entries[ret] = page;
1733 if (++ret == nr_entries)
1734 break;
1735 }
1736 rcu_read_unlock();
1737 return ret;
1738 }
1739 EXPORT_SYMBOL(find_get_entries_tag);
1740
1741 /*
1742 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1743 * a _large_ part of the i/o request. Imagine the worst scenario:
1744 *
1745 * ---R__________________________________________B__________
1746 * ^ reading here ^ bad block(assume 4k)
1747 *
1748 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1749 * => failing the whole request => read(R) => read(R+1) =>
1750 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1751 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1752 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1753 *
1754 * It is going insane. Fix it by quickly scaling down the readahead size.
1755 */
1756 static void shrink_readahead_size_eio(struct file *filp,
1757 struct file_ra_state *ra)
1758 {
1759 ra->ra_pages /= 4;
1760 }
1761
1762 /**
1763 * do_generic_file_read - generic file read routine
1764 * @filp: the file to read
1765 * @ppos: current file position
1766 * @iter: data destination
1767 * @written: already copied
1768 *
1769 * This is a generic file read routine, and uses the
1770 * mapping->a_ops->readpage() function for the actual low-level stuff.
1771 *
1772 * This is really ugly. But the goto's actually try to clarify some
1773 * of the logic when it comes to error handling etc.
1774 */
1775 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1776 struct iov_iter *iter, ssize_t written)
1777 {
1778 struct address_space *mapping = filp->f_mapping;
1779 struct inode *inode = mapping->host;
1780 struct file_ra_state *ra = &filp->f_ra;
1781 pgoff_t index;
1782 pgoff_t last_index;
1783 pgoff_t prev_index;
1784 unsigned long offset; /* offset into pagecache page */
1785 unsigned int prev_offset;
1786 int error = 0;
1787
1788 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1789 return 0;
1790 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1791
1792 index = *ppos >> PAGE_SHIFT;
1793 prev_index = ra->prev_pos >> PAGE_SHIFT;
1794 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1795 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1796 offset = *ppos & ~PAGE_MASK;
1797
1798 for (;;) {
1799 struct page *page;
1800 pgoff_t end_index;
1801 loff_t isize;
1802 unsigned long nr, ret;
1803
1804 cond_resched();
1805 find_page:
1806 if (fatal_signal_pending(current)) {
1807 error = -EINTR;
1808 goto out;
1809 }
1810
1811 page = find_get_page(mapping, index);
1812 if (!page) {
1813 page_cache_sync_readahead(mapping,
1814 ra, filp,
1815 index, last_index - index);
1816 page = find_get_page(mapping, index);
1817 if (unlikely(page == NULL))
1818 goto no_cached_page;
1819 }
1820 if (PageReadahead(page)) {
1821 page_cache_async_readahead(mapping,
1822 ra, filp, page,
1823 index, last_index - index);
1824 }
1825 if (!PageUptodate(page)) {
1826 /*
1827 * See comment in do_read_cache_page on why
1828 * wait_on_page_locked is used to avoid unnecessarily
1829 * serialisations and why it's safe.
1830 */
1831 error = wait_on_page_locked_killable(page);
1832 if (unlikely(error))
1833 goto readpage_error;
1834 if (PageUptodate(page))
1835 goto page_ok;
1836
1837 if (inode->i_blkbits == PAGE_SHIFT ||
1838 !mapping->a_ops->is_partially_uptodate)
1839 goto page_not_up_to_date;
1840 /* pipes can't handle partially uptodate pages */
1841 if (unlikely(iter->type & ITER_PIPE))
1842 goto page_not_up_to_date;
1843 if (!trylock_page(page))
1844 goto page_not_up_to_date;
1845 /* Did it get truncated before we got the lock? */
1846 if (!page->mapping)
1847 goto page_not_up_to_date_locked;
1848 if (!mapping->a_ops->is_partially_uptodate(page,
1849 offset, iter->count))
1850 goto page_not_up_to_date_locked;
1851 unlock_page(page);
1852 }
1853 page_ok:
1854 /*
1855 * i_size must be checked after we know the page is Uptodate.
1856 *
1857 * Checking i_size after the check allows us to calculate
1858 * the correct value for "nr", which means the zero-filled
1859 * part of the page is not copied back to userspace (unless
1860 * another truncate extends the file - this is desired though).
1861 */
1862
1863 isize = i_size_read(inode);
1864 end_index = (isize - 1) >> PAGE_SHIFT;
1865 if (unlikely(!isize || index > end_index)) {
1866 put_page(page);
1867 goto out;
1868 }
1869
1870 /* nr is the maximum number of bytes to copy from this page */
1871 nr = PAGE_SIZE;
1872 if (index == end_index) {
1873 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1874 if (nr <= offset) {
1875 put_page(page);
1876 goto out;
1877 }
1878 }
1879 nr = nr - offset;
1880
1881 /* If users can be writing to this page using arbitrary
1882 * virtual addresses, take care about potential aliasing
1883 * before reading the page on the kernel side.
1884 */
1885 if (mapping_writably_mapped(mapping))
1886 flush_dcache_page(page);
1887
1888 /*
1889 * When a sequential read accesses a page several times,
1890 * only mark it as accessed the first time.
1891 */
1892 if (prev_index != index || offset != prev_offset)
1893 mark_page_accessed(page);
1894 prev_index = index;
1895
1896 /*
1897 * Ok, we have the page, and it's up-to-date, so
1898 * now we can copy it to user space...
1899 */
1900
1901 ret = copy_page_to_iter(page, offset, nr, iter);
1902 offset += ret;
1903 index += offset >> PAGE_SHIFT;
1904 offset &= ~PAGE_MASK;
1905 prev_offset = offset;
1906
1907 put_page(page);
1908 written += ret;
1909 if (!iov_iter_count(iter))
1910 goto out;
1911 if (ret < nr) {
1912 error = -EFAULT;
1913 goto out;
1914 }
1915 continue;
1916
1917 page_not_up_to_date:
1918 /* Get exclusive access to the page ... */
1919 error = lock_page_killable(page);
1920 if (unlikely(error))
1921 goto readpage_error;
1922
1923 page_not_up_to_date_locked:
1924 /* Did it get truncated before we got the lock? */
1925 if (!page->mapping) {
1926 unlock_page(page);
1927 put_page(page);
1928 continue;
1929 }
1930
1931 /* Did somebody else fill it already? */
1932 if (PageUptodate(page)) {
1933 unlock_page(page);
1934 goto page_ok;
1935 }
1936
1937 readpage:
1938 /*
1939 * A previous I/O error may have been due to temporary
1940 * failures, eg. multipath errors.
1941 * PG_error will be set again if readpage fails.
1942 */
1943 ClearPageError(page);
1944 /* Start the actual read. The read will unlock the page. */
1945 error = mapping->a_ops->readpage(filp, page);
1946
1947 if (unlikely(error)) {
1948 if (error == AOP_TRUNCATED_PAGE) {
1949 put_page(page);
1950 error = 0;
1951 goto find_page;
1952 }
1953 goto readpage_error;
1954 }
1955
1956 if (!PageUptodate(page)) {
1957 error = lock_page_killable(page);
1958 if (unlikely(error))
1959 goto readpage_error;
1960 if (!PageUptodate(page)) {
1961 if (page->mapping == NULL) {
1962 /*
1963 * invalidate_mapping_pages got it
1964 */
1965 unlock_page(page);
1966 put_page(page);
1967 goto find_page;
1968 }
1969 unlock_page(page);
1970 shrink_readahead_size_eio(filp, ra);
1971 error = -EIO;
1972 goto readpage_error;
1973 }
1974 unlock_page(page);
1975 }
1976
1977 goto page_ok;
1978
1979 readpage_error:
1980 /* UHHUH! A synchronous read error occurred. Report it */
1981 put_page(page);
1982 goto out;
1983
1984 no_cached_page:
1985 /*
1986 * Ok, it wasn't cached, so we need to create a new
1987 * page..
1988 */
1989 page = page_cache_alloc_cold(mapping);
1990 if (!page) {
1991 error = -ENOMEM;
1992 goto out;
1993 }
1994 error = add_to_page_cache_lru(page, mapping, index,
1995 mapping_gfp_constraint(mapping, GFP_KERNEL));
1996 if (error) {
1997 put_page(page);
1998 if (error == -EEXIST) {
1999 error = 0;
2000 goto find_page;
2001 }
2002 goto out;
2003 }
2004 goto readpage;
2005 }
2006
2007 out:
2008 ra->prev_pos = prev_index;
2009 ra->prev_pos <<= PAGE_SHIFT;
2010 ra->prev_pos |= prev_offset;
2011
2012 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2013 file_accessed(filp);
2014 return written ? written : error;
2015 }
2016
2017 /**
2018 * generic_file_read_iter - generic filesystem read routine
2019 * @iocb: kernel I/O control block
2020 * @iter: destination for the data read
2021 *
2022 * This is the "read_iter()" routine for all filesystems
2023 * that can use the page cache directly.
2024 */
2025 ssize_t
2026 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2027 {
2028 struct file *file = iocb->ki_filp;
2029 ssize_t retval = 0;
2030 size_t count = iov_iter_count(iter);
2031
2032 if (!count)
2033 goto out; /* skip atime */
2034
2035 if (iocb->ki_flags & IOCB_DIRECT) {
2036 struct address_space *mapping = file->f_mapping;
2037 struct inode *inode = mapping->host;
2038 loff_t size;
2039
2040 size = i_size_read(inode);
2041 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2042 iocb->ki_pos + count - 1);
2043 if (retval < 0)
2044 goto out;
2045
2046 file_accessed(file);
2047
2048 retval = mapping->a_ops->direct_IO(iocb, iter);
2049 if (retval >= 0) {
2050 iocb->ki_pos += retval;
2051 count -= retval;
2052 }
2053 iov_iter_revert(iter, count - iov_iter_count(iter));
2054
2055 /*
2056 * Btrfs can have a short DIO read if we encounter
2057 * compressed extents, so if there was an error, or if
2058 * we've already read everything we wanted to, or if
2059 * there was a short read because we hit EOF, go ahead
2060 * and return. Otherwise fallthrough to buffered io for
2061 * the rest of the read. Buffered reads will not work for
2062 * DAX files, so don't bother trying.
2063 */
2064 if (retval < 0 || !count || iocb->ki_pos >= size ||
2065 IS_DAX(inode))
2066 goto out;
2067 }
2068
2069 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2070 out:
2071 return retval;
2072 }
2073 EXPORT_SYMBOL(generic_file_read_iter);
2074
2075 #ifdef CONFIG_MMU
2076 /**
2077 * page_cache_read - adds requested page to the page cache if not already there
2078 * @file: file to read
2079 * @offset: page index
2080 * @gfp_mask: memory allocation flags
2081 *
2082 * This adds the requested page to the page cache if it isn't already there,
2083 * and schedules an I/O to read in its contents from disk.
2084 */
2085 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2086 {
2087 struct address_space *mapping = file->f_mapping;
2088 struct page *page;
2089 int ret;
2090
2091 do {
2092 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2093 if (!page)
2094 return -ENOMEM;
2095
2096 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2097 if (ret == 0)
2098 ret = mapping->a_ops->readpage(file, page);
2099 else if (ret == -EEXIST)
2100 ret = 0; /* losing race to add is OK */
2101
2102 put_page(page);
2103
2104 } while (ret == AOP_TRUNCATED_PAGE);
2105
2106 return ret;
2107 }
2108
2109 #define MMAP_LOTSAMISS (100)
2110
2111 /*
2112 * Synchronous readahead happens when we don't even find
2113 * a page in the page cache at all.
2114 */
2115 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2116 struct file_ra_state *ra,
2117 struct file *file,
2118 pgoff_t offset)
2119 {
2120 struct address_space *mapping = file->f_mapping;
2121
2122 /* If we don't want any read-ahead, don't bother */
2123 if (vma->vm_flags & VM_RAND_READ)
2124 return;
2125 if (!ra->ra_pages)
2126 return;
2127
2128 if (vma->vm_flags & VM_SEQ_READ) {
2129 page_cache_sync_readahead(mapping, ra, file, offset,
2130 ra->ra_pages);
2131 return;
2132 }
2133
2134 /* Avoid banging the cache line if not needed */
2135 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2136 ra->mmap_miss++;
2137
2138 /*
2139 * Do we miss much more than hit in this file? If so,
2140 * stop bothering with read-ahead. It will only hurt.
2141 */
2142 if (ra->mmap_miss > MMAP_LOTSAMISS)
2143 return;
2144
2145 /*
2146 * mmap read-around
2147 */
2148 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2149 ra->size = ra->ra_pages;
2150 ra->async_size = ra->ra_pages / 4;
2151 ra_submit(ra, mapping, file);
2152 }
2153
2154 /*
2155 * Asynchronous readahead happens when we find the page and PG_readahead,
2156 * so we want to possibly extend the readahead further..
2157 */
2158 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2159 struct file_ra_state *ra,
2160 struct file *file,
2161 struct page *page,
2162 pgoff_t offset)
2163 {
2164 struct address_space *mapping = file->f_mapping;
2165
2166 /* If we don't want any read-ahead, don't bother */
2167 if (vma->vm_flags & VM_RAND_READ)
2168 return;
2169 if (ra->mmap_miss > 0)
2170 ra->mmap_miss--;
2171 if (PageReadahead(page))
2172 page_cache_async_readahead(mapping, ra, file,
2173 page, offset, ra->ra_pages);
2174 }
2175
2176 /**
2177 * filemap_fault - read in file data for page fault handling
2178 * @vmf: struct vm_fault containing details of the fault
2179 *
2180 * filemap_fault() is invoked via the vma operations vector for a
2181 * mapped memory region to read in file data during a page fault.
2182 *
2183 * The goto's are kind of ugly, but this streamlines the normal case of having
2184 * it in the page cache, and handles the special cases reasonably without
2185 * having a lot of duplicated code.
2186 *
2187 * vma->vm_mm->mmap_sem must be held on entry.
2188 *
2189 * If our return value has VM_FAULT_RETRY set, it's because
2190 * lock_page_or_retry() returned 0.
2191 * The mmap_sem has usually been released in this case.
2192 * See __lock_page_or_retry() for the exception.
2193 *
2194 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2195 * has not been released.
2196 *
2197 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2198 */
2199 int filemap_fault(struct vm_fault *vmf)
2200 {
2201 int error;
2202 struct file *file = vmf->vma->vm_file;
2203 struct address_space *mapping = file->f_mapping;
2204 struct file_ra_state *ra = &file->f_ra;
2205 struct inode *inode = mapping->host;
2206 pgoff_t offset = vmf->pgoff;
2207 pgoff_t max_off;
2208 struct page *page;
2209 int ret = 0;
2210
2211 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2212 if (unlikely(offset >= max_off))
2213 return VM_FAULT_SIGBUS;
2214
2215 /*
2216 * Do we have something in the page cache already?
2217 */
2218 page = find_get_page(mapping, offset);
2219 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2220 /*
2221 * We found the page, so try async readahead before
2222 * waiting for the lock.
2223 */
2224 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2225 } else if (!page) {
2226 /* No page in the page cache at all */
2227 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2228 count_vm_event(PGMAJFAULT);
2229 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2230 ret = VM_FAULT_MAJOR;
2231 retry_find:
2232 page = find_get_page(mapping, offset);
2233 if (!page)
2234 goto no_cached_page;
2235 }
2236
2237 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2238 put_page(page);
2239 return ret | VM_FAULT_RETRY;
2240 }
2241
2242 /* Did it get truncated? */
2243 if (unlikely(page->mapping != mapping)) {
2244 unlock_page(page);
2245 put_page(page);
2246 goto retry_find;
2247 }
2248 VM_BUG_ON_PAGE(page->index != offset, page);
2249
2250 /*
2251 * We have a locked page in the page cache, now we need to check
2252 * that it's up-to-date. If not, it is going to be due to an error.
2253 */
2254 if (unlikely(!PageUptodate(page)))
2255 goto page_not_uptodate;
2256
2257 /*
2258 * Found the page and have a reference on it.
2259 * We must recheck i_size under page lock.
2260 */
2261 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2262 if (unlikely(offset >= max_off)) {
2263 unlock_page(page);
2264 put_page(page);
2265 return VM_FAULT_SIGBUS;
2266 }
2267
2268 vmf->page = page;
2269 return ret | VM_FAULT_LOCKED;
2270
2271 no_cached_page:
2272 /*
2273 * We're only likely to ever get here if MADV_RANDOM is in
2274 * effect.
2275 */
2276 error = page_cache_read(file, offset, vmf->gfp_mask);
2277
2278 /*
2279 * The page we want has now been added to the page cache.
2280 * In the unlikely event that someone removed it in the
2281 * meantime, we'll just come back here and read it again.
2282 */
2283 if (error >= 0)
2284 goto retry_find;
2285
2286 /*
2287 * An error return from page_cache_read can result if the
2288 * system is low on memory, or a problem occurs while trying
2289 * to schedule I/O.
2290 */
2291 if (error == -ENOMEM)
2292 return VM_FAULT_OOM;
2293 return VM_FAULT_SIGBUS;
2294
2295 page_not_uptodate:
2296 /*
2297 * Umm, take care of errors if the page isn't up-to-date.
2298 * Try to re-read it _once_. We do this synchronously,
2299 * because there really aren't any performance issues here
2300 * and we need to check for errors.
2301 */
2302 ClearPageError(page);
2303 error = mapping->a_ops->readpage(file, page);
2304 if (!error) {
2305 wait_on_page_locked(page);
2306 if (!PageUptodate(page))
2307 error = -EIO;
2308 }
2309 put_page(page);
2310
2311 if (!error || error == AOP_TRUNCATED_PAGE)
2312 goto retry_find;
2313
2314 /* Things didn't work out. Return zero to tell the mm layer so. */
2315 shrink_readahead_size_eio(file, ra);
2316 return VM_FAULT_SIGBUS;
2317 }
2318 EXPORT_SYMBOL(filemap_fault);
2319
2320 void filemap_map_pages(struct vm_fault *vmf,
2321 pgoff_t start_pgoff, pgoff_t end_pgoff)
2322 {
2323 struct radix_tree_iter iter;
2324 void **slot;
2325 struct file *file = vmf->vma->vm_file;
2326 struct address_space *mapping = file->f_mapping;
2327 pgoff_t last_pgoff = start_pgoff;
2328 unsigned long max_idx;
2329 struct page *head, *page;
2330
2331 rcu_read_lock();
2332 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2333 start_pgoff) {
2334 if (iter.index > end_pgoff)
2335 break;
2336 repeat:
2337 page = radix_tree_deref_slot(slot);
2338 if (unlikely(!page))
2339 goto next;
2340 if (radix_tree_exception(page)) {
2341 if (radix_tree_deref_retry(page)) {
2342 slot = radix_tree_iter_retry(&iter);
2343 continue;
2344 }
2345 goto next;
2346 }
2347
2348 head = compound_head(page);
2349 if (!page_cache_get_speculative(head))
2350 goto repeat;
2351
2352 /* The page was split under us? */
2353 if (compound_head(page) != head) {
2354 put_page(head);
2355 goto repeat;
2356 }
2357
2358 /* Has the page moved? */
2359 if (unlikely(page != *slot)) {
2360 put_page(head);
2361 goto repeat;
2362 }
2363
2364 if (!PageUptodate(page) ||
2365 PageReadahead(page) ||
2366 PageHWPoison(page))
2367 goto skip;
2368 if (!trylock_page(page))
2369 goto skip;
2370
2371 if (page->mapping != mapping || !PageUptodate(page))
2372 goto unlock;
2373
2374 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2375 if (page->index >= max_idx)
2376 goto unlock;
2377
2378 if (file->f_ra.mmap_miss > 0)
2379 file->f_ra.mmap_miss--;
2380
2381 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2382 if (vmf->pte)
2383 vmf->pte += iter.index - last_pgoff;
2384 last_pgoff = iter.index;
2385 if (alloc_set_pte(vmf, NULL, page))
2386 goto unlock;
2387 unlock_page(page);
2388 goto next;
2389 unlock:
2390 unlock_page(page);
2391 skip:
2392 put_page(page);
2393 next:
2394 /* Huge page is mapped? No need to proceed. */
2395 if (pmd_trans_huge(*vmf->pmd))
2396 break;
2397 if (iter.index == end_pgoff)
2398 break;
2399 }
2400 rcu_read_unlock();
2401 }
2402 EXPORT_SYMBOL(filemap_map_pages);
2403
2404 int filemap_page_mkwrite(struct vm_fault *vmf)
2405 {
2406 struct page *page = vmf->page;
2407 struct inode *inode = file_inode(vmf->vma->vm_file);
2408 int ret = VM_FAULT_LOCKED;
2409
2410 sb_start_pagefault(inode->i_sb);
2411 file_update_time(vmf->vma->vm_file);
2412 lock_page(page);
2413 if (page->mapping != inode->i_mapping) {
2414 unlock_page(page);
2415 ret = VM_FAULT_NOPAGE;
2416 goto out;
2417 }
2418 /*
2419 * We mark the page dirty already here so that when freeze is in
2420 * progress, we are guaranteed that writeback during freezing will
2421 * see the dirty page and writeprotect it again.
2422 */
2423 set_page_dirty(page);
2424 wait_for_stable_page(page);
2425 out:
2426 sb_end_pagefault(inode->i_sb);
2427 return ret;
2428 }
2429 EXPORT_SYMBOL(filemap_page_mkwrite);
2430
2431 const struct vm_operations_struct generic_file_vm_ops = {
2432 .fault = filemap_fault,
2433 .map_pages = filemap_map_pages,
2434 .page_mkwrite = filemap_page_mkwrite,
2435 };
2436
2437 /* This is used for a general mmap of a disk file */
2438
2439 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2440 {
2441 struct address_space *mapping = file->f_mapping;
2442
2443 if (!mapping->a_ops->readpage)
2444 return -ENOEXEC;
2445 file_accessed(file);
2446 vma->vm_ops = &generic_file_vm_ops;
2447 return 0;
2448 }
2449
2450 /*
2451 * This is for filesystems which do not implement ->writepage.
2452 */
2453 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2454 {
2455 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2456 return -EINVAL;
2457 return generic_file_mmap(file, vma);
2458 }
2459 #else
2460 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2461 {
2462 return -ENOSYS;
2463 }
2464 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2465 {
2466 return -ENOSYS;
2467 }
2468 #endif /* CONFIG_MMU */
2469
2470 EXPORT_SYMBOL(generic_file_mmap);
2471 EXPORT_SYMBOL(generic_file_readonly_mmap);
2472
2473 static struct page *wait_on_page_read(struct page *page)
2474 {
2475 if (!IS_ERR(page)) {
2476 wait_on_page_locked(page);
2477 if (!PageUptodate(page)) {
2478 put_page(page);
2479 page = ERR_PTR(-EIO);
2480 }
2481 }
2482 return page;
2483 }
2484
2485 static struct page *do_read_cache_page(struct address_space *mapping,
2486 pgoff_t index,
2487 int (*filler)(void *, struct page *),
2488 void *data,
2489 gfp_t gfp)
2490 {
2491 struct page *page;
2492 int err;
2493 repeat:
2494 page = find_get_page(mapping, index);
2495 if (!page) {
2496 page = __page_cache_alloc(gfp | __GFP_COLD);
2497 if (!page)
2498 return ERR_PTR(-ENOMEM);
2499 err = add_to_page_cache_lru(page, mapping, index, gfp);
2500 if (unlikely(err)) {
2501 put_page(page);
2502 if (err == -EEXIST)
2503 goto repeat;
2504 /* Presumably ENOMEM for radix tree node */
2505 return ERR_PTR(err);
2506 }
2507
2508 filler:
2509 err = filler(data, page);
2510 if (err < 0) {
2511 put_page(page);
2512 return ERR_PTR(err);
2513 }
2514
2515 page = wait_on_page_read(page);
2516 if (IS_ERR(page))
2517 return page;
2518 goto out;
2519 }
2520 if (PageUptodate(page))
2521 goto out;
2522
2523 /*
2524 * Page is not up to date and may be locked due one of the following
2525 * case a: Page is being filled and the page lock is held
2526 * case b: Read/write error clearing the page uptodate status
2527 * case c: Truncation in progress (page locked)
2528 * case d: Reclaim in progress
2529 *
2530 * Case a, the page will be up to date when the page is unlocked.
2531 * There is no need to serialise on the page lock here as the page
2532 * is pinned so the lock gives no additional protection. Even if the
2533 * the page is truncated, the data is still valid if PageUptodate as
2534 * it's a race vs truncate race.
2535 * Case b, the page will not be up to date
2536 * Case c, the page may be truncated but in itself, the data may still
2537 * be valid after IO completes as it's a read vs truncate race. The
2538 * operation must restart if the page is not uptodate on unlock but
2539 * otherwise serialising on page lock to stabilise the mapping gives
2540 * no additional guarantees to the caller as the page lock is
2541 * released before return.
2542 * Case d, similar to truncation. If reclaim holds the page lock, it
2543 * will be a race with remove_mapping that determines if the mapping
2544 * is valid on unlock but otherwise the data is valid and there is
2545 * no need to serialise with page lock.
2546 *
2547 * As the page lock gives no additional guarantee, we optimistically
2548 * wait on the page to be unlocked and check if it's up to date and
2549 * use the page if it is. Otherwise, the page lock is required to
2550 * distinguish between the different cases. The motivation is that we
2551 * avoid spurious serialisations and wakeups when multiple processes
2552 * wait on the same page for IO to complete.
2553 */
2554 wait_on_page_locked(page);
2555 if (PageUptodate(page))
2556 goto out;
2557
2558 /* Distinguish between all the cases under the safety of the lock */
2559 lock_page(page);
2560
2561 /* Case c or d, restart the operation */
2562 if (!page->mapping) {
2563 unlock_page(page);
2564 put_page(page);
2565 goto repeat;
2566 }
2567
2568 /* Someone else locked and filled the page in a very small window */
2569 if (PageUptodate(page)) {
2570 unlock_page(page);
2571 goto out;
2572 }
2573 goto filler;
2574
2575 out:
2576 mark_page_accessed(page);
2577 return page;
2578 }
2579
2580 /**
2581 * read_cache_page - read into page cache, fill it if needed
2582 * @mapping: the page's address_space
2583 * @index: the page index
2584 * @filler: function to perform the read
2585 * @data: first arg to filler(data, page) function, often left as NULL
2586 *
2587 * Read into the page cache. If a page already exists, and PageUptodate() is
2588 * not set, try to fill the page and wait for it to become unlocked.
2589 *
2590 * If the page does not get brought uptodate, return -EIO.
2591 */
2592 struct page *read_cache_page(struct address_space *mapping,
2593 pgoff_t index,
2594 int (*filler)(void *, struct page *),
2595 void *data)
2596 {
2597 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2598 }
2599 EXPORT_SYMBOL(read_cache_page);
2600
2601 /**
2602 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2603 * @mapping: the page's address_space
2604 * @index: the page index
2605 * @gfp: the page allocator flags to use if allocating
2606 *
2607 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2608 * any new page allocations done using the specified allocation flags.
2609 *
2610 * If the page does not get brought uptodate, return -EIO.
2611 */
2612 struct page *read_cache_page_gfp(struct address_space *mapping,
2613 pgoff_t index,
2614 gfp_t gfp)
2615 {
2616 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2617
2618 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2619 }
2620 EXPORT_SYMBOL(read_cache_page_gfp);
2621
2622 /*
2623 * Performs necessary checks before doing a write
2624 *
2625 * Can adjust writing position or amount of bytes to write.
2626 * Returns appropriate error code that caller should return or
2627 * zero in case that write should be allowed.
2628 */
2629 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2630 {
2631 struct file *file = iocb->ki_filp;
2632 struct inode *inode = file->f_mapping->host;
2633 unsigned long limit = rlimit(RLIMIT_FSIZE);
2634 loff_t pos;
2635
2636 if (!iov_iter_count(from))
2637 return 0;
2638
2639 /* FIXME: this is for backwards compatibility with 2.4 */
2640 if (iocb->ki_flags & IOCB_APPEND)
2641 iocb->ki_pos = i_size_read(inode);
2642
2643 pos = iocb->ki_pos;
2644
2645 if (limit != RLIM_INFINITY) {
2646 if (iocb->ki_pos >= limit) {
2647 send_sig(SIGXFSZ, current, 0);
2648 return -EFBIG;
2649 }
2650 iov_iter_truncate(from, limit - (unsigned long)pos);
2651 }
2652
2653 /*
2654 * LFS rule
2655 */
2656 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2657 !(file->f_flags & O_LARGEFILE))) {
2658 if (pos >= MAX_NON_LFS)
2659 return -EFBIG;
2660 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2661 }
2662
2663 /*
2664 * Are we about to exceed the fs block limit ?
2665 *
2666 * If we have written data it becomes a short write. If we have
2667 * exceeded without writing data we send a signal and return EFBIG.
2668 * Linus frestrict idea will clean these up nicely..
2669 */
2670 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2671 return -EFBIG;
2672
2673 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2674 return iov_iter_count(from);
2675 }
2676 EXPORT_SYMBOL(generic_write_checks);
2677
2678 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2679 loff_t pos, unsigned len, unsigned flags,
2680 struct page **pagep, void **fsdata)
2681 {
2682 const struct address_space_operations *aops = mapping->a_ops;
2683
2684 return aops->write_begin(file, mapping, pos, len, flags,
2685 pagep, fsdata);
2686 }
2687 EXPORT_SYMBOL(pagecache_write_begin);
2688
2689 int pagecache_write_end(struct file *file, struct address_space *mapping,
2690 loff_t pos, unsigned len, unsigned copied,
2691 struct page *page, void *fsdata)
2692 {
2693 const struct address_space_operations *aops = mapping->a_ops;
2694
2695 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2696 }
2697 EXPORT_SYMBOL(pagecache_write_end);
2698
2699 ssize_t
2700 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2701 {
2702 struct file *file = iocb->ki_filp;
2703 struct address_space *mapping = file->f_mapping;
2704 struct inode *inode = mapping->host;
2705 loff_t pos = iocb->ki_pos;
2706 ssize_t written;
2707 size_t write_len;
2708 pgoff_t end;
2709
2710 write_len = iov_iter_count(from);
2711 end = (pos + write_len - 1) >> PAGE_SHIFT;
2712
2713 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2714 if (written)
2715 goto out;
2716
2717 /*
2718 * After a write we want buffered reads to be sure to go to disk to get
2719 * the new data. We invalidate clean cached page from the region we're
2720 * about to write. We do this *before* the write so that we can return
2721 * without clobbering -EIOCBQUEUED from ->direct_IO().
2722 */
2723 written = invalidate_inode_pages2_range(mapping,
2724 pos >> PAGE_SHIFT, end);
2725 /*
2726 * If a page can not be invalidated, return 0 to fall back
2727 * to buffered write.
2728 */
2729 if (written) {
2730 if (written == -EBUSY)
2731 return 0;
2732 goto out;
2733 }
2734
2735 written = mapping->a_ops->direct_IO(iocb, from);
2736
2737 /*
2738 * Finally, try again to invalidate clean pages which might have been
2739 * cached by non-direct readahead, or faulted in by get_user_pages()
2740 * if the source of the write was an mmap'ed region of the file
2741 * we're writing. Either one is a pretty crazy thing to do,
2742 * so we don't support it 100%. If this invalidation
2743 * fails, tough, the write still worked...
2744 */
2745 invalidate_inode_pages2_range(mapping,
2746 pos >> PAGE_SHIFT, end);
2747
2748 if (written > 0) {
2749 pos += written;
2750 write_len -= written;
2751 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2752 i_size_write(inode, pos);
2753 mark_inode_dirty(inode);
2754 }
2755 iocb->ki_pos = pos;
2756 }
2757 iov_iter_revert(from, write_len - iov_iter_count(from));
2758 out:
2759 return written;
2760 }
2761 EXPORT_SYMBOL(generic_file_direct_write);
2762
2763 /*
2764 * Find or create a page at the given pagecache position. Return the locked
2765 * page. This function is specifically for buffered writes.
2766 */
2767 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2768 pgoff_t index, unsigned flags)
2769 {
2770 struct page *page;
2771 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2772
2773 if (flags & AOP_FLAG_NOFS)
2774 fgp_flags |= FGP_NOFS;
2775
2776 page = pagecache_get_page(mapping, index, fgp_flags,
2777 mapping_gfp_mask(mapping));
2778 if (page)
2779 wait_for_stable_page(page);
2780
2781 return page;
2782 }
2783 EXPORT_SYMBOL(grab_cache_page_write_begin);
2784
2785 ssize_t generic_perform_write(struct file *file,
2786 struct iov_iter *i, loff_t pos)
2787 {
2788 struct address_space *mapping = file->f_mapping;
2789 const struct address_space_operations *a_ops = mapping->a_ops;
2790 long status = 0;
2791 ssize_t written = 0;
2792 unsigned int flags = 0;
2793
2794 do {
2795 struct page *page;
2796 unsigned long offset; /* Offset into pagecache page */
2797 unsigned long bytes; /* Bytes to write to page */
2798 size_t copied; /* Bytes copied from user */
2799 void *fsdata;
2800
2801 offset = (pos & (PAGE_SIZE - 1));
2802 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2803 iov_iter_count(i));
2804
2805 again:
2806 /*
2807 * Bring in the user page that we will copy from _first_.
2808 * Otherwise there's a nasty deadlock on copying from the
2809 * same page as we're writing to, without it being marked
2810 * up-to-date.
2811 *
2812 * Not only is this an optimisation, but it is also required
2813 * to check that the address is actually valid, when atomic
2814 * usercopies are used, below.
2815 */
2816 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2817 status = -EFAULT;
2818 break;
2819 }
2820
2821 if (fatal_signal_pending(current)) {
2822 status = -EINTR;
2823 break;
2824 }
2825
2826 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2827 &page, &fsdata);
2828 if (unlikely(status < 0))
2829 break;
2830
2831 if (mapping_writably_mapped(mapping))
2832 flush_dcache_page(page);
2833
2834 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2835 flush_dcache_page(page);
2836
2837 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2838 page, fsdata);
2839 if (unlikely(status < 0))
2840 break;
2841 copied = status;
2842
2843 cond_resched();
2844
2845 iov_iter_advance(i, copied);
2846 if (unlikely(copied == 0)) {
2847 /*
2848 * If we were unable to copy any data at all, we must
2849 * fall back to a single segment length write.
2850 *
2851 * If we didn't fallback here, we could livelock
2852 * because not all segments in the iov can be copied at
2853 * once without a pagefault.
2854 */
2855 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2856 iov_iter_single_seg_count(i));
2857 goto again;
2858 }
2859 pos += copied;
2860 written += copied;
2861
2862 balance_dirty_pages_ratelimited(mapping);
2863 } while (iov_iter_count(i));
2864
2865 return written ? written : status;
2866 }
2867 EXPORT_SYMBOL(generic_perform_write);
2868
2869 /**
2870 * __generic_file_write_iter - write data to a file
2871 * @iocb: IO state structure (file, offset, etc.)
2872 * @from: iov_iter with data to write
2873 *
2874 * This function does all the work needed for actually writing data to a
2875 * file. It does all basic checks, removes SUID from the file, updates
2876 * modification times and calls proper subroutines depending on whether we
2877 * do direct IO or a standard buffered write.
2878 *
2879 * It expects i_mutex to be grabbed unless we work on a block device or similar
2880 * object which does not need locking at all.
2881 *
2882 * This function does *not* take care of syncing data in case of O_SYNC write.
2883 * A caller has to handle it. This is mainly due to the fact that we want to
2884 * avoid syncing under i_mutex.
2885 */
2886 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2887 {
2888 struct file *file = iocb->ki_filp;
2889 struct address_space * mapping = file->f_mapping;
2890 struct inode *inode = mapping->host;
2891 ssize_t written = 0;
2892 ssize_t err;
2893 ssize_t status;
2894
2895 /* We can write back this queue in page reclaim */
2896 current->backing_dev_info = inode_to_bdi(inode);
2897 err = file_remove_privs(file);
2898 if (err)
2899 goto out;
2900
2901 err = file_update_time(file);
2902 if (err)
2903 goto out;
2904
2905 if (iocb->ki_flags & IOCB_DIRECT) {
2906 loff_t pos, endbyte;
2907
2908 written = generic_file_direct_write(iocb, from);
2909 /*
2910 * If the write stopped short of completing, fall back to
2911 * buffered writes. Some filesystems do this for writes to
2912 * holes, for example. For DAX files, a buffered write will
2913 * not succeed (even if it did, DAX does not handle dirty
2914 * page-cache pages correctly).
2915 */
2916 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2917 goto out;
2918
2919 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2920 /*
2921 * If generic_perform_write() returned a synchronous error
2922 * then we want to return the number of bytes which were
2923 * direct-written, or the error code if that was zero. Note
2924 * that this differs from normal direct-io semantics, which
2925 * will return -EFOO even if some bytes were written.
2926 */
2927 if (unlikely(status < 0)) {
2928 err = status;
2929 goto out;
2930 }
2931 /*
2932 * We need to ensure that the page cache pages are written to
2933 * disk and invalidated to preserve the expected O_DIRECT
2934 * semantics.
2935 */
2936 endbyte = pos + status - 1;
2937 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2938 if (err == 0) {
2939 iocb->ki_pos = endbyte + 1;
2940 written += status;
2941 invalidate_mapping_pages(mapping,
2942 pos >> PAGE_SHIFT,
2943 endbyte >> PAGE_SHIFT);
2944 } else {
2945 /*
2946 * We don't know how much we wrote, so just return
2947 * the number of bytes which were direct-written
2948 */
2949 }
2950 } else {
2951 written = generic_perform_write(file, from, iocb->ki_pos);
2952 if (likely(written > 0))
2953 iocb->ki_pos += written;
2954 }
2955 out:
2956 current->backing_dev_info = NULL;
2957 return written ? written : err;
2958 }
2959 EXPORT_SYMBOL(__generic_file_write_iter);
2960
2961 /**
2962 * generic_file_write_iter - write data to a file
2963 * @iocb: IO state structure
2964 * @from: iov_iter with data to write
2965 *
2966 * This is a wrapper around __generic_file_write_iter() to be used by most
2967 * filesystems. It takes care of syncing the file in case of O_SYNC file
2968 * and acquires i_mutex as needed.
2969 */
2970 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2971 {
2972 struct file *file = iocb->ki_filp;
2973 struct inode *inode = file->f_mapping->host;
2974 ssize_t ret;
2975
2976 inode_lock(inode);
2977 ret = generic_write_checks(iocb, from);
2978 if (ret > 0)
2979 ret = __generic_file_write_iter(iocb, from);
2980 inode_unlock(inode);
2981
2982 if (ret > 0)
2983 ret = generic_write_sync(iocb, ret);
2984 return ret;
2985 }
2986 EXPORT_SYMBOL(generic_file_write_iter);
2987
2988 /**
2989 * try_to_release_page() - release old fs-specific metadata on a page
2990 *
2991 * @page: the page which the kernel is trying to free
2992 * @gfp_mask: memory allocation flags (and I/O mode)
2993 *
2994 * The address_space is to try to release any data against the page
2995 * (presumably at page->private). If the release was successful, return '1'.
2996 * Otherwise return zero.
2997 *
2998 * This may also be called if PG_fscache is set on a page, indicating that the
2999 * page is known to the local caching routines.
3000 *
3001 * The @gfp_mask argument specifies whether I/O may be performed to release
3002 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3003 *
3004 */
3005 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3006 {
3007 struct address_space * const mapping = page->mapping;
3008
3009 BUG_ON(!PageLocked(page));
3010 if (PageWriteback(page))
3011 return 0;
3012
3013 if (mapping && mapping->a_ops->releasepage)
3014 return mapping->a_ops->releasepage(page, gfp_mask);
3015 return try_to_free_buffers(page);
3016 }
3017
3018 EXPORT_SYMBOL(try_to_release_page);