]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/filemap.c
UBUNTU: Ubuntu-snapdragon-4.4.0-1064.69
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_rwsem (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_rwsem
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_rwsem
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
108 * ->i_mmap_rwsem
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 */
111
112 static int page_cache_tree_insert(struct address_space *mapping,
113 struct page *page, void **shadowp)
114 {
115 struct radix_tree_node *node;
116 void **slot;
117 int error;
118
119 error = __radix_tree_create(&mapping->page_tree, page->index,
120 &node, &slot);
121 if (error)
122 return error;
123 if (*slot) {
124 void *p;
125
126 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
127 if (!radix_tree_exceptional_entry(p))
128 return -EEXIST;
129 if (shadowp)
130 *shadowp = p;
131 mapping->nrshadows--;
132 if (node)
133 workingset_node_shadows_dec(node);
134 }
135 radix_tree_replace_slot(slot, page);
136 mapping->nrpages++;
137 if (node) {
138 workingset_node_pages_inc(node);
139 /*
140 * Don't track node that contains actual pages.
141 *
142 * Avoid acquiring the list_lru lock if already
143 * untracked. The list_empty() test is safe as
144 * node->private_list is protected by
145 * mapping->tree_lock.
146 */
147 if (!list_empty(&node->private_list))
148 list_lru_del(&workingset_shadow_nodes,
149 &node->private_list);
150 }
151 return 0;
152 }
153
154 static void page_cache_tree_delete(struct address_space *mapping,
155 struct page *page, void *shadow)
156 {
157 struct radix_tree_node *node;
158 unsigned long index;
159 unsigned int offset;
160 unsigned int tag;
161 void **slot;
162
163 VM_BUG_ON(!PageLocked(page));
164
165 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
166
167 if (!node) {
168 /*
169 * We need a node to properly account shadow
170 * entries. Don't plant any without. XXX
171 */
172 shadow = NULL;
173 }
174
175 if (shadow) {
176 mapping->nrshadows++;
177 /*
178 * Make sure the nrshadows update is committed before
179 * the nrpages update so that final truncate racing
180 * with reclaim does not see both counters 0 at the
181 * same time and miss a shadow entry.
182 */
183 smp_wmb();
184 }
185 mapping->nrpages--;
186
187 if (!node) {
188 /* Clear direct pointer tags in root node */
189 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
190 radix_tree_replace_slot(slot, shadow);
191 return;
192 }
193
194 /* Clear tree tags for the removed page */
195 index = page->index;
196 offset = index & RADIX_TREE_MAP_MASK;
197 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
198 if (test_bit(offset, node->tags[tag]))
199 radix_tree_tag_clear(&mapping->page_tree, index, tag);
200 }
201
202 /* Delete page, swap shadow entry */
203 radix_tree_replace_slot(slot, shadow);
204 workingset_node_pages_dec(node);
205 if (shadow)
206 workingset_node_shadows_inc(node);
207 else
208 if (__radix_tree_delete_node(&mapping->page_tree, node))
209 return;
210
211 /*
212 * Track node that only contains shadow entries.
213 *
214 * Avoid acquiring the list_lru lock if already tracked. The
215 * list_empty() test is safe as node->private_list is
216 * protected by mapping->tree_lock.
217 */
218 if (!workingset_node_pages(node) &&
219 list_empty(&node->private_list)) {
220 node->private_data = mapping;
221 list_lru_add(&workingset_shadow_nodes, &node->private_list);
222 }
223 }
224
225 /*
226 * Delete a page from the page cache and free it. Caller has to make
227 * sure the page is locked and that nobody else uses it - or that usage
228 * is safe. The caller must hold the mapping's tree_lock and
229 * mem_cgroup_begin_page_stat().
230 */
231 void __delete_from_page_cache(struct page *page, void *shadow,
232 struct mem_cgroup *memcg)
233 {
234 struct address_space *mapping = page->mapping;
235
236 trace_mm_filemap_delete_from_page_cache(page);
237 /*
238 * if we're uptodate, flush out into the cleancache, otherwise
239 * invalidate any existing cleancache entries. We can't leave
240 * stale data around in the cleancache once our page is gone
241 */
242 if (PageUptodate(page) && PageMappedToDisk(page))
243 cleancache_put_page(page);
244 else
245 cleancache_invalidate_page(mapping, page);
246
247 page_cache_tree_delete(mapping, page, shadow);
248
249 page->mapping = NULL;
250 /* Leave page->index set: truncation lookup relies upon it */
251
252 /* hugetlb pages do not participate in page cache accounting. */
253 if (!PageHuge(page))
254 __dec_zone_page_state(page, NR_FILE_PAGES);
255 if (PageSwapBacked(page))
256 __dec_zone_page_state(page, NR_SHMEM);
257 BUG_ON(page_mapped(page));
258
259 /*
260 * At this point page must be either written or cleaned by truncate.
261 * Dirty page here signals a bug and loss of unwritten data.
262 *
263 * This fixes dirty accounting after removing the page entirely but
264 * leaves PageDirty set: it has no effect for truncated page and
265 * anyway will be cleared before returning page into buddy allocator.
266 */
267 if (WARN_ON_ONCE(PageDirty(page)))
268 account_page_cleaned(page, mapping, memcg,
269 inode_to_wb(mapping->host));
270 }
271
272 /**
273 * delete_from_page_cache - delete page from page cache
274 * @page: the page which the kernel is trying to remove from page cache
275 *
276 * This must be called only on pages that have been verified to be in the page
277 * cache and locked. It will never put the page into the free list, the caller
278 * has a reference on the page.
279 */
280 void delete_from_page_cache(struct page *page)
281 {
282 struct address_space *mapping = page->mapping;
283 struct mem_cgroup *memcg;
284 unsigned long flags;
285
286 void (*freepage)(struct page *);
287
288 BUG_ON(!PageLocked(page));
289
290 freepage = mapping->a_ops->freepage;
291
292 memcg = mem_cgroup_begin_page_stat(page);
293 spin_lock_irqsave(&mapping->tree_lock, flags);
294 __delete_from_page_cache(page, NULL, memcg);
295 spin_unlock_irqrestore(&mapping->tree_lock, flags);
296 mem_cgroup_end_page_stat(memcg);
297
298 if (freepage)
299 freepage(page);
300 page_cache_release(page);
301 }
302 EXPORT_SYMBOL(delete_from_page_cache);
303
304 static int filemap_check_errors(struct address_space *mapping)
305 {
306 int ret = 0;
307 /* Check for outstanding write errors */
308 if (test_bit(AS_ENOSPC, &mapping->flags) &&
309 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310 ret = -ENOSPC;
311 if (test_bit(AS_EIO, &mapping->flags) &&
312 test_and_clear_bit(AS_EIO, &mapping->flags))
313 ret = -EIO;
314 return ret;
315 }
316
317 /**
318 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
319 * @mapping: address space structure to write
320 * @start: offset in bytes where the range starts
321 * @end: offset in bytes where the range ends (inclusive)
322 * @sync_mode: enable synchronous operation
323 *
324 * Start writeback against all of a mapping's dirty pages that lie
325 * within the byte offsets <start, end> inclusive.
326 *
327 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
328 * opposed to a regular memory cleansing writeback. The difference between
329 * these two operations is that if a dirty page/buffer is encountered, it must
330 * be waited upon, and not just skipped over.
331 */
332 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333 loff_t end, int sync_mode)
334 {
335 int ret;
336 struct writeback_control wbc = {
337 .sync_mode = sync_mode,
338 .nr_to_write = LONG_MAX,
339 .range_start = start,
340 .range_end = end,
341 };
342
343 if (!mapping_cap_writeback_dirty(mapping))
344 return 0;
345
346 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
347 ret = do_writepages(mapping, &wbc);
348 wbc_detach_inode(&wbc);
349 return ret;
350 }
351
352 static inline int __filemap_fdatawrite(struct address_space *mapping,
353 int sync_mode)
354 {
355 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
356 }
357
358 int filemap_fdatawrite(struct address_space *mapping)
359 {
360 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
361 }
362 EXPORT_SYMBOL(filemap_fdatawrite);
363
364 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
365 loff_t end)
366 {
367 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite_range);
370
371 /**
372 * filemap_flush - mostly a non-blocking flush
373 * @mapping: target address_space
374 *
375 * This is a mostly non-blocking flush. Not suitable for data-integrity
376 * purposes - I/O may not be started against all dirty pages.
377 */
378 int filemap_flush(struct address_space *mapping)
379 {
380 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
381 }
382 EXPORT_SYMBOL(filemap_flush);
383
384 static int __filemap_fdatawait_range(struct address_space *mapping,
385 loff_t start_byte, loff_t end_byte)
386 {
387 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
388 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
389 struct pagevec pvec;
390 int nr_pages;
391 int ret = 0;
392
393 if (end_byte < start_byte)
394 goto out;
395
396 pagevec_init(&pvec, 0);
397 while ((index <= end) &&
398 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
399 PAGECACHE_TAG_WRITEBACK,
400 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
401 unsigned i;
402
403 for (i = 0; i < nr_pages; i++) {
404 struct page *page = pvec.pages[i];
405
406 /* until radix tree lookup accepts end_index */
407 if (page->index > end)
408 continue;
409
410 wait_on_page_writeback(page);
411 if (TestClearPageError(page))
412 ret = -EIO;
413 }
414 pagevec_release(&pvec);
415 cond_resched();
416 }
417 out:
418 return ret;
419 }
420
421 /**
422 * filemap_fdatawait_range - wait for writeback to complete
423 * @mapping: address space structure to wait for
424 * @start_byte: offset in bytes where the range starts
425 * @end_byte: offset in bytes where the range ends (inclusive)
426 *
427 * Walk the list of under-writeback pages of the given address space
428 * in the given range and wait for all of them. Check error status of
429 * the address space and return it.
430 *
431 * Since the error status of the address space is cleared by this function,
432 * callers are responsible for checking the return value and handling and/or
433 * reporting the error.
434 */
435 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
436 loff_t end_byte)
437 {
438 int ret, ret2;
439
440 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
441 ret2 = filemap_check_errors(mapping);
442 if (!ret)
443 ret = ret2;
444
445 return ret;
446 }
447 EXPORT_SYMBOL(filemap_fdatawait_range);
448
449 /**
450 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
451 * @mapping: address space structure to wait for
452 *
453 * Walk the list of under-writeback pages of the given address space
454 * and wait for all of them. Unlike filemap_fdatawait(), this function
455 * does not clear error status of the address space.
456 *
457 * Use this function if callers don't handle errors themselves. Expected
458 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
459 * fsfreeze(8)
460 */
461 void filemap_fdatawait_keep_errors(struct address_space *mapping)
462 {
463 loff_t i_size = i_size_read(mapping->host);
464
465 if (i_size == 0)
466 return;
467
468 __filemap_fdatawait_range(mapping, 0, i_size - 1);
469 }
470
471 /**
472 * filemap_fdatawait - wait for all under-writeback pages to complete
473 * @mapping: address space structure to wait for
474 *
475 * Walk the list of under-writeback pages of the given address space
476 * and wait for all of them. Check error status of the address space
477 * and return it.
478 *
479 * Since the error status of the address space is cleared by this function,
480 * callers are responsible for checking the return value and handling and/or
481 * reporting the error.
482 */
483 int filemap_fdatawait(struct address_space *mapping)
484 {
485 loff_t i_size = i_size_read(mapping->host);
486
487 if (i_size == 0)
488 return 0;
489
490 return filemap_fdatawait_range(mapping, 0, i_size - 1);
491 }
492 EXPORT_SYMBOL(filemap_fdatawait);
493
494 int filemap_write_and_wait(struct address_space *mapping)
495 {
496 int err = 0;
497
498 if (mapping->nrpages) {
499 err = filemap_fdatawrite(mapping);
500 /*
501 * Even if the above returned error, the pages may be
502 * written partially (e.g. -ENOSPC), so we wait for it.
503 * But the -EIO is special case, it may indicate the worst
504 * thing (e.g. bug) happened, so we avoid waiting for it.
505 */
506 if (err != -EIO) {
507 int err2 = filemap_fdatawait(mapping);
508 if (!err)
509 err = err2;
510 }
511 } else {
512 err = filemap_check_errors(mapping);
513 }
514 return err;
515 }
516 EXPORT_SYMBOL(filemap_write_and_wait);
517
518 /**
519 * filemap_write_and_wait_range - write out & wait on a file range
520 * @mapping: the address_space for the pages
521 * @lstart: offset in bytes where the range starts
522 * @lend: offset in bytes where the range ends (inclusive)
523 *
524 * Write out and wait upon file offsets lstart->lend, inclusive.
525 *
526 * Note that `lend' is inclusive (describes the last byte to be written) so
527 * that this function can be used to write to the very end-of-file (end = -1).
528 */
529 int filemap_write_and_wait_range(struct address_space *mapping,
530 loff_t lstart, loff_t lend)
531 {
532 int err = 0;
533
534 if (mapping->nrpages) {
535 err = __filemap_fdatawrite_range(mapping, lstart, lend,
536 WB_SYNC_ALL);
537 /* See comment of filemap_write_and_wait() */
538 if (err != -EIO) {
539 int err2 = filemap_fdatawait_range(mapping,
540 lstart, lend);
541 if (!err)
542 err = err2;
543 }
544 } else {
545 err = filemap_check_errors(mapping);
546 }
547 return err;
548 }
549 EXPORT_SYMBOL(filemap_write_and_wait_range);
550
551 /**
552 * replace_page_cache_page - replace a pagecache page with a new one
553 * @old: page to be replaced
554 * @new: page to replace with
555 * @gfp_mask: allocation mode
556 *
557 * This function replaces a page in the pagecache with a new one. On
558 * success it acquires the pagecache reference for the new page and
559 * drops it for the old page. Both the old and new pages must be
560 * locked. This function does not add the new page to the LRU, the
561 * caller must do that.
562 *
563 * The remove + add is atomic. The only way this function can fail is
564 * memory allocation failure.
565 */
566 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
567 {
568 int error;
569
570 VM_BUG_ON_PAGE(!PageLocked(old), old);
571 VM_BUG_ON_PAGE(!PageLocked(new), new);
572 VM_BUG_ON_PAGE(new->mapping, new);
573
574 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
575 if (!error) {
576 struct address_space *mapping = old->mapping;
577 void (*freepage)(struct page *);
578 struct mem_cgroup *memcg;
579 unsigned long flags;
580
581 pgoff_t offset = old->index;
582 freepage = mapping->a_ops->freepage;
583
584 page_cache_get(new);
585 new->mapping = mapping;
586 new->index = offset;
587
588 memcg = mem_cgroup_begin_page_stat(old);
589 spin_lock_irqsave(&mapping->tree_lock, flags);
590 __delete_from_page_cache(old, NULL, memcg);
591 error = page_cache_tree_insert(mapping, new, NULL);
592 BUG_ON(error);
593
594 /*
595 * hugetlb pages do not participate in page cache accounting.
596 */
597 if (!PageHuge(new))
598 __inc_zone_page_state(new, NR_FILE_PAGES);
599 if (PageSwapBacked(new))
600 __inc_zone_page_state(new, NR_SHMEM);
601 spin_unlock_irqrestore(&mapping->tree_lock, flags);
602 mem_cgroup_end_page_stat(memcg);
603 mem_cgroup_replace_page(old, new);
604 radix_tree_preload_end();
605 if (freepage)
606 freepage(old);
607 page_cache_release(old);
608 }
609
610 return error;
611 }
612 EXPORT_SYMBOL_GPL(replace_page_cache_page);
613
614 static int __add_to_page_cache_locked(struct page *page,
615 struct address_space *mapping,
616 pgoff_t offset, gfp_t gfp_mask,
617 void **shadowp)
618 {
619 int huge = PageHuge(page);
620 struct mem_cgroup *memcg;
621 int error;
622
623 VM_BUG_ON_PAGE(!PageLocked(page), page);
624 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
625
626 if (!huge) {
627 error = mem_cgroup_try_charge(page, current->mm,
628 gfp_mask, &memcg);
629 if (error)
630 return error;
631 }
632
633 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
634 if (error) {
635 if (!huge)
636 mem_cgroup_cancel_charge(page, memcg);
637 return error;
638 }
639
640 page_cache_get(page);
641 page->mapping = mapping;
642 page->index = offset;
643
644 spin_lock_irq(&mapping->tree_lock);
645 error = page_cache_tree_insert(mapping, page, shadowp);
646 radix_tree_preload_end();
647 if (unlikely(error))
648 goto err_insert;
649
650 /* hugetlb pages do not participate in page cache accounting. */
651 if (!huge)
652 __inc_zone_page_state(page, NR_FILE_PAGES);
653 spin_unlock_irq(&mapping->tree_lock);
654 if (!huge)
655 mem_cgroup_commit_charge(page, memcg, false);
656 trace_mm_filemap_add_to_page_cache(page);
657 return 0;
658 err_insert:
659 page->mapping = NULL;
660 /* Leave page->index set: truncation relies upon it */
661 spin_unlock_irq(&mapping->tree_lock);
662 if (!huge)
663 mem_cgroup_cancel_charge(page, memcg);
664 page_cache_release(page);
665 return error;
666 }
667
668 /**
669 * add_to_page_cache_locked - add a locked page to the pagecache
670 * @page: page to add
671 * @mapping: the page's address_space
672 * @offset: page index
673 * @gfp_mask: page allocation mode
674 *
675 * This function is used to add a page to the pagecache. It must be locked.
676 * This function does not add the page to the LRU. The caller must do that.
677 */
678 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
679 pgoff_t offset, gfp_t gfp_mask)
680 {
681 return __add_to_page_cache_locked(page, mapping, offset,
682 gfp_mask, NULL);
683 }
684 EXPORT_SYMBOL(add_to_page_cache_locked);
685
686 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
687 pgoff_t offset, gfp_t gfp_mask)
688 {
689 void *shadow = NULL;
690 int ret;
691
692 __set_page_locked(page);
693 ret = __add_to_page_cache_locked(page, mapping, offset,
694 gfp_mask, &shadow);
695 if (unlikely(ret))
696 __clear_page_locked(page);
697 else {
698 /*
699 * The page might have been evicted from cache only
700 * recently, in which case it should be activated like
701 * any other repeatedly accessed page.
702 */
703 if (shadow && workingset_refault(shadow)) {
704 SetPageActive(page);
705 workingset_activation(page);
706 } else
707 ClearPageActive(page);
708 lru_cache_add(page);
709 }
710 return ret;
711 }
712 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
713
714 #ifdef CONFIG_NUMA
715 struct page *__page_cache_alloc(gfp_t gfp)
716 {
717 int n;
718 struct page *page;
719
720 if (cpuset_do_page_mem_spread()) {
721 unsigned int cpuset_mems_cookie;
722 do {
723 cpuset_mems_cookie = read_mems_allowed_begin();
724 n = cpuset_mem_spread_node();
725 page = __alloc_pages_node(n, gfp, 0);
726 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
727
728 return page;
729 }
730 return alloc_pages(gfp, 0);
731 }
732 EXPORT_SYMBOL(__page_cache_alloc);
733 #endif
734
735 /*
736 * In order to wait for pages to become available there must be
737 * waitqueues associated with pages. By using a hash table of
738 * waitqueues where the bucket discipline is to maintain all
739 * waiters on the same queue and wake all when any of the pages
740 * become available, and for the woken contexts to check to be
741 * sure the appropriate page became available, this saves space
742 * at a cost of "thundering herd" phenomena during rare hash
743 * collisions.
744 */
745 wait_queue_head_t *page_waitqueue(struct page *page)
746 {
747 const struct zone *zone = page_zone(page);
748
749 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
750 }
751 EXPORT_SYMBOL(page_waitqueue);
752
753 void wait_on_page_bit(struct page *page, int bit_nr)
754 {
755 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
756
757 if (test_bit(bit_nr, &page->flags))
758 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
759 TASK_UNINTERRUPTIBLE);
760 }
761 EXPORT_SYMBOL(wait_on_page_bit);
762
763 int wait_on_page_bit_killable(struct page *page, int bit_nr)
764 {
765 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
766
767 if (!test_bit(bit_nr, &page->flags))
768 return 0;
769
770 return __wait_on_bit(page_waitqueue(page), &wait,
771 bit_wait_io, TASK_KILLABLE);
772 }
773
774 int wait_on_page_bit_killable_timeout(struct page *page,
775 int bit_nr, unsigned long timeout)
776 {
777 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
778
779 wait.key.timeout = jiffies + timeout;
780 if (!test_bit(bit_nr, &page->flags))
781 return 0;
782 return __wait_on_bit(page_waitqueue(page), &wait,
783 bit_wait_io_timeout, TASK_KILLABLE);
784 }
785 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
786
787 /**
788 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
789 * @page: Page defining the wait queue of interest
790 * @waiter: Waiter to add to the queue
791 *
792 * Add an arbitrary @waiter to the wait queue for the nominated @page.
793 */
794 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
795 {
796 wait_queue_head_t *q = page_waitqueue(page);
797 unsigned long flags;
798
799 spin_lock_irqsave(&q->lock, flags);
800 __add_wait_queue(q, waiter);
801 spin_unlock_irqrestore(&q->lock, flags);
802 }
803 EXPORT_SYMBOL_GPL(add_page_wait_queue);
804
805 /**
806 * unlock_page - unlock a locked page
807 * @page: the page
808 *
809 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
810 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
811 * mechanism between PageLocked pages and PageWriteback pages is shared.
812 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
813 *
814 * The mb is necessary to enforce ordering between the clear_bit and the read
815 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
816 */
817 void unlock_page(struct page *page)
818 {
819 VM_BUG_ON_PAGE(!PageLocked(page), page);
820 clear_bit_unlock(PG_locked, &page->flags);
821 smp_mb__after_atomic();
822 wake_up_page(page, PG_locked);
823 }
824 EXPORT_SYMBOL(unlock_page);
825
826 /**
827 * end_page_writeback - end writeback against a page
828 * @page: the page
829 */
830 void end_page_writeback(struct page *page)
831 {
832 /*
833 * TestClearPageReclaim could be used here but it is an atomic
834 * operation and overkill in this particular case. Failing to
835 * shuffle a page marked for immediate reclaim is too mild to
836 * justify taking an atomic operation penalty at the end of
837 * ever page writeback.
838 */
839 if (PageReclaim(page)) {
840 ClearPageReclaim(page);
841 rotate_reclaimable_page(page);
842 }
843
844 if (!test_clear_page_writeback(page))
845 BUG();
846
847 smp_mb__after_atomic();
848 wake_up_page(page, PG_writeback);
849 }
850 EXPORT_SYMBOL(end_page_writeback);
851
852 /*
853 * After completing I/O on a page, call this routine to update the page
854 * flags appropriately
855 */
856 void page_endio(struct page *page, int rw, int err)
857 {
858 if (rw == READ) {
859 if (!err) {
860 SetPageUptodate(page);
861 } else {
862 ClearPageUptodate(page);
863 SetPageError(page);
864 }
865 unlock_page(page);
866 } else { /* rw == WRITE */
867 if (err) {
868 struct address_space *mapping;
869
870 SetPageError(page);
871 mapping = page_mapping(page);
872 if (mapping)
873 mapping_set_error(mapping, err);
874 }
875 end_page_writeback(page);
876 }
877 }
878 EXPORT_SYMBOL_GPL(page_endio);
879
880 /**
881 * __lock_page - get a lock on the page, assuming we need to sleep to get it
882 * @page: the page to lock
883 */
884 void __lock_page(struct page *page)
885 {
886 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
887
888 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
889 TASK_UNINTERRUPTIBLE);
890 }
891 EXPORT_SYMBOL(__lock_page);
892
893 int __lock_page_killable(struct page *page)
894 {
895 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
896
897 return __wait_on_bit_lock(page_waitqueue(page), &wait,
898 bit_wait_io, TASK_KILLABLE);
899 }
900 EXPORT_SYMBOL_GPL(__lock_page_killable);
901
902 /*
903 * Return values:
904 * 1 - page is locked; mmap_sem is still held.
905 * 0 - page is not locked.
906 * mmap_sem has been released (up_read()), unless flags had both
907 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
908 * which case mmap_sem is still held.
909 *
910 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
911 * with the page locked and the mmap_sem unperturbed.
912 */
913 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
914 unsigned int flags)
915 {
916 if (flags & FAULT_FLAG_ALLOW_RETRY) {
917 /*
918 * CAUTION! In this case, mmap_sem is not released
919 * even though return 0.
920 */
921 if (flags & FAULT_FLAG_RETRY_NOWAIT)
922 return 0;
923
924 up_read(&mm->mmap_sem);
925 if (flags & FAULT_FLAG_KILLABLE)
926 wait_on_page_locked_killable(page);
927 else
928 wait_on_page_locked(page);
929 return 0;
930 } else {
931 if (flags & FAULT_FLAG_KILLABLE) {
932 int ret;
933
934 ret = __lock_page_killable(page);
935 if (ret) {
936 up_read(&mm->mmap_sem);
937 return 0;
938 }
939 } else
940 __lock_page(page);
941 return 1;
942 }
943 }
944
945 /**
946 * page_cache_next_hole - find the next hole (not-present entry)
947 * @mapping: mapping
948 * @index: index
949 * @max_scan: maximum range to search
950 *
951 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
952 * lowest indexed hole.
953 *
954 * Returns: the index of the hole if found, otherwise returns an index
955 * outside of the set specified (in which case 'return - index >=
956 * max_scan' will be true). In rare cases of index wrap-around, 0 will
957 * be returned.
958 *
959 * page_cache_next_hole may be called under rcu_read_lock. However,
960 * like radix_tree_gang_lookup, this will not atomically search a
961 * snapshot of the tree at a single point in time. For example, if a
962 * hole is created at index 5, then subsequently a hole is created at
963 * index 10, page_cache_next_hole covering both indexes may return 10
964 * if called under rcu_read_lock.
965 */
966 pgoff_t page_cache_next_hole(struct address_space *mapping,
967 pgoff_t index, unsigned long max_scan)
968 {
969 unsigned long i;
970
971 for (i = 0; i < max_scan; i++) {
972 struct page *page;
973
974 page = radix_tree_lookup(&mapping->page_tree, index);
975 if (!page || radix_tree_exceptional_entry(page))
976 break;
977 index++;
978 if (index == 0)
979 break;
980 }
981
982 return index;
983 }
984 EXPORT_SYMBOL(page_cache_next_hole);
985
986 /**
987 * page_cache_prev_hole - find the prev hole (not-present entry)
988 * @mapping: mapping
989 * @index: index
990 * @max_scan: maximum range to search
991 *
992 * Search backwards in the range [max(index-max_scan+1, 0), index] for
993 * the first hole.
994 *
995 * Returns: the index of the hole if found, otherwise returns an index
996 * outside of the set specified (in which case 'index - return >=
997 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
998 * will be returned.
999 *
1000 * page_cache_prev_hole may be called under rcu_read_lock. However,
1001 * like radix_tree_gang_lookup, this will not atomically search a
1002 * snapshot of the tree at a single point in time. For example, if a
1003 * hole is created at index 10, then subsequently a hole is created at
1004 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1005 * called under rcu_read_lock.
1006 */
1007 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1008 pgoff_t index, unsigned long max_scan)
1009 {
1010 unsigned long i;
1011
1012 for (i = 0; i < max_scan; i++) {
1013 struct page *page;
1014
1015 page = radix_tree_lookup(&mapping->page_tree, index);
1016 if (!page || radix_tree_exceptional_entry(page))
1017 break;
1018 index--;
1019 if (index == ULONG_MAX)
1020 break;
1021 }
1022
1023 return index;
1024 }
1025 EXPORT_SYMBOL(page_cache_prev_hole);
1026
1027 /**
1028 * find_get_entry - find and get a page cache entry
1029 * @mapping: the address_space to search
1030 * @offset: the page cache index
1031 *
1032 * Looks up the page cache slot at @mapping & @offset. If there is a
1033 * page cache page, it is returned with an increased refcount.
1034 *
1035 * If the slot holds a shadow entry of a previously evicted page, or a
1036 * swap entry from shmem/tmpfs, it is returned.
1037 *
1038 * Otherwise, %NULL is returned.
1039 */
1040 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1041 {
1042 void **pagep;
1043 struct page *page;
1044
1045 rcu_read_lock();
1046 repeat:
1047 page = NULL;
1048 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1049 if (pagep) {
1050 page = radix_tree_deref_slot(pagep);
1051 if (unlikely(!page))
1052 goto out;
1053 if (radix_tree_exception(page)) {
1054 if (radix_tree_deref_retry(page))
1055 goto repeat;
1056 /*
1057 * A shadow entry of a recently evicted page,
1058 * or a swap entry from shmem/tmpfs. Return
1059 * it without attempting to raise page count.
1060 */
1061 goto out;
1062 }
1063 if (!page_cache_get_speculative(page))
1064 goto repeat;
1065
1066 /*
1067 * Has the page moved?
1068 * This is part of the lockless pagecache protocol. See
1069 * include/linux/pagemap.h for details.
1070 */
1071 if (unlikely(page != *pagep)) {
1072 page_cache_release(page);
1073 goto repeat;
1074 }
1075 }
1076 out:
1077 rcu_read_unlock();
1078
1079 return page;
1080 }
1081 EXPORT_SYMBOL(find_get_entry);
1082
1083 /**
1084 * find_lock_entry - locate, pin and lock a page cache entry
1085 * @mapping: the address_space to search
1086 * @offset: the page cache index
1087 *
1088 * Looks up the page cache slot at @mapping & @offset. If there is a
1089 * page cache page, it is returned locked and with an increased
1090 * refcount.
1091 *
1092 * If the slot holds a shadow entry of a previously evicted page, or a
1093 * swap entry from shmem/tmpfs, it is returned.
1094 *
1095 * Otherwise, %NULL is returned.
1096 *
1097 * find_lock_entry() may sleep.
1098 */
1099 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1100 {
1101 struct page *page;
1102
1103 repeat:
1104 page = find_get_entry(mapping, offset);
1105 if (page && !radix_tree_exception(page)) {
1106 lock_page(page);
1107 /* Has the page been truncated? */
1108 if (unlikely(page->mapping != mapping)) {
1109 unlock_page(page);
1110 page_cache_release(page);
1111 goto repeat;
1112 }
1113 VM_BUG_ON_PAGE(page->index != offset, page);
1114 }
1115 return page;
1116 }
1117 EXPORT_SYMBOL(find_lock_entry);
1118
1119 /**
1120 * pagecache_get_page - find and get a page reference
1121 * @mapping: the address_space to search
1122 * @offset: the page index
1123 * @fgp_flags: PCG flags
1124 * @gfp_mask: gfp mask to use for the page cache data page allocation
1125 *
1126 * Looks up the page cache slot at @mapping & @offset.
1127 *
1128 * PCG flags modify how the page is returned.
1129 *
1130 * FGP_ACCESSED: the page will be marked accessed
1131 * FGP_LOCK: Page is return locked
1132 * FGP_CREAT: If page is not present then a new page is allocated using
1133 * @gfp_mask and added to the page cache and the VM's LRU
1134 * list. The page is returned locked and with an increased
1135 * refcount. Otherwise, %NULL is returned.
1136 *
1137 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1138 * if the GFP flags specified for FGP_CREAT are atomic.
1139 *
1140 * If there is a page cache page, it is returned with an increased refcount.
1141 */
1142 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1143 int fgp_flags, gfp_t gfp_mask)
1144 {
1145 struct page *page;
1146
1147 repeat:
1148 page = find_get_entry(mapping, offset);
1149 if (radix_tree_exceptional_entry(page))
1150 page = NULL;
1151 if (!page)
1152 goto no_page;
1153
1154 if (fgp_flags & FGP_LOCK) {
1155 if (fgp_flags & FGP_NOWAIT) {
1156 if (!trylock_page(page)) {
1157 page_cache_release(page);
1158 return NULL;
1159 }
1160 } else {
1161 lock_page(page);
1162 }
1163
1164 /* Has the page been truncated? */
1165 if (unlikely(page->mapping != mapping)) {
1166 unlock_page(page);
1167 page_cache_release(page);
1168 goto repeat;
1169 }
1170 VM_BUG_ON_PAGE(page->index != offset, page);
1171 }
1172
1173 if (page && (fgp_flags & FGP_ACCESSED))
1174 mark_page_accessed(page);
1175
1176 no_page:
1177 if (!page && (fgp_flags & FGP_CREAT)) {
1178 int err;
1179 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1180 gfp_mask |= __GFP_WRITE;
1181 if (fgp_flags & FGP_NOFS)
1182 gfp_mask &= ~__GFP_FS;
1183
1184 page = __page_cache_alloc(gfp_mask);
1185 if (!page)
1186 return NULL;
1187
1188 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1189 fgp_flags |= FGP_LOCK;
1190
1191 /* Init accessed so avoid atomic mark_page_accessed later */
1192 if (fgp_flags & FGP_ACCESSED)
1193 __SetPageReferenced(page);
1194
1195 err = add_to_page_cache_lru(page, mapping, offset,
1196 gfp_mask & GFP_RECLAIM_MASK);
1197 if (unlikely(err)) {
1198 page_cache_release(page);
1199 page = NULL;
1200 if (err == -EEXIST)
1201 goto repeat;
1202 }
1203 }
1204
1205 return page;
1206 }
1207 EXPORT_SYMBOL(pagecache_get_page);
1208
1209 /**
1210 * find_get_entries - gang pagecache lookup
1211 * @mapping: The address_space to search
1212 * @start: The starting page cache index
1213 * @nr_entries: The maximum number of entries
1214 * @entries: Where the resulting entries are placed
1215 * @indices: The cache indices corresponding to the entries in @entries
1216 *
1217 * find_get_entries() will search for and return a group of up to
1218 * @nr_entries entries in the mapping. The entries are placed at
1219 * @entries. find_get_entries() takes a reference against any actual
1220 * pages it returns.
1221 *
1222 * The search returns a group of mapping-contiguous page cache entries
1223 * with ascending indexes. There may be holes in the indices due to
1224 * not-present pages.
1225 *
1226 * Any shadow entries of evicted pages, or swap entries from
1227 * shmem/tmpfs, are included in the returned array.
1228 *
1229 * find_get_entries() returns the number of pages and shadow entries
1230 * which were found.
1231 */
1232 unsigned find_get_entries(struct address_space *mapping,
1233 pgoff_t start, unsigned int nr_entries,
1234 struct page **entries, pgoff_t *indices)
1235 {
1236 void **slot;
1237 unsigned int ret = 0;
1238 struct radix_tree_iter iter;
1239
1240 if (!nr_entries)
1241 return 0;
1242
1243 rcu_read_lock();
1244 restart:
1245 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1246 struct page *page;
1247 repeat:
1248 page = radix_tree_deref_slot(slot);
1249 if (unlikely(!page))
1250 continue;
1251 if (radix_tree_exception(page)) {
1252 if (radix_tree_deref_retry(page))
1253 goto restart;
1254 /*
1255 * A shadow entry of a recently evicted page,
1256 * or a swap entry from shmem/tmpfs. Return
1257 * it without attempting to raise page count.
1258 */
1259 goto export;
1260 }
1261 if (!page_cache_get_speculative(page))
1262 goto repeat;
1263
1264 /* Has the page moved? */
1265 if (unlikely(page != *slot)) {
1266 page_cache_release(page);
1267 goto repeat;
1268 }
1269 export:
1270 indices[ret] = iter.index;
1271 entries[ret] = page;
1272 if (++ret == nr_entries)
1273 break;
1274 }
1275 rcu_read_unlock();
1276 return ret;
1277 }
1278
1279 /**
1280 * find_get_pages - gang pagecache lookup
1281 * @mapping: The address_space to search
1282 * @start: The starting page index
1283 * @nr_pages: The maximum number of pages
1284 * @pages: Where the resulting pages are placed
1285 *
1286 * find_get_pages() will search for and return a group of up to
1287 * @nr_pages pages in the mapping. The pages are placed at @pages.
1288 * find_get_pages() takes a reference against the returned pages.
1289 *
1290 * The search returns a group of mapping-contiguous pages with ascending
1291 * indexes. There may be holes in the indices due to not-present pages.
1292 *
1293 * find_get_pages() returns the number of pages which were found.
1294 */
1295 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1296 unsigned int nr_pages, struct page **pages)
1297 {
1298 struct radix_tree_iter iter;
1299 void **slot;
1300 unsigned ret = 0;
1301
1302 if (unlikely(!nr_pages))
1303 return 0;
1304
1305 rcu_read_lock();
1306 restart:
1307 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1308 struct page *page;
1309 repeat:
1310 page = radix_tree_deref_slot(slot);
1311 if (unlikely(!page))
1312 continue;
1313
1314 if (radix_tree_exception(page)) {
1315 if (radix_tree_deref_retry(page)) {
1316 /*
1317 * Transient condition which can only trigger
1318 * when entry at index 0 moves out of or back
1319 * to root: none yet gotten, safe to restart.
1320 */
1321 WARN_ON(iter.index);
1322 goto restart;
1323 }
1324 /*
1325 * A shadow entry of a recently evicted page,
1326 * or a swap entry from shmem/tmpfs. Skip
1327 * over it.
1328 */
1329 continue;
1330 }
1331
1332 if (!page_cache_get_speculative(page))
1333 goto repeat;
1334
1335 /* Has the page moved? */
1336 if (unlikely(page != *slot)) {
1337 page_cache_release(page);
1338 goto repeat;
1339 }
1340
1341 pages[ret] = page;
1342 if (++ret == nr_pages)
1343 break;
1344 }
1345
1346 rcu_read_unlock();
1347 return ret;
1348 }
1349
1350 /**
1351 * find_get_pages_contig - gang contiguous pagecache lookup
1352 * @mapping: The address_space to search
1353 * @index: The starting page index
1354 * @nr_pages: The maximum number of pages
1355 * @pages: Where the resulting pages are placed
1356 *
1357 * find_get_pages_contig() works exactly like find_get_pages(), except
1358 * that the returned number of pages are guaranteed to be contiguous.
1359 *
1360 * find_get_pages_contig() returns the number of pages which were found.
1361 */
1362 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1363 unsigned int nr_pages, struct page **pages)
1364 {
1365 struct radix_tree_iter iter;
1366 void **slot;
1367 unsigned int ret = 0;
1368
1369 if (unlikely(!nr_pages))
1370 return 0;
1371
1372 rcu_read_lock();
1373 restart:
1374 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1375 struct page *page;
1376 repeat:
1377 page = radix_tree_deref_slot(slot);
1378 /* The hole, there no reason to continue */
1379 if (unlikely(!page))
1380 break;
1381
1382 if (radix_tree_exception(page)) {
1383 if (radix_tree_deref_retry(page)) {
1384 /*
1385 * Transient condition which can only trigger
1386 * when entry at index 0 moves out of or back
1387 * to root: none yet gotten, safe to restart.
1388 */
1389 goto restart;
1390 }
1391 /*
1392 * A shadow entry of a recently evicted page,
1393 * or a swap entry from shmem/tmpfs. Stop
1394 * looking for contiguous pages.
1395 */
1396 break;
1397 }
1398
1399 if (!page_cache_get_speculative(page))
1400 goto repeat;
1401
1402 /* Has the page moved? */
1403 if (unlikely(page != *slot)) {
1404 page_cache_release(page);
1405 goto repeat;
1406 }
1407
1408 /*
1409 * must check mapping and index after taking the ref.
1410 * otherwise we can get both false positives and false
1411 * negatives, which is just confusing to the caller.
1412 */
1413 if (page->mapping == NULL || page->index != iter.index) {
1414 page_cache_release(page);
1415 break;
1416 }
1417
1418 pages[ret] = page;
1419 if (++ret == nr_pages)
1420 break;
1421 }
1422 rcu_read_unlock();
1423 return ret;
1424 }
1425 EXPORT_SYMBOL(find_get_pages_contig);
1426
1427 /**
1428 * find_get_pages_tag - find and return pages that match @tag
1429 * @mapping: the address_space to search
1430 * @index: the starting page index
1431 * @tag: the tag index
1432 * @nr_pages: the maximum number of pages
1433 * @pages: where the resulting pages are placed
1434 *
1435 * Like find_get_pages, except we only return pages which are tagged with
1436 * @tag. We update @index to index the next page for the traversal.
1437 */
1438 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1439 int tag, unsigned int nr_pages, struct page **pages)
1440 {
1441 struct radix_tree_iter iter;
1442 void **slot;
1443 unsigned ret = 0;
1444
1445 if (unlikely(!nr_pages))
1446 return 0;
1447
1448 rcu_read_lock();
1449 restart:
1450 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1451 &iter, *index, tag) {
1452 struct page *page;
1453 repeat:
1454 page = radix_tree_deref_slot(slot);
1455 if (unlikely(!page))
1456 continue;
1457
1458 if (radix_tree_exception(page)) {
1459 if (radix_tree_deref_retry(page)) {
1460 /*
1461 * Transient condition which can only trigger
1462 * when entry at index 0 moves out of or back
1463 * to root: none yet gotten, safe to restart.
1464 */
1465 goto restart;
1466 }
1467 /*
1468 * A shadow entry of a recently evicted page.
1469 *
1470 * Those entries should never be tagged, but
1471 * this tree walk is lockless and the tags are
1472 * looked up in bulk, one radix tree node at a
1473 * time, so there is a sizable window for page
1474 * reclaim to evict a page we saw tagged.
1475 *
1476 * Skip over it.
1477 */
1478 continue;
1479 }
1480
1481 if (!page_cache_get_speculative(page))
1482 goto repeat;
1483
1484 /* Has the page moved? */
1485 if (unlikely(page != *slot)) {
1486 page_cache_release(page);
1487 goto repeat;
1488 }
1489
1490 pages[ret] = page;
1491 if (++ret == nr_pages)
1492 break;
1493 }
1494
1495 rcu_read_unlock();
1496
1497 if (ret)
1498 *index = pages[ret - 1]->index + 1;
1499
1500 return ret;
1501 }
1502 EXPORT_SYMBOL(find_get_pages_tag);
1503
1504 /*
1505 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1506 * a _large_ part of the i/o request. Imagine the worst scenario:
1507 *
1508 * ---R__________________________________________B__________
1509 * ^ reading here ^ bad block(assume 4k)
1510 *
1511 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1512 * => failing the whole request => read(R) => read(R+1) =>
1513 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1514 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1515 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1516 *
1517 * It is going insane. Fix it by quickly scaling down the readahead size.
1518 */
1519 static void shrink_readahead_size_eio(struct file *filp,
1520 struct file_ra_state *ra)
1521 {
1522 ra->ra_pages /= 4;
1523 }
1524
1525 /**
1526 * do_generic_file_read - generic file read routine
1527 * @filp: the file to read
1528 * @ppos: current file position
1529 * @iter: data destination
1530 * @written: already copied
1531 *
1532 * This is a generic file read routine, and uses the
1533 * mapping->a_ops->readpage() function for the actual low-level stuff.
1534 *
1535 * This is really ugly. But the goto's actually try to clarify some
1536 * of the logic when it comes to error handling etc.
1537 */
1538 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1539 struct iov_iter *iter, ssize_t written)
1540 {
1541 struct address_space *mapping = filp->f_mapping;
1542 struct inode *inode = mapping->host;
1543 struct file_ra_state *ra = &filp->f_ra;
1544 pgoff_t index;
1545 pgoff_t last_index;
1546 pgoff_t prev_index;
1547 unsigned long offset; /* offset into pagecache page */
1548 unsigned int prev_offset;
1549 int error = 0;
1550
1551 index = *ppos >> PAGE_CACHE_SHIFT;
1552 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1553 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1554 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1555 offset = *ppos & ~PAGE_CACHE_MASK;
1556
1557 for (;;) {
1558 struct page *page;
1559 pgoff_t end_index;
1560 loff_t isize;
1561 unsigned long nr, ret;
1562
1563 cond_resched();
1564 find_page:
1565 if (fatal_signal_pending(current)) {
1566 error = -EINTR;
1567 goto out;
1568 }
1569
1570 page = find_get_page(mapping, index);
1571 if (!page) {
1572 page_cache_sync_readahead(mapping,
1573 ra, filp,
1574 index, last_index - index);
1575 page = find_get_page(mapping, index);
1576 if (unlikely(page == NULL))
1577 goto no_cached_page;
1578 }
1579 if (PageReadahead(page)) {
1580 page_cache_async_readahead(mapping,
1581 ra, filp, page,
1582 index, last_index - index);
1583 }
1584 if (!PageUptodate(page)) {
1585 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1586 !mapping->a_ops->is_partially_uptodate)
1587 goto page_not_up_to_date;
1588 if (!trylock_page(page))
1589 goto page_not_up_to_date;
1590 /* Did it get truncated before we got the lock? */
1591 if (!page->mapping)
1592 goto page_not_up_to_date_locked;
1593 if (!mapping->a_ops->is_partially_uptodate(page,
1594 offset, iter->count))
1595 goto page_not_up_to_date_locked;
1596 unlock_page(page);
1597 }
1598 page_ok:
1599 /*
1600 * i_size must be checked after we know the page is Uptodate.
1601 *
1602 * Checking i_size after the check allows us to calculate
1603 * the correct value for "nr", which means the zero-filled
1604 * part of the page is not copied back to userspace (unless
1605 * another truncate extends the file - this is desired though).
1606 */
1607
1608 isize = i_size_read(inode);
1609 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1610 if (unlikely(!isize || index > end_index)) {
1611 page_cache_release(page);
1612 goto out;
1613 }
1614
1615 /* nr is the maximum number of bytes to copy from this page */
1616 nr = PAGE_CACHE_SIZE;
1617 if (index == end_index) {
1618 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1619 if (nr <= offset) {
1620 page_cache_release(page);
1621 goto out;
1622 }
1623 }
1624 nr = nr - offset;
1625
1626 /* If users can be writing to this page using arbitrary
1627 * virtual addresses, take care about potential aliasing
1628 * before reading the page on the kernel side.
1629 */
1630 if (mapping_writably_mapped(mapping))
1631 flush_dcache_page(page);
1632
1633 /*
1634 * When a sequential read accesses a page several times,
1635 * only mark it as accessed the first time.
1636 */
1637 if (prev_index != index || offset != prev_offset)
1638 mark_page_accessed(page);
1639 prev_index = index;
1640
1641 /*
1642 * Ok, we have the page, and it's up-to-date, so
1643 * now we can copy it to user space...
1644 */
1645
1646 ret = copy_page_to_iter(page, offset, nr, iter);
1647 offset += ret;
1648 index += offset >> PAGE_CACHE_SHIFT;
1649 offset &= ~PAGE_CACHE_MASK;
1650 prev_offset = offset;
1651
1652 page_cache_release(page);
1653 written += ret;
1654 if (!iov_iter_count(iter))
1655 goto out;
1656 if (ret < nr) {
1657 error = -EFAULT;
1658 goto out;
1659 }
1660 continue;
1661
1662 page_not_up_to_date:
1663 /* Get exclusive access to the page ... */
1664 error = lock_page_killable(page);
1665 if (unlikely(error))
1666 goto readpage_error;
1667
1668 page_not_up_to_date_locked:
1669 /* Did it get truncated before we got the lock? */
1670 if (!page->mapping) {
1671 unlock_page(page);
1672 page_cache_release(page);
1673 continue;
1674 }
1675
1676 /* Did somebody else fill it already? */
1677 if (PageUptodate(page)) {
1678 unlock_page(page);
1679 goto page_ok;
1680 }
1681
1682 readpage:
1683 /*
1684 * A previous I/O error may have been due to temporary
1685 * failures, eg. multipath errors.
1686 * PG_error will be set again if readpage fails.
1687 */
1688 ClearPageError(page);
1689 /* Start the actual read. The read will unlock the page. */
1690 error = mapping->a_ops->readpage(filp, page);
1691
1692 if (unlikely(error)) {
1693 if (error == AOP_TRUNCATED_PAGE) {
1694 page_cache_release(page);
1695 error = 0;
1696 goto find_page;
1697 }
1698 goto readpage_error;
1699 }
1700
1701 if (!PageUptodate(page)) {
1702 error = lock_page_killable(page);
1703 if (unlikely(error))
1704 goto readpage_error;
1705 if (!PageUptodate(page)) {
1706 if (page->mapping == NULL) {
1707 /*
1708 * invalidate_mapping_pages got it
1709 */
1710 unlock_page(page);
1711 page_cache_release(page);
1712 goto find_page;
1713 }
1714 unlock_page(page);
1715 shrink_readahead_size_eio(filp, ra);
1716 error = -EIO;
1717 goto readpage_error;
1718 }
1719 unlock_page(page);
1720 }
1721
1722 goto page_ok;
1723
1724 readpage_error:
1725 /* UHHUH! A synchronous read error occurred. Report it */
1726 page_cache_release(page);
1727 goto out;
1728
1729 no_cached_page:
1730 /*
1731 * Ok, it wasn't cached, so we need to create a new
1732 * page..
1733 */
1734 page = page_cache_alloc_cold(mapping);
1735 if (!page) {
1736 error = -ENOMEM;
1737 goto out;
1738 }
1739 error = add_to_page_cache_lru(page, mapping, index,
1740 mapping_gfp_constraint(mapping, GFP_KERNEL));
1741 if (error) {
1742 page_cache_release(page);
1743 if (error == -EEXIST) {
1744 error = 0;
1745 goto find_page;
1746 }
1747 goto out;
1748 }
1749 goto readpage;
1750 }
1751
1752 out:
1753 ra->prev_pos = prev_index;
1754 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1755 ra->prev_pos |= prev_offset;
1756
1757 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1758 file_accessed(filp);
1759 return written ? written : error;
1760 }
1761
1762 /**
1763 * generic_file_read_iter - generic filesystem read routine
1764 * @iocb: kernel I/O control block
1765 * @iter: destination for the data read
1766 *
1767 * This is the "read_iter()" routine for all filesystems
1768 * that can use the page cache directly.
1769 */
1770 ssize_t
1771 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1772 {
1773 struct file *file = iocb->ki_filp;
1774 ssize_t retval = 0;
1775 loff_t *ppos = &iocb->ki_pos;
1776 loff_t pos = *ppos;
1777
1778 if (iocb->ki_flags & IOCB_DIRECT) {
1779 struct address_space *mapping = file->f_mapping;
1780 struct inode *inode = mapping->host;
1781 size_t count = iov_iter_count(iter);
1782 loff_t size;
1783
1784 if (!count)
1785 goto out; /* skip atime */
1786 size = i_size_read(inode);
1787 retval = filemap_write_and_wait_range(mapping, pos,
1788 pos + count - 1);
1789 if (!retval) {
1790 struct iov_iter data = *iter;
1791 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1792 }
1793
1794 if (retval > 0) {
1795 *ppos = pos + retval;
1796 iov_iter_advance(iter, retval);
1797 }
1798
1799 /*
1800 * Btrfs can have a short DIO read if we encounter
1801 * compressed extents, so if there was an error, or if
1802 * we've already read everything we wanted to, or if
1803 * there was a short read because we hit EOF, go ahead
1804 * and return. Otherwise fallthrough to buffered io for
1805 * the rest of the read. Buffered reads will not work for
1806 * DAX files, so don't bother trying.
1807 */
1808 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1809 IS_DAX(inode)) {
1810 file_accessed(file);
1811 goto out;
1812 }
1813 }
1814
1815 retval = do_generic_file_read(file, ppos, iter, retval);
1816 out:
1817 return retval;
1818 }
1819 EXPORT_SYMBOL(generic_file_read_iter);
1820
1821 #ifdef CONFIG_MMU
1822 /**
1823 * page_cache_read - adds requested page to the page cache if not already there
1824 * @file: file to read
1825 * @offset: page index
1826 *
1827 * This adds the requested page to the page cache if it isn't already there,
1828 * and schedules an I/O to read in its contents from disk.
1829 */
1830 static int page_cache_read(struct file *file, pgoff_t offset)
1831 {
1832 struct address_space *mapping = file->f_mapping;
1833 struct page *page;
1834 int ret;
1835
1836 do {
1837 page = page_cache_alloc_cold(mapping);
1838 if (!page)
1839 return -ENOMEM;
1840
1841 ret = add_to_page_cache_lru(page, mapping, offset,
1842 mapping_gfp_constraint(mapping, GFP_KERNEL));
1843 if (ret == 0)
1844 ret = mapping->a_ops->readpage(file, page);
1845 else if (ret == -EEXIST)
1846 ret = 0; /* losing race to add is OK */
1847
1848 page_cache_release(page);
1849
1850 } while (ret == AOP_TRUNCATED_PAGE);
1851
1852 return ret;
1853 }
1854
1855 #define MMAP_LOTSAMISS (100)
1856
1857 /*
1858 * Synchronous readahead happens when we don't even find
1859 * a page in the page cache at all.
1860 */
1861 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1862 struct file_ra_state *ra,
1863 struct file *file,
1864 pgoff_t offset)
1865 {
1866 struct address_space *mapping = file->f_mapping;
1867
1868 /* If we don't want any read-ahead, don't bother */
1869 if (vma->vm_flags & VM_RAND_READ)
1870 return;
1871 if (!ra->ra_pages)
1872 return;
1873
1874 if (vma->vm_flags & VM_SEQ_READ) {
1875 page_cache_sync_readahead(mapping, ra, file, offset,
1876 ra->ra_pages);
1877 return;
1878 }
1879
1880 /* Avoid banging the cache line if not needed */
1881 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1882 ra->mmap_miss++;
1883
1884 /*
1885 * Do we miss much more than hit in this file? If so,
1886 * stop bothering with read-ahead. It will only hurt.
1887 */
1888 if (ra->mmap_miss > MMAP_LOTSAMISS)
1889 return;
1890
1891 /*
1892 * mmap read-around
1893 */
1894 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1895 ra->size = ra->ra_pages;
1896 ra->async_size = ra->ra_pages / 4;
1897 ra_submit(ra, mapping, file);
1898 }
1899
1900 /*
1901 * Asynchronous readahead happens when we find the page and PG_readahead,
1902 * so we want to possibly extend the readahead further..
1903 */
1904 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1905 struct file_ra_state *ra,
1906 struct file *file,
1907 struct page *page,
1908 pgoff_t offset)
1909 {
1910 struct address_space *mapping = file->f_mapping;
1911
1912 /* If we don't want any read-ahead, don't bother */
1913 if (vma->vm_flags & VM_RAND_READ)
1914 return;
1915 if (ra->mmap_miss > 0)
1916 ra->mmap_miss--;
1917 if (PageReadahead(page))
1918 page_cache_async_readahead(mapping, ra, file,
1919 page, offset, ra->ra_pages);
1920 }
1921
1922 /**
1923 * filemap_fault - read in file data for page fault handling
1924 * @vma: vma in which the fault was taken
1925 * @vmf: struct vm_fault containing details of the fault
1926 *
1927 * filemap_fault() is invoked via the vma operations vector for a
1928 * mapped memory region to read in file data during a page fault.
1929 *
1930 * The goto's are kind of ugly, but this streamlines the normal case of having
1931 * it in the page cache, and handles the special cases reasonably without
1932 * having a lot of duplicated code.
1933 *
1934 * vma->vm_mm->mmap_sem must be held on entry.
1935 *
1936 * If our return value has VM_FAULT_RETRY set, it's because
1937 * lock_page_or_retry() returned 0.
1938 * The mmap_sem has usually been released in this case.
1939 * See __lock_page_or_retry() for the exception.
1940 *
1941 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1942 * has not been released.
1943 *
1944 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1945 */
1946 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1947 {
1948 int error;
1949 struct file *file = vma->vm_file;
1950 struct address_space *mapping = file->f_mapping;
1951 struct file_ra_state *ra = &file->f_ra;
1952 struct inode *inode = mapping->host;
1953 pgoff_t offset = vmf->pgoff;
1954 struct page *page;
1955 loff_t size;
1956 int ret = 0;
1957
1958 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1959 if (offset >= size >> PAGE_CACHE_SHIFT)
1960 return VM_FAULT_SIGBUS;
1961
1962 /*
1963 * Do we have something in the page cache already?
1964 */
1965 page = find_get_page(mapping, offset);
1966 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1967 /*
1968 * We found the page, so try async readahead before
1969 * waiting for the lock.
1970 */
1971 do_async_mmap_readahead(vma, ra, file, page, offset);
1972 } else if (!page) {
1973 /* No page in the page cache at all */
1974 do_sync_mmap_readahead(vma, ra, file, offset);
1975 count_vm_event(PGMAJFAULT);
1976 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1977 ret = VM_FAULT_MAJOR;
1978 retry_find:
1979 page = find_get_page(mapping, offset);
1980 if (!page)
1981 goto no_cached_page;
1982 }
1983
1984 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1985 page_cache_release(page);
1986 return ret | VM_FAULT_RETRY;
1987 }
1988
1989 /* Did it get truncated? */
1990 if (unlikely(page->mapping != mapping)) {
1991 unlock_page(page);
1992 put_page(page);
1993 goto retry_find;
1994 }
1995 VM_BUG_ON_PAGE(page->index != offset, page);
1996
1997 /*
1998 * We have a locked page in the page cache, now we need to check
1999 * that it's up-to-date. If not, it is going to be due to an error.
2000 */
2001 if (unlikely(!PageUptodate(page)))
2002 goto page_not_uptodate;
2003
2004 /*
2005 * Found the page and have a reference on it.
2006 * We must recheck i_size under page lock.
2007 */
2008 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2009 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2010 unlock_page(page);
2011 page_cache_release(page);
2012 return VM_FAULT_SIGBUS;
2013 }
2014
2015 vmf->page = page;
2016 return ret | VM_FAULT_LOCKED;
2017
2018 no_cached_page:
2019 /*
2020 * We're only likely to ever get here if MADV_RANDOM is in
2021 * effect.
2022 */
2023 error = page_cache_read(file, offset);
2024
2025 /*
2026 * The page we want has now been added to the page cache.
2027 * In the unlikely event that someone removed it in the
2028 * meantime, we'll just come back here and read it again.
2029 */
2030 if (error >= 0)
2031 goto retry_find;
2032
2033 /*
2034 * An error return from page_cache_read can result if the
2035 * system is low on memory, or a problem occurs while trying
2036 * to schedule I/O.
2037 */
2038 if (error == -ENOMEM)
2039 return VM_FAULT_OOM;
2040 return VM_FAULT_SIGBUS;
2041
2042 page_not_uptodate:
2043 /*
2044 * Umm, take care of errors if the page isn't up-to-date.
2045 * Try to re-read it _once_. We do this synchronously,
2046 * because there really aren't any performance issues here
2047 * and we need to check for errors.
2048 */
2049 ClearPageError(page);
2050 error = mapping->a_ops->readpage(file, page);
2051 if (!error) {
2052 wait_on_page_locked(page);
2053 if (!PageUptodate(page))
2054 error = -EIO;
2055 }
2056 page_cache_release(page);
2057
2058 if (!error || error == AOP_TRUNCATED_PAGE)
2059 goto retry_find;
2060
2061 /* Things didn't work out. Return zero to tell the mm layer so. */
2062 shrink_readahead_size_eio(file, ra);
2063 return VM_FAULT_SIGBUS;
2064 }
2065 EXPORT_SYMBOL(filemap_fault);
2066
2067 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2068 {
2069 struct radix_tree_iter iter;
2070 void **slot;
2071 struct file *file = vma->vm_file;
2072 struct address_space *mapping = file->f_mapping;
2073 loff_t size;
2074 struct page *page;
2075 unsigned long address = (unsigned long) vmf->virtual_address;
2076 unsigned long addr;
2077 pte_t *pte;
2078
2079 rcu_read_lock();
2080 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2081 if (iter.index > vmf->max_pgoff)
2082 break;
2083 repeat:
2084 page = radix_tree_deref_slot(slot);
2085 if (unlikely(!page))
2086 goto next;
2087 if (radix_tree_exception(page)) {
2088 if (radix_tree_deref_retry(page))
2089 break;
2090 else
2091 goto next;
2092 }
2093
2094 if (!page_cache_get_speculative(page))
2095 goto repeat;
2096
2097 /* Has the page moved? */
2098 if (unlikely(page != *slot)) {
2099 page_cache_release(page);
2100 goto repeat;
2101 }
2102
2103 if (!PageUptodate(page) ||
2104 PageReadahead(page) ||
2105 PageHWPoison(page))
2106 goto skip;
2107 if (!trylock_page(page))
2108 goto skip;
2109
2110 if (page->mapping != mapping || !PageUptodate(page))
2111 goto unlock;
2112
2113 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2114 if (page->index >= size >> PAGE_CACHE_SHIFT)
2115 goto unlock;
2116
2117 pte = vmf->pte + page->index - vmf->pgoff;
2118 if (!pte_none(*pte))
2119 goto unlock;
2120
2121 if (file->f_ra.mmap_miss > 0)
2122 file->f_ra.mmap_miss--;
2123 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2124 do_set_pte(vma, addr, page, pte, false, false);
2125 unlock_page(page);
2126 goto next;
2127 unlock:
2128 unlock_page(page);
2129 skip:
2130 page_cache_release(page);
2131 next:
2132 if (iter.index == vmf->max_pgoff)
2133 break;
2134 }
2135 rcu_read_unlock();
2136 }
2137 EXPORT_SYMBOL(filemap_map_pages);
2138
2139 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2140 {
2141 struct page *page = vmf->page;
2142 struct inode *inode = file_inode(vma->vm_file);
2143 int ret = VM_FAULT_LOCKED;
2144
2145 sb_start_pagefault(inode->i_sb);
2146 vma_file_update_time(vma);
2147 lock_page(page);
2148 if (page->mapping != inode->i_mapping) {
2149 unlock_page(page);
2150 ret = VM_FAULT_NOPAGE;
2151 goto out;
2152 }
2153 /*
2154 * We mark the page dirty already here so that when freeze is in
2155 * progress, we are guaranteed that writeback during freezing will
2156 * see the dirty page and writeprotect it again.
2157 */
2158 set_page_dirty(page);
2159 wait_for_stable_page(page);
2160 out:
2161 sb_end_pagefault(inode->i_sb);
2162 return ret;
2163 }
2164 EXPORT_SYMBOL(filemap_page_mkwrite);
2165
2166 const struct vm_operations_struct generic_file_vm_ops = {
2167 .fault = filemap_fault,
2168 .map_pages = filemap_map_pages,
2169 .page_mkwrite = filemap_page_mkwrite,
2170 };
2171
2172 /* This is used for a general mmap of a disk file */
2173
2174 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2175 {
2176 struct address_space *mapping = file->f_mapping;
2177
2178 if (!mapping->a_ops->readpage)
2179 return -ENOEXEC;
2180 file_accessed(file);
2181 vma->vm_ops = &generic_file_vm_ops;
2182 return 0;
2183 }
2184
2185 /*
2186 * This is for filesystems which do not implement ->writepage.
2187 */
2188 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2189 {
2190 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2191 return -EINVAL;
2192 return generic_file_mmap(file, vma);
2193 }
2194 #else
2195 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2196 {
2197 return -ENOSYS;
2198 }
2199 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2200 {
2201 return -ENOSYS;
2202 }
2203 #endif /* CONFIG_MMU */
2204
2205 EXPORT_SYMBOL(generic_file_mmap);
2206 EXPORT_SYMBOL(generic_file_readonly_mmap);
2207
2208 static struct page *wait_on_page_read(struct page *page)
2209 {
2210 if (!IS_ERR(page)) {
2211 wait_on_page_locked(page);
2212 if (!PageUptodate(page)) {
2213 page_cache_release(page);
2214 page = ERR_PTR(-EIO);
2215 }
2216 }
2217 return page;
2218 }
2219
2220 static struct page *__read_cache_page(struct address_space *mapping,
2221 pgoff_t index,
2222 int (*filler)(void *, struct page *),
2223 void *data,
2224 gfp_t gfp)
2225 {
2226 struct page *page;
2227 int err;
2228 repeat:
2229 page = find_get_page(mapping, index);
2230 if (!page) {
2231 page = __page_cache_alloc(gfp | __GFP_COLD);
2232 if (!page)
2233 return ERR_PTR(-ENOMEM);
2234 err = add_to_page_cache_lru(page, mapping, index, gfp);
2235 if (unlikely(err)) {
2236 page_cache_release(page);
2237 if (err == -EEXIST)
2238 goto repeat;
2239 /* Presumably ENOMEM for radix tree node */
2240 return ERR_PTR(err);
2241 }
2242 err = filler(data, page);
2243 if (err < 0) {
2244 page_cache_release(page);
2245 page = ERR_PTR(err);
2246 } else {
2247 page = wait_on_page_read(page);
2248 }
2249 }
2250 return page;
2251 }
2252
2253 static struct page *do_read_cache_page(struct address_space *mapping,
2254 pgoff_t index,
2255 int (*filler)(void *, struct page *),
2256 void *data,
2257 gfp_t gfp)
2258
2259 {
2260 struct page *page;
2261 int err;
2262
2263 retry:
2264 page = __read_cache_page(mapping, index, filler, data, gfp);
2265 if (IS_ERR(page))
2266 return page;
2267 if (PageUptodate(page))
2268 goto out;
2269
2270 lock_page(page);
2271 if (!page->mapping) {
2272 unlock_page(page);
2273 page_cache_release(page);
2274 goto retry;
2275 }
2276 if (PageUptodate(page)) {
2277 unlock_page(page);
2278 goto out;
2279 }
2280 err = filler(data, page);
2281 if (err < 0) {
2282 page_cache_release(page);
2283 return ERR_PTR(err);
2284 } else {
2285 page = wait_on_page_read(page);
2286 if (IS_ERR(page))
2287 return page;
2288 }
2289 out:
2290 mark_page_accessed(page);
2291 return page;
2292 }
2293
2294 /**
2295 * read_cache_page - read into page cache, fill it if needed
2296 * @mapping: the page's address_space
2297 * @index: the page index
2298 * @filler: function to perform the read
2299 * @data: first arg to filler(data, page) function, often left as NULL
2300 *
2301 * Read into the page cache. If a page already exists, and PageUptodate() is
2302 * not set, try to fill the page and wait for it to become unlocked.
2303 *
2304 * If the page does not get brought uptodate, return -EIO.
2305 */
2306 struct page *read_cache_page(struct address_space *mapping,
2307 pgoff_t index,
2308 int (*filler)(void *, struct page *),
2309 void *data)
2310 {
2311 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2312 }
2313 EXPORT_SYMBOL(read_cache_page);
2314
2315 /**
2316 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2317 * @mapping: the page's address_space
2318 * @index: the page index
2319 * @gfp: the page allocator flags to use if allocating
2320 *
2321 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2322 * any new page allocations done using the specified allocation flags.
2323 *
2324 * If the page does not get brought uptodate, return -EIO.
2325 */
2326 struct page *read_cache_page_gfp(struct address_space *mapping,
2327 pgoff_t index,
2328 gfp_t gfp)
2329 {
2330 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2331
2332 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2333 }
2334 EXPORT_SYMBOL(read_cache_page_gfp);
2335
2336 /*
2337 * Performs necessary checks before doing a write
2338 *
2339 * Can adjust writing position or amount of bytes to write.
2340 * Returns appropriate error code that caller should return or
2341 * zero in case that write should be allowed.
2342 */
2343 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2344 {
2345 struct file *file = iocb->ki_filp;
2346 struct inode *inode = file->f_mapping->host;
2347 unsigned long limit = rlimit(RLIMIT_FSIZE);
2348 loff_t pos;
2349
2350 if (!iov_iter_count(from))
2351 return 0;
2352
2353 /* FIXME: this is for backwards compatibility with 2.4 */
2354 if (iocb->ki_flags & IOCB_APPEND)
2355 iocb->ki_pos = i_size_read(inode);
2356
2357 pos = iocb->ki_pos;
2358
2359 if (limit != RLIM_INFINITY) {
2360 if (iocb->ki_pos >= limit) {
2361 send_sig(SIGXFSZ, current, 0);
2362 return -EFBIG;
2363 }
2364 iov_iter_truncate(from, limit - (unsigned long)pos);
2365 }
2366
2367 /*
2368 * LFS rule
2369 */
2370 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2371 !(file->f_flags & O_LARGEFILE))) {
2372 if (pos >= MAX_NON_LFS)
2373 return -EFBIG;
2374 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2375 }
2376
2377 /*
2378 * Are we about to exceed the fs block limit ?
2379 *
2380 * If we have written data it becomes a short write. If we have
2381 * exceeded without writing data we send a signal and return EFBIG.
2382 * Linus frestrict idea will clean these up nicely..
2383 */
2384 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2385 return -EFBIG;
2386
2387 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2388 return iov_iter_count(from);
2389 }
2390 EXPORT_SYMBOL(generic_write_checks);
2391
2392 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2393 loff_t pos, unsigned len, unsigned flags,
2394 struct page **pagep, void **fsdata)
2395 {
2396 const struct address_space_operations *aops = mapping->a_ops;
2397
2398 return aops->write_begin(file, mapping, pos, len, flags,
2399 pagep, fsdata);
2400 }
2401 EXPORT_SYMBOL(pagecache_write_begin);
2402
2403 int pagecache_write_end(struct file *file, struct address_space *mapping,
2404 loff_t pos, unsigned len, unsigned copied,
2405 struct page *page, void *fsdata)
2406 {
2407 const struct address_space_operations *aops = mapping->a_ops;
2408
2409 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2410 }
2411 EXPORT_SYMBOL(pagecache_write_end);
2412
2413 ssize_t
2414 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2415 {
2416 struct file *file = iocb->ki_filp;
2417 struct address_space *mapping = file->f_mapping;
2418 struct inode *inode = mapping->host;
2419 ssize_t written;
2420 size_t write_len;
2421 pgoff_t end;
2422 struct iov_iter data;
2423
2424 write_len = iov_iter_count(from);
2425 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2426
2427 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2428 if (written)
2429 goto out;
2430
2431 /*
2432 * After a write we want buffered reads to be sure to go to disk to get
2433 * the new data. We invalidate clean cached page from the region we're
2434 * about to write. We do this *before* the write so that we can return
2435 * without clobbering -EIOCBQUEUED from ->direct_IO().
2436 */
2437 if (mapping->nrpages) {
2438 written = invalidate_inode_pages2_range(mapping,
2439 pos >> PAGE_CACHE_SHIFT, end);
2440 /*
2441 * If a page can not be invalidated, return 0 to fall back
2442 * to buffered write.
2443 */
2444 if (written) {
2445 if (written == -EBUSY)
2446 return 0;
2447 goto out;
2448 }
2449 }
2450
2451 data = *from;
2452 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2453
2454 /*
2455 * Finally, try again to invalidate clean pages which might have been
2456 * cached by non-direct readahead, or faulted in by get_user_pages()
2457 * if the source of the write was an mmap'ed region of the file
2458 * we're writing. Either one is a pretty crazy thing to do,
2459 * so we don't support it 100%. If this invalidation
2460 * fails, tough, the write still worked...
2461 */
2462 if (mapping->nrpages) {
2463 invalidate_inode_pages2_range(mapping,
2464 pos >> PAGE_CACHE_SHIFT, end);
2465 }
2466
2467 if (written > 0) {
2468 pos += written;
2469 iov_iter_advance(from, written);
2470 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2471 i_size_write(inode, pos);
2472 mark_inode_dirty(inode);
2473 }
2474 iocb->ki_pos = pos;
2475 }
2476 out:
2477 return written;
2478 }
2479 EXPORT_SYMBOL(generic_file_direct_write);
2480
2481 /*
2482 * Find or create a page at the given pagecache position. Return the locked
2483 * page. This function is specifically for buffered writes.
2484 */
2485 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2486 pgoff_t index, unsigned flags)
2487 {
2488 struct page *page;
2489 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2490
2491 if (flags & AOP_FLAG_NOFS)
2492 fgp_flags |= FGP_NOFS;
2493
2494 page = pagecache_get_page(mapping, index, fgp_flags,
2495 mapping_gfp_mask(mapping));
2496 if (page)
2497 wait_for_stable_page(page);
2498
2499 return page;
2500 }
2501 EXPORT_SYMBOL(grab_cache_page_write_begin);
2502
2503 ssize_t generic_perform_write(struct file *file,
2504 struct iov_iter *i, loff_t pos)
2505 {
2506 struct address_space *mapping = file->f_mapping;
2507 const struct address_space_operations *a_ops = mapping->a_ops;
2508 long status = 0;
2509 ssize_t written = 0;
2510 unsigned int flags = 0;
2511
2512 /*
2513 * Copies from kernel address space cannot fail (NFSD is a big user).
2514 */
2515 if (!iter_is_iovec(i))
2516 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2517
2518 do {
2519 struct page *page;
2520 unsigned long offset; /* Offset into pagecache page */
2521 unsigned long bytes; /* Bytes to write to page */
2522 size_t copied; /* Bytes copied from user */
2523 void *fsdata;
2524
2525 offset = (pos & (PAGE_CACHE_SIZE - 1));
2526 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2527 iov_iter_count(i));
2528
2529 again:
2530 /*
2531 * Bring in the user page that we will copy from _first_.
2532 * Otherwise there's a nasty deadlock on copying from the
2533 * same page as we're writing to, without it being marked
2534 * up-to-date.
2535 *
2536 * Not only is this an optimisation, but it is also required
2537 * to check that the address is actually valid, when atomic
2538 * usercopies are used, below.
2539 */
2540 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2541 status = -EFAULT;
2542 break;
2543 }
2544
2545 if (fatal_signal_pending(current)) {
2546 status = -EINTR;
2547 break;
2548 }
2549
2550 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2551 &page, &fsdata);
2552 if (unlikely(status < 0))
2553 break;
2554
2555 if (mapping_writably_mapped(mapping))
2556 flush_dcache_page(page);
2557
2558 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2559 flush_dcache_page(page);
2560
2561 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2562 page, fsdata);
2563 if (unlikely(status < 0))
2564 break;
2565 copied = status;
2566
2567 cond_resched();
2568
2569 iov_iter_advance(i, copied);
2570 if (unlikely(copied == 0)) {
2571 /*
2572 * If we were unable to copy any data at all, we must
2573 * fall back to a single segment length write.
2574 *
2575 * If we didn't fallback here, we could livelock
2576 * because not all segments in the iov can be copied at
2577 * once without a pagefault.
2578 */
2579 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2580 iov_iter_single_seg_count(i));
2581 goto again;
2582 }
2583 pos += copied;
2584 written += copied;
2585
2586 balance_dirty_pages_ratelimited(mapping);
2587 } while (iov_iter_count(i));
2588
2589 return written ? written : status;
2590 }
2591 EXPORT_SYMBOL(generic_perform_write);
2592
2593 /**
2594 * __generic_file_write_iter - write data to a file
2595 * @iocb: IO state structure (file, offset, etc.)
2596 * @from: iov_iter with data to write
2597 *
2598 * This function does all the work needed for actually writing data to a
2599 * file. It does all basic checks, removes SUID from the file, updates
2600 * modification times and calls proper subroutines depending on whether we
2601 * do direct IO or a standard buffered write.
2602 *
2603 * It expects i_mutex to be grabbed unless we work on a block device or similar
2604 * object which does not need locking at all.
2605 *
2606 * This function does *not* take care of syncing data in case of O_SYNC write.
2607 * A caller has to handle it. This is mainly due to the fact that we want to
2608 * avoid syncing under i_mutex.
2609 */
2610 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2611 {
2612 struct file *file = iocb->ki_filp;
2613 struct address_space * mapping = file->f_mapping;
2614 struct inode *inode = mapping->host;
2615 ssize_t written = 0;
2616 ssize_t err;
2617 ssize_t status;
2618
2619 /* We can write back this queue in page reclaim */
2620 current->backing_dev_info = inode_to_bdi(inode);
2621 err = file_remove_privs(file);
2622 if (err)
2623 goto out;
2624
2625 err = file_update_time(file);
2626 if (err)
2627 goto out;
2628
2629 if (iocb->ki_flags & IOCB_DIRECT) {
2630 loff_t pos, endbyte;
2631
2632 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2633 /*
2634 * If the write stopped short of completing, fall back to
2635 * buffered writes. Some filesystems do this for writes to
2636 * holes, for example. For DAX files, a buffered write will
2637 * not succeed (even if it did, DAX does not handle dirty
2638 * page-cache pages correctly).
2639 */
2640 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2641 goto out;
2642
2643 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2644 /*
2645 * If generic_perform_write() returned a synchronous error
2646 * then we want to return the number of bytes which were
2647 * direct-written, or the error code if that was zero. Note
2648 * that this differs from normal direct-io semantics, which
2649 * will return -EFOO even if some bytes were written.
2650 */
2651 if (unlikely(status < 0)) {
2652 err = status;
2653 goto out;
2654 }
2655 /*
2656 * We need to ensure that the page cache pages are written to
2657 * disk and invalidated to preserve the expected O_DIRECT
2658 * semantics.
2659 */
2660 endbyte = pos + status - 1;
2661 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2662 if (err == 0) {
2663 iocb->ki_pos = endbyte + 1;
2664 written += status;
2665 invalidate_mapping_pages(mapping,
2666 pos >> PAGE_CACHE_SHIFT,
2667 endbyte >> PAGE_CACHE_SHIFT);
2668 } else {
2669 /*
2670 * We don't know how much we wrote, so just return
2671 * the number of bytes which were direct-written
2672 */
2673 }
2674 } else {
2675 written = generic_perform_write(file, from, iocb->ki_pos);
2676 if (likely(written > 0))
2677 iocb->ki_pos += written;
2678 }
2679 out:
2680 current->backing_dev_info = NULL;
2681 return written ? written : err;
2682 }
2683 EXPORT_SYMBOL(__generic_file_write_iter);
2684
2685 /**
2686 * generic_file_write_iter - write data to a file
2687 * @iocb: IO state structure
2688 * @from: iov_iter with data to write
2689 *
2690 * This is a wrapper around __generic_file_write_iter() to be used by most
2691 * filesystems. It takes care of syncing the file in case of O_SYNC file
2692 * and acquires i_mutex as needed.
2693 */
2694 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2695 {
2696 struct file *file = iocb->ki_filp;
2697 struct inode *inode = file->f_mapping->host;
2698 ssize_t ret;
2699
2700 mutex_lock(&inode->i_mutex);
2701 ret = generic_write_checks(iocb, from);
2702 if (ret > 0)
2703 ret = __generic_file_write_iter(iocb, from);
2704 mutex_unlock(&inode->i_mutex);
2705
2706 if (ret > 0) {
2707 ssize_t err;
2708
2709 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2710 if (err < 0)
2711 ret = err;
2712 }
2713 return ret;
2714 }
2715 EXPORT_SYMBOL(generic_file_write_iter);
2716
2717 /**
2718 * try_to_release_page() - release old fs-specific metadata on a page
2719 *
2720 * @page: the page which the kernel is trying to free
2721 * @gfp_mask: memory allocation flags (and I/O mode)
2722 *
2723 * The address_space is to try to release any data against the page
2724 * (presumably at page->private). If the release was successful, return `1'.
2725 * Otherwise return zero.
2726 *
2727 * This may also be called if PG_fscache is set on a page, indicating that the
2728 * page is known to the local caching routines.
2729 *
2730 * The @gfp_mask argument specifies whether I/O may be performed to release
2731 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2732 *
2733 */
2734 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2735 {
2736 struct address_space * const mapping = page->mapping;
2737
2738 BUG_ON(!PageLocked(page));
2739 if (PageWriteback(page))
2740 return 0;
2741
2742 if (mapping && mapping->a_ops->releasepage)
2743 return mapping->a_ops->releasepage(page, gfp_mask);
2744 return try_to_free_buffers(page);
2745 }
2746
2747 EXPORT_SYMBOL(try_to_release_page);