]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/filemap.c
Merge remote-tracking branch 'mkp-scsi/4.10/scsi-fixes' into fixes
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115 {
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 } else {
136 /* DAX can replace empty locked entry with a hole */
137 WARN_ON_ONCE(p !=
138 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139 /* Wakeup waiters for exceptional entry lock */
140 dax_wake_mapping_entry_waiter(mapping, page->index, p,
141 false);
142 }
143 }
144 __radix_tree_replace(&mapping->page_tree, node, slot, page,
145 workingset_update_node, mapping);
146 mapping->nrpages++;
147 return 0;
148 }
149
150 static void page_cache_tree_delete(struct address_space *mapping,
151 struct page *page, void *shadow)
152 {
153 int i, nr;
154
155 /* hugetlb pages are represented by one entry in the radix tree */
156 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
157
158 VM_BUG_ON_PAGE(!PageLocked(page), page);
159 VM_BUG_ON_PAGE(PageTail(page), page);
160 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
161
162 for (i = 0; i < nr; i++) {
163 struct radix_tree_node *node;
164 void **slot;
165
166 __radix_tree_lookup(&mapping->page_tree, page->index + i,
167 &node, &slot);
168
169 VM_BUG_ON_PAGE(!node && nr != 1, page);
170
171 radix_tree_clear_tags(&mapping->page_tree, node, slot);
172 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173 workingset_update_node, mapping);
174 }
175
176 if (shadow) {
177 mapping->nrexceptional += nr;
178 /*
179 * Make sure the nrexceptional update is committed before
180 * the nrpages update so that final truncate racing
181 * with reclaim does not see both counters 0 at the
182 * same time and miss a shadow entry.
183 */
184 smp_wmb();
185 }
186 mapping->nrpages -= nr;
187 }
188
189 /*
190 * Delete a page from the page cache and free it. Caller has to make
191 * sure the page is locked and that nobody else uses it - or that usage
192 * is safe. The caller must hold the mapping's tree_lock.
193 */
194 void __delete_from_page_cache(struct page *page, void *shadow)
195 {
196 struct address_space *mapping = page->mapping;
197 int nr = hpage_nr_pages(page);
198
199 trace_mm_filemap_delete_from_page_cache(page);
200 /*
201 * if we're uptodate, flush out into the cleancache, otherwise
202 * invalidate any existing cleancache entries. We can't leave
203 * stale data around in the cleancache once our page is gone
204 */
205 if (PageUptodate(page) && PageMappedToDisk(page))
206 cleancache_put_page(page);
207 else
208 cleancache_invalidate_page(mapping, page);
209
210 VM_BUG_ON_PAGE(PageTail(page), page);
211 VM_BUG_ON_PAGE(page_mapped(page), page);
212 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213 int mapcount;
214
215 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
216 current->comm, page_to_pfn(page));
217 dump_page(page, "still mapped when deleted");
218 dump_stack();
219 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220
221 mapcount = page_mapcount(page);
222 if (mapping_exiting(mapping) &&
223 page_count(page) >= mapcount + 2) {
224 /*
225 * All vmas have already been torn down, so it's
226 * a good bet that actually the page is unmapped,
227 * and we'd prefer not to leak it: if we're wrong,
228 * some other bad page check should catch it later.
229 */
230 page_mapcount_reset(page);
231 page_ref_sub(page, mapcount);
232 }
233 }
234
235 page_cache_tree_delete(mapping, page, shadow);
236
237 page->mapping = NULL;
238 /* Leave page->index set: truncation lookup relies upon it */
239
240 /* hugetlb pages do not participate in page cache accounting. */
241 if (!PageHuge(page))
242 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243 if (PageSwapBacked(page)) {
244 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245 if (PageTransHuge(page))
246 __dec_node_page_state(page, NR_SHMEM_THPS);
247 } else {
248 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249 }
250
251 /*
252 * At this point page must be either written or cleaned by truncate.
253 * Dirty page here signals a bug and loss of unwritten data.
254 *
255 * This fixes dirty accounting after removing the page entirely but
256 * leaves PageDirty set: it has no effect for truncated page and
257 * anyway will be cleared before returning page into buddy allocator.
258 */
259 if (WARN_ON_ONCE(PageDirty(page)))
260 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
261 }
262
263 /**
264 * delete_from_page_cache - delete page from page cache
265 * @page: the page which the kernel is trying to remove from page cache
266 *
267 * This must be called only on pages that have been verified to be in the page
268 * cache and locked. It will never put the page into the free list, the caller
269 * has a reference on the page.
270 */
271 void delete_from_page_cache(struct page *page)
272 {
273 struct address_space *mapping = page_mapping(page);
274 unsigned long flags;
275 void (*freepage)(struct page *);
276
277 BUG_ON(!PageLocked(page));
278
279 freepage = mapping->a_ops->freepage;
280
281 spin_lock_irqsave(&mapping->tree_lock, flags);
282 __delete_from_page_cache(page, NULL);
283 spin_unlock_irqrestore(&mapping->tree_lock, flags);
284
285 if (freepage)
286 freepage(page);
287
288 if (PageTransHuge(page) && !PageHuge(page)) {
289 page_ref_sub(page, HPAGE_PMD_NR);
290 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291 } else {
292 put_page(page);
293 }
294 }
295 EXPORT_SYMBOL(delete_from_page_cache);
296
297 int filemap_check_errors(struct address_space *mapping)
298 {
299 int ret = 0;
300 /* Check for outstanding write errors */
301 if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 ret = -ENOSPC;
304 if (test_bit(AS_EIO, &mapping->flags) &&
305 test_and_clear_bit(AS_EIO, &mapping->flags))
306 ret = -EIO;
307 return ret;
308 }
309 EXPORT_SYMBOL(filemap_check_errors);
310
311 /**
312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313 * @mapping: address space structure to write
314 * @start: offset in bytes where the range starts
315 * @end: offset in bytes where the range ends (inclusive)
316 * @sync_mode: enable synchronous operation
317 *
318 * Start writeback against all of a mapping's dirty pages that lie
319 * within the byte offsets <start, end> inclusive.
320 *
321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322 * opposed to a regular memory cleansing writeback. The difference between
323 * these two operations is that if a dirty page/buffer is encountered, it must
324 * be waited upon, and not just skipped over.
325 */
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327 loff_t end, int sync_mode)
328 {
329 int ret;
330 struct writeback_control wbc = {
331 .sync_mode = sync_mode,
332 .nr_to_write = LONG_MAX,
333 .range_start = start,
334 .range_end = end,
335 };
336
337 if (!mapping_cap_writeback_dirty(mapping))
338 return 0;
339
340 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341 ret = do_writepages(mapping, &wbc);
342 wbc_detach_inode(&wbc);
343 return ret;
344 }
345
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347 int sync_mode)
348 {
349 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
350 }
351
352 int filemap_fdatawrite(struct address_space *mapping)
353 {
354 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355 }
356 EXPORT_SYMBOL(filemap_fdatawrite);
357
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359 loff_t end)
360 {
361 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
364
365 /**
366 * filemap_flush - mostly a non-blocking flush
367 * @mapping: target address_space
368 *
369 * This is a mostly non-blocking flush. Not suitable for data-integrity
370 * purposes - I/O may not be started against all dirty pages.
371 */
372 int filemap_flush(struct address_space *mapping)
373 {
374 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375 }
376 EXPORT_SYMBOL(filemap_flush);
377
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379 loff_t start_byte, loff_t end_byte)
380 {
381 pgoff_t index = start_byte >> PAGE_SHIFT;
382 pgoff_t end = end_byte >> PAGE_SHIFT;
383 struct pagevec pvec;
384 int nr_pages;
385 int ret = 0;
386
387 if (end_byte < start_byte)
388 goto out;
389
390 pagevec_init(&pvec, 0);
391 while ((index <= end) &&
392 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 PAGECACHE_TAG_WRITEBACK,
394 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395 unsigned i;
396
397 for (i = 0; i < nr_pages; i++) {
398 struct page *page = pvec.pages[i];
399
400 /* until radix tree lookup accepts end_index */
401 if (page->index > end)
402 continue;
403
404 wait_on_page_writeback(page);
405 if (TestClearPageError(page))
406 ret = -EIO;
407 }
408 pagevec_release(&pvec);
409 cond_resched();
410 }
411 out:
412 return ret;
413 }
414
415 /**
416 * filemap_fdatawait_range - wait for writeback to complete
417 * @mapping: address space structure to wait for
418 * @start_byte: offset in bytes where the range starts
419 * @end_byte: offset in bytes where the range ends (inclusive)
420 *
421 * Walk the list of under-writeback pages of the given address space
422 * in the given range and wait for all of them. Check error status of
423 * the address space and return it.
424 *
425 * Since the error status of the address space is cleared by this function,
426 * callers are responsible for checking the return value and handling and/or
427 * reporting the error.
428 */
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430 loff_t end_byte)
431 {
432 int ret, ret2;
433
434 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435 ret2 = filemap_check_errors(mapping);
436 if (!ret)
437 ret = ret2;
438
439 return ret;
440 }
441 EXPORT_SYMBOL(filemap_fdatawait_range);
442
443 /**
444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445 * @mapping: address space structure to wait for
446 *
447 * Walk the list of under-writeback pages of the given address space
448 * and wait for all of them. Unlike filemap_fdatawait(), this function
449 * does not clear error status of the address space.
450 *
451 * Use this function if callers don't handle errors themselves. Expected
452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453 * fsfreeze(8)
454 */
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
456 {
457 loff_t i_size = i_size_read(mapping->host);
458
459 if (i_size == 0)
460 return;
461
462 __filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464
465 /**
466 * filemap_fdatawait - wait for all under-writeback pages to complete
467 * @mapping: address space structure to wait for
468 *
469 * Walk the list of under-writeback pages of the given address space
470 * and wait for all of them. Check error status of the address space
471 * and return it.
472 *
473 * Since the error status of the address space is cleared by this function,
474 * callers are responsible for checking the return value and handling and/or
475 * reporting the error.
476 */
477 int filemap_fdatawait(struct address_space *mapping)
478 {
479 loff_t i_size = i_size_read(mapping->host);
480
481 if (i_size == 0)
482 return 0;
483
484 return filemap_fdatawait_range(mapping, 0, i_size - 1);
485 }
486 EXPORT_SYMBOL(filemap_fdatawait);
487
488 int filemap_write_and_wait(struct address_space *mapping)
489 {
490 int err = 0;
491
492 if ((!dax_mapping(mapping) && mapping->nrpages) ||
493 (dax_mapping(mapping) && mapping->nrexceptional)) {
494 err = filemap_fdatawrite(mapping);
495 /*
496 * Even if the above returned error, the pages may be
497 * written partially (e.g. -ENOSPC), so we wait for it.
498 * But the -EIO is special case, it may indicate the worst
499 * thing (e.g. bug) happened, so we avoid waiting for it.
500 */
501 if (err != -EIO) {
502 int err2 = filemap_fdatawait(mapping);
503 if (!err)
504 err = err2;
505 }
506 } else {
507 err = filemap_check_errors(mapping);
508 }
509 return err;
510 }
511 EXPORT_SYMBOL(filemap_write_and_wait);
512
513 /**
514 * filemap_write_and_wait_range - write out & wait on a file range
515 * @mapping: the address_space for the pages
516 * @lstart: offset in bytes where the range starts
517 * @lend: offset in bytes where the range ends (inclusive)
518 *
519 * Write out and wait upon file offsets lstart->lend, inclusive.
520 *
521 * Note that `lend' is inclusive (describes the last byte to be written) so
522 * that this function can be used to write to the very end-of-file (end = -1).
523 */
524 int filemap_write_and_wait_range(struct address_space *mapping,
525 loff_t lstart, loff_t lend)
526 {
527 int err = 0;
528
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
531 err = __filemap_fdatawrite_range(mapping, lstart, lend,
532 WB_SYNC_ALL);
533 /* See comment of filemap_write_and_wait() */
534 if (err != -EIO) {
535 int err2 = filemap_fdatawait_range(mapping,
536 lstart, lend);
537 if (!err)
538 err = err2;
539 }
540 } else {
541 err = filemap_check_errors(mapping);
542 }
543 return err;
544 }
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
546
547 /**
548 * replace_page_cache_page - replace a pagecache page with a new one
549 * @old: page to be replaced
550 * @new: page to replace with
551 * @gfp_mask: allocation mode
552 *
553 * This function replaces a page in the pagecache with a new one. On
554 * success it acquires the pagecache reference for the new page and
555 * drops it for the old page. Both the old and new pages must be
556 * locked. This function does not add the new page to the LRU, the
557 * caller must do that.
558 *
559 * The remove + add is atomic. The only way this function can fail is
560 * memory allocation failure.
561 */
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563 {
564 int error;
565
566 VM_BUG_ON_PAGE(!PageLocked(old), old);
567 VM_BUG_ON_PAGE(!PageLocked(new), new);
568 VM_BUG_ON_PAGE(new->mapping, new);
569
570 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571 if (!error) {
572 struct address_space *mapping = old->mapping;
573 void (*freepage)(struct page *);
574 unsigned long flags;
575
576 pgoff_t offset = old->index;
577 freepage = mapping->a_ops->freepage;
578
579 get_page(new);
580 new->mapping = mapping;
581 new->index = offset;
582
583 spin_lock_irqsave(&mapping->tree_lock, flags);
584 __delete_from_page_cache(old, NULL);
585 error = page_cache_tree_insert(mapping, new, NULL);
586 BUG_ON(error);
587
588 /*
589 * hugetlb pages do not participate in page cache accounting.
590 */
591 if (!PageHuge(new))
592 __inc_node_page_state(new, NR_FILE_PAGES);
593 if (PageSwapBacked(new))
594 __inc_node_page_state(new, NR_SHMEM);
595 spin_unlock_irqrestore(&mapping->tree_lock, flags);
596 mem_cgroup_migrate(old, new);
597 radix_tree_preload_end();
598 if (freepage)
599 freepage(old);
600 put_page(old);
601 }
602
603 return error;
604 }
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
606
607 static int __add_to_page_cache_locked(struct page *page,
608 struct address_space *mapping,
609 pgoff_t offset, gfp_t gfp_mask,
610 void **shadowp)
611 {
612 int huge = PageHuge(page);
613 struct mem_cgroup *memcg;
614 int error;
615
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618
619 if (!huge) {
620 error = mem_cgroup_try_charge(page, current->mm,
621 gfp_mask, &memcg, false);
622 if (error)
623 return error;
624 }
625
626 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627 if (error) {
628 if (!huge)
629 mem_cgroup_cancel_charge(page, memcg, false);
630 return error;
631 }
632
633 get_page(page);
634 page->mapping = mapping;
635 page->index = offset;
636
637 spin_lock_irq(&mapping->tree_lock);
638 error = page_cache_tree_insert(mapping, page, shadowp);
639 radix_tree_preload_end();
640 if (unlikely(error))
641 goto err_insert;
642
643 /* hugetlb pages do not participate in page cache accounting. */
644 if (!huge)
645 __inc_node_page_state(page, NR_FILE_PAGES);
646 spin_unlock_irq(&mapping->tree_lock);
647 if (!huge)
648 mem_cgroup_commit_charge(page, memcg, false, false);
649 trace_mm_filemap_add_to_page_cache(page);
650 return 0;
651 err_insert:
652 page->mapping = NULL;
653 /* Leave page->index set: truncation relies upon it */
654 spin_unlock_irq(&mapping->tree_lock);
655 if (!huge)
656 mem_cgroup_cancel_charge(page, memcg, false);
657 put_page(page);
658 return error;
659 }
660
661 /**
662 * add_to_page_cache_locked - add a locked page to the pagecache
663 * @page: page to add
664 * @mapping: the page's address_space
665 * @offset: page index
666 * @gfp_mask: page allocation mode
667 *
668 * This function is used to add a page to the pagecache. It must be locked.
669 * This function does not add the page to the LRU. The caller must do that.
670 */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 pgoff_t offset, gfp_t gfp_mask)
673 {
674 return __add_to_page_cache_locked(page, mapping, offset,
675 gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680 pgoff_t offset, gfp_t gfp_mask)
681 {
682 void *shadow = NULL;
683 int ret;
684
685 __SetPageLocked(page);
686 ret = __add_to_page_cache_locked(page, mapping, offset,
687 gfp_mask, &shadow);
688 if (unlikely(ret))
689 __ClearPageLocked(page);
690 else {
691 /*
692 * The page might have been evicted from cache only
693 * recently, in which case it should be activated like
694 * any other repeatedly accessed page.
695 * The exception is pages getting rewritten; evicting other
696 * data from the working set, only to cache data that will
697 * get overwritten with something else, is a waste of memory.
698 */
699 if (!(gfp_mask & __GFP_WRITE) &&
700 shadow && workingset_refault(shadow)) {
701 SetPageActive(page);
702 workingset_activation(page);
703 } else
704 ClearPageActive(page);
705 lru_cache_add(page);
706 }
707 return ret;
708 }
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
710
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
713 {
714 int n;
715 struct page *page;
716
717 if (cpuset_do_page_mem_spread()) {
718 unsigned int cpuset_mems_cookie;
719 do {
720 cpuset_mems_cookie = read_mems_allowed_begin();
721 n = cpuset_mem_spread_node();
722 page = __alloc_pages_node(n, gfp, 0);
723 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
724
725 return page;
726 }
727 return alloc_pages(gfp, 0);
728 }
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
731
732 /*
733 * In order to wait for pages to become available there must be
734 * waitqueues associated with pages. By using a hash table of
735 * waitqueues where the bucket discipline is to maintain all
736 * waiters on the same queue and wake all when any of the pages
737 * become available, and for the woken contexts to check to be
738 * sure the appropriate page became available, this saves space
739 * at a cost of "thundering herd" phenomena during rare hash
740 * collisions.
741 */
742 #define PAGE_WAIT_TABLE_BITS 8
743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
745
746 static wait_queue_head_t *page_waitqueue(struct page *page)
747 {
748 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
749 }
750
751 void __init pagecache_init(void)
752 {
753 int i;
754
755 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
756 init_waitqueue_head(&page_wait_table[i]);
757
758 page_writeback_init();
759 }
760
761 struct wait_page_key {
762 struct page *page;
763 int bit_nr;
764 int page_match;
765 };
766
767 struct wait_page_queue {
768 struct page *page;
769 int bit_nr;
770 wait_queue_t wait;
771 };
772
773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
774 {
775 struct wait_page_key *key = arg;
776 struct wait_page_queue *wait_page
777 = container_of(wait, struct wait_page_queue, wait);
778
779 if (wait_page->page != key->page)
780 return 0;
781 key->page_match = 1;
782
783 if (wait_page->bit_nr != key->bit_nr)
784 return 0;
785 if (test_bit(key->bit_nr, &key->page->flags))
786 return 0;
787
788 return autoremove_wake_function(wait, mode, sync, key);
789 }
790
791 void wake_up_page_bit(struct page *page, int bit_nr)
792 {
793 wait_queue_head_t *q = page_waitqueue(page);
794 struct wait_page_key key;
795 unsigned long flags;
796
797 key.page = page;
798 key.bit_nr = bit_nr;
799 key.page_match = 0;
800
801 spin_lock_irqsave(&q->lock, flags);
802 __wake_up_locked_key(q, TASK_NORMAL, &key);
803 /*
804 * It is possible for other pages to have collided on the waitqueue
805 * hash, so in that case check for a page match. That prevents a long-
806 * term waiter
807 *
808 * It is still possible to miss a case here, when we woke page waiters
809 * and removed them from the waitqueue, but there are still other
810 * page waiters.
811 */
812 if (!waitqueue_active(q) || !key.page_match) {
813 ClearPageWaiters(page);
814 /*
815 * It's possible to miss clearing Waiters here, when we woke
816 * our page waiters, but the hashed waitqueue has waiters for
817 * other pages on it.
818 *
819 * That's okay, it's a rare case. The next waker will clear it.
820 */
821 }
822 spin_unlock_irqrestore(&q->lock, flags);
823 }
824 EXPORT_SYMBOL(wake_up_page_bit);
825
826 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
827 struct page *page, int bit_nr, int state, bool lock)
828 {
829 struct wait_page_queue wait_page;
830 wait_queue_t *wait = &wait_page.wait;
831 int ret = 0;
832
833 init_wait(wait);
834 wait->func = wake_page_function;
835 wait_page.page = page;
836 wait_page.bit_nr = bit_nr;
837
838 for (;;) {
839 spin_lock_irq(&q->lock);
840
841 if (likely(list_empty(&wait->task_list))) {
842 if (lock)
843 __add_wait_queue_tail_exclusive(q, wait);
844 else
845 __add_wait_queue(q, wait);
846 SetPageWaiters(page);
847 }
848
849 set_current_state(state);
850
851 spin_unlock_irq(&q->lock);
852
853 if (likely(test_bit(bit_nr, &page->flags))) {
854 io_schedule();
855 if (unlikely(signal_pending_state(state, current))) {
856 ret = -EINTR;
857 break;
858 }
859 }
860
861 if (lock) {
862 if (!test_and_set_bit_lock(bit_nr, &page->flags))
863 break;
864 } else {
865 if (!test_bit(bit_nr, &page->flags))
866 break;
867 }
868 }
869
870 finish_wait(q, wait);
871
872 /*
873 * A signal could leave PageWaiters set. Clearing it here if
874 * !waitqueue_active would be possible (by open-coding finish_wait),
875 * but still fail to catch it in the case of wait hash collision. We
876 * already can fail to clear wait hash collision cases, so don't
877 * bother with signals either.
878 */
879
880 return ret;
881 }
882
883 void wait_on_page_bit(struct page *page, int bit_nr)
884 {
885 wait_queue_head_t *q = page_waitqueue(page);
886 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
887 }
888 EXPORT_SYMBOL(wait_on_page_bit);
889
890 int wait_on_page_bit_killable(struct page *page, int bit_nr)
891 {
892 wait_queue_head_t *q = page_waitqueue(page);
893 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
894 }
895
896 /**
897 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
898 * @page: Page defining the wait queue of interest
899 * @waiter: Waiter to add to the queue
900 *
901 * Add an arbitrary @waiter to the wait queue for the nominated @page.
902 */
903 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
904 {
905 wait_queue_head_t *q = page_waitqueue(page);
906 unsigned long flags;
907
908 spin_lock_irqsave(&q->lock, flags);
909 __add_wait_queue(q, waiter);
910 SetPageWaiters(page);
911 spin_unlock_irqrestore(&q->lock, flags);
912 }
913 EXPORT_SYMBOL_GPL(add_page_wait_queue);
914
915 /**
916 * unlock_page - unlock a locked page
917 * @page: the page
918 *
919 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
920 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
921 * mechanism between PageLocked pages and PageWriteback pages is shared.
922 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
923 *
924 * The mb is necessary to enforce ordering between the clear_bit and the read
925 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
926 */
927 void unlock_page(struct page *page)
928 {
929 page = compound_head(page);
930 VM_BUG_ON_PAGE(!PageLocked(page), page);
931 clear_bit_unlock(PG_locked, &page->flags);
932 smp_mb__after_atomic();
933 wake_up_page(page, PG_locked);
934 }
935 EXPORT_SYMBOL(unlock_page);
936
937 /**
938 * end_page_writeback - end writeback against a page
939 * @page: the page
940 */
941 void end_page_writeback(struct page *page)
942 {
943 /*
944 * TestClearPageReclaim could be used here but it is an atomic
945 * operation and overkill in this particular case. Failing to
946 * shuffle a page marked for immediate reclaim is too mild to
947 * justify taking an atomic operation penalty at the end of
948 * ever page writeback.
949 */
950 if (PageReclaim(page)) {
951 ClearPageReclaim(page);
952 rotate_reclaimable_page(page);
953 }
954
955 if (!test_clear_page_writeback(page))
956 BUG();
957
958 smp_mb__after_atomic();
959 wake_up_page(page, PG_writeback);
960 }
961 EXPORT_SYMBOL(end_page_writeback);
962
963 /*
964 * After completing I/O on a page, call this routine to update the page
965 * flags appropriately
966 */
967 void page_endio(struct page *page, bool is_write, int err)
968 {
969 if (!is_write) {
970 if (!err) {
971 SetPageUptodate(page);
972 } else {
973 ClearPageUptodate(page);
974 SetPageError(page);
975 }
976 unlock_page(page);
977 } else {
978 if (err) {
979 SetPageError(page);
980 if (page->mapping)
981 mapping_set_error(page->mapping, err);
982 }
983 end_page_writeback(page);
984 }
985 }
986 EXPORT_SYMBOL_GPL(page_endio);
987
988 /**
989 * __lock_page - get a lock on the page, assuming we need to sleep to get it
990 * @page: the page to lock
991 */
992 void __lock_page(struct page *__page)
993 {
994 struct page *page = compound_head(__page);
995 wait_queue_head_t *q = page_waitqueue(page);
996 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
997 }
998 EXPORT_SYMBOL(__lock_page);
999
1000 int __lock_page_killable(struct page *__page)
1001 {
1002 struct page *page = compound_head(__page);
1003 wait_queue_head_t *q = page_waitqueue(page);
1004 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1005 }
1006 EXPORT_SYMBOL_GPL(__lock_page_killable);
1007
1008 /*
1009 * Return values:
1010 * 1 - page is locked; mmap_sem is still held.
1011 * 0 - page is not locked.
1012 * mmap_sem has been released (up_read()), unless flags had both
1013 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1014 * which case mmap_sem is still held.
1015 *
1016 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1017 * with the page locked and the mmap_sem unperturbed.
1018 */
1019 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1020 unsigned int flags)
1021 {
1022 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1023 /*
1024 * CAUTION! In this case, mmap_sem is not released
1025 * even though return 0.
1026 */
1027 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1028 return 0;
1029
1030 up_read(&mm->mmap_sem);
1031 if (flags & FAULT_FLAG_KILLABLE)
1032 wait_on_page_locked_killable(page);
1033 else
1034 wait_on_page_locked(page);
1035 return 0;
1036 } else {
1037 if (flags & FAULT_FLAG_KILLABLE) {
1038 int ret;
1039
1040 ret = __lock_page_killable(page);
1041 if (ret) {
1042 up_read(&mm->mmap_sem);
1043 return 0;
1044 }
1045 } else
1046 __lock_page(page);
1047 return 1;
1048 }
1049 }
1050
1051 /**
1052 * page_cache_next_hole - find the next hole (not-present entry)
1053 * @mapping: mapping
1054 * @index: index
1055 * @max_scan: maximum range to search
1056 *
1057 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1058 * lowest indexed hole.
1059 *
1060 * Returns: the index of the hole if found, otherwise returns an index
1061 * outside of the set specified (in which case 'return - index >=
1062 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1063 * be returned.
1064 *
1065 * page_cache_next_hole may be called under rcu_read_lock. However,
1066 * like radix_tree_gang_lookup, this will not atomically search a
1067 * snapshot of the tree at a single point in time. For example, if a
1068 * hole is created at index 5, then subsequently a hole is created at
1069 * index 10, page_cache_next_hole covering both indexes may return 10
1070 * if called under rcu_read_lock.
1071 */
1072 pgoff_t page_cache_next_hole(struct address_space *mapping,
1073 pgoff_t index, unsigned long max_scan)
1074 {
1075 unsigned long i;
1076
1077 for (i = 0; i < max_scan; i++) {
1078 struct page *page;
1079
1080 page = radix_tree_lookup(&mapping->page_tree, index);
1081 if (!page || radix_tree_exceptional_entry(page))
1082 break;
1083 index++;
1084 if (index == 0)
1085 break;
1086 }
1087
1088 return index;
1089 }
1090 EXPORT_SYMBOL(page_cache_next_hole);
1091
1092 /**
1093 * page_cache_prev_hole - find the prev hole (not-present entry)
1094 * @mapping: mapping
1095 * @index: index
1096 * @max_scan: maximum range to search
1097 *
1098 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1099 * the first hole.
1100 *
1101 * Returns: the index of the hole if found, otherwise returns an index
1102 * outside of the set specified (in which case 'index - return >=
1103 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1104 * will be returned.
1105 *
1106 * page_cache_prev_hole may be called under rcu_read_lock. However,
1107 * like radix_tree_gang_lookup, this will not atomically search a
1108 * snapshot of the tree at a single point in time. For example, if a
1109 * hole is created at index 10, then subsequently a hole is created at
1110 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1111 * called under rcu_read_lock.
1112 */
1113 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1114 pgoff_t index, unsigned long max_scan)
1115 {
1116 unsigned long i;
1117
1118 for (i = 0; i < max_scan; i++) {
1119 struct page *page;
1120
1121 page = radix_tree_lookup(&mapping->page_tree, index);
1122 if (!page || radix_tree_exceptional_entry(page))
1123 break;
1124 index--;
1125 if (index == ULONG_MAX)
1126 break;
1127 }
1128
1129 return index;
1130 }
1131 EXPORT_SYMBOL(page_cache_prev_hole);
1132
1133 /**
1134 * find_get_entry - find and get a page cache entry
1135 * @mapping: the address_space to search
1136 * @offset: the page cache index
1137 *
1138 * Looks up the page cache slot at @mapping & @offset. If there is a
1139 * page cache page, it is returned with an increased refcount.
1140 *
1141 * If the slot holds a shadow entry of a previously evicted page, or a
1142 * swap entry from shmem/tmpfs, it is returned.
1143 *
1144 * Otherwise, %NULL is returned.
1145 */
1146 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1147 {
1148 void **pagep;
1149 struct page *head, *page;
1150
1151 rcu_read_lock();
1152 repeat:
1153 page = NULL;
1154 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1155 if (pagep) {
1156 page = radix_tree_deref_slot(pagep);
1157 if (unlikely(!page))
1158 goto out;
1159 if (radix_tree_exception(page)) {
1160 if (radix_tree_deref_retry(page))
1161 goto repeat;
1162 /*
1163 * A shadow entry of a recently evicted page,
1164 * or a swap entry from shmem/tmpfs. Return
1165 * it without attempting to raise page count.
1166 */
1167 goto out;
1168 }
1169
1170 head = compound_head(page);
1171 if (!page_cache_get_speculative(head))
1172 goto repeat;
1173
1174 /* The page was split under us? */
1175 if (compound_head(page) != head) {
1176 put_page(head);
1177 goto repeat;
1178 }
1179
1180 /*
1181 * Has the page moved?
1182 * This is part of the lockless pagecache protocol. See
1183 * include/linux/pagemap.h for details.
1184 */
1185 if (unlikely(page != *pagep)) {
1186 put_page(head);
1187 goto repeat;
1188 }
1189 }
1190 out:
1191 rcu_read_unlock();
1192
1193 return page;
1194 }
1195 EXPORT_SYMBOL(find_get_entry);
1196
1197 /**
1198 * find_lock_entry - locate, pin and lock a page cache entry
1199 * @mapping: the address_space to search
1200 * @offset: the page cache index
1201 *
1202 * Looks up the page cache slot at @mapping & @offset. If there is a
1203 * page cache page, it is returned locked and with an increased
1204 * refcount.
1205 *
1206 * If the slot holds a shadow entry of a previously evicted page, or a
1207 * swap entry from shmem/tmpfs, it is returned.
1208 *
1209 * Otherwise, %NULL is returned.
1210 *
1211 * find_lock_entry() may sleep.
1212 */
1213 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1214 {
1215 struct page *page;
1216
1217 repeat:
1218 page = find_get_entry(mapping, offset);
1219 if (page && !radix_tree_exception(page)) {
1220 lock_page(page);
1221 /* Has the page been truncated? */
1222 if (unlikely(page_mapping(page) != mapping)) {
1223 unlock_page(page);
1224 put_page(page);
1225 goto repeat;
1226 }
1227 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1228 }
1229 return page;
1230 }
1231 EXPORT_SYMBOL(find_lock_entry);
1232
1233 /**
1234 * pagecache_get_page - find and get a page reference
1235 * @mapping: the address_space to search
1236 * @offset: the page index
1237 * @fgp_flags: PCG flags
1238 * @gfp_mask: gfp mask to use for the page cache data page allocation
1239 *
1240 * Looks up the page cache slot at @mapping & @offset.
1241 *
1242 * PCG flags modify how the page is returned.
1243 *
1244 * FGP_ACCESSED: the page will be marked accessed
1245 * FGP_LOCK: Page is return locked
1246 * FGP_CREAT: If page is not present then a new page is allocated using
1247 * @gfp_mask and added to the page cache and the VM's LRU
1248 * list. The page is returned locked and with an increased
1249 * refcount. Otherwise, %NULL is returned.
1250 *
1251 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1252 * if the GFP flags specified for FGP_CREAT are atomic.
1253 *
1254 * If there is a page cache page, it is returned with an increased refcount.
1255 */
1256 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1257 int fgp_flags, gfp_t gfp_mask)
1258 {
1259 struct page *page;
1260
1261 repeat:
1262 page = find_get_entry(mapping, offset);
1263 if (radix_tree_exceptional_entry(page))
1264 page = NULL;
1265 if (!page)
1266 goto no_page;
1267
1268 if (fgp_flags & FGP_LOCK) {
1269 if (fgp_flags & FGP_NOWAIT) {
1270 if (!trylock_page(page)) {
1271 put_page(page);
1272 return NULL;
1273 }
1274 } else {
1275 lock_page(page);
1276 }
1277
1278 /* Has the page been truncated? */
1279 if (unlikely(page->mapping != mapping)) {
1280 unlock_page(page);
1281 put_page(page);
1282 goto repeat;
1283 }
1284 VM_BUG_ON_PAGE(page->index != offset, page);
1285 }
1286
1287 if (page && (fgp_flags & FGP_ACCESSED))
1288 mark_page_accessed(page);
1289
1290 no_page:
1291 if (!page && (fgp_flags & FGP_CREAT)) {
1292 int err;
1293 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1294 gfp_mask |= __GFP_WRITE;
1295 if (fgp_flags & FGP_NOFS)
1296 gfp_mask &= ~__GFP_FS;
1297
1298 page = __page_cache_alloc(gfp_mask);
1299 if (!page)
1300 return NULL;
1301
1302 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1303 fgp_flags |= FGP_LOCK;
1304
1305 /* Init accessed so avoid atomic mark_page_accessed later */
1306 if (fgp_flags & FGP_ACCESSED)
1307 __SetPageReferenced(page);
1308
1309 err = add_to_page_cache_lru(page, mapping, offset,
1310 gfp_mask & GFP_RECLAIM_MASK);
1311 if (unlikely(err)) {
1312 put_page(page);
1313 page = NULL;
1314 if (err == -EEXIST)
1315 goto repeat;
1316 }
1317 }
1318
1319 return page;
1320 }
1321 EXPORT_SYMBOL(pagecache_get_page);
1322
1323 /**
1324 * find_get_entries - gang pagecache lookup
1325 * @mapping: The address_space to search
1326 * @start: The starting page cache index
1327 * @nr_entries: The maximum number of entries
1328 * @entries: Where the resulting entries are placed
1329 * @indices: The cache indices corresponding to the entries in @entries
1330 *
1331 * find_get_entries() will search for and return a group of up to
1332 * @nr_entries entries in the mapping. The entries are placed at
1333 * @entries. find_get_entries() takes a reference against any actual
1334 * pages it returns.
1335 *
1336 * The search returns a group of mapping-contiguous page cache entries
1337 * with ascending indexes. There may be holes in the indices due to
1338 * not-present pages.
1339 *
1340 * Any shadow entries of evicted pages, or swap entries from
1341 * shmem/tmpfs, are included in the returned array.
1342 *
1343 * find_get_entries() returns the number of pages and shadow entries
1344 * which were found.
1345 */
1346 unsigned find_get_entries(struct address_space *mapping,
1347 pgoff_t start, unsigned int nr_entries,
1348 struct page **entries, pgoff_t *indices)
1349 {
1350 void **slot;
1351 unsigned int ret = 0;
1352 struct radix_tree_iter iter;
1353
1354 if (!nr_entries)
1355 return 0;
1356
1357 rcu_read_lock();
1358 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1359 struct page *head, *page;
1360 repeat:
1361 page = radix_tree_deref_slot(slot);
1362 if (unlikely(!page))
1363 continue;
1364 if (radix_tree_exception(page)) {
1365 if (radix_tree_deref_retry(page)) {
1366 slot = radix_tree_iter_retry(&iter);
1367 continue;
1368 }
1369 /*
1370 * A shadow entry of a recently evicted page, a swap
1371 * entry from shmem/tmpfs or a DAX entry. Return it
1372 * without attempting to raise page count.
1373 */
1374 goto export;
1375 }
1376
1377 head = compound_head(page);
1378 if (!page_cache_get_speculative(head))
1379 goto repeat;
1380
1381 /* The page was split under us? */
1382 if (compound_head(page) != head) {
1383 put_page(head);
1384 goto repeat;
1385 }
1386
1387 /* Has the page moved? */
1388 if (unlikely(page != *slot)) {
1389 put_page(head);
1390 goto repeat;
1391 }
1392 export:
1393 indices[ret] = iter.index;
1394 entries[ret] = page;
1395 if (++ret == nr_entries)
1396 break;
1397 }
1398 rcu_read_unlock();
1399 return ret;
1400 }
1401
1402 /**
1403 * find_get_pages - gang pagecache lookup
1404 * @mapping: The address_space to search
1405 * @start: The starting page index
1406 * @nr_pages: The maximum number of pages
1407 * @pages: Where the resulting pages are placed
1408 *
1409 * find_get_pages() will search for and return a group of up to
1410 * @nr_pages pages in the mapping. The pages are placed at @pages.
1411 * find_get_pages() takes a reference against the returned pages.
1412 *
1413 * The search returns a group of mapping-contiguous pages with ascending
1414 * indexes. There may be holes in the indices due to not-present pages.
1415 *
1416 * find_get_pages() returns the number of pages which were found.
1417 */
1418 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1419 unsigned int nr_pages, struct page **pages)
1420 {
1421 struct radix_tree_iter iter;
1422 void **slot;
1423 unsigned ret = 0;
1424
1425 if (unlikely(!nr_pages))
1426 return 0;
1427
1428 rcu_read_lock();
1429 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1430 struct page *head, *page;
1431 repeat:
1432 page = radix_tree_deref_slot(slot);
1433 if (unlikely(!page))
1434 continue;
1435
1436 if (radix_tree_exception(page)) {
1437 if (radix_tree_deref_retry(page)) {
1438 slot = radix_tree_iter_retry(&iter);
1439 continue;
1440 }
1441 /*
1442 * A shadow entry of a recently evicted page,
1443 * or a swap entry from shmem/tmpfs. Skip
1444 * over it.
1445 */
1446 continue;
1447 }
1448
1449 head = compound_head(page);
1450 if (!page_cache_get_speculative(head))
1451 goto repeat;
1452
1453 /* The page was split under us? */
1454 if (compound_head(page) != head) {
1455 put_page(head);
1456 goto repeat;
1457 }
1458
1459 /* Has the page moved? */
1460 if (unlikely(page != *slot)) {
1461 put_page(head);
1462 goto repeat;
1463 }
1464
1465 pages[ret] = page;
1466 if (++ret == nr_pages)
1467 break;
1468 }
1469
1470 rcu_read_unlock();
1471 return ret;
1472 }
1473
1474 /**
1475 * find_get_pages_contig - gang contiguous pagecache lookup
1476 * @mapping: The address_space to search
1477 * @index: The starting page index
1478 * @nr_pages: The maximum number of pages
1479 * @pages: Where the resulting pages are placed
1480 *
1481 * find_get_pages_contig() works exactly like find_get_pages(), except
1482 * that the returned number of pages are guaranteed to be contiguous.
1483 *
1484 * find_get_pages_contig() returns the number of pages which were found.
1485 */
1486 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1487 unsigned int nr_pages, struct page **pages)
1488 {
1489 struct radix_tree_iter iter;
1490 void **slot;
1491 unsigned int ret = 0;
1492
1493 if (unlikely(!nr_pages))
1494 return 0;
1495
1496 rcu_read_lock();
1497 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1498 struct page *head, *page;
1499 repeat:
1500 page = radix_tree_deref_slot(slot);
1501 /* The hole, there no reason to continue */
1502 if (unlikely(!page))
1503 break;
1504
1505 if (radix_tree_exception(page)) {
1506 if (radix_tree_deref_retry(page)) {
1507 slot = radix_tree_iter_retry(&iter);
1508 continue;
1509 }
1510 /*
1511 * A shadow entry of a recently evicted page,
1512 * or a swap entry from shmem/tmpfs. Stop
1513 * looking for contiguous pages.
1514 */
1515 break;
1516 }
1517
1518 head = compound_head(page);
1519 if (!page_cache_get_speculative(head))
1520 goto repeat;
1521
1522 /* The page was split under us? */
1523 if (compound_head(page) != head) {
1524 put_page(head);
1525 goto repeat;
1526 }
1527
1528 /* Has the page moved? */
1529 if (unlikely(page != *slot)) {
1530 put_page(head);
1531 goto repeat;
1532 }
1533
1534 /*
1535 * must check mapping and index after taking the ref.
1536 * otherwise we can get both false positives and false
1537 * negatives, which is just confusing to the caller.
1538 */
1539 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1540 put_page(page);
1541 break;
1542 }
1543
1544 pages[ret] = page;
1545 if (++ret == nr_pages)
1546 break;
1547 }
1548 rcu_read_unlock();
1549 return ret;
1550 }
1551 EXPORT_SYMBOL(find_get_pages_contig);
1552
1553 /**
1554 * find_get_pages_tag - find and return pages that match @tag
1555 * @mapping: the address_space to search
1556 * @index: the starting page index
1557 * @tag: the tag index
1558 * @nr_pages: the maximum number of pages
1559 * @pages: where the resulting pages are placed
1560 *
1561 * Like find_get_pages, except we only return pages which are tagged with
1562 * @tag. We update @index to index the next page for the traversal.
1563 */
1564 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1565 int tag, unsigned int nr_pages, struct page **pages)
1566 {
1567 struct radix_tree_iter iter;
1568 void **slot;
1569 unsigned ret = 0;
1570
1571 if (unlikely(!nr_pages))
1572 return 0;
1573
1574 rcu_read_lock();
1575 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1576 &iter, *index, tag) {
1577 struct page *head, *page;
1578 repeat:
1579 page = radix_tree_deref_slot(slot);
1580 if (unlikely(!page))
1581 continue;
1582
1583 if (radix_tree_exception(page)) {
1584 if (radix_tree_deref_retry(page)) {
1585 slot = radix_tree_iter_retry(&iter);
1586 continue;
1587 }
1588 /*
1589 * A shadow entry of a recently evicted page.
1590 *
1591 * Those entries should never be tagged, but
1592 * this tree walk is lockless and the tags are
1593 * looked up in bulk, one radix tree node at a
1594 * time, so there is a sizable window for page
1595 * reclaim to evict a page we saw tagged.
1596 *
1597 * Skip over it.
1598 */
1599 continue;
1600 }
1601
1602 head = compound_head(page);
1603 if (!page_cache_get_speculative(head))
1604 goto repeat;
1605
1606 /* The page was split under us? */
1607 if (compound_head(page) != head) {
1608 put_page(head);
1609 goto repeat;
1610 }
1611
1612 /* Has the page moved? */
1613 if (unlikely(page != *slot)) {
1614 put_page(head);
1615 goto repeat;
1616 }
1617
1618 pages[ret] = page;
1619 if (++ret == nr_pages)
1620 break;
1621 }
1622
1623 rcu_read_unlock();
1624
1625 if (ret)
1626 *index = pages[ret - 1]->index + 1;
1627
1628 return ret;
1629 }
1630 EXPORT_SYMBOL(find_get_pages_tag);
1631
1632 /**
1633 * find_get_entries_tag - find and return entries that match @tag
1634 * @mapping: the address_space to search
1635 * @start: the starting page cache index
1636 * @tag: the tag index
1637 * @nr_entries: the maximum number of entries
1638 * @entries: where the resulting entries are placed
1639 * @indices: the cache indices corresponding to the entries in @entries
1640 *
1641 * Like find_get_entries, except we only return entries which are tagged with
1642 * @tag.
1643 */
1644 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1645 int tag, unsigned int nr_entries,
1646 struct page **entries, pgoff_t *indices)
1647 {
1648 void **slot;
1649 unsigned int ret = 0;
1650 struct radix_tree_iter iter;
1651
1652 if (!nr_entries)
1653 return 0;
1654
1655 rcu_read_lock();
1656 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1657 &iter, start, tag) {
1658 struct page *head, *page;
1659 repeat:
1660 page = radix_tree_deref_slot(slot);
1661 if (unlikely(!page))
1662 continue;
1663 if (radix_tree_exception(page)) {
1664 if (radix_tree_deref_retry(page)) {
1665 slot = radix_tree_iter_retry(&iter);
1666 continue;
1667 }
1668
1669 /*
1670 * A shadow entry of a recently evicted page, a swap
1671 * entry from shmem/tmpfs or a DAX entry. Return it
1672 * without attempting to raise page count.
1673 */
1674 goto export;
1675 }
1676
1677 head = compound_head(page);
1678 if (!page_cache_get_speculative(head))
1679 goto repeat;
1680
1681 /* The page was split under us? */
1682 if (compound_head(page) != head) {
1683 put_page(head);
1684 goto repeat;
1685 }
1686
1687 /* Has the page moved? */
1688 if (unlikely(page != *slot)) {
1689 put_page(head);
1690 goto repeat;
1691 }
1692 export:
1693 indices[ret] = iter.index;
1694 entries[ret] = page;
1695 if (++ret == nr_entries)
1696 break;
1697 }
1698 rcu_read_unlock();
1699 return ret;
1700 }
1701 EXPORT_SYMBOL(find_get_entries_tag);
1702
1703 /*
1704 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1705 * a _large_ part of the i/o request. Imagine the worst scenario:
1706 *
1707 * ---R__________________________________________B__________
1708 * ^ reading here ^ bad block(assume 4k)
1709 *
1710 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1711 * => failing the whole request => read(R) => read(R+1) =>
1712 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1713 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1714 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1715 *
1716 * It is going insane. Fix it by quickly scaling down the readahead size.
1717 */
1718 static void shrink_readahead_size_eio(struct file *filp,
1719 struct file_ra_state *ra)
1720 {
1721 ra->ra_pages /= 4;
1722 }
1723
1724 /**
1725 * do_generic_file_read - generic file read routine
1726 * @filp: the file to read
1727 * @ppos: current file position
1728 * @iter: data destination
1729 * @written: already copied
1730 *
1731 * This is a generic file read routine, and uses the
1732 * mapping->a_ops->readpage() function for the actual low-level stuff.
1733 *
1734 * This is really ugly. But the goto's actually try to clarify some
1735 * of the logic when it comes to error handling etc.
1736 */
1737 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1738 struct iov_iter *iter, ssize_t written)
1739 {
1740 struct address_space *mapping = filp->f_mapping;
1741 struct inode *inode = mapping->host;
1742 struct file_ra_state *ra = &filp->f_ra;
1743 pgoff_t index;
1744 pgoff_t last_index;
1745 pgoff_t prev_index;
1746 unsigned long offset; /* offset into pagecache page */
1747 unsigned int prev_offset;
1748 int error = 0;
1749
1750 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1751 return 0;
1752 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1753
1754 index = *ppos >> PAGE_SHIFT;
1755 prev_index = ra->prev_pos >> PAGE_SHIFT;
1756 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1757 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1758 offset = *ppos & ~PAGE_MASK;
1759
1760 for (;;) {
1761 struct page *page;
1762 pgoff_t end_index;
1763 loff_t isize;
1764 unsigned long nr, ret;
1765
1766 cond_resched();
1767 find_page:
1768 page = find_get_page(mapping, index);
1769 if (!page) {
1770 page_cache_sync_readahead(mapping,
1771 ra, filp,
1772 index, last_index - index);
1773 page = find_get_page(mapping, index);
1774 if (unlikely(page == NULL))
1775 goto no_cached_page;
1776 }
1777 if (PageReadahead(page)) {
1778 page_cache_async_readahead(mapping,
1779 ra, filp, page,
1780 index, last_index - index);
1781 }
1782 if (!PageUptodate(page)) {
1783 /*
1784 * See comment in do_read_cache_page on why
1785 * wait_on_page_locked is used to avoid unnecessarily
1786 * serialisations and why it's safe.
1787 */
1788 error = wait_on_page_locked_killable(page);
1789 if (unlikely(error))
1790 goto readpage_error;
1791 if (PageUptodate(page))
1792 goto page_ok;
1793
1794 if (inode->i_blkbits == PAGE_SHIFT ||
1795 !mapping->a_ops->is_partially_uptodate)
1796 goto page_not_up_to_date;
1797 /* pipes can't handle partially uptodate pages */
1798 if (unlikely(iter->type & ITER_PIPE))
1799 goto page_not_up_to_date;
1800 if (!trylock_page(page))
1801 goto page_not_up_to_date;
1802 /* Did it get truncated before we got the lock? */
1803 if (!page->mapping)
1804 goto page_not_up_to_date_locked;
1805 if (!mapping->a_ops->is_partially_uptodate(page,
1806 offset, iter->count))
1807 goto page_not_up_to_date_locked;
1808 unlock_page(page);
1809 }
1810 page_ok:
1811 /*
1812 * i_size must be checked after we know the page is Uptodate.
1813 *
1814 * Checking i_size after the check allows us to calculate
1815 * the correct value for "nr", which means the zero-filled
1816 * part of the page is not copied back to userspace (unless
1817 * another truncate extends the file - this is desired though).
1818 */
1819
1820 isize = i_size_read(inode);
1821 end_index = (isize - 1) >> PAGE_SHIFT;
1822 if (unlikely(!isize || index > end_index)) {
1823 put_page(page);
1824 goto out;
1825 }
1826
1827 /* nr is the maximum number of bytes to copy from this page */
1828 nr = PAGE_SIZE;
1829 if (index == end_index) {
1830 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1831 if (nr <= offset) {
1832 put_page(page);
1833 goto out;
1834 }
1835 }
1836 nr = nr - offset;
1837
1838 /* If users can be writing to this page using arbitrary
1839 * virtual addresses, take care about potential aliasing
1840 * before reading the page on the kernel side.
1841 */
1842 if (mapping_writably_mapped(mapping))
1843 flush_dcache_page(page);
1844
1845 /*
1846 * When a sequential read accesses a page several times,
1847 * only mark it as accessed the first time.
1848 */
1849 if (prev_index != index || offset != prev_offset)
1850 mark_page_accessed(page);
1851 prev_index = index;
1852
1853 /*
1854 * Ok, we have the page, and it's up-to-date, so
1855 * now we can copy it to user space...
1856 */
1857
1858 ret = copy_page_to_iter(page, offset, nr, iter);
1859 offset += ret;
1860 index += offset >> PAGE_SHIFT;
1861 offset &= ~PAGE_MASK;
1862 prev_offset = offset;
1863
1864 put_page(page);
1865 written += ret;
1866 if (!iov_iter_count(iter))
1867 goto out;
1868 if (ret < nr) {
1869 error = -EFAULT;
1870 goto out;
1871 }
1872 continue;
1873
1874 page_not_up_to_date:
1875 /* Get exclusive access to the page ... */
1876 error = lock_page_killable(page);
1877 if (unlikely(error))
1878 goto readpage_error;
1879
1880 page_not_up_to_date_locked:
1881 /* Did it get truncated before we got the lock? */
1882 if (!page->mapping) {
1883 unlock_page(page);
1884 put_page(page);
1885 continue;
1886 }
1887
1888 /* Did somebody else fill it already? */
1889 if (PageUptodate(page)) {
1890 unlock_page(page);
1891 goto page_ok;
1892 }
1893
1894 readpage:
1895 /*
1896 * A previous I/O error may have been due to temporary
1897 * failures, eg. multipath errors.
1898 * PG_error will be set again if readpage fails.
1899 */
1900 ClearPageError(page);
1901 /* Start the actual read. The read will unlock the page. */
1902 error = mapping->a_ops->readpage(filp, page);
1903
1904 if (unlikely(error)) {
1905 if (error == AOP_TRUNCATED_PAGE) {
1906 put_page(page);
1907 error = 0;
1908 goto find_page;
1909 }
1910 goto readpage_error;
1911 }
1912
1913 if (!PageUptodate(page)) {
1914 error = lock_page_killable(page);
1915 if (unlikely(error))
1916 goto readpage_error;
1917 if (!PageUptodate(page)) {
1918 if (page->mapping == NULL) {
1919 /*
1920 * invalidate_mapping_pages got it
1921 */
1922 unlock_page(page);
1923 put_page(page);
1924 goto find_page;
1925 }
1926 unlock_page(page);
1927 shrink_readahead_size_eio(filp, ra);
1928 error = -EIO;
1929 goto readpage_error;
1930 }
1931 unlock_page(page);
1932 }
1933
1934 goto page_ok;
1935
1936 readpage_error:
1937 /* UHHUH! A synchronous read error occurred. Report it */
1938 put_page(page);
1939 goto out;
1940
1941 no_cached_page:
1942 /*
1943 * Ok, it wasn't cached, so we need to create a new
1944 * page..
1945 */
1946 page = page_cache_alloc_cold(mapping);
1947 if (!page) {
1948 error = -ENOMEM;
1949 goto out;
1950 }
1951 error = add_to_page_cache_lru(page, mapping, index,
1952 mapping_gfp_constraint(mapping, GFP_KERNEL));
1953 if (error) {
1954 put_page(page);
1955 if (error == -EEXIST) {
1956 error = 0;
1957 goto find_page;
1958 }
1959 goto out;
1960 }
1961 goto readpage;
1962 }
1963
1964 out:
1965 ra->prev_pos = prev_index;
1966 ra->prev_pos <<= PAGE_SHIFT;
1967 ra->prev_pos |= prev_offset;
1968
1969 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1970 file_accessed(filp);
1971 return written ? written : error;
1972 }
1973
1974 /**
1975 * generic_file_read_iter - generic filesystem read routine
1976 * @iocb: kernel I/O control block
1977 * @iter: destination for the data read
1978 *
1979 * This is the "read_iter()" routine for all filesystems
1980 * that can use the page cache directly.
1981 */
1982 ssize_t
1983 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1984 {
1985 struct file *file = iocb->ki_filp;
1986 ssize_t retval = 0;
1987 size_t count = iov_iter_count(iter);
1988
1989 if (!count)
1990 goto out; /* skip atime */
1991
1992 if (iocb->ki_flags & IOCB_DIRECT) {
1993 struct address_space *mapping = file->f_mapping;
1994 struct inode *inode = mapping->host;
1995 struct iov_iter data = *iter;
1996 loff_t size;
1997
1998 size = i_size_read(inode);
1999 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2000 iocb->ki_pos + count - 1);
2001 if (retval < 0)
2002 goto out;
2003
2004 file_accessed(file);
2005
2006 retval = mapping->a_ops->direct_IO(iocb, &data);
2007 if (retval >= 0) {
2008 iocb->ki_pos += retval;
2009 iov_iter_advance(iter, retval);
2010 }
2011
2012 /*
2013 * Btrfs can have a short DIO read if we encounter
2014 * compressed extents, so if there was an error, or if
2015 * we've already read everything we wanted to, or if
2016 * there was a short read because we hit EOF, go ahead
2017 * and return. Otherwise fallthrough to buffered io for
2018 * the rest of the read. Buffered reads will not work for
2019 * DAX files, so don't bother trying.
2020 */
2021 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2022 IS_DAX(inode))
2023 goto out;
2024 }
2025
2026 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2027 out:
2028 return retval;
2029 }
2030 EXPORT_SYMBOL(generic_file_read_iter);
2031
2032 #ifdef CONFIG_MMU
2033 /**
2034 * page_cache_read - adds requested page to the page cache if not already there
2035 * @file: file to read
2036 * @offset: page index
2037 * @gfp_mask: memory allocation flags
2038 *
2039 * This adds the requested page to the page cache if it isn't already there,
2040 * and schedules an I/O to read in its contents from disk.
2041 */
2042 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2043 {
2044 struct address_space *mapping = file->f_mapping;
2045 struct page *page;
2046 int ret;
2047
2048 do {
2049 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2050 if (!page)
2051 return -ENOMEM;
2052
2053 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2054 if (ret == 0)
2055 ret = mapping->a_ops->readpage(file, page);
2056 else if (ret == -EEXIST)
2057 ret = 0; /* losing race to add is OK */
2058
2059 put_page(page);
2060
2061 } while (ret == AOP_TRUNCATED_PAGE);
2062
2063 return ret;
2064 }
2065
2066 #define MMAP_LOTSAMISS (100)
2067
2068 /*
2069 * Synchronous readahead happens when we don't even find
2070 * a page in the page cache at all.
2071 */
2072 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2073 struct file_ra_state *ra,
2074 struct file *file,
2075 pgoff_t offset)
2076 {
2077 struct address_space *mapping = file->f_mapping;
2078
2079 /* If we don't want any read-ahead, don't bother */
2080 if (vma->vm_flags & VM_RAND_READ)
2081 return;
2082 if (!ra->ra_pages)
2083 return;
2084
2085 if (vma->vm_flags & VM_SEQ_READ) {
2086 page_cache_sync_readahead(mapping, ra, file, offset,
2087 ra->ra_pages);
2088 return;
2089 }
2090
2091 /* Avoid banging the cache line if not needed */
2092 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2093 ra->mmap_miss++;
2094
2095 /*
2096 * Do we miss much more than hit in this file? If so,
2097 * stop bothering with read-ahead. It will only hurt.
2098 */
2099 if (ra->mmap_miss > MMAP_LOTSAMISS)
2100 return;
2101
2102 /*
2103 * mmap read-around
2104 */
2105 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2106 ra->size = ra->ra_pages;
2107 ra->async_size = ra->ra_pages / 4;
2108 ra_submit(ra, mapping, file);
2109 }
2110
2111 /*
2112 * Asynchronous readahead happens when we find the page and PG_readahead,
2113 * so we want to possibly extend the readahead further..
2114 */
2115 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2116 struct file_ra_state *ra,
2117 struct file *file,
2118 struct page *page,
2119 pgoff_t offset)
2120 {
2121 struct address_space *mapping = file->f_mapping;
2122
2123 /* If we don't want any read-ahead, don't bother */
2124 if (vma->vm_flags & VM_RAND_READ)
2125 return;
2126 if (ra->mmap_miss > 0)
2127 ra->mmap_miss--;
2128 if (PageReadahead(page))
2129 page_cache_async_readahead(mapping, ra, file,
2130 page, offset, ra->ra_pages);
2131 }
2132
2133 /**
2134 * filemap_fault - read in file data for page fault handling
2135 * @vma: vma in which the fault was taken
2136 * @vmf: struct vm_fault containing details of the fault
2137 *
2138 * filemap_fault() is invoked via the vma operations vector for a
2139 * mapped memory region to read in file data during a page fault.
2140 *
2141 * The goto's are kind of ugly, but this streamlines the normal case of having
2142 * it in the page cache, and handles the special cases reasonably without
2143 * having a lot of duplicated code.
2144 *
2145 * vma->vm_mm->mmap_sem must be held on entry.
2146 *
2147 * If our return value has VM_FAULT_RETRY set, it's because
2148 * lock_page_or_retry() returned 0.
2149 * The mmap_sem has usually been released in this case.
2150 * See __lock_page_or_retry() for the exception.
2151 *
2152 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2153 * has not been released.
2154 *
2155 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2156 */
2157 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2158 {
2159 int error;
2160 struct file *file = vma->vm_file;
2161 struct address_space *mapping = file->f_mapping;
2162 struct file_ra_state *ra = &file->f_ra;
2163 struct inode *inode = mapping->host;
2164 pgoff_t offset = vmf->pgoff;
2165 struct page *page;
2166 loff_t size;
2167 int ret = 0;
2168
2169 size = round_up(i_size_read(inode), PAGE_SIZE);
2170 if (offset >= size >> PAGE_SHIFT)
2171 return VM_FAULT_SIGBUS;
2172
2173 /*
2174 * Do we have something in the page cache already?
2175 */
2176 page = find_get_page(mapping, offset);
2177 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2178 /*
2179 * We found the page, so try async readahead before
2180 * waiting for the lock.
2181 */
2182 do_async_mmap_readahead(vma, ra, file, page, offset);
2183 } else if (!page) {
2184 /* No page in the page cache at all */
2185 do_sync_mmap_readahead(vma, ra, file, offset);
2186 count_vm_event(PGMAJFAULT);
2187 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2188 ret = VM_FAULT_MAJOR;
2189 retry_find:
2190 page = find_get_page(mapping, offset);
2191 if (!page)
2192 goto no_cached_page;
2193 }
2194
2195 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2196 put_page(page);
2197 return ret | VM_FAULT_RETRY;
2198 }
2199
2200 /* Did it get truncated? */
2201 if (unlikely(page->mapping != mapping)) {
2202 unlock_page(page);
2203 put_page(page);
2204 goto retry_find;
2205 }
2206 VM_BUG_ON_PAGE(page->index != offset, page);
2207
2208 /*
2209 * We have a locked page in the page cache, now we need to check
2210 * that it's up-to-date. If not, it is going to be due to an error.
2211 */
2212 if (unlikely(!PageUptodate(page)))
2213 goto page_not_uptodate;
2214
2215 /*
2216 * Found the page and have a reference on it.
2217 * We must recheck i_size under page lock.
2218 */
2219 size = round_up(i_size_read(inode), PAGE_SIZE);
2220 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2221 unlock_page(page);
2222 put_page(page);
2223 return VM_FAULT_SIGBUS;
2224 }
2225
2226 vmf->page = page;
2227 return ret | VM_FAULT_LOCKED;
2228
2229 no_cached_page:
2230 /*
2231 * We're only likely to ever get here if MADV_RANDOM is in
2232 * effect.
2233 */
2234 error = page_cache_read(file, offset, vmf->gfp_mask);
2235
2236 /*
2237 * The page we want has now been added to the page cache.
2238 * In the unlikely event that someone removed it in the
2239 * meantime, we'll just come back here and read it again.
2240 */
2241 if (error >= 0)
2242 goto retry_find;
2243
2244 /*
2245 * An error return from page_cache_read can result if the
2246 * system is low on memory, or a problem occurs while trying
2247 * to schedule I/O.
2248 */
2249 if (error == -ENOMEM)
2250 return VM_FAULT_OOM;
2251 return VM_FAULT_SIGBUS;
2252
2253 page_not_uptodate:
2254 /*
2255 * Umm, take care of errors if the page isn't up-to-date.
2256 * Try to re-read it _once_. We do this synchronously,
2257 * because there really aren't any performance issues here
2258 * and we need to check for errors.
2259 */
2260 ClearPageError(page);
2261 error = mapping->a_ops->readpage(file, page);
2262 if (!error) {
2263 wait_on_page_locked(page);
2264 if (!PageUptodate(page))
2265 error = -EIO;
2266 }
2267 put_page(page);
2268
2269 if (!error || error == AOP_TRUNCATED_PAGE)
2270 goto retry_find;
2271
2272 /* Things didn't work out. Return zero to tell the mm layer so. */
2273 shrink_readahead_size_eio(file, ra);
2274 return VM_FAULT_SIGBUS;
2275 }
2276 EXPORT_SYMBOL(filemap_fault);
2277
2278 void filemap_map_pages(struct vm_fault *vmf,
2279 pgoff_t start_pgoff, pgoff_t end_pgoff)
2280 {
2281 struct radix_tree_iter iter;
2282 void **slot;
2283 struct file *file = vmf->vma->vm_file;
2284 struct address_space *mapping = file->f_mapping;
2285 pgoff_t last_pgoff = start_pgoff;
2286 loff_t size;
2287 struct page *head, *page;
2288
2289 rcu_read_lock();
2290 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2291 start_pgoff) {
2292 if (iter.index > end_pgoff)
2293 break;
2294 repeat:
2295 page = radix_tree_deref_slot(slot);
2296 if (unlikely(!page))
2297 goto next;
2298 if (radix_tree_exception(page)) {
2299 if (radix_tree_deref_retry(page)) {
2300 slot = radix_tree_iter_retry(&iter);
2301 continue;
2302 }
2303 goto next;
2304 }
2305
2306 head = compound_head(page);
2307 if (!page_cache_get_speculative(head))
2308 goto repeat;
2309
2310 /* The page was split under us? */
2311 if (compound_head(page) != head) {
2312 put_page(head);
2313 goto repeat;
2314 }
2315
2316 /* Has the page moved? */
2317 if (unlikely(page != *slot)) {
2318 put_page(head);
2319 goto repeat;
2320 }
2321
2322 if (!PageUptodate(page) ||
2323 PageReadahead(page) ||
2324 PageHWPoison(page))
2325 goto skip;
2326 if (!trylock_page(page))
2327 goto skip;
2328
2329 if (page->mapping != mapping || !PageUptodate(page))
2330 goto unlock;
2331
2332 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2333 if (page->index >= size >> PAGE_SHIFT)
2334 goto unlock;
2335
2336 if (file->f_ra.mmap_miss > 0)
2337 file->f_ra.mmap_miss--;
2338
2339 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2340 if (vmf->pte)
2341 vmf->pte += iter.index - last_pgoff;
2342 last_pgoff = iter.index;
2343 if (alloc_set_pte(vmf, NULL, page))
2344 goto unlock;
2345 unlock_page(page);
2346 goto next;
2347 unlock:
2348 unlock_page(page);
2349 skip:
2350 put_page(page);
2351 next:
2352 /* Huge page is mapped? No need to proceed. */
2353 if (pmd_trans_huge(*vmf->pmd))
2354 break;
2355 if (iter.index == end_pgoff)
2356 break;
2357 }
2358 rcu_read_unlock();
2359 }
2360 EXPORT_SYMBOL(filemap_map_pages);
2361
2362 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2363 {
2364 struct page *page = vmf->page;
2365 struct inode *inode = file_inode(vma->vm_file);
2366 int ret = VM_FAULT_LOCKED;
2367
2368 sb_start_pagefault(inode->i_sb);
2369 file_update_time(vma->vm_file);
2370 lock_page(page);
2371 if (page->mapping != inode->i_mapping) {
2372 unlock_page(page);
2373 ret = VM_FAULT_NOPAGE;
2374 goto out;
2375 }
2376 /*
2377 * We mark the page dirty already here so that when freeze is in
2378 * progress, we are guaranteed that writeback during freezing will
2379 * see the dirty page and writeprotect it again.
2380 */
2381 set_page_dirty(page);
2382 wait_for_stable_page(page);
2383 out:
2384 sb_end_pagefault(inode->i_sb);
2385 return ret;
2386 }
2387 EXPORT_SYMBOL(filemap_page_mkwrite);
2388
2389 const struct vm_operations_struct generic_file_vm_ops = {
2390 .fault = filemap_fault,
2391 .map_pages = filemap_map_pages,
2392 .page_mkwrite = filemap_page_mkwrite,
2393 };
2394
2395 /* This is used for a general mmap of a disk file */
2396
2397 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2398 {
2399 struct address_space *mapping = file->f_mapping;
2400
2401 if (!mapping->a_ops->readpage)
2402 return -ENOEXEC;
2403 file_accessed(file);
2404 vma->vm_ops = &generic_file_vm_ops;
2405 return 0;
2406 }
2407
2408 /*
2409 * This is for filesystems which do not implement ->writepage.
2410 */
2411 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2412 {
2413 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2414 return -EINVAL;
2415 return generic_file_mmap(file, vma);
2416 }
2417 #else
2418 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2419 {
2420 return -ENOSYS;
2421 }
2422 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2423 {
2424 return -ENOSYS;
2425 }
2426 #endif /* CONFIG_MMU */
2427
2428 EXPORT_SYMBOL(generic_file_mmap);
2429 EXPORT_SYMBOL(generic_file_readonly_mmap);
2430
2431 static struct page *wait_on_page_read(struct page *page)
2432 {
2433 if (!IS_ERR(page)) {
2434 wait_on_page_locked(page);
2435 if (!PageUptodate(page)) {
2436 put_page(page);
2437 page = ERR_PTR(-EIO);
2438 }
2439 }
2440 return page;
2441 }
2442
2443 static struct page *do_read_cache_page(struct address_space *mapping,
2444 pgoff_t index,
2445 int (*filler)(void *, struct page *),
2446 void *data,
2447 gfp_t gfp)
2448 {
2449 struct page *page;
2450 int err;
2451 repeat:
2452 page = find_get_page(mapping, index);
2453 if (!page) {
2454 page = __page_cache_alloc(gfp | __GFP_COLD);
2455 if (!page)
2456 return ERR_PTR(-ENOMEM);
2457 err = add_to_page_cache_lru(page, mapping, index, gfp);
2458 if (unlikely(err)) {
2459 put_page(page);
2460 if (err == -EEXIST)
2461 goto repeat;
2462 /* Presumably ENOMEM for radix tree node */
2463 return ERR_PTR(err);
2464 }
2465
2466 filler:
2467 err = filler(data, page);
2468 if (err < 0) {
2469 put_page(page);
2470 return ERR_PTR(err);
2471 }
2472
2473 page = wait_on_page_read(page);
2474 if (IS_ERR(page))
2475 return page;
2476 goto out;
2477 }
2478 if (PageUptodate(page))
2479 goto out;
2480
2481 /*
2482 * Page is not up to date and may be locked due one of the following
2483 * case a: Page is being filled and the page lock is held
2484 * case b: Read/write error clearing the page uptodate status
2485 * case c: Truncation in progress (page locked)
2486 * case d: Reclaim in progress
2487 *
2488 * Case a, the page will be up to date when the page is unlocked.
2489 * There is no need to serialise on the page lock here as the page
2490 * is pinned so the lock gives no additional protection. Even if the
2491 * the page is truncated, the data is still valid if PageUptodate as
2492 * it's a race vs truncate race.
2493 * Case b, the page will not be up to date
2494 * Case c, the page may be truncated but in itself, the data may still
2495 * be valid after IO completes as it's a read vs truncate race. The
2496 * operation must restart if the page is not uptodate on unlock but
2497 * otherwise serialising on page lock to stabilise the mapping gives
2498 * no additional guarantees to the caller as the page lock is
2499 * released before return.
2500 * Case d, similar to truncation. If reclaim holds the page lock, it
2501 * will be a race with remove_mapping that determines if the mapping
2502 * is valid on unlock but otherwise the data is valid and there is
2503 * no need to serialise with page lock.
2504 *
2505 * As the page lock gives no additional guarantee, we optimistically
2506 * wait on the page to be unlocked and check if it's up to date and
2507 * use the page if it is. Otherwise, the page lock is required to
2508 * distinguish between the different cases. The motivation is that we
2509 * avoid spurious serialisations and wakeups when multiple processes
2510 * wait on the same page for IO to complete.
2511 */
2512 wait_on_page_locked(page);
2513 if (PageUptodate(page))
2514 goto out;
2515
2516 /* Distinguish between all the cases under the safety of the lock */
2517 lock_page(page);
2518
2519 /* Case c or d, restart the operation */
2520 if (!page->mapping) {
2521 unlock_page(page);
2522 put_page(page);
2523 goto repeat;
2524 }
2525
2526 /* Someone else locked and filled the page in a very small window */
2527 if (PageUptodate(page)) {
2528 unlock_page(page);
2529 goto out;
2530 }
2531 goto filler;
2532
2533 out:
2534 mark_page_accessed(page);
2535 return page;
2536 }
2537
2538 /**
2539 * read_cache_page - read into page cache, fill it if needed
2540 * @mapping: the page's address_space
2541 * @index: the page index
2542 * @filler: function to perform the read
2543 * @data: first arg to filler(data, page) function, often left as NULL
2544 *
2545 * Read into the page cache. If a page already exists, and PageUptodate() is
2546 * not set, try to fill the page and wait for it to become unlocked.
2547 *
2548 * If the page does not get brought uptodate, return -EIO.
2549 */
2550 struct page *read_cache_page(struct address_space *mapping,
2551 pgoff_t index,
2552 int (*filler)(void *, struct page *),
2553 void *data)
2554 {
2555 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2556 }
2557 EXPORT_SYMBOL(read_cache_page);
2558
2559 /**
2560 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2561 * @mapping: the page's address_space
2562 * @index: the page index
2563 * @gfp: the page allocator flags to use if allocating
2564 *
2565 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2566 * any new page allocations done using the specified allocation flags.
2567 *
2568 * If the page does not get brought uptodate, return -EIO.
2569 */
2570 struct page *read_cache_page_gfp(struct address_space *mapping,
2571 pgoff_t index,
2572 gfp_t gfp)
2573 {
2574 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2575
2576 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2577 }
2578 EXPORT_SYMBOL(read_cache_page_gfp);
2579
2580 /*
2581 * Performs necessary checks before doing a write
2582 *
2583 * Can adjust writing position or amount of bytes to write.
2584 * Returns appropriate error code that caller should return or
2585 * zero in case that write should be allowed.
2586 */
2587 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2588 {
2589 struct file *file = iocb->ki_filp;
2590 struct inode *inode = file->f_mapping->host;
2591 unsigned long limit = rlimit(RLIMIT_FSIZE);
2592 loff_t pos;
2593
2594 if (!iov_iter_count(from))
2595 return 0;
2596
2597 /* FIXME: this is for backwards compatibility with 2.4 */
2598 if (iocb->ki_flags & IOCB_APPEND)
2599 iocb->ki_pos = i_size_read(inode);
2600
2601 pos = iocb->ki_pos;
2602
2603 if (limit != RLIM_INFINITY) {
2604 if (iocb->ki_pos >= limit) {
2605 send_sig(SIGXFSZ, current, 0);
2606 return -EFBIG;
2607 }
2608 iov_iter_truncate(from, limit - (unsigned long)pos);
2609 }
2610
2611 /*
2612 * LFS rule
2613 */
2614 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2615 !(file->f_flags & O_LARGEFILE))) {
2616 if (pos >= MAX_NON_LFS)
2617 return -EFBIG;
2618 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2619 }
2620
2621 /*
2622 * Are we about to exceed the fs block limit ?
2623 *
2624 * If we have written data it becomes a short write. If we have
2625 * exceeded without writing data we send a signal and return EFBIG.
2626 * Linus frestrict idea will clean these up nicely..
2627 */
2628 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2629 return -EFBIG;
2630
2631 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2632 return iov_iter_count(from);
2633 }
2634 EXPORT_SYMBOL(generic_write_checks);
2635
2636 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2637 loff_t pos, unsigned len, unsigned flags,
2638 struct page **pagep, void **fsdata)
2639 {
2640 const struct address_space_operations *aops = mapping->a_ops;
2641
2642 return aops->write_begin(file, mapping, pos, len, flags,
2643 pagep, fsdata);
2644 }
2645 EXPORT_SYMBOL(pagecache_write_begin);
2646
2647 int pagecache_write_end(struct file *file, struct address_space *mapping,
2648 loff_t pos, unsigned len, unsigned copied,
2649 struct page *page, void *fsdata)
2650 {
2651 const struct address_space_operations *aops = mapping->a_ops;
2652
2653 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2654 }
2655 EXPORT_SYMBOL(pagecache_write_end);
2656
2657 ssize_t
2658 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2659 {
2660 struct file *file = iocb->ki_filp;
2661 struct address_space *mapping = file->f_mapping;
2662 struct inode *inode = mapping->host;
2663 loff_t pos = iocb->ki_pos;
2664 ssize_t written;
2665 size_t write_len;
2666 pgoff_t end;
2667 struct iov_iter data;
2668
2669 write_len = iov_iter_count(from);
2670 end = (pos + write_len - 1) >> PAGE_SHIFT;
2671
2672 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2673 if (written)
2674 goto out;
2675
2676 /*
2677 * After a write we want buffered reads to be sure to go to disk to get
2678 * the new data. We invalidate clean cached page from the region we're
2679 * about to write. We do this *before* the write so that we can return
2680 * without clobbering -EIOCBQUEUED from ->direct_IO().
2681 */
2682 if (mapping->nrpages) {
2683 written = invalidate_inode_pages2_range(mapping,
2684 pos >> PAGE_SHIFT, end);
2685 /*
2686 * If a page can not be invalidated, return 0 to fall back
2687 * to buffered write.
2688 */
2689 if (written) {
2690 if (written == -EBUSY)
2691 return 0;
2692 goto out;
2693 }
2694 }
2695
2696 data = *from;
2697 written = mapping->a_ops->direct_IO(iocb, &data);
2698
2699 /*
2700 * Finally, try again to invalidate clean pages which might have been
2701 * cached by non-direct readahead, or faulted in by get_user_pages()
2702 * if the source of the write was an mmap'ed region of the file
2703 * we're writing. Either one is a pretty crazy thing to do,
2704 * so we don't support it 100%. If this invalidation
2705 * fails, tough, the write still worked...
2706 */
2707 if (mapping->nrpages) {
2708 invalidate_inode_pages2_range(mapping,
2709 pos >> PAGE_SHIFT, end);
2710 }
2711
2712 if (written > 0) {
2713 pos += written;
2714 iov_iter_advance(from, written);
2715 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2716 i_size_write(inode, pos);
2717 mark_inode_dirty(inode);
2718 }
2719 iocb->ki_pos = pos;
2720 }
2721 out:
2722 return written;
2723 }
2724 EXPORT_SYMBOL(generic_file_direct_write);
2725
2726 /*
2727 * Find or create a page at the given pagecache position. Return the locked
2728 * page. This function is specifically for buffered writes.
2729 */
2730 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2731 pgoff_t index, unsigned flags)
2732 {
2733 struct page *page;
2734 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2735
2736 if (flags & AOP_FLAG_NOFS)
2737 fgp_flags |= FGP_NOFS;
2738
2739 page = pagecache_get_page(mapping, index, fgp_flags,
2740 mapping_gfp_mask(mapping));
2741 if (page)
2742 wait_for_stable_page(page);
2743
2744 return page;
2745 }
2746 EXPORT_SYMBOL(grab_cache_page_write_begin);
2747
2748 ssize_t generic_perform_write(struct file *file,
2749 struct iov_iter *i, loff_t pos)
2750 {
2751 struct address_space *mapping = file->f_mapping;
2752 const struct address_space_operations *a_ops = mapping->a_ops;
2753 long status = 0;
2754 ssize_t written = 0;
2755 unsigned int flags = 0;
2756
2757 /*
2758 * Copies from kernel address space cannot fail (NFSD is a big user).
2759 */
2760 if (!iter_is_iovec(i))
2761 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2762
2763 do {
2764 struct page *page;
2765 unsigned long offset; /* Offset into pagecache page */
2766 unsigned long bytes; /* Bytes to write to page */
2767 size_t copied; /* Bytes copied from user */
2768 void *fsdata;
2769
2770 offset = (pos & (PAGE_SIZE - 1));
2771 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2772 iov_iter_count(i));
2773
2774 again:
2775 /*
2776 * Bring in the user page that we will copy from _first_.
2777 * Otherwise there's a nasty deadlock on copying from the
2778 * same page as we're writing to, without it being marked
2779 * up-to-date.
2780 *
2781 * Not only is this an optimisation, but it is also required
2782 * to check that the address is actually valid, when atomic
2783 * usercopies are used, below.
2784 */
2785 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2786 status = -EFAULT;
2787 break;
2788 }
2789
2790 if (fatal_signal_pending(current)) {
2791 status = -EINTR;
2792 break;
2793 }
2794
2795 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2796 &page, &fsdata);
2797 if (unlikely(status < 0))
2798 break;
2799
2800 if (mapping_writably_mapped(mapping))
2801 flush_dcache_page(page);
2802
2803 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2804 flush_dcache_page(page);
2805
2806 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2807 page, fsdata);
2808 if (unlikely(status < 0))
2809 break;
2810 copied = status;
2811
2812 cond_resched();
2813
2814 iov_iter_advance(i, copied);
2815 if (unlikely(copied == 0)) {
2816 /*
2817 * If we were unable to copy any data at all, we must
2818 * fall back to a single segment length write.
2819 *
2820 * If we didn't fallback here, we could livelock
2821 * because not all segments in the iov can be copied at
2822 * once without a pagefault.
2823 */
2824 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2825 iov_iter_single_seg_count(i));
2826 goto again;
2827 }
2828 pos += copied;
2829 written += copied;
2830
2831 balance_dirty_pages_ratelimited(mapping);
2832 } while (iov_iter_count(i));
2833
2834 return written ? written : status;
2835 }
2836 EXPORT_SYMBOL(generic_perform_write);
2837
2838 /**
2839 * __generic_file_write_iter - write data to a file
2840 * @iocb: IO state structure (file, offset, etc.)
2841 * @from: iov_iter with data to write
2842 *
2843 * This function does all the work needed for actually writing data to a
2844 * file. It does all basic checks, removes SUID from the file, updates
2845 * modification times and calls proper subroutines depending on whether we
2846 * do direct IO or a standard buffered write.
2847 *
2848 * It expects i_mutex to be grabbed unless we work on a block device or similar
2849 * object which does not need locking at all.
2850 *
2851 * This function does *not* take care of syncing data in case of O_SYNC write.
2852 * A caller has to handle it. This is mainly due to the fact that we want to
2853 * avoid syncing under i_mutex.
2854 */
2855 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2856 {
2857 struct file *file = iocb->ki_filp;
2858 struct address_space * mapping = file->f_mapping;
2859 struct inode *inode = mapping->host;
2860 ssize_t written = 0;
2861 ssize_t err;
2862 ssize_t status;
2863
2864 /* We can write back this queue in page reclaim */
2865 current->backing_dev_info = inode_to_bdi(inode);
2866 err = file_remove_privs(file);
2867 if (err)
2868 goto out;
2869
2870 err = file_update_time(file);
2871 if (err)
2872 goto out;
2873
2874 if (iocb->ki_flags & IOCB_DIRECT) {
2875 loff_t pos, endbyte;
2876
2877 written = generic_file_direct_write(iocb, from);
2878 /*
2879 * If the write stopped short of completing, fall back to
2880 * buffered writes. Some filesystems do this for writes to
2881 * holes, for example. For DAX files, a buffered write will
2882 * not succeed (even if it did, DAX does not handle dirty
2883 * page-cache pages correctly).
2884 */
2885 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2886 goto out;
2887
2888 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2889 /*
2890 * If generic_perform_write() returned a synchronous error
2891 * then we want to return the number of bytes which were
2892 * direct-written, or the error code if that was zero. Note
2893 * that this differs from normal direct-io semantics, which
2894 * will return -EFOO even if some bytes were written.
2895 */
2896 if (unlikely(status < 0)) {
2897 err = status;
2898 goto out;
2899 }
2900 /*
2901 * We need to ensure that the page cache pages are written to
2902 * disk and invalidated to preserve the expected O_DIRECT
2903 * semantics.
2904 */
2905 endbyte = pos + status - 1;
2906 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2907 if (err == 0) {
2908 iocb->ki_pos = endbyte + 1;
2909 written += status;
2910 invalidate_mapping_pages(mapping,
2911 pos >> PAGE_SHIFT,
2912 endbyte >> PAGE_SHIFT);
2913 } else {
2914 /*
2915 * We don't know how much we wrote, so just return
2916 * the number of bytes which were direct-written
2917 */
2918 }
2919 } else {
2920 written = generic_perform_write(file, from, iocb->ki_pos);
2921 if (likely(written > 0))
2922 iocb->ki_pos += written;
2923 }
2924 out:
2925 current->backing_dev_info = NULL;
2926 return written ? written : err;
2927 }
2928 EXPORT_SYMBOL(__generic_file_write_iter);
2929
2930 /**
2931 * generic_file_write_iter - write data to a file
2932 * @iocb: IO state structure
2933 * @from: iov_iter with data to write
2934 *
2935 * This is a wrapper around __generic_file_write_iter() to be used by most
2936 * filesystems. It takes care of syncing the file in case of O_SYNC file
2937 * and acquires i_mutex as needed.
2938 */
2939 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2940 {
2941 struct file *file = iocb->ki_filp;
2942 struct inode *inode = file->f_mapping->host;
2943 ssize_t ret;
2944
2945 inode_lock(inode);
2946 ret = generic_write_checks(iocb, from);
2947 if (ret > 0)
2948 ret = __generic_file_write_iter(iocb, from);
2949 inode_unlock(inode);
2950
2951 if (ret > 0)
2952 ret = generic_write_sync(iocb, ret);
2953 return ret;
2954 }
2955 EXPORT_SYMBOL(generic_file_write_iter);
2956
2957 /**
2958 * try_to_release_page() - release old fs-specific metadata on a page
2959 *
2960 * @page: the page which the kernel is trying to free
2961 * @gfp_mask: memory allocation flags (and I/O mode)
2962 *
2963 * The address_space is to try to release any data against the page
2964 * (presumably at page->private). If the release was successful, return `1'.
2965 * Otherwise return zero.
2966 *
2967 * This may also be called if PG_fscache is set on a page, indicating that the
2968 * page is known to the local caching routines.
2969 *
2970 * The @gfp_mask argument specifies whether I/O may be performed to release
2971 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2972 *
2973 */
2974 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2975 {
2976 struct address_space * const mapping = page->mapping;
2977
2978 BUG_ON(!PageLocked(page));
2979 if (PageWriteback(page))
2980 return 0;
2981
2982 if (mapping && mapping->a_ops->releasepage)
2983 return mapping->a_ops->releasepage(page, gfp_mask);
2984 return try_to_free_buffers(page);
2985 }
2986
2987 EXPORT_SYMBOL(try_to_release_page);