]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/filemap.c
a16eb2c4f3164bca5897d13b36782c858bf2cd42
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60 /*
61 * Lock ordering:
62 *
63 * ->i_mmap_mutex (truncate_pagecache)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
67 *
68 * ->i_mutex
69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 *
71 * ->mmap_sem
72 * ->i_mmap_mutex
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 *
82 * bdi->wb.list_lock
83 * sb_lock (fs/fs-writeback.c)
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
86 * ->i_mmap_mutex
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 *
92 * ->page_table_lock or pte_lock
93 * ->swap_lock (try_to_unmap_one)
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
108 */
109
110 /*
111 * Delete a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __delete_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 trace_mm_filemap_delete_from_page_cache(page);
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
128 cleancache_invalidate_page(mapping, page);
129
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
132 /* Leave page->index set: truncation lookup relies upon it */
133 mapping->nrpages--;
134 __dec_zone_page_state(page, NR_FILE_PAGES);
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
137 BUG_ON(page_mapped(page));
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
150 }
151
152 /**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160 void delete_from_page_cache(struct page *page)
161 {
162 struct address_space *mapping = page->mapping;
163 void (*freepage)(struct page *);
164
165 BUG_ON(!PageLocked(page));
166
167 freepage = mapping->a_ops->freepage;
168 spin_lock_irq(&mapping->tree_lock);
169 __delete_from_page_cache(page);
170 spin_unlock_irq(&mapping->tree_lock);
171 mem_cgroup_uncharge_cache_page(page);
172
173 if (freepage)
174 freepage(page);
175 page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
179 static int sleep_on_page(void *word)
180 {
181 io_schedule();
182 return 0;
183 }
184
185 static int sleep_on_page_killable(void *word)
186 {
187 sleep_on_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 ret = -ENOSPC;
197 if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 ret = -EIO;
199 return ret;
200 }
201
202 /**
203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204 * @mapping: address space structure to write
205 * @start: offset in bytes where the range starts
206 * @end: offset in bytes where the range ends (inclusive)
207 * @sync_mode: enable synchronous operation
208 *
209 * Start writeback against all of a mapping's dirty pages that lie
210 * within the byte offsets <start, end> inclusive.
211 *
212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213 * opposed to a regular memory cleansing writeback. The difference between
214 * these two operations is that if a dirty page/buffer is encountered, it must
215 * be waited upon, and not just skipped over.
216 */
217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end, int sync_mode)
219 {
220 int ret;
221 struct writeback_control wbc = {
222 .sync_mode = sync_mode,
223 .nr_to_write = LONG_MAX,
224 .range_start = start,
225 .range_end = end,
226 };
227
228 if (!mapping_cap_writeback_dirty(mapping))
229 return 0;
230
231 ret = do_writepages(mapping, &wbc);
232 return ret;
233 }
234
235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236 int sync_mode)
237 {
238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240
241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246
247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248 loff_t end)
249 {
250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253
254 /**
255 * filemap_flush - mostly a non-blocking flush
256 * @mapping: target address_space
257 *
258 * This is a mostly non-blocking flush. Not suitable for data-integrity
259 * purposes - I/O may not be started against all dirty pages.
260 */
261 int filemap_flush(struct address_space *mapping)
262 {
263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266
267 /**
268 * filemap_fdatawait_range - wait for writeback to complete
269 * @mapping: address space structure to wait for
270 * @start_byte: offset in bytes where the range starts
271 * @end_byte: offset in bytes where the range ends (inclusive)
272 *
273 * Walk the list of under-writeback pages of the given address space
274 * in the given range and wait for all of them.
275 */
276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 loff_t end_byte)
278 {
279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281 struct pagevec pvec;
282 int nr_pages;
283 int ret2, ret = 0;
284
285 if (end_byte < start_byte)
286 goto out;
287
288 pagevec_init(&pvec, 0);
289 while ((index <= end) &&
290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_WRITEBACK,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 unsigned i;
294
295 for (i = 0; i < nr_pages; i++) {
296 struct page *page = pvec.pages[i];
297
298 /* until radix tree lookup accepts end_index */
299 if (page->index > end)
300 continue;
301
302 wait_on_page_writeback(page);
303 if (TestClearPageError(page))
304 ret = -EIO;
305 }
306 pagevec_release(&pvec);
307 cond_resched();
308 }
309 out:
310 ret2 = filemap_check_errors(mapping);
311 if (!ret)
312 ret = ret2;
313
314 return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319 * filemap_fdatawait - wait for all under-writeback pages to complete
320 * @mapping: address space structure to wait for
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
324 */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338 int err = 0;
339
340 if (mapping->nrpages) {
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
353 } else {
354 err = filemap_check_errors(mapping);
355 }
356 return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359
360 /**
361 * filemap_write_and_wait_range - write out & wait on a file range
362 * @mapping: the address_space for the pages
363 * @lstart: offset in bytes where the range starts
364 * @lend: offset in bytes where the range ends (inclusive)
365 *
366 * Write out and wait upon file offsets lstart->lend, inclusive.
367 *
368 * Note that `lend' is inclusive (describes the last byte to be written) so
369 * that this function can be used to write to the very end-of-file (end = -1).
370 */
371 int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373 {
374 int err = 0;
375
376 if (mapping->nrpages) {
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
381 int err2 = filemap_fdatawait_range(mapping,
382 lstart, lend);
383 if (!err)
384 err = err2;
385 }
386 } else {
387 err = filemap_check_errors(mapping);
388 }
389 return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392
393 /**
394 * replace_page_cache_page - replace a pagecache page with a new one
395 * @old: page to be replaced
396 * @new: page to replace with
397 * @gfp_mask: allocation mode
398 *
399 * This function replaces a page in the pagecache with a new one. On
400 * success it acquires the pagecache reference for the new page and
401 * drops it for the old page. Both the old and new pages must be
402 * locked. This function does not add the new page to the LRU, the
403 * caller must do that.
404 *
405 * The remove + add is atomic. The only way this function can fail is
406 * memory allocation failure.
407 */
408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410 int error;
411
412 VM_BUG_ON_PAGE(!PageLocked(old), old);
413 VM_BUG_ON_PAGE(!PageLocked(new), new);
414 VM_BUG_ON_PAGE(new->mapping, new);
415
416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 if (!error) {
418 struct address_space *mapping = old->mapping;
419 void (*freepage)(struct page *);
420
421 pgoff_t offset = old->index;
422 freepage = mapping->a_ops->freepage;
423
424 page_cache_get(new);
425 new->mapping = mapping;
426 new->index = offset;
427
428 spin_lock_irq(&mapping->tree_lock);
429 __delete_from_page_cache(old);
430 error = radix_tree_insert(&mapping->page_tree, offset, new);
431 BUG_ON(error);
432 mapping->nrpages++;
433 __inc_zone_page_state(new, NR_FILE_PAGES);
434 if (PageSwapBacked(new))
435 __inc_zone_page_state(new, NR_SHMEM);
436 spin_unlock_irq(&mapping->tree_lock);
437 /* mem_cgroup codes must not be called under tree_lock */
438 mem_cgroup_replace_page_cache(old, new);
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
443 }
444
445 return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
449 /**
450 * add_to_page_cache_locked - add a locked page to the pagecache
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
455 *
456 * This function is used to add a page to the pagecache. It must be locked.
457 * This function does not add the page to the LRU. The caller must do that.
458 */
459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
460 pgoff_t offset, gfp_t gfp_mask)
461 {
462 int error;
463
464 VM_BUG_ON_PAGE(!PageLocked(page), page);
465 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
466
467 error = mem_cgroup_cache_charge(page, current->mm,
468 gfp_mask & GFP_RECLAIM_MASK);
469 if (error)
470 return error;
471
472 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
473 if (error) {
474 mem_cgroup_uncharge_cache_page(page);
475 return error;
476 }
477
478 page_cache_get(page);
479 page->mapping = mapping;
480 page->index = offset;
481
482 spin_lock_irq(&mapping->tree_lock);
483 error = radix_tree_insert(&mapping->page_tree, offset, page);
484 radix_tree_preload_end();
485 if (unlikely(error))
486 goto err_insert;
487 mapping->nrpages++;
488 __inc_zone_page_state(page, NR_FILE_PAGES);
489 spin_unlock_irq(&mapping->tree_lock);
490 trace_mm_filemap_add_to_page_cache(page);
491 return 0;
492 err_insert:
493 page->mapping = NULL;
494 /* Leave page->index set: truncation relies upon it */
495 spin_unlock_irq(&mapping->tree_lock);
496 mem_cgroup_uncharge_cache_page(page);
497 page_cache_release(page);
498 return error;
499 }
500 EXPORT_SYMBOL(add_to_page_cache_locked);
501
502 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
503 pgoff_t offset, gfp_t gfp_mask)
504 {
505 int ret;
506
507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 if (ret == 0)
509 lru_cache_add_file(page);
510 return ret;
511 }
512 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
513
514 #ifdef CONFIG_NUMA
515 struct page *__page_cache_alloc(gfp_t gfp)
516 {
517 int n;
518 struct page *page;
519
520 if (cpuset_do_page_mem_spread()) {
521 unsigned int cpuset_mems_cookie;
522 do {
523 cpuset_mems_cookie = get_mems_allowed();
524 n = cpuset_mem_spread_node();
525 page = alloc_pages_exact_node(n, gfp, 0);
526 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
527
528 return page;
529 }
530 return alloc_pages(gfp, 0);
531 }
532 EXPORT_SYMBOL(__page_cache_alloc);
533 #endif
534
535 /*
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
544 */
545 static wait_queue_head_t *page_waitqueue(struct page *page)
546 {
547 const struct zone *zone = page_zone(page);
548
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550 }
551
552 static inline void wake_up_page(struct page *page, int bit)
553 {
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
555 }
556
557 void wait_on_page_bit(struct page *page, int bit_nr)
558 {
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560
561 if (test_bit(bit_nr, &page->flags))
562 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
563 TASK_UNINTERRUPTIBLE);
564 }
565 EXPORT_SYMBOL(wait_on_page_bit);
566
567 int wait_on_page_bit_killable(struct page *page, int bit_nr)
568 {
569 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
570
571 if (!test_bit(bit_nr, &page->flags))
572 return 0;
573
574 return __wait_on_bit(page_waitqueue(page), &wait,
575 sleep_on_page_killable, TASK_KILLABLE);
576 }
577
578 /**
579 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
580 * @page: Page defining the wait queue of interest
581 * @waiter: Waiter to add to the queue
582 *
583 * Add an arbitrary @waiter to the wait queue for the nominated @page.
584 */
585 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
586 {
587 wait_queue_head_t *q = page_waitqueue(page);
588 unsigned long flags;
589
590 spin_lock_irqsave(&q->lock, flags);
591 __add_wait_queue(q, waiter);
592 spin_unlock_irqrestore(&q->lock, flags);
593 }
594 EXPORT_SYMBOL_GPL(add_page_wait_queue);
595
596 /**
597 * unlock_page - unlock a locked page
598 * @page: the page
599 *
600 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
601 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
602 * mechananism between PageLocked pages and PageWriteback pages is shared.
603 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
604 *
605 * The mb is necessary to enforce ordering between the clear_bit and the read
606 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
607 */
608 void unlock_page(struct page *page)
609 {
610 VM_BUG_ON_PAGE(!PageLocked(page), page);
611 clear_bit_unlock(PG_locked, &page->flags);
612 smp_mb__after_clear_bit();
613 wake_up_page(page, PG_locked);
614 }
615 EXPORT_SYMBOL(unlock_page);
616
617 /**
618 * end_page_writeback - end writeback against a page
619 * @page: the page
620 */
621 void end_page_writeback(struct page *page)
622 {
623 if (TestClearPageReclaim(page))
624 rotate_reclaimable_page(page);
625
626 if (!test_clear_page_writeback(page))
627 BUG();
628
629 smp_mb__after_clear_bit();
630 wake_up_page(page, PG_writeback);
631 }
632 EXPORT_SYMBOL(end_page_writeback);
633
634 /**
635 * __lock_page - get a lock on the page, assuming we need to sleep to get it
636 * @page: the page to lock
637 */
638 void __lock_page(struct page *page)
639 {
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641
642 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
643 TASK_UNINTERRUPTIBLE);
644 }
645 EXPORT_SYMBOL(__lock_page);
646
647 int __lock_page_killable(struct page *page)
648 {
649 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
650
651 return __wait_on_bit_lock(page_waitqueue(page), &wait,
652 sleep_on_page_killable, TASK_KILLABLE);
653 }
654 EXPORT_SYMBOL_GPL(__lock_page_killable);
655
656 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
657 unsigned int flags)
658 {
659 if (flags & FAULT_FLAG_ALLOW_RETRY) {
660 /*
661 * CAUTION! In this case, mmap_sem is not released
662 * even though return 0.
663 */
664 if (flags & FAULT_FLAG_RETRY_NOWAIT)
665 return 0;
666
667 up_read(&mm->mmap_sem);
668 if (flags & FAULT_FLAG_KILLABLE)
669 wait_on_page_locked_killable(page);
670 else
671 wait_on_page_locked(page);
672 return 0;
673 } else {
674 if (flags & FAULT_FLAG_KILLABLE) {
675 int ret;
676
677 ret = __lock_page_killable(page);
678 if (ret) {
679 up_read(&mm->mmap_sem);
680 return 0;
681 }
682 } else
683 __lock_page(page);
684 return 1;
685 }
686 }
687
688 /**
689 * find_get_page - find and get a page reference
690 * @mapping: the address_space to search
691 * @offset: the page index
692 *
693 * Is there a pagecache struct page at the given (mapping, offset) tuple?
694 * If yes, increment its refcount and return it; if no, return NULL.
695 */
696 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
697 {
698 void **pagep;
699 struct page *page;
700
701 rcu_read_lock();
702 repeat:
703 page = NULL;
704 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
705 if (pagep) {
706 page = radix_tree_deref_slot(pagep);
707 if (unlikely(!page))
708 goto out;
709 if (radix_tree_exception(page)) {
710 if (radix_tree_deref_retry(page))
711 goto repeat;
712 /*
713 * Otherwise, shmem/tmpfs must be storing a swap entry
714 * here as an exceptional entry: so return it without
715 * attempting to raise page count.
716 */
717 goto out;
718 }
719 if (!page_cache_get_speculative(page))
720 goto repeat;
721
722 /*
723 * Has the page moved?
724 * This is part of the lockless pagecache protocol. See
725 * include/linux/pagemap.h for details.
726 */
727 if (unlikely(page != *pagep)) {
728 page_cache_release(page);
729 goto repeat;
730 }
731 }
732 out:
733 rcu_read_unlock();
734
735 return page;
736 }
737 EXPORT_SYMBOL(find_get_page);
738
739 /**
740 * find_lock_page - locate, pin and lock a pagecache page
741 * @mapping: the address_space to search
742 * @offset: the page index
743 *
744 * Locates the desired pagecache page, locks it, increments its reference
745 * count and returns its address.
746 *
747 * Returns zero if the page was not present. find_lock_page() may sleep.
748 */
749 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
750 {
751 struct page *page;
752
753 repeat:
754 page = find_get_page(mapping, offset);
755 if (page && !radix_tree_exception(page)) {
756 lock_page(page);
757 /* Has the page been truncated? */
758 if (unlikely(page->mapping != mapping)) {
759 unlock_page(page);
760 page_cache_release(page);
761 goto repeat;
762 }
763 VM_BUG_ON_PAGE(page->index != offset, page);
764 }
765 return page;
766 }
767 EXPORT_SYMBOL(find_lock_page);
768
769 /**
770 * find_or_create_page - locate or add a pagecache page
771 * @mapping: the page's address_space
772 * @index: the page's index into the mapping
773 * @gfp_mask: page allocation mode
774 *
775 * Locates a page in the pagecache. If the page is not present, a new page
776 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
777 * LRU list. The returned page is locked and has its reference count
778 * incremented.
779 *
780 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
781 * allocation!
782 *
783 * find_or_create_page() returns the desired page's address, or zero on
784 * memory exhaustion.
785 */
786 struct page *find_or_create_page(struct address_space *mapping,
787 pgoff_t index, gfp_t gfp_mask)
788 {
789 struct page *page;
790 int err;
791 repeat:
792 page = find_lock_page(mapping, index);
793 if (!page) {
794 page = __page_cache_alloc(gfp_mask);
795 if (!page)
796 return NULL;
797 /*
798 * We want a regular kernel memory (not highmem or DMA etc)
799 * allocation for the radix tree nodes, but we need to honour
800 * the context-specific requirements the caller has asked for.
801 * GFP_RECLAIM_MASK collects those requirements.
802 */
803 err = add_to_page_cache_lru(page, mapping, index,
804 (gfp_mask & GFP_RECLAIM_MASK));
805 if (unlikely(err)) {
806 page_cache_release(page);
807 page = NULL;
808 if (err == -EEXIST)
809 goto repeat;
810 }
811 }
812 return page;
813 }
814 EXPORT_SYMBOL(find_or_create_page);
815
816 /**
817 * find_get_pages - gang pagecache lookup
818 * @mapping: The address_space to search
819 * @start: The starting page index
820 * @nr_pages: The maximum number of pages
821 * @pages: Where the resulting pages are placed
822 *
823 * find_get_pages() will search for and return a group of up to
824 * @nr_pages pages in the mapping. The pages are placed at @pages.
825 * find_get_pages() takes a reference against the returned pages.
826 *
827 * The search returns a group of mapping-contiguous pages with ascending
828 * indexes. There may be holes in the indices due to not-present pages.
829 *
830 * find_get_pages() returns the number of pages which were found.
831 */
832 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
833 unsigned int nr_pages, struct page **pages)
834 {
835 struct radix_tree_iter iter;
836 void **slot;
837 unsigned ret = 0;
838
839 if (unlikely(!nr_pages))
840 return 0;
841
842 rcu_read_lock();
843 restart:
844 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
845 struct page *page;
846 repeat:
847 page = radix_tree_deref_slot(slot);
848 if (unlikely(!page))
849 continue;
850
851 if (radix_tree_exception(page)) {
852 if (radix_tree_deref_retry(page)) {
853 /*
854 * Transient condition which can only trigger
855 * when entry at index 0 moves out of or back
856 * to root: none yet gotten, safe to restart.
857 */
858 WARN_ON(iter.index);
859 goto restart;
860 }
861 /*
862 * Otherwise, shmem/tmpfs must be storing a swap entry
863 * here as an exceptional entry: so skip over it -
864 * we only reach this from invalidate_mapping_pages().
865 */
866 continue;
867 }
868
869 if (!page_cache_get_speculative(page))
870 goto repeat;
871
872 /* Has the page moved? */
873 if (unlikely(page != *slot)) {
874 page_cache_release(page);
875 goto repeat;
876 }
877
878 pages[ret] = page;
879 if (++ret == nr_pages)
880 break;
881 }
882
883 rcu_read_unlock();
884 return ret;
885 }
886
887 /**
888 * find_get_pages_contig - gang contiguous pagecache lookup
889 * @mapping: The address_space to search
890 * @index: The starting page index
891 * @nr_pages: The maximum number of pages
892 * @pages: Where the resulting pages are placed
893 *
894 * find_get_pages_contig() works exactly like find_get_pages(), except
895 * that the returned number of pages are guaranteed to be contiguous.
896 *
897 * find_get_pages_contig() returns the number of pages which were found.
898 */
899 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
900 unsigned int nr_pages, struct page **pages)
901 {
902 struct radix_tree_iter iter;
903 void **slot;
904 unsigned int ret = 0;
905
906 if (unlikely(!nr_pages))
907 return 0;
908
909 rcu_read_lock();
910 restart:
911 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
912 struct page *page;
913 repeat:
914 page = radix_tree_deref_slot(slot);
915 /* The hole, there no reason to continue */
916 if (unlikely(!page))
917 break;
918
919 if (radix_tree_exception(page)) {
920 if (radix_tree_deref_retry(page)) {
921 /*
922 * Transient condition which can only trigger
923 * when entry at index 0 moves out of or back
924 * to root: none yet gotten, safe to restart.
925 */
926 goto restart;
927 }
928 /*
929 * Otherwise, shmem/tmpfs must be storing a swap entry
930 * here as an exceptional entry: so stop looking for
931 * contiguous pages.
932 */
933 break;
934 }
935
936 if (!page_cache_get_speculative(page))
937 goto repeat;
938
939 /* Has the page moved? */
940 if (unlikely(page != *slot)) {
941 page_cache_release(page);
942 goto repeat;
943 }
944
945 /*
946 * must check mapping and index after taking the ref.
947 * otherwise we can get both false positives and false
948 * negatives, which is just confusing to the caller.
949 */
950 if (page->mapping == NULL || page->index != iter.index) {
951 page_cache_release(page);
952 break;
953 }
954
955 pages[ret] = page;
956 if (++ret == nr_pages)
957 break;
958 }
959 rcu_read_unlock();
960 return ret;
961 }
962 EXPORT_SYMBOL(find_get_pages_contig);
963
964 /**
965 * find_get_pages_tag - find and return pages that match @tag
966 * @mapping: the address_space to search
967 * @index: the starting page index
968 * @tag: the tag index
969 * @nr_pages: the maximum number of pages
970 * @pages: where the resulting pages are placed
971 *
972 * Like find_get_pages, except we only return pages which are tagged with
973 * @tag. We update @index to index the next page for the traversal.
974 */
975 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
976 int tag, unsigned int nr_pages, struct page **pages)
977 {
978 struct radix_tree_iter iter;
979 void **slot;
980 unsigned ret = 0;
981
982 if (unlikely(!nr_pages))
983 return 0;
984
985 rcu_read_lock();
986 restart:
987 radix_tree_for_each_tagged(slot, &mapping->page_tree,
988 &iter, *index, tag) {
989 struct page *page;
990 repeat:
991 page = radix_tree_deref_slot(slot);
992 if (unlikely(!page))
993 continue;
994
995 if (radix_tree_exception(page)) {
996 if (radix_tree_deref_retry(page)) {
997 /*
998 * Transient condition which can only trigger
999 * when entry at index 0 moves out of or back
1000 * to root: none yet gotten, safe to restart.
1001 */
1002 goto restart;
1003 }
1004 /*
1005 * This function is never used on a shmem/tmpfs
1006 * mapping, so a swap entry won't be found here.
1007 */
1008 BUG();
1009 }
1010
1011 if (!page_cache_get_speculative(page))
1012 goto repeat;
1013
1014 /* Has the page moved? */
1015 if (unlikely(page != *slot)) {
1016 page_cache_release(page);
1017 goto repeat;
1018 }
1019
1020 pages[ret] = page;
1021 if (++ret == nr_pages)
1022 break;
1023 }
1024
1025 rcu_read_unlock();
1026
1027 if (ret)
1028 *index = pages[ret - 1]->index + 1;
1029
1030 return ret;
1031 }
1032 EXPORT_SYMBOL(find_get_pages_tag);
1033
1034 /**
1035 * grab_cache_page_nowait - returns locked page at given index in given cache
1036 * @mapping: target address_space
1037 * @index: the page index
1038 *
1039 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1040 * This is intended for speculative data generators, where the data can
1041 * be regenerated if the page couldn't be grabbed. This routine should
1042 * be safe to call while holding the lock for another page.
1043 *
1044 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1045 * and deadlock against the caller's locked page.
1046 */
1047 struct page *
1048 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1049 {
1050 struct page *page = find_get_page(mapping, index);
1051
1052 if (page) {
1053 if (trylock_page(page))
1054 return page;
1055 page_cache_release(page);
1056 return NULL;
1057 }
1058 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1059 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1060 page_cache_release(page);
1061 page = NULL;
1062 }
1063 return page;
1064 }
1065 EXPORT_SYMBOL(grab_cache_page_nowait);
1066
1067 /*
1068 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1069 * a _large_ part of the i/o request. Imagine the worst scenario:
1070 *
1071 * ---R__________________________________________B__________
1072 * ^ reading here ^ bad block(assume 4k)
1073 *
1074 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1075 * => failing the whole request => read(R) => read(R+1) =>
1076 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1077 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1078 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1079 *
1080 * It is going insane. Fix it by quickly scaling down the readahead size.
1081 */
1082 static void shrink_readahead_size_eio(struct file *filp,
1083 struct file_ra_state *ra)
1084 {
1085 ra->ra_pages /= 4;
1086 }
1087
1088 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
1089 struct iov_iter *i)
1090 {
1091 size_t skip, copy, left, wanted;
1092 const struct iovec *iov;
1093 char __user *buf;
1094 void *kaddr, *from;
1095
1096 if (unlikely(bytes > i->count))
1097 bytes = i->count;
1098
1099 if (unlikely(!bytes))
1100 return 0;
1101
1102 wanted = bytes;
1103 iov = i->iov;
1104 skip = i->iov_offset;
1105 buf = iov->iov_base + skip;
1106 copy = min(bytes, iov->iov_len - skip);
1107
1108 if (!fault_in_pages_writeable(buf, copy)) {
1109 kaddr = kmap_atomic(page);
1110 from = kaddr + offset;
1111
1112 /* first chunk, usually the only one */
1113 left = __copy_to_user_inatomic(buf, from, copy);
1114 copy -= left;
1115 skip += copy;
1116 from += copy;
1117 bytes -= copy;
1118
1119 while (unlikely(!left && bytes)) {
1120 iov++;
1121 buf = iov->iov_base;
1122 copy = min(bytes, iov->iov_len);
1123 left = __copy_to_user_inatomic(buf, from, copy);
1124 copy -= left;
1125 skip = copy;
1126 from += copy;
1127 bytes -= copy;
1128 }
1129 if (likely(!bytes)) {
1130 kunmap_atomic(kaddr);
1131 goto done;
1132 }
1133 offset = from - kaddr;
1134 buf += copy;
1135 kunmap_atomic(kaddr);
1136 copy = min(bytes, iov->iov_len - skip);
1137 }
1138 /* Too bad - revert to non-atomic kmap */
1139 kaddr = kmap(page);
1140 from = kaddr + offset;
1141 left = __copy_to_user(buf, from, copy);
1142 copy -= left;
1143 skip += copy;
1144 from += copy;
1145 bytes -= copy;
1146 while (unlikely(!left && bytes)) {
1147 iov++;
1148 buf = iov->iov_base;
1149 copy = min(bytes, iov->iov_len);
1150 left = __copy_to_user(buf, from, copy);
1151 copy -= left;
1152 skip = copy;
1153 from += copy;
1154 bytes -= copy;
1155 }
1156 kunmap(page);
1157 done:
1158 i->count -= wanted - bytes;
1159 i->nr_segs -= iov - i->iov;
1160 i->iov = iov;
1161 i->iov_offset = skip;
1162 return wanted - bytes;
1163 }
1164 EXPORT_SYMBOL(copy_page_to_iter);
1165
1166 /**
1167 * do_generic_file_read - generic file read routine
1168 * @filp: the file to read
1169 * @ppos: current file position
1170 * @iter: data destination
1171 * @written: already copied
1172 *
1173 * This is a generic file read routine, and uses the
1174 * mapping->a_ops->readpage() function for the actual low-level stuff.
1175 *
1176 * This is really ugly. But the goto's actually try to clarify some
1177 * of the logic when it comes to error handling etc.
1178 */
1179 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1180 struct iov_iter *iter, ssize_t written)
1181 {
1182 struct address_space *mapping = filp->f_mapping;
1183 struct inode *inode = mapping->host;
1184 struct file_ra_state *ra = &filp->f_ra;
1185 pgoff_t index;
1186 pgoff_t last_index;
1187 pgoff_t prev_index;
1188 unsigned long offset; /* offset into pagecache page */
1189 unsigned int prev_offset;
1190 int error = 0;
1191
1192 index = *ppos >> PAGE_CACHE_SHIFT;
1193 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1194 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1195 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1196 offset = *ppos & ~PAGE_CACHE_MASK;
1197
1198 for (;;) {
1199 struct page *page;
1200 pgoff_t end_index;
1201 loff_t isize;
1202 unsigned long nr, ret;
1203
1204 cond_resched();
1205 find_page:
1206 page = find_get_page(mapping, index);
1207 if (!page) {
1208 page_cache_sync_readahead(mapping,
1209 ra, filp,
1210 index, last_index - index);
1211 page = find_get_page(mapping, index);
1212 if (unlikely(page == NULL))
1213 goto no_cached_page;
1214 }
1215 if (PageReadahead(page)) {
1216 page_cache_async_readahead(mapping,
1217 ra, filp, page,
1218 index, last_index - index);
1219 }
1220 if (!PageUptodate(page)) {
1221 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1222 !mapping->a_ops->is_partially_uptodate)
1223 goto page_not_up_to_date;
1224 if (!trylock_page(page))
1225 goto page_not_up_to_date;
1226 /* Did it get truncated before we got the lock? */
1227 if (!page->mapping)
1228 goto page_not_up_to_date_locked;
1229 if (!mapping->a_ops->is_partially_uptodate(page,
1230 offset, iter->count))
1231 goto page_not_up_to_date_locked;
1232 unlock_page(page);
1233 }
1234 page_ok:
1235 /*
1236 * i_size must be checked after we know the page is Uptodate.
1237 *
1238 * Checking i_size after the check allows us to calculate
1239 * the correct value for "nr", which means the zero-filled
1240 * part of the page is not copied back to userspace (unless
1241 * another truncate extends the file - this is desired though).
1242 */
1243
1244 isize = i_size_read(inode);
1245 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1246 if (unlikely(!isize || index > end_index)) {
1247 page_cache_release(page);
1248 goto out;
1249 }
1250
1251 /* nr is the maximum number of bytes to copy from this page */
1252 nr = PAGE_CACHE_SIZE;
1253 if (index == end_index) {
1254 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1255 if (nr <= offset) {
1256 page_cache_release(page);
1257 goto out;
1258 }
1259 }
1260 nr = nr - offset;
1261
1262 /* If users can be writing to this page using arbitrary
1263 * virtual addresses, take care about potential aliasing
1264 * before reading the page on the kernel side.
1265 */
1266 if (mapping_writably_mapped(mapping))
1267 flush_dcache_page(page);
1268
1269 /*
1270 * When a sequential read accesses a page several times,
1271 * only mark it as accessed the first time.
1272 */
1273 if (prev_index != index || offset != prev_offset)
1274 mark_page_accessed(page);
1275 prev_index = index;
1276
1277 /*
1278 * Ok, we have the page, and it's up-to-date, so
1279 * now we can copy it to user space...
1280 */
1281
1282 ret = copy_page_to_iter(page, offset, nr, iter);
1283 offset += ret;
1284 index += offset >> PAGE_CACHE_SHIFT;
1285 offset &= ~PAGE_CACHE_MASK;
1286 prev_offset = offset;
1287
1288 page_cache_release(page);
1289 written += ret;
1290 if (!iov_iter_count(iter))
1291 goto out;
1292 if (ret < nr) {
1293 error = -EFAULT;
1294 goto out;
1295 }
1296 continue;
1297
1298 page_not_up_to_date:
1299 /* Get exclusive access to the page ... */
1300 error = lock_page_killable(page);
1301 if (unlikely(error))
1302 goto readpage_error;
1303
1304 page_not_up_to_date_locked:
1305 /* Did it get truncated before we got the lock? */
1306 if (!page->mapping) {
1307 unlock_page(page);
1308 page_cache_release(page);
1309 continue;
1310 }
1311
1312 /* Did somebody else fill it already? */
1313 if (PageUptodate(page)) {
1314 unlock_page(page);
1315 goto page_ok;
1316 }
1317
1318 readpage:
1319 /*
1320 * A previous I/O error may have been due to temporary
1321 * failures, eg. multipath errors.
1322 * PG_error will be set again if readpage fails.
1323 */
1324 ClearPageError(page);
1325 /* Start the actual read. The read will unlock the page. */
1326 error = mapping->a_ops->readpage(filp, page);
1327
1328 if (unlikely(error)) {
1329 if (error == AOP_TRUNCATED_PAGE) {
1330 page_cache_release(page);
1331 error = 0;
1332 goto find_page;
1333 }
1334 goto readpage_error;
1335 }
1336
1337 if (!PageUptodate(page)) {
1338 error = lock_page_killable(page);
1339 if (unlikely(error))
1340 goto readpage_error;
1341 if (!PageUptodate(page)) {
1342 if (page->mapping == NULL) {
1343 /*
1344 * invalidate_mapping_pages got it
1345 */
1346 unlock_page(page);
1347 page_cache_release(page);
1348 goto find_page;
1349 }
1350 unlock_page(page);
1351 shrink_readahead_size_eio(filp, ra);
1352 error = -EIO;
1353 goto readpage_error;
1354 }
1355 unlock_page(page);
1356 }
1357
1358 goto page_ok;
1359
1360 readpage_error:
1361 /* UHHUH! A synchronous read error occurred. Report it */
1362 page_cache_release(page);
1363 goto out;
1364
1365 no_cached_page:
1366 /*
1367 * Ok, it wasn't cached, so we need to create a new
1368 * page..
1369 */
1370 page = page_cache_alloc_cold(mapping);
1371 if (!page) {
1372 error = -ENOMEM;
1373 goto out;
1374 }
1375 error = add_to_page_cache_lru(page, mapping,
1376 index, GFP_KERNEL);
1377 if (error) {
1378 page_cache_release(page);
1379 if (error == -EEXIST) {
1380 error = 0;
1381 goto find_page;
1382 }
1383 goto out;
1384 }
1385 goto readpage;
1386 }
1387
1388 out:
1389 ra->prev_pos = prev_index;
1390 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1391 ra->prev_pos |= prev_offset;
1392
1393 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1394 file_accessed(filp);
1395 return written ? written : error;
1396 }
1397
1398 /*
1399 * Performs necessary checks before doing a write
1400 * @iov: io vector request
1401 * @nr_segs: number of segments in the iovec
1402 * @count: number of bytes to write
1403 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1404 *
1405 * Adjust number of segments and amount of bytes to write (nr_segs should be
1406 * properly initialized first). Returns appropriate error code that caller
1407 * should return or zero in case that write should be allowed.
1408 */
1409 int generic_segment_checks(const struct iovec *iov,
1410 unsigned long *nr_segs, size_t *count, int access_flags)
1411 {
1412 unsigned long seg;
1413 size_t cnt = 0;
1414 for (seg = 0; seg < *nr_segs; seg++) {
1415 const struct iovec *iv = &iov[seg];
1416
1417 /*
1418 * If any segment has a negative length, or the cumulative
1419 * length ever wraps negative then return -EINVAL.
1420 */
1421 cnt += iv->iov_len;
1422 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1423 return -EINVAL;
1424 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1425 continue;
1426 if (seg == 0)
1427 return -EFAULT;
1428 *nr_segs = seg;
1429 cnt -= iv->iov_len; /* This segment is no good */
1430 break;
1431 }
1432 *count = cnt;
1433 return 0;
1434 }
1435 EXPORT_SYMBOL(generic_segment_checks);
1436
1437 /**
1438 * generic_file_aio_read - generic filesystem read routine
1439 * @iocb: kernel I/O control block
1440 * @iov: io vector request
1441 * @nr_segs: number of segments in the iovec
1442 * @pos: current file position
1443 *
1444 * This is the "read()" routine for all filesystems
1445 * that can use the page cache directly.
1446 */
1447 ssize_t
1448 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1449 unsigned long nr_segs, loff_t pos)
1450 {
1451 struct file *filp = iocb->ki_filp;
1452 ssize_t retval;
1453 size_t count;
1454 loff_t *ppos = &iocb->ki_pos;
1455 struct iov_iter i;
1456
1457 count = 0;
1458 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1459 if (retval)
1460 return retval;
1461 iov_iter_init(&i, iov, nr_segs, count, 0);
1462
1463 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1464 if (filp->f_flags & O_DIRECT) {
1465 loff_t size;
1466 struct address_space *mapping;
1467 struct inode *inode;
1468
1469 mapping = filp->f_mapping;
1470 inode = mapping->host;
1471 if (!count)
1472 goto out; /* skip atime */
1473 size = i_size_read(inode);
1474 retval = filemap_write_and_wait_range(mapping, pos,
1475 pos + iov_length(iov, nr_segs) - 1);
1476 if (!retval) {
1477 retval = mapping->a_ops->direct_IO(READ, iocb,
1478 iov, pos, nr_segs);
1479 }
1480 if (retval > 0) {
1481 *ppos = pos + retval;
1482 count -= retval;
1483 /*
1484 * If we did a short DIO read we need to skip the
1485 * section of the iov that we've already read data into.
1486 */
1487 iov_iter_advance(&i, retval);
1488 }
1489
1490 /*
1491 * Btrfs can have a short DIO read if we encounter
1492 * compressed extents, so if there was an error, or if
1493 * we've already read everything we wanted to, or if
1494 * there was a short read because we hit EOF, go ahead
1495 * and return. Otherwise fallthrough to buffered io for
1496 * the rest of the read.
1497 */
1498 if (retval < 0 || !count || *ppos >= size) {
1499 file_accessed(filp);
1500 goto out;
1501 }
1502 }
1503
1504 retval = do_generic_file_read(filp, ppos, &i, retval);
1505 out:
1506 return retval;
1507 }
1508 EXPORT_SYMBOL(generic_file_aio_read);
1509
1510 #ifdef CONFIG_MMU
1511 /**
1512 * page_cache_read - adds requested page to the page cache if not already there
1513 * @file: file to read
1514 * @offset: page index
1515 *
1516 * This adds the requested page to the page cache if it isn't already there,
1517 * and schedules an I/O to read in its contents from disk.
1518 */
1519 static int page_cache_read(struct file *file, pgoff_t offset)
1520 {
1521 struct address_space *mapping = file->f_mapping;
1522 struct page *page;
1523 int ret;
1524
1525 do {
1526 page = page_cache_alloc_cold(mapping);
1527 if (!page)
1528 return -ENOMEM;
1529
1530 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1531 if (ret == 0)
1532 ret = mapping->a_ops->readpage(file, page);
1533 else if (ret == -EEXIST)
1534 ret = 0; /* losing race to add is OK */
1535
1536 page_cache_release(page);
1537
1538 } while (ret == AOP_TRUNCATED_PAGE);
1539
1540 return ret;
1541 }
1542
1543 #define MMAP_LOTSAMISS (100)
1544
1545 /*
1546 * Synchronous readahead happens when we don't even find
1547 * a page in the page cache at all.
1548 */
1549 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1550 struct file_ra_state *ra,
1551 struct file *file,
1552 pgoff_t offset)
1553 {
1554 unsigned long ra_pages;
1555 struct address_space *mapping = file->f_mapping;
1556
1557 /* If we don't want any read-ahead, don't bother */
1558 if (vma->vm_flags & VM_RAND_READ)
1559 return;
1560 if (!ra->ra_pages)
1561 return;
1562
1563 if (vma->vm_flags & VM_SEQ_READ) {
1564 page_cache_sync_readahead(mapping, ra, file, offset,
1565 ra->ra_pages);
1566 return;
1567 }
1568
1569 /* Avoid banging the cache line if not needed */
1570 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1571 ra->mmap_miss++;
1572
1573 /*
1574 * Do we miss much more than hit in this file? If so,
1575 * stop bothering with read-ahead. It will only hurt.
1576 */
1577 if (ra->mmap_miss > MMAP_LOTSAMISS)
1578 return;
1579
1580 /*
1581 * mmap read-around
1582 */
1583 ra_pages = max_sane_readahead(ra->ra_pages);
1584 ra->start = max_t(long, 0, offset - ra_pages / 2);
1585 ra->size = ra_pages;
1586 ra->async_size = ra_pages / 4;
1587 ra_submit(ra, mapping, file);
1588 }
1589
1590 /*
1591 * Asynchronous readahead happens when we find the page and PG_readahead,
1592 * so we want to possibly extend the readahead further..
1593 */
1594 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1595 struct file_ra_state *ra,
1596 struct file *file,
1597 struct page *page,
1598 pgoff_t offset)
1599 {
1600 struct address_space *mapping = file->f_mapping;
1601
1602 /* If we don't want any read-ahead, don't bother */
1603 if (vma->vm_flags & VM_RAND_READ)
1604 return;
1605 if (ra->mmap_miss > 0)
1606 ra->mmap_miss--;
1607 if (PageReadahead(page))
1608 page_cache_async_readahead(mapping, ra, file,
1609 page, offset, ra->ra_pages);
1610 }
1611
1612 /**
1613 * filemap_fault - read in file data for page fault handling
1614 * @vma: vma in which the fault was taken
1615 * @vmf: struct vm_fault containing details of the fault
1616 *
1617 * filemap_fault() is invoked via the vma operations vector for a
1618 * mapped memory region to read in file data during a page fault.
1619 *
1620 * The goto's are kind of ugly, but this streamlines the normal case of having
1621 * it in the page cache, and handles the special cases reasonably without
1622 * having a lot of duplicated code.
1623 */
1624 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1625 {
1626 int error;
1627 struct file *file = vma->vm_file;
1628 struct address_space *mapping = file->f_mapping;
1629 struct file_ra_state *ra = &file->f_ra;
1630 struct inode *inode = mapping->host;
1631 pgoff_t offset = vmf->pgoff;
1632 struct page *page;
1633 pgoff_t size;
1634 int ret = 0;
1635
1636 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1637 if (offset >= size)
1638 return VM_FAULT_SIGBUS;
1639
1640 /*
1641 * Do we have something in the page cache already?
1642 */
1643 page = find_get_page(mapping, offset);
1644 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1645 /*
1646 * We found the page, so try async readahead before
1647 * waiting for the lock.
1648 */
1649 do_async_mmap_readahead(vma, ra, file, page, offset);
1650 } else if (!page) {
1651 /* No page in the page cache at all */
1652 do_sync_mmap_readahead(vma, ra, file, offset);
1653 count_vm_event(PGMAJFAULT);
1654 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1655 ret = VM_FAULT_MAJOR;
1656 retry_find:
1657 page = find_get_page(mapping, offset);
1658 if (!page)
1659 goto no_cached_page;
1660 }
1661
1662 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1663 page_cache_release(page);
1664 return ret | VM_FAULT_RETRY;
1665 }
1666
1667 /* Did it get truncated? */
1668 if (unlikely(page->mapping != mapping)) {
1669 unlock_page(page);
1670 put_page(page);
1671 goto retry_find;
1672 }
1673 VM_BUG_ON_PAGE(page->index != offset, page);
1674
1675 /*
1676 * We have a locked page in the page cache, now we need to check
1677 * that it's up-to-date. If not, it is going to be due to an error.
1678 */
1679 if (unlikely(!PageUptodate(page)))
1680 goto page_not_uptodate;
1681
1682 /*
1683 * Found the page and have a reference on it.
1684 * We must recheck i_size under page lock.
1685 */
1686 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1687 if (unlikely(offset >= size)) {
1688 unlock_page(page);
1689 page_cache_release(page);
1690 return VM_FAULT_SIGBUS;
1691 }
1692
1693 vmf->page = page;
1694 return ret | VM_FAULT_LOCKED;
1695
1696 no_cached_page:
1697 /*
1698 * We're only likely to ever get here if MADV_RANDOM is in
1699 * effect.
1700 */
1701 error = page_cache_read(file, offset);
1702
1703 /*
1704 * The page we want has now been added to the page cache.
1705 * In the unlikely event that someone removed it in the
1706 * meantime, we'll just come back here and read it again.
1707 */
1708 if (error >= 0)
1709 goto retry_find;
1710
1711 /*
1712 * An error return from page_cache_read can result if the
1713 * system is low on memory, or a problem occurs while trying
1714 * to schedule I/O.
1715 */
1716 if (error == -ENOMEM)
1717 return VM_FAULT_OOM;
1718 return VM_FAULT_SIGBUS;
1719
1720 page_not_uptodate:
1721 /*
1722 * Umm, take care of errors if the page isn't up-to-date.
1723 * Try to re-read it _once_. We do this synchronously,
1724 * because there really aren't any performance issues here
1725 * and we need to check for errors.
1726 */
1727 ClearPageError(page);
1728 error = mapping->a_ops->readpage(file, page);
1729 if (!error) {
1730 wait_on_page_locked(page);
1731 if (!PageUptodate(page))
1732 error = -EIO;
1733 }
1734 page_cache_release(page);
1735
1736 if (!error || error == AOP_TRUNCATED_PAGE)
1737 goto retry_find;
1738
1739 /* Things didn't work out. Return zero to tell the mm layer so. */
1740 shrink_readahead_size_eio(file, ra);
1741 return VM_FAULT_SIGBUS;
1742 }
1743 EXPORT_SYMBOL(filemap_fault);
1744
1745 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1746 {
1747 struct page *page = vmf->page;
1748 struct inode *inode = file_inode(vma->vm_file);
1749 int ret = VM_FAULT_LOCKED;
1750
1751 sb_start_pagefault(inode->i_sb);
1752 file_update_time(vma->vm_file);
1753 lock_page(page);
1754 if (page->mapping != inode->i_mapping) {
1755 unlock_page(page);
1756 ret = VM_FAULT_NOPAGE;
1757 goto out;
1758 }
1759 /*
1760 * We mark the page dirty already here so that when freeze is in
1761 * progress, we are guaranteed that writeback during freezing will
1762 * see the dirty page and writeprotect it again.
1763 */
1764 set_page_dirty(page);
1765 wait_for_stable_page(page);
1766 out:
1767 sb_end_pagefault(inode->i_sb);
1768 return ret;
1769 }
1770 EXPORT_SYMBOL(filemap_page_mkwrite);
1771
1772 const struct vm_operations_struct generic_file_vm_ops = {
1773 .fault = filemap_fault,
1774 .page_mkwrite = filemap_page_mkwrite,
1775 .remap_pages = generic_file_remap_pages,
1776 };
1777
1778 /* This is used for a general mmap of a disk file */
1779
1780 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1781 {
1782 struct address_space *mapping = file->f_mapping;
1783
1784 if (!mapping->a_ops->readpage)
1785 return -ENOEXEC;
1786 file_accessed(file);
1787 vma->vm_ops = &generic_file_vm_ops;
1788 return 0;
1789 }
1790
1791 /*
1792 * This is for filesystems which do not implement ->writepage.
1793 */
1794 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1795 {
1796 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1797 return -EINVAL;
1798 return generic_file_mmap(file, vma);
1799 }
1800 #else
1801 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1802 {
1803 return -ENOSYS;
1804 }
1805 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1806 {
1807 return -ENOSYS;
1808 }
1809 #endif /* CONFIG_MMU */
1810
1811 EXPORT_SYMBOL(generic_file_mmap);
1812 EXPORT_SYMBOL(generic_file_readonly_mmap);
1813
1814 static struct page *__read_cache_page(struct address_space *mapping,
1815 pgoff_t index,
1816 int (*filler)(void *, struct page *),
1817 void *data,
1818 gfp_t gfp)
1819 {
1820 struct page *page;
1821 int err;
1822 repeat:
1823 page = find_get_page(mapping, index);
1824 if (!page) {
1825 page = __page_cache_alloc(gfp | __GFP_COLD);
1826 if (!page)
1827 return ERR_PTR(-ENOMEM);
1828 err = add_to_page_cache_lru(page, mapping, index, gfp);
1829 if (unlikely(err)) {
1830 page_cache_release(page);
1831 if (err == -EEXIST)
1832 goto repeat;
1833 /* Presumably ENOMEM for radix tree node */
1834 return ERR_PTR(err);
1835 }
1836 err = filler(data, page);
1837 if (err < 0) {
1838 page_cache_release(page);
1839 page = ERR_PTR(err);
1840 }
1841 }
1842 return page;
1843 }
1844
1845 static struct page *do_read_cache_page(struct address_space *mapping,
1846 pgoff_t index,
1847 int (*filler)(void *, struct page *),
1848 void *data,
1849 gfp_t gfp)
1850
1851 {
1852 struct page *page;
1853 int err;
1854
1855 retry:
1856 page = __read_cache_page(mapping, index, filler, data, gfp);
1857 if (IS_ERR(page))
1858 return page;
1859 if (PageUptodate(page))
1860 goto out;
1861
1862 lock_page(page);
1863 if (!page->mapping) {
1864 unlock_page(page);
1865 page_cache_release(page);
1866 goto retry;
1867 }
1868 if (PageUptodate(page)) {
1869 unlock_page(page);
1870 goto out;
1871 }
1872 err = filler(data, page);
1873 if (err < 0) {
1874 page_cache_release(page);
1875 return ERR_PTR(err);
1876 }
1877 out:
1878 mark_page_accessed(page);
1879 return page;
1880 }
1881
1882 /**
1883 * read_cache_page_async - read into page cache, fill it if needed
1884 * @mapping: the page's address_space
1885 * @index: the page index
1886 * @filler: function to perform the read
1887 * @data: first arg to filler(data, page) function, often left as NULL
1888 *
1889 * Same as read_cache_page, but don't wait for page to become unlocked
1890 * after submitting it to the filler.
1891 *
1892 * Read into the page cache. If a page already exists, and PageUptodate() is
1893 * not set, try to fill the page but don't wait for it to become unlocked.
1894 *
1895 * If the page does not get brought uptodate, return -EIO.
1896 */
1897 struct page *read_cache_page_async(struct address_space *mapping,
1898 pgoff_t index,
1899 int (*filler)(void *, struct page *),
1900 void *data)
1901 {
1902 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1903 }
1904 EXPORT_SYMBOL(read_cache_page_async);
1905
1906 static struct page *wait_on_page_read(struct page *page)
1907 {
1908 if (!IS_ERR(page)) {
1909 wait_on_page_locked(page);
1910 if (!PageUptodate(page)) {
1911 page_cache_release(page);
1912 page = ERR_PTR(-EIO);
1913 }
1914 }
1915 return page;
1916 }
1917
1918 /**
1919 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1920 * @mapping: the page's address_space
1921 * @index: the page index
1922 * @gfp: the page allocator flags to use if allocating
1923 *
1924 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1925 * any new page allocations done using the specified allocation flags.
1926 *
1927 * If the page does not get brought uptodate, return -EIO.
1928 */
1929 struct page *read_cache_page_gfp(struct address_space *mapping,
1930 pgoff_t index,
1931 gfp_t gfp)
1932 {
1933 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1934
1935 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1936 }
1937 EXPORT_SYMBOL(read_cache_page_gfp);
1938
1939 /**
1940 * read_cache_page - read into page cache, fill it if needed
1941 * @mapping: the page's address_space
1942 * @index: the page index
1943 * @filler: function to perform the read
1944 * @data: first arg to filler(data, page) function, often left as NULL
1945 *
1946 * Read into the page cache. If a page already exists, and PageUptodate() is
1947 * not set, try to fill the page then wait for it to become unlocked.
1948 *
1949 * If the page does not get brought uptodate, return -EIO.
1950 */
1951 struct page *read_cache_page(struct address_space *mapping,
1952 pgoff_t index,
1953 int (*filler)(void *, struct page *),
1954 void *data)
1955 {
1956 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1957 }
1958 EXPORT_SYMBOL(read_cache_page);
1959
1960 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1961 const struct iovec *iov, size_t base, size_t bytes)
1962 {
1963 size_t copied = 0, left = 0;
1964
1965 while (bytes) {
1966 char __user *buf = iov->iov_base + base;
1967 int copy = min(bytes, iov->iov_len - base);
1968
1969 base = 0;
1970 left = __copy_from_user_inatomic(vaddr, buf, copy);
1971 copied += copy;
1972 bytes -= copy;
1973 vaddr += copy;
1974 iov++;
1975
1976 if (unlikely(left))
1977 break;
1978 }
1979 return copied - left;
1980 }
1981
1982 /*
1983 * Copy as much as we can into the page and return the number of bytes which
1984 * were successfully copied. If a fault is encountered then return the number of
1985 * bytes which were copied.
1986 */
1987 size_t iov_iter_copy_from_user_atomic(struct page *page,
1988 struct iov_iter *i, unsigned long offset, size_t bytes)
1989 {
1990 char *kaddr;
1991 size_t copied;
1992
1993 kaddr = kmap_atomic(page);
1994 if (likely(i->nr_segs == 1)) {
1995 int left;
1996 char __user *buf = i->iov->iov_base + i->iov_offset;
1997 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1998 copied = bytes - left;
1999 } else {
2000 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2001 i->iov, i->iov_offset, bytes);
2002 }
2003 kunmap_atomic(kaddr);
2004
2005 return copied;
2006 }
2007 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2008
2009 /*
2010 * This has the same sideeffects and return value as
2011 * iov_iter_copy_from_user_atomic().
2012 * The difference is that it attempts to resolve faults.
2013 * Page must not be locked.
2014 */
2015 size_t iov_iter_copy_from_user(struct page *page,
2016 struct iov_iter *i, unsigned long offset, size_t bytes)
2017 {
2018 char *kaddr;
2019 size_t copied;
2020
2021 kaddr = kmap(page);
2022 if (likely(i->nr_segs == 1)) {
2023 int left;
2024 char __user *buf = i->iov->iov_base + i->iov_offset;
2025 left = __copy_from_user(kaddr + offset, buf, bytes);
2026 copied = bytes - left;
2027 } else {
2028 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2029 i->iov, i->iov_offset, bytes);
2030 }
2031 kunmap(page);
2032 return copied;
2033 }
2034 EXPORT_SYMBOL(iov_iter_copy_from_user);
2035
2036 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2037 {
2038 BUG_ON(i->count < bytes);
2039
2040 if (likely(i->nr_segs == 1)) {
2041 i->iov_offset += bytes;
2042 i->count -= bytes;
2043 } else {
2044 const struct iovec *iov = i->iov;
2045 size_t base = i->iov_offset;
2046 unsigned long nr_segs = i->nr_segs;
2047
2048 /*
2049 * The !iov->iov_len check ensures we skip over unlikely
2050 * zero-length segments (without overruning the iovec).
2051 */
2052 while (bytes || unlikely(i->count && !iov->iov_len)) {
2053 int copy;
2054
2055 copy = min(bytes, iov->iov_len - base);
2056 BUG_ON(!i->count || i->count < copy);
2057 i->count -= copy;
2058 bytes -= copy;
2059 base += copy;
2060 if (iov->iov_len == base) {
2061 iov++;
2062 nr_segs--;
2063 base = 0;
2064 }
2065 }
2066 i->iov = iov;
2067 i->iov_offset = base;
2068 i->nr_segs = nr_segs;
2069 }
2070 }
2071 EXPORT_SYMBOL(iov_iter_advance);
2072
2073 /*
2074 * Fault in the first iovec of the given iov_iter, to a maximum length
2075 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2076 * accessed (ie. because it is an invalid address).
2077 *
2078 * writev-intensive code may want this to prefault several iovecs -- that
2079 * would be possible (callers must not rely on the fact that _only_ the
2080 * first iovec will be faulted with the current implementation).
2081 */
2082 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2083 {
2084 char __user *buf = i->iov->iov_base + i->iov_offset;
2085 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2086 return fault_in_pages_readable(buf, bytes);
2087 }
2088 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2089
2090 /*
2091 * Return the count of just the current iov_iter segment.
2092 */
2093 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2094 {
2095 const struct iovec *iov = i->iov;
2096 if (i->nr_segs == 1)
2097 return i->count;
2098 else
2099 return min(i->count, iov->iov_len - i->iov_offset);
2100 }
2101 EXPORT_SYMBOL(iov_iter_single_seg_count);
2102
2103 /*
2104 * Performs necessary checks before doing a write
2105 *
2106 * Can adjust writing position or amount of bytes to write.
2107 * Returns appropriate error code that caller should return or
2108 * zero in case that write should be allowed.
2109 */
2110 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2111 {
2112 struct inode *inode = file->f_mapping->host;
2113 unsigned long limit = rlimit(RLIMIT_FSIZE);
2114
2115 if (unlikely(*pos < 0))
2116 return -EINVAL;
2117
2118 if (!isblk) {
2119 /* FIXME: this is for backwards compatibility with 2.4 */
2120 if (file->f_flags & O_APPEND)
2121 *pos = i_size_read(inode);
2122
2123 if (limit != RLIM_INFINITY) {
2124 if (*pos >= limit) {
2125 send_sig(SIGXFSZ, current, 0);
2126 return -EFBIG;
2127 }
2128 if (*count > limit - (typeof(limit))*pos) {
2129 *count = limit - (typeof(limit))*pos;
2130 }
2131 }
2132 }
2133
2134 /*
2135 * LFS rule
2136 */
2137 if (unlikely(*pos + *count > MAX_NON_LFS &&
2138 !(file->f_flags & O_LARGEFILE))) {
2139 if (*pos >= MAX_NON_LFS) {
2140 return -EFBIG;
2141 }
2142 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2143 *count = MAX_NON_LFS - (unsigned long)*pos;
2144 }
2145 }
2146
2147 /*
2148 * Are we about to exceed the fs block limit ?
2149 *
2150 * If we have written data it becomes a short write. If we have
2151 * exceeded without writing data we send a signal and return EFBIG.
2152 * Linus frestrict idea will clean these up nicely..
2153 */
2154 if (likely(!isblk)) {
2155 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2156 if (*count || *pos > inode->i_sb->s_maxbytes) {
2157 return -EFBIG;
2158 }
2159 /* zero-length writes at ->s_maxbytes are OK */
2160 }
2161
2162 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2163 *count = inode->i_sb->s_maxbytes - *pos;
2164 } else {
2165 #ifdef CONFIG_BLOCK
2166 loff_t isize;
2167 if (bdev_read_only(I_BDEV(inode)))
2168 return -EPERM;
2169 isize = i_size_read(inode);
2170 if (*pos >= isize) {
2171 if (*count || *pos > isize)
2172 return -ENOSPC;
2173 }
2174
2175 if (*pos + *count > isize)
2176 *count = isize - *pos;
2177 #else
2178 return -EPERM;
2179 #endif
2180 }
2181 return 0;
2182 }
2183 EXPORT_SYMBOL(generic_write_checks);
2184
2185 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2186 loff_t pos, unsigned len, unsigned flags,
2187 struct page **pagep, void **fsdata)
2188 {
2189 const struct address_space_operations *aops = mapping->a_ops;
2190
2191 return aops->write_begin(file, mapping, pos, len, flags,
2192 pagep, fsdata);
2193 }
2194 EXPORT_SYMBOL(pagecache_write_begin);
2195
2196 int pagecache_write_end(struct file *file, struct address_space *mapping,
2197 loff_t pos, unsigned len, unsigned copied,
2198 struct page *page, void *fsdata)
2199 {
2200 const struct address_space_operations *aops = mapping->a_ops;
2201
2202 mark_page_accessed(page);
2203 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2204 }
2205 EXPORT_SYMBOL(pagecache_write_end);
2206
2207 ssize_t
2208 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2209 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2210 size_t count, size_t ocount)
2211 {
2212 struct file *file = iocb->ki_filp;
2213 struct address_space *mapping = file->f_mapping;
2214 struct inode *inode = mapping->host;
2215 ssize_t written;
2216 size_t write_len;
2217 pgoff_t end;
2218
2219 if (count != ocount)
2220 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2221
2222 write_len = iov_length(iov, *nr_segs);
2223 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2224
2225 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2226 if (written)
2227 goto out;
2228
2229 /*
2230 * After a write we want buffered reads to be sure to go to disk to get
2231 * the new data. We invalidate clean cached page from the region we're
2232 * about to write. We do this *before* the write so that we can return
2233 * without clobbering -EIOCBQUEUED from ->direct_IO().
2234 */
2235 if (mapping->nrpages) {
2236 written = invalidate_inode_pages2_range(mapping,
2237 pos >> PAGE_CACHE_SHIFT, end);
2238 /*
2239 * If a page can not be invalidated, return 0 to fall back
2240 * to buffered write.
2241 */
2242 if (written) {
2243 if (written == -EBUSY)
2244 return 0;
2245 goto out;
2246 }
2247 }
2248
2249 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2250
2251 /*
2252 * Finally, try again to invalidate clean pages which might have been
2253 * cached by non-direct readahead, or faulted in by get_user_pages()
2254 * if the source of the write was an mmap'ed region of the file
2255 * we're writing. Either one is a pretty crazy thing to do,
2256 * so we don't support it 100%. If this invalidation
2257 * fails, tough, the write still worked...
2258 */
2259 if (mapping->nrpages) {
2260 invalidate_inode_pages2_range(mapping,
2261 pos >> PAGE_CACHE_SHIFT, end);
2262 }
2263
2264 if (written > 0) {
2265 pos += written;
2266 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2267 i_size_write(inode, pos);
2268 mark_inode_dirty(inode);
2269 }
2270 *ppos = pos;
2271 }
2272 out:
2273 return written;
2274 }
2275 EXPORT_SYMBOL(generic_file_direct_write);
2276
2277 /*
2278 * Find or create a page at the given pagecache position. Return the locked
2279 * page. This function is specifically for buffered writes.
2280 */
2281 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2282 pgoff_t index, unsigned flags)
2283 {
2284 int status;
2285 gfp_t gfp_mask;
2286 struct page *page;
2287 gfp_t gfp_notmask = 0;
2288
2289 gfp_mask = mapping_gfp_mask(mapping);
2290 if (mapping_cap_account_dirty(mapping))
2291 gfp_mask |= __GFP_WRITE;
2292 if (flags & AOP_FLAG_NOFS)
2293 gfp_notmask = __GFP_FS;
2294 repeat:
2295 page = find_lock_page(mapping, index);
2296 if (page)
2297 goto found;
2298
2299 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2300 if (!page)
2301 return NULL;
2302 status = add_to_page_cache_lru(page, mapping, index,
2303 GFP_KERNEL & ~gfp_notmask);
2304 if (unlikely(status)) {
2305 page_cache_release(page);
2306 if (status == -EEXIST)
2307 goto repeat;
2308 return NULL;
2309 }
2310 found:
2311 wait_for_stable_page(page);
2312 return page;
2313 }
2314 EXPORT_SYMBOL(grab_cache_page_write_begin);
2315
2316 static ssize_t generic_perform_write(struct file *file,
2317 struct iov_iter *i, loff_t pos)
2318 {
2319 struct address_space *mapping = file->f_mapping;
2320 const struct address_space_operations *a_ops = mapping->a_ops;
2321 long status = 0;
2322 ssize_t written = 0;
2323 unsigned int flags = 0;
2324
2325 /*
2326 * Copies from kernel address space cannot fail (NFSD is a big user).
2327 */
2328 if (segment_eq(get_fs(), KERNEL_DS))
2329 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2330
2331 do {
2332 struct page *page;
2333 unsigned long offset; /* Offset into pagecache page */
2334 unsigned long bytes; /* Bytes to write to page */
2335 size_t copied; /* Bytes copied from user */
2336 void *fsdata;
2337
2338 offset = (pos & (PAGE_CACHE_SIZE - 1));
2339 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2340 iov_iter_count(i));
2341
2342 again:
2343 /*
2344 * Bring in the user page that we will copy from _first_.
2345 * Otherwise there's a nasty deadlock on copying from the
2346 * same page as we're writing to, without it being marked
2347 * up-to-date.
2348 *
2349 * Not only is this an optimisation, but it is also required
2350 * to check that the address is actually valid, when atomic
2351 * usercopies are used, below.
2352 */
2353 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2354 status = -EFAULT;
2355 break;
2356 }
2357
2358 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2359 &page, &fsdata);
2360 if (unlikely(status))
2361 break;
2362
2363 if (mapping_writably_mapped(mapping))
2364 flush_dcache_page(page);
2365
2366 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2367 flush_dcache_page(page);
2368
2369 mark_page_accessed(page);
2370 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2371 page, fsdata);
2372 if (unlikely(status < 0))
2373 break;
2374 copied = status;
2375
2376 cond_resched();
2377
2378 iov_iter_advance(i, copied);
2379 if (unlikely(copied == 0)) {
2380 /*
2381 * If we were unable to copy any data at all, we must
2382 * fall back to a single segment length write.
2383 *
2384 * If we didn't fallback here, we could livelock
2385 * because not all segments in the iov can be copied at
2386 * once without a pagefault.
2387 */
2388 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2389 iov_iter_single_seg_count(i));
2390 goto again;
2391 }
2392 pos += copied;
2393 written += copied;
2394
2395 balance_dirty_pages_ratelimited(mapping);
2396 if (fatal_signal_pending(current)) {
2397 status = -EINTR;
2398 break;
2399 }
2400 } while (iov_iter_count(i));
2401
2402 return written ? written : status;
2403 }
2404
2405 ssize_t
2406 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2407 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2408 size_t count, ssize_t written)
2409 {
2410 struct file *file = iocb->ki_filp;
2411 ssize_t status;
2412 struct iov_iter i;
2413
2414 iov_iter_init(&i, iov, nr_segs, count, written);
2415 status = generic_perform_write(file, &i, pos);
2416
2417 if (likely(status >= 0)) {
2418 written += status;
2419 *ppos = pos + status;
2420 }
2421
2422 return written ? written : status;
2423 }
2424 EXPORT_SYMBOL(generic_file_buffered_write);
2425
2426 /**
2427 * __generic_file_aio_write - write data to a file
2428 * @iocb: IO state structure (file, offset, etc.)
2429 * @iov: vector with data to write
2430 * @nr_segs: number of segments in the vector
2431 * @ppos: position where to write
2432 *
2433 * This function does all the work needed for actually writing data to a
2434 * file. It does all basic checks, removes SUID from the file, updates
2435 * modification times and calls proper subroutines depending on whether we
2436 * do direct IO or a standard buffered write.
2437 *
2438 * It expects i_mutex to be grabbed unless we work on a block device or similar
2439 * object which does not need locking at all.
2440 *
2441 * This function does *not* take care of syncing data in case of O_SYNC write.
2442 * A caller has to handle it. This is mainly due to the fact that we want to
2443 * avoid syncing under i_mutex.
2444 */
2445 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2446 unsigned long nr_segs, loff_t *ppos)
2447 {
2448 struct file *file = iocb->ki_filp;
2449 struct address_space * mapping = file->f_mapping;
2450 size_t ocount; /* original count */
2451 size_t count; /* after file limit checks */
2452 struct inode *inode = mapping->host;
2453 loff_t pos;
2454 ssize_t written;
2455 ssize_t err;
2456
2457 ocount = 0;
2458 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2459 if (err)
2460 return err;
2461
2462 count = ocount;
2463 pos = *ppos;
2464
2465 /* We can write back this queue in page reclaim */
2466 current->backing_dev_info = mapping->backing_dev_info;
2467 written = 0;
2468
2469 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2470 if (err)
2471 goto out;
2472
2473 if (count == 0)
2474 goto out;
2475
2476 err = file_remove_suid(file);
2477 if (err)
2478 goto out;
2479
2480 err = file_update_time(file);
2481 if (err)
2482 goto out;
2483
2484 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2485 if (unlikely(file->f_flags & O_DIRECT)) {
2486 loff_t endbyte;
2487 ssize_t written_buffered;
2488
2489 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2490 ppos, count, ocount);
2491 if (written < 0 || written == count)
2492 goto out;
2493 /*
2494 * direct-io write to a hole: fall through to buffered I/O
2495 * for completing the rest of the request.
2496 */
2497 pos += written;
2498 count -= written;
2499 written_buffered = generic_file_buffered_write(iocb, iov,
2500 nr_segs, pos, ppos, count,
2501 written);
2502 /*
2503 * If generic_file_buffered_write() retuned a synchronous error
2504 * then we want to return the number of bytes which were
2505 * direct-written, or the error code if that was zero. Note
2506 * that this differs from normal direct-io semantics, which
2507 * will return -EFOO even if some bytes were written.
2508 */
2509 if (written_buffered < 0) {
2510 err = written_buffered;
2511 goto out;
2512 }
2513
2514 /*
2515 * We need to ensure that the page cache pages are written to
2516 * disk and invalidated to preserve the expected O_DIRECT
2517 * semantics.
2518 */
2519 endbyte = pos + written_buffered - written - 1;
2520 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2521 if (err == 0) {
2522 written = written_buffered;
2523 invalidate_mapping_pages(mapping,
2524 pos >> PAGE_CACHE_SHIFT,
2525 endbyte >> PAGE_CACHE_SHIFT);
2526 } else {
2527 /*
2528 * We don't know how much we wrote, so just return
2529 * the number of bytes which were direct-written
2530 */
2531 }
2532 } else {
2533 written = generic_file_buffered_write(iocb, iov, nr_segs,
2534 pos, ppos, count, written);
2535 }
2536 out:
2537 current->backing_dev_info = NULL;
2538 return written ? written : err;
2539 }
2540 EXPORT_SYMBOL(__generic_file_aio_write);
2541
2542 /**
2543 * generic_file_aio_write - write data to a file
2544 * @iocb: IO state structure
2545 * @iov: vector with data to write
2546 * @nr_segs: number of segments in the vector
2547 * @pos: position in file where to write
2548 *
2549 * This is a wrapper around __generic_file_aio_write() to be used by most
2550 * filesystems. It takes care of syncing the file in case of O_SYNC file
2551 * and acquires i_mutex as needed.
2552 */
2553 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2554 unsigned long nr_segs, loff_t pos)
2555 {
2556 struct file *file = iocb->ki_filp;
2557 struct inode *inode = file->f_mapping->host;
2558 ssize_t ret;
2559
2560 BUG_ON(iocb->ki_pos != pos);
2561
2562 mutex_lock(&inode->i_mutex);
2563 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2564 mutex_unlock(&inode->i_mutex);
2565
2566 if (ret > 0) {
2567 ssize_t err;
2568
2569 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2570 if (err < 0)
2571 ret = err;
2572 }
2573 return ret;
2574 }
2575 EXPORT_SYMBOL(generic_file_aio_write);
2576
2577 /**
2578 * try_to_release_page() - release old fs-specific metadata on a page
2579 *
2580 * @page: the page which the kernel is trying to free
2581 * @gfp_mask: memory allocation flags (and I/O mode)
2582 *
2583 * The address_space is to try to release any data against the page
2584 * (presumably at page->private). If the release was successful, return `1'.
2585 * Otherwise return zero.
2586 *
2587 * This may also be called if PG_fscache is set on a page, indicating that the
2588 * page is known to the local caching routines.
2589 *
2590 * The @gfp_mask argument specifies whether I/O may be performed to release
2591 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2592 *
2593 */
2594 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2595 {
2596 struct address_space * const mapping = page->mapping;
2597
2598 BUG_ON(!PageLocked(page));
2599 if (PageWriteback(page))
2600 return 0;
2601
2602 if (mapping && mapping->a_ops->releasepage)
2603 return mapping->a_ops->releasepage(page, gfp_mask);
2604 return try_to_free_buffers(page);
2605 }
2606
2607 EXPORT_SYMBOL(try_to_release_page);