]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/filemap.c
writeback, blkio: add documentation for cgroup writeback support
[mirror_ubuntu-kernels.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_rwsem (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_rwsem
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_rwsem
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
108 * ->i_mmap_rwsem
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 */
111
112 static void page_cache_tree_delete(struct address_space *mapping,
113 struct page *page, void *shadow)
114 {
115 struct radix_tree_node *node;
116 unsigned long index;
117 unsigned int offset;
118 unsigned int tag;
119 void **slot;
120
121 VM_BUG_ON(!PageLocked(page));
122
123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125 if (shadow) {
126 mapping->nrshadows++;
127 /*
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
132 */
133 smp_wmb();
134 }
135 mapping->nrpages--;
136
137 if (!node) {
138 /* Clear direct pointer tags in root node */
139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 radix_tree_replace_slot(slot, shadow);
141 return;
142 }
143
144 /* Clear tree tags for the removed page */
145 index = page->index;
146 offset = index & RADIX_TREE_MAP_MASK;
147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 if (test_bit(offset, node->tags[tag]))
149 radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 }
151
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot, shadow);
154 workingset_node_pages_dec(node);
155 if (shadow)
156 workingset_node_shadows_inc(node);
157 else
158 if (__radix_tree_delete_node(&mapping->page_tree, node))
159 return;
160
161 /*
162 * Track node that only contains shadow entries.
163 *
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
167 */
168 if (!workingset_node_pages(node) &&
169 list_empty(&node->private_list)) {
170 node->private_data = mapping;
171 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 }
173 }
174
175 /*
176 * Delete a page from the page cache and free it. Caller has to make
177 * sure the page is locked and that nobody else uses it - or that usage
178 * is safe. The caller must hold the mapping's tree_lock and
179 * mem_cgroup_begin_page_stat().
180 */
181 void __delete_from_page_cache(struct page *page, void *shadow,
182 struct mem_cgroup *memcg)
183 {
184 struct address_space *mapping = page->mapping;
185
186 trace_mm_filemap_delete_from_page_cache(page);
187 /*
188 * if we're uptodate, flush out into the cleancache, otherwise
189 * invalidate any existing cleancache entries. We can't leave
190 * stale data around in the cleancache once our page is gone
191 */
192 if (PageUptodate(page) && PageMappedToDisk(page))
193 cleancache_put_page(page);
194 else
195 cleancache_invalidate_page(mapping, page);
196
197 page_cache_tree_delete(mapping, page, shadow);
198
199 page->mapping = NULL;
200 /* Leave page->index set: truncation lookup relies upon it */
201
202 __dec_zone_page_state(page, NR_FILE_PAGES);
203 if (PageSwapBacked(page))
204 __dec_zone_page_state(page, NR_SHMEM);
205 BUG_ON(page_mapped(page));
206
207 /*
208 * At this point page must be either written or cleaned by truncate.
209 * Dirty page here signals a bug and loss of unwritten data.
210 *
211 * This fixes dirty accounting after removing the page entirely but
212 * leaves PageDirty set: it has no effect for truncated page and
213 * anyway will be cleared before returning page into buddy allocator.
214 */
215 if (WARN_ON_ONCE(PageDirty(page)))
216 account_page_cleaned(page, mapping, memcg,
217 inode_to_wb(mapping->host));
218 }
219
220 /**
221 * delete_from_page_cache - delete page from page cache
222 * @page: the page which the kernel is trying to remove from page cache
223 *
224 * This must be called only on pages that have been verified to be in the page
225 * cache and locked. It will never put the page into the free list, the caller
226 * has a reference on the page.
227 */
228 void delete_from_page_cache(struct page *page)
229 {
230 struct address_space *mapping = page->mapping;
231 struct mem_cgroup *memcg;
232 unsigned long flags;
233
234 void (*freepage)(struct page *);
235
236 BUG_ON(!PageLocked(page));
237
238 freepage = mapping->a_ops->freepage;
239
240 memcg = mem_cgroup_begin_page_stat(page);
241 spin_lock_irqsave(&mapping->tree_lock, flags);
242 __delete_from_page_cache(page, NULL, memcg);
243 spin_unlock_irqrestore(&mapping->tree_lock, flags);
244 mem_cgroup_end_page_stat(memcg);
245
246 if (freepage)
247 freepage(page);
248 page_cache_release(page);
249 }
250 EXPORT_SYMBOL(delete_from_page_cache);
251
252 static int filemap_check_errors(struct address_space *mapping)
253 {
254 int ret = 0;
255 /* Check for outstanding write errors */
256 if (test_bit(AS_ENOSPC, &mapping->flags) &&
257 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
258 ret = -ENOSPC;
259 if (test_bit(AS_EIO, &mapping->flags) &&
260 test_and_clear_bit(AS_EIO, &mapping->flags))
261 ret = -EIO;
262 return ret;
263 }
264
265 /**
266 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
267 * @mapping: address space structure to write
268 * @start: offset in bytes where the range starts
269 * @end: offset in bytes where the range ends (inclusive)
270 * @sync_mode: enable synchronous operation
271 *
272 * Start writeback against all of a mapping's dirty pages that lie
273 * within the byte offsets <start, end> inclusive.
274 *
275 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
276 * opposed to a regular memory cleansing writeback. The difference between
277 * these two operations is that if a dirty page/buffer is encountered, it must
278 * be waited upon, and not just skipped over.
279 */
280 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
281 loff_t end, int sync_mode)
282 {
283 int ret;
284 struct writeback_control wbc = {
285 .sync_mode = sync_mode,
286 .nr_to_write = LONG_MAX,
287 .range_start = start,
288 .range_end = end,
289 };
290
291 if (!mapping_cap_writeback_dirty(mapping))
292 return 0;
293
294 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
295 ret = do_writepages(mapping, &wbc);
296 wbc_detach_inode(&wbc);
297 return ret;
298 }
299
300 static inline int __filemap_fdatawrite(struct address_space *mapping,
301 int sync_mode)
302 {
303 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
304 }
305
306 int filemap_fdatawrite(struct address_space *mapping)
307 {
308 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
309 }
310 EXPORT_SYMBOL(filemap_fdatawrite);
311
312 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
313 loff_t end)
314 {
315 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
316 }
317 EXPORT_SYMBOL(filemap_fdatawrite_range);
318
319 /**
320 * filemap_flush - mostly a non-blocking flush
321 * @mapping: target address_space
322 *
323 * This is a mostly non-blocking flush. Not suitable for data-integrity
324 * purposes - I/O may not be started against all dirty pages.
325 */
326 int filemap_flush(struct address_space *mapping)
327 {
328 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
329 }
330 EXPORT_SYMBOL(filemap_flush);
331
332 /**
333 * filemap_fdatawait_range - wait for writeback to complete
334 * @mapping: address space structure to wait for
335 * @start_byte: offset in bytes where the range starts
336 * @end_byte: offset in bytes where the range ends (inclusive)
337 *
338 * Walk the list of under-writeback pages of the given address space
339 * in the given range and wait for all of them.
340 */
341 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
342 loff_t end_byte)
343 {
344 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
345 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
346 struct pagevec pvec;
347 int nr_pages;
348 int ret2, ret = 0;
349
350 if (end_byte < start_byte)
351 goto out;
352
353 pagevec_init(&pvec, 0);
354 while ((index <= end) &&
355 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356 PAGECACHE_TAG_WRITEBACK,
357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
358 unsigned i;
359
360 for (i = 0; i < nr_pages; i++) {
361 struct page *page = pvec.pages[i];
362
363 /* until radix tree lookup accepts end_index */
364 if (page->index > end)
365 continue;
366
367 wait_on_page_writeback(page);
368 if (TestClearPageError(page))
369 ret = -EIO;
370 }
371 pagevec_release(&pvec);
372 cond_resched();
373 }
374 out:
375 ret2 = filemap_check_errors(mapping);
376 if (!ret)
377 ret = ret2;
378
379 return ret;
380 }
381 EXPORT_SYMBOL(filemap_fdatawait_range);
382
383 /**
384 * filemap_fdatawait - wait for all under-writeback pages to complete
385 * @mapping: address space structure to wait for
386 *
387 * Walk the list of under-writeback pages of the given address space
388 * and wait for all of them.
389 */
390 int filemap_fdatawait(struct address_space *mapping)
391 {
392 loff_t i_size = i_size_read(mapping->host);
393
394 if (i_size == 0)
395 return 0;
396
397 return filemap_fdatawait_range(mapping, 0, i_size - 1);
398 }
399 EXPORT_SYMBOL(filemap_fdatawait);
400
401 int filemap_write_and_wait(struct address_space *mapping)
402 {
403 int err = 0;
404
405 if (mapping->nrpages) {
406 err = filemap_fdatawrite(mapping);
407 /*
408 * Even if the above returned error, the pages may be
409 * written partially (e.g. -ENOSPC), so we wait for it.
410 * But the -EIO is special case, it may indicate the worst
411 * thing (e.g. bug) happened, so we avoid waiting for it.
412 */
413 if (err != -EIO) {
414 int err2 = filemap_fdatawait(mapping);
415 if (!err)
416 err = err2;
417 }
418 } else {
419 err = filemap_check_errors(mapping);
420 }
421 return err;
422 }
423 EXPORT_SYMBOL(filemap_write_and_wait);
424
425 /**
426 * filemap_write_and_wait_range - write out & wait on a file range
427 * @mapping: the address_space for the pages
428 * @lstart: offset in bytes where the range starts
429 * @lend: offset in bytes where the range ends (inclusive)
430 *
431 * Write out and wait upon file offsets lstart->lend, inclusive.
432 *
433 * Note that `lend' is inclusive (describes the last byte to be written) so
434 * that this function can be used to write to the very end-of-file (end = -1).
435 */
436 int filemap_write_and_wait_range(struct address_space *mapping,
437 loff_t lstart, loff_t lend)
438 {
439 int err = 0;
440
441 if (mapping->nrpages) {
442 err = __filemap_fdatawrite_range(mapping, lstart, lend,
443 WB_SYNC_ALL);
444 /* See comment of filemap_write_and_wait() */
445 if (err != -EIO) {
446 int err2 = filemap_fdatawait_range(mapping,
447 lstart, lend);
448 if (!err)
449 err = err2;
450 }
451 } else {
452 err = filemap_check_errors(mapping);
453 }
454 return err;
455 }
456 EXPORT_SYMBOL(filemap_write_and_wait_range);
457
458 /**
459 * replace_page_cache_page - replace a pagecache page with a new one
460 * @old: page to be replaced
461 * @new: page to replace with
462 * @gfp_mask: allocation mode
463 *
464 * This function replaces a page in the pagecache with a new one. On
465 * success it acquires the pagecache reference for the new page and
466 * drops it for the old page. Both the old and new pages must be
467 * locked. This function does not add the new page to the LRU, the
468 * caller must do that.
469 *
470 * The remove + add is atomic. The only way this function can fail is
471 * memory allocation failure.
472 */
473 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
474 {
475 int error;
476
477 VM_BUG_ON_PAGE(!PageLocked(old), old);
478 VM_BUG_ON_PAGE(!PageLocked(new), new);
479 VM_BUG_ON_PAGE(new->mapping, new);
480
481 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
482 if (!error) {
483 struct address_space *mapping = old->mapping;
484 void (*freepage)(struct page *);
485 struct mem_cgroup *memcg;
486 unsigned long flags;
487
488 pgoff_t offset = old->index;
489 freepage = mapping->a_ops->freepage;
490
491 page_cache_get(new);
492 new->mapping = mapping;
493 new->index = offset;
494
495 memcg = mem_cgroup_begin_page_stat(old);
496 spin_lock_irqsave(&mapping->tree_lock, flags);
497 __delete_from_page_cache(old, NULL, memcg);
498 error = radix_tree_insert(&mapping->page_tree, offset, new);
499 BUG_ON(error);
500 mapping->nrpages++;
501 __inc_zone_page_state(new, NR_FILE_PAGES);
502 if (PageSwapBacked(new))
503 __inc_zone_page_state(new, NR_SHMEM);
504 spin_unlock_irqrestore(&mapping->tree_lock, flags);
505 mem_cgroup_end_page_stat(memcg);
506 mem_cgroup_migrate(old, new, true);
507 radix_tree_preload_end();
508 if (freepage)
509 freepage(old);
510 page_cache_release(old);
511 }
512
513 return error;
514 }
515 EXPORT_SYMBOL_GPL(replace_page_cache_page);
516
517 static int page_cache_tree_insert(struct address_space *mapping,
518 struct page *page, void **shadowp)
519 {
520 struct radix_tree_node *node;
521 void **slot;
522 int error;
523
524 error = __radix_tree_create(&mapping->page_tree, page->index,
525 &node, &slot);
526 if (error)
527 return error;
528 if (*slot) {
529 void *p;
530
531 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
532 if (!radix_tree_exceptional_entry(p))
533 return -EEXIST;
534 if (shadowp)
535 *shadowp = p;
536 mapping->nrshadows--;
537 if (node)
538 workingset_node_shadows_dec(node);
539 }
540 radix_tree_replace_slot(slot, page);
541 mapping->nrpages++;
542 if (node) {
543 workingset_node_pages_inc(node);
544 /*
545 * Don't track node that contains actual pages.
546 *
547 * Avoid acquiring the list_lru lock if already
548 * untracked. The list_empty() test is safe as
549 * node->private_list is protected by
550 * mapping->tree_lock.
551 */
552 if (!list_empty(&node->private_list))
553 list_lru_del(&workingset_shadow_nodes,
554 &node->private_list);
555 }
556 return 0;
557 }
558
559 static int __add_to_page_cache_locked(struct page *page,
560 struct address_space *mapping,
561 pgoff_t offset, gfp_t gfp_mask,
562 void **shadowp)
563 {
564 int huge = PageHuge(page);
565 struct mem_cgroup *memcg;
566 int error;
567
568 VM_BUG_ON_PAGE(!PageLocked(page), page);
569 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
570
571 if (!huge) {
572 error = mem_cgroup_try_charge(page, current->mm,
573 gfp_mask, &memcg);
574 if (error)
575 return error;
576 }
577
578 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
579 if (error) {
580 if (!huge)
581 mem_cgroup_cancel_charge(page, memcg);
582 return error;
583 }
584
585 page_cache_get(page);
586 page->mapping = mapping;
587 page->index = offset;
588
589 spin_lock_irq(&mapping->tree_lock);
590 error = page_cache_tree_insert(mapping, page, shadowp);
591 radix_tree_preload_end();
592 if (unlikely(error))
593 goto err_insert;
594 __inc_zone_page_state(page, NR_FILE_PAGES);
595 spin_unlock_irq(&mapping->tree_lock);
596 if (!huge)
597 mem_cgroup_commit_charge(page, memcg, false);
598 trace_mm_filemap_add_to_page_cache(page);
599 return 0;
600 err_insert:
601 page->mapping = NULL;
602 /* Leave page->index set: truncation relies upon it */
603 spin_unlock_irq(&mapping->tree_lock);
604 if (!huge)
605 mem_cgroup_cancel_charge(page, memcg);
606 page_cache_release(page);
607 return error;
608 }
609
610 /**
611 * add_to_page_cache_locked - add a locked page to the pagecache
612 * @page: page to add
613 * @mapping: the page's address_space
614 * @offset: page index
615 * @gfp_mask: page allocation mode
616 *
617 * This function is used to add a page to the pagecache. It must be locked.
618 * This function does not add the page to the LRU. The caller must do that.
619 */
620 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
621 pgoff_t offset, gfp_t gfp_mask)
622 {
623 return __add_to_page_cache_locked(page, mapping, offset,
624 gfp_mask, NULL);
625 }
626 EXPORT_SYMBOL(add_to_page_cache_locked);
627
628 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
629 pgoff_t offset, gfp_t gfp_mask)
630 {
631 void *shadow = NULL;
632 int ret;
633
634 __set_page_locked(page);
635 ret = __add_to_page_cache_locked(page, mapping, offset,
636 gfp_mask, &shadow);
637 if (unlikely(ret))
638 __clear_page_locked(page);
639 else {
640 /*
641 * The page might have been evicted from cache only
642 * recently, in which case it should be activated like
643 * any other repeatedly accessed page.
644 */
645 if (shadow && workingset_refault(shadow)) {
646 SetPageActive(page);
647 workingset_activation(page);
648 } else
649 ClearPageActive(page);
650 lru_cache_add(page);
651 }
652 return ret;
653 }
654 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
655
656 #ifdef CONFIG_NUMA
657 struct page *__page_cache_alloc(gfp_t gfp)
658 {
659 int n;
660 struct page *page;
661
662 if (cpuset_do_page_mem_spread()) {
663 unsigned int cpuset_mems_cookie;
664 do {
665 cpuset_mems_cookie = read_mems_allowed_begin();
666 n = cpuset_mem_spread_node();
667 page = alloc_pages_exact_node(n, gfp, 0);
668 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
669
670 return page;
671 }
672 return alloc_pages(gfp, 0);
673 }
674 EXPORT_SYMBOL(__page_cache_alloc);
675 #endif
676
677 /*
678 * In order to wait for pages to become available there must be
679 * waitqueues associated with pages. By using a hash table of
680 * waitqueues where the bucket discipline is to maintain all
681 * waiters on the same queue and wake all when any of the pages
682 * become available, and for the woken contexts to check to be
683 * sure the appropriate page became available, this saves space
684 * at a cost of "thundering herd" phenomena during rare hash
685 * collisions.
686 */
687 wait_queue_head_t *page_waitqueue(struct page *page)
688 {
689 const struct zone *zone = page_zone(page);
690
691 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
692 }
693 EXPORT_SYMBOL(page_waitqueue);
694
695 void wait_on_page_bit(struct page *page, int bit_nr)
696 {
697 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
698
699 if (test_bit(bit_nr, &page->flags))
700 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
701 TASK_UNINTERRUPTIBLE);
702 }
703 EXPORT_SYMBOL(wait_on_page_bit);
704
705 int wait_on_page_bit_killable(struct page *page, int bit_nr)
706 {
707 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
708
709 if (!test_bit(bit_nr, &page->flags))
710 return 0;
711
712 return __wait_on_bit(page_waitqueue(page), &wait,
713 bit_wait_io, TASK_KILLABLE);
714 }
715
716 int wait_on_page_bit_killable_timeout(struct page *page,
717 int bit_nr, unsigned long timeout)
718 {
719 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
720
721 wait.key.timeout = jiffies + timeout;
722 if (!test_bit(bit_nr, &page->flags))
723 return 0;
724 return __wait_on_bit(page_waitqueue(page), &wait,
725 bit_wait_io_timeout, TASK_KILLABLE);
726 }
727 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
728
729 /**
730 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
731 * @page: Page defining the wait queue of interest
732 * @waiter: Waiter to add to the queue
733 *
734 * Add an arbitrary @waiter to the wait queue for the nominated @page.
735 */
736 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
737 {
738 wait_queue_head_t *q = page_waitqueue(page);
739 unsigned long flags;
740
741 spin_lock_irqsave(&q->lock, flags);
742 __add_wait_queue(q, waiter);
743 spin_unlock_irqrestore(&q->lock, flags);
744 }
745 EXPORT_SYMBOL_GPL(add_page_wait_queue);
746
747 /**
748 * unlock_page - unlock a locked page
749 * @page: the page
750 *
751 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
752 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
753 * mechanism between PageLocked pages and PageWriteback pages is shared.
754 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
755 *
756 * The mb is necessary to enforce ordering between the clear_bit and the read
757 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
758 */
759 void unlock_page(struct page *page)
760 {
761 VM_BUG_ON_PAGE(!PageLocked(page), page);
762 clear_bit_unlock(PG_locked, &page->flags);
763 smp_mb__after_atomic();
764 wake_up_page(page, PG_locked);
765 }
766 EXPORT_SYMBOL(unlock_page);
767
768 /**
769 * end_page_writeback - end writeback against a page
770 * @page: the page
771 */
772 void end_page_writeback(struct page *page)
773 {
774 /*
775 * TestClearPageReclaim could be used here but it is an atomic
776 * operation and overkill in this particular case. Failing to
777 * shuffle a page marked for immediate reclaim is too mild to
778 * justify taking an atomic operation penalty at the end of
779 * ever page writeback.
780 */
781 if (PageReclaim(page)) {
782 ClearPageReclaim(page);
783 rotate_reclaimable_page(page);
784 }
785
786 if (!test_clear_page_writeback(page))
787 BUG();
788
789 smp_mb__after_atomic();
790 wake_up_page(page, PG_writeback);
791 }
792 EXPORT_SYMBOL(end_page_writeback);
793
794 /*
795 * After completing I/O on a page, call this routine to update the page
796 * flags appropriately
797 */
798 void page_endio(struct page *page, int rw, int err)
799 {
800 if (rw == READ) {
801 if (!err) {
802 SetPageUptodate(page);
803 } else {
804 ClearPageUptodate(page);
805 SetPageError(page);
806 }
807 unlock_page(page);
808 } else { /* rw == WRITE */
809 if (err) {
810 SetPageError(page);
811 if (page->mapping)
812 mapping_set_error(page->mapping, err);
813 }
814 end_page_writeback(page);
815 }
816 }
817 EXPORT_SYMBOL_GPL(page_endio);
818
819 /**
820 * __lock_page - get a lock on the page, assuming we need to sleep to get it
821 * @page: the page to lock
822 */
823 void __lock_page(struct page *page)
824 {
825 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
826
827 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
828 TASK_UNINTERRUPTIBLE);
829 }
830 EXPORT_SYMBOL(__lock_page);
831
832 int __lock_page_killable(struct page *page)
833 {
834 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
835
836 return __wait_on_bit_lock(page_waitqueue(page), &wait,
837 bit_wait_io, TASK_KILLABLE);
838 }
839 EXPORT_SYMBOL_GPL(__lock_page_killable);
840
841 /*
842 * Return values:
843 * 1 - page is locked; mmap_sem is still held.
844 * 0 - page is not locked.
845 * mmap_sem has been released (up_read()), unless flags had both
846 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
847 * which case mmap_sem is still held.
848 *
849 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
850 * with the page locked and the mmap_sem unperturbed.
851 */
852 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
853 unsigned int flags)
854 {
855 if (flags & FAULT_FLAG_ALLOW_RETRY) {
856 /*
857 * CAUTION! In this case, mmap_sem is not released
858 * even though return 0.
859 */
860 if (flags & FAULT_FLAG_RETRY_NOWAIT)
861 return 0;
862
863 up_read(&mm->mmap_sem);
864 if (flags & FAULT_FLAG_KILLABLE)
865 wait_on_page_locked_killable(page);
866 else
867 wait_on_page_locked(page);
868 return 0;
869 } else {
870 if (flags & FAULT_FLAG_KILLABLE) {
871 int ret;
872
873 ret = __lock_page_killable(page);
874 if (ret) {
875 up_read(&mm->mmap_sem);
876 return 0;
877 }
878 } else
879 __lock_page(page);
880 return 1;
881 }
882 }
883
884 /**
885 * page_cache_next_hole - find the next hole (not-present entry)
886 * @mapping: mapping
887 * @index: index
888 * @max_scan: maximum range to search
889 *
890 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
891 * lowest indexed hole.
892 *
893 * Returns: the index of the hole if found, otherwise returns an index
894 * outside of the set specified (in which case 'return - index >=
895 * max_scan' will be true). In rare cases of index wrap-around, 0 will
896 * be returned.
897 *
898 * page_cache_next_hole may be called under rcu_read_lock. However,
899 * like radix_tree_gang_lookup, this will not atomically search a
900 * snapshot of the tree at a single point in time. For example, if a
901 * hole is created at index 5, then subsequently a hole is created at
902 * index 10, page_cache_next_hole covering both indexes may return 10
903 * if called under rcu_read_lock.
904 */
905 pgoff_t page_cache_next_hole(struct address_space *mapping,
906 pgoff_t index, unsigned long max_scan)
907 {
908 unsigned long i;
909
910 for (i = 0; i < max_scan; i++) {
911 struct page *page;
912
913 page = radix_tree_lookup(&mapping->page_tree, index);
914 if (!page || radix_tree_exceptional_entry(page))
915 break;
916 index++;
917 if (index == 0)
918 break;
919 }
920
921 return index;
922 }
923 EXPORT_SYMBOL(page_cache_next_hole);
924
925 /**
926 * page_cache_prev_hole - find the prev hole (not-present entry)
927 * @mapping: mapping
928 * @index: index
929 * @max_scan: maximum range to search
930 *
931 * Search backwards in the range [max(index-max_scan+1, 0), index] for
932 * the first hole.
933 *
934 * Returns: the index of the hole if found, otherwise returns an index
935 * outside of the set specified (in which case 'index - return >=
936 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
937 * will be returned.
938 *
939 * page_cache_prev_hole may be called under rcu_read_lock. However,
940 * like radix_tree_gang_lookup, this will not atomically search a
941 * snapshot of the tree at a single point in time. For example, if a
942 * hole is created at index 10, then subsequently a hole is created at
943 * index 5, page_cache_prev_hole covering both indexes may return 5 if
944 * called under rcu_read_lock.
945 */
946 pgoff_t page_cache_prev_hole(struct address_space *mapping,
947 pgoff_t index, unsigned long max_scan)
948 {
949 unsigned long i;
950
951 for (i = 0; i < max_scan; i++) {
952 struct page *page;
953
954 page = radix_tree_lookup(&mapping->page_tree, index);
955 if (!page || radix_tree_exceptional_entry(page))
956 break;
957 index--;
958 if (index == ULONG_MAX)
959 break;
960 }
961
962 return index;
963 }
964 EXPORT_SYMBOL(page_cache_prev_hole);
965
966 /**
967 * find_get_entry - find and get a page cache entry
968 * @mapping: the address_space to search
969 * @offset: the page cache index
970 *
971 * Looks up the page cache slot at @mapping & @offset. If there is a
972 * page cache page, it is returned with an increased refcount.
973 *
974 * If the slot holds a shadow entry of a previously evicted page, or a
975 * swap entry from shmem/tmpfs, it is returned.
976 *
977 * Otherwise, %NULL is returned.
978 */
979 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
980 {
981 void **pagep;
982 struct page *page;
983
984 rcu_read_lock();
985 repeat:
986 page = NULL;
987 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
988 if (pagep) {
989 page = radix_tree_deref_slot(pagep);
990 if (unlikely(!page))
991 goto out;
992 if (radix_tree_exception(page)) {
993 if (radix_tree_deref_retry(page))
994 goto repeat;
995 /*
996 * A shadow entry of a recently evicted page,
997 * or a swap entry from shmem/tmpfs. Return
998 * it without attempting to raise page count.
999 */
1000 goto out;
1001 }
1002 if (!page_cache_get_speculative(page))
1003 goto repeat;
1004
1005 /*
1006 * Has the page moved?
1007 * This is part of the lockless pagecache protocol. See
1008 * include/linux/pagemap.h for details.
1009 */
1010 if (unlikely(page != *pagep)) {
1011 page_cache_release(page);
1012 goto repeat;
1013 }
1014 }
1015 out:
1016 rcu_read_unlock();
1017
1018 return page;
1019 }
1020 EXPORT_SYMBOL(find_get_entry);
1021
1022 /**
1023 * find_lock_entry - locate, pin and lock a page cache entry
1024 * @mapping: the address_space to search
1025 * @offset: the page cache index
1026 *
1027 * Looks up the page cache slot at @mapping & @offset. If there is a
1028 * page cache page, it is returned locked and with an increased
1029 * refcount.
1030 *
1031 * If the slot holds a shadow entry of a previously evicted page, or a
1032 * swap entry from shmem/tmpfs, it is returned.
1033 *
1034 * Otherwise, %NULL is returned.
1035 *
1036 * find_lock_entry() may sleep.
1037 */
1038 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1039 {
1040 struct page *page;
1041
1042 repeat:
1043 page = find_get_entry(mapping, offset);
1044 if (page && !radix_tree_exception(page)) {
1045 lock_page(page);
1046 /* Has the page been truncated? */
1047 if (unlikely(page->mapping != mapping)) {
1048 unlock_page(page);
1049 page_cache_release(page);
1050 goto repeat;
1051 }
1052 VM_BUG_ON_PAGE(page->index != offset, page);
1053 }
1054 return page;
1055 }
1056 EXPORT_SYMBOL(find_lock_entry);
1057
1058 /**
1059 * pagecache_get_page - find and get a page reference
1060 * @mapping: the address_space to search
1061 * @offset: the page index
1062 * @fgp_flags: PCG flags
1063 * @gfp_mask: gfp mask to use for the page cache data page allocation
1064 *
1065 * Looks up the page cache slot at @mapping & @offset.
1066 *
1067 * PCG flags modify how the page is returned.
1068 *
1069 * FGP_ACCESSED: the page will be marked accessed
1070 * FGP_LOCK: Page is return locked
1071 * FGP_CREAT: If page is not present then a new page is allocated using
1072 * @gfp_mask and added to the page cache and the VM's LRU
1073 * list. The page is returned locked and with an increased
1074 * refcount. Otherwise, %NULL is returned.
1075 *
1076 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1077 * if the GFP flags specified for FGP_CREAT are atomic.
1078 *
1079 * If there is a page cache page, it is returned with an increased refcount.
1080 */
1081 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1082 int fgp_flags, gfp_t gfp_mask)
1083 {
1084 struct page *page;
1085
1086 repeat:
1087 page = find_get_entry(mapping, offset);
1088 if (radix_tree_exceptional_entry(page))
1089 page = NULL;
1090 if (!page)
1091 goto no_page;
1092
1093 if (fgp_flags & FGP_LOCK) {
1094 if (fgp_flags & FGP_NOWAIT) {
1095 if (!trylock_page(page)) {
1096 page_cache_release(page);
1097 return NULL;
1098 }
1099 } else {
1100 lock_page(page);
1101 }
1102
1103 /* Has the page been truncated? */
1104 if (unlikely(page->mapping != mapping)) {
1105 unlock_page(page);
1106 page_cache_release(page);
1107 goto repeat;
1108 }
1109 VM_BUG_ON_PAGE(page->index != offset, page);
1110 }
1111
1112 if (page && (fgp_flags & FGP_ACCESSED))
1113 mark_page_accessed(page);
1114
1115 no_page:
1116 if (!page && (fgp_flags & FGP_CREAT)) {
1117 int err;
1118 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1119 gfp_mask |= __GFP_WRITE;
1120 if (fgp_flags & FGP_NOFS)
1121 gfp_mask &= ~__GFP_FS;
1122
1123 page = __page_cache_alloc(gfp_mask);
1124 if (!page)
1125 return NULL;
1126
1127 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1128 fgp_flags |= FGP_LOCK;
1129
1130 /* Init accessed so avoid atomic mark_page_accessed later */
1131 if (fgp_flags & FGP_ACCESSED)
1132 __SetPageReferenced(page);
1133
1134 err = add_to_page_cache_lru(page, mapping, offset,
1135 gfp_mask & GFP_RECLAIM_MASK);
1136 if (unlikely(err)) {
1137 page_cache_release(page);
1138 page = NULL;
1139 if (err == -EEXIST)
1140 goto repeat;
1141 }
1142 }
1143
1144 return page;
1145 }
1146 EXPORT_SYMBOL(pagecache_get_page);
1147
1148 /**
1149 * find_get_entries - gang pagecache lookup
1150 * @mapping: The address_space to search
1151 * @start: The starting page cache index
1152 * @nr_entries: The maximum number of entries
1153 * @entries: Where the resulting entries are placed
1154 * @indices: The cache indices corresponding to the entries in @entries
1155 *
1156 * find_get_entries() will search for and return a group of up to
1157 * @nr_entries entries in the mapping. The entries are placed at
1158 * @entries. find_get_entries() takes a reference against any actual
1159 * pages it returns.
1160 *
1161 * The search returns a group of mapping-contiguous page cache entries
1162 * with ascending indexes. There may be holes in the indices due to
1163 * not-present pages.
1164 *
1165 * Any shadow entries of evicted pages, or swap entries from
1166 * shmem/tmpfs, are included in the returned array.
1167 *
1168 * find_get_entries() returns the number of pages and shadow entries
1169 * which were found.
1170 */
1171 unsigned find_get_entries(struct address_space *mapping,
1172 pgoff_t start, unsigned int nr_entries,
1173 struct page **entries, pgoff_t *indices)
1174 {
1175 void **slot;
1176 unsigned int ret = 0;
1177 struct radix_tree_iter iter;
1178
1179 if (!nr_entries)
1180 return 0;
1181
1182 rcu_read_lock();
1183 restart:
1184 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1185 struct page *page;
1186 repeat:
1187 page = radix_tree_deref_slot(slot);
1188 if (unlikely(!page))
1189 continue;
1190 if (radix_tree_exception(page)) {
1191 if (radix_tree_deref_retry(page))
1192 goto restart;
1193 /*
1194 * A shadow entry of a recently evicted page,
1195 * or a swap entry from shmem/tmpfs. Return
1196 * it without attempting to raise page count.
1197 */
1198 goto export;
1199 }
1200 if (!page_cache_get_speculative(page))
1201 goto repeat;
1202
1203 /* Has the page moved? */
1204 if (unlikely(page != *slot)) {
1205 page_cache_release(page);
1206 goto repeat;
1207 }
1208 export:
1209 indices[ret] = iter.index;
1210 entries[ret] = page;
1211 if (++ret == nr_entries)
1212 break;
1213 }
1214 rcu_read_unlock();
1215 return ret;
1216 }
1217
1218 /**
1219 * find_get_pages - gang pagecache lookup
1220 * @mapping: The address_space to search
1221 * @start: The starting page index
1222 * @nr_pages: The maximum number of pages
1223 * @pages: Where the resulting pages are placed
1224 *
1225 * find_get_pages() will search for and return a group of up to
1226 * @nr_pages pages in the mapping. The pages are placed at @pages.
1227 * find_get_pages() takes a reference against the returned pages.
1228 *
1229 * The search returns a group of mapping-contiguous pages with ascending
1230 * indexes. There may be holes in the indices due to not-present pages.
1231 *
1232 * find_get_pages() returns the number of pages which were found.
1233 */
1234 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1235 unsigned int nr_pages, struct page **pages)
1236 {
1237 struct radix_tree_iter iter;
1238 void **slot;
1239 unsigned ret = 0;
1240
1241 if (unlikely(!nr_pages))
1242 return 0;
1243
1244 rcu_read_lock();
1245 restart:
1246 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1247 struct page *page;
1248 repeat:
1249 page = radix_tree_deref_slot(slot);
1250 if (unlikely(!page))
1251 continue;
1252
1253 if (radix_tree_exception(page)) {
1254 if (radix_tree_deref_retry(page)) {
1255 /*
1256 * Transient condition which can only trigger
1257 * when entry at index 0 moves out of or back
1258 * to root: none yet gotten, safe to restart.
1259 */
1260 WARN_ON(iter.index);
1261 goto restart;
1262 }
1263 /*
1264 * A shadow entry of a recently evicted page,
1265 * or a swap entry from shmem/tmpfs. Skip
1266 * over it.
1267 */
1268 continue;
1269 }
1270
1271 if (!page_cache_get_speculative(page))
1272 goto repeat;
1273
1274 /* Has the page moved? */
1275 if (unlikely(page != *slot)) {
1276 page_cache_release(page);
1277 goto repeat;
1278 }
1279
1280 pages[ret] = page;
1281 if (++ret == nr_pages)
1282 break;
1283 }
1284
1285 rcu_read_unlock();
1286 return ret;
1287 }
1288
1289 /**
1290 * find_get_pages_contig - gang contiguous pagecache lookup
1291 * @mapping: The address_space to search
1292 * @index: The starting page index
1293 * @nr_pages: The maximum number of pages
1294 * @pages: Where the resulting pages are placed
1295 *
1296 * find_get_pages_contig() works exactly like find_get_pages(), except
1297 * that the returned number of pages are guaranteed to be contiguous.
1298 *
1299 * find_get_pages_contig() returns the number of pages which were found.
1300 */
1301 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1302 unsigned int nr_pages, struct page **pages)
1303 {
1304 struct radix_tree_iter iter;
1305 void **slot;
1306 unsigned int ret = 0;
1307
1308 if (unlikely(!nr_pages))
1309 return 0;
1310
1311 rcu_read_lock();
1312 restart:
1313 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1314 struct page *page;
1315 repeat:
1316 page = radix_tree_deref_slot(slot);
1317 /* The hole, there no reason to continue */
1318 if (unlikely(!page))
1319 break;
1320
1321 if (radix_tree_exception(page)) {
1322 if (radix_tree_deref_retry(page)) {
1323 /*
1324 * Transient condition which can only trigger
1325 * when entry at index 0 moves out of or back
1326 * to root: none yet gotten, safe to restart.
1327 */
1328 goto restart;
1329 }
1330 /*
1331 * A shadow entry of a recently evicted page,
1332 * or a swap entry from shmem/tmpfs. Stop
1333 * looking for contiguous pages.
1334 */
1335 break;
1336 }
1337
1338 if (!page_cache_get_speculative(page))
1339 goto repeat;
1340
1341 /* Has the page moved? */
1342 if (unlikely(page != *slot)) {
1343 page_cache_release(page);
1344 goto repeat;
1345 }
1346
1347 /*
1348 * must check mapping and index after taking the ref.
1349 * otherwise we can get both false positives and false
1350 * negatives, which is just confusing to the caller.
1351 */
1352 if (page->mapping == NULL || page->index != iter.index) {
1353 page_cache_release(page);
1354 break;
1355 }
1356
1357 pages[ret] = page;
1358 if (++ret == nr_pages)
1359 break;
1360 }
1361 rcu_read_unlock();
1362 return ret;
1363 }
1364 EXPORT_SYMBOL(find_get_pages_contig);
1365
1366 /**
1367 * find_get_pages_tag - find and return pages that match @tag
1368 * @mapping: the address_space to search
1369 * @index: the starting page index
1370 * @tag: the tag index
1371 * @nr_pages: the maximum number of pages
1372 * @pages: where the resulting pages are placed
1373 *
1374 * Like find_get_pages, except we only return pages which are tagged with
1375 * @tag. We update @index to index the next page for the traversal.
1376 */
1377 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1378 int tag, unsigned int nr_pages, struct page **pages)
1379 {
1380 struct radix_tree_iter iter;
1381 void **slot;
1382 unsigned ret = 0;
1383
1384 if (unlikely(!nr_pages))
1385 return 0;
1386
1387 rcu_read_lock();
1388 restart:
1389 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1390 &iter, *index, tag) {
1391 struct page *page;
1392 repeat:
1393 page = radix_tree_deref_slot(slot);
1394 if (unlikely(!page))
1395 continue;
1396
1397 if (radix_tree_exception(page)) {
1398 if (radix_tree_deref_retry(page)) {
1399 /*
1400 * Transient condition which can only trigger
1401 * when entry at index 0 moves out of or back
1402 * to root: none yet gotten, safe to restart.
1403 */
1404 goto restart;
1405 }
1406 /*
1407 * A shadow entry of a recently evicted page.
1408 *
1409 * Those entries should never be tagged, but
1410 * this tree walk is lockless and the tags are
1411 * looked up in bulk, one radix tree node at a
1412 * time, so there is a sizable window for page
1413 * reclaim to evict a page we saw tagged.
1414 *
1415 * Skip over it.
1416 */
1417 continue;
1418 }
1419
1420 if (!page_cache_get_speculative(page))
1421 goto repeat;
1422
1423 /* Has the page moved? */
1424 if (unlikely(page != *slot)) {
1425 page_cache_release(page);
1426 goto repeat;
1427 }
1428
1429 pages[ret] = page;
1430 if (++ret == nr_pages)
1431 break;
1432 }
1433
1434 rcu_read_unlock();
1435
1436 if (ret)
1437 *index = pages[ret - 1]->index + 1;
1438
1439 return ret;
1440 }
1441 EXPORT_SYMBOL(find_get_pages_tag);
1442
1443 /*
1444 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1445 * a _large_ part of the i/o request. Imagine the worst scenario:
1446 *
1447 * ---R__________________________________________B__________
1448 * ^ reading here ^ bad block(assume 4k)
1449 *
1450 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1451 * => failing the whole request => read(R) => read(R+1) =>
1452 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1453 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1454 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1455 *
1456 * It is going insane. Fix it by quickly scaling down the readahead size.
1457 */
1458 static void shrink_readahead_size_eio(struct file *filp,
1459 struct file_ra_state *ra)
1460 {
1461 ra->ra_pages /= 4;
1462 }
1463
1464 /**
1465 * do_generic_file_read - generic file read routine
1466 * @filp: the file to read
1467 * @ppos: current file position
1468 * @iter: data destination
1469 * @written: already copied
1470 *
1471 * This is a generic file read routine, and uses the
1472 * mapping->a_ops->readpage() function for the actual low-level stuff.
1473 *
1474 * This is really ugly. But the goto's actually try to clarify some
1475 * of the logic when it comes to error handling etc.
1476 */
1477 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1478 struct iov_iter *iter, ssize_t written)
1479 {
1480 struct address_space *mapping = filp->f_mapping;
1481 struct inode *inode = mapping->host;
1482 struct file_ra_state *ra = &filp->f_ra;
1483 pgoff_t index;
1484 pgoff_t last_index;
1485 pgoff_t prev_index;
1486 unsigned long offset; /* offset into pagecache page */
1487 unsigned int prev_offset;
1488 int error = 0;
1489
1490 index = *ppos >> PAGE_CACHE_SHIFT;
1491 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1492 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1493 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1494 offset = *ppos & ~PAGE_CACHE_MASK;
1495
1496 for (;;) {
1497 struct page *page;
1498 pgoff_t end_index;
1499 loff_t isize;
1500 unsigned long nr, ret;
1501
1502 cond_resched();
1503 find_page:
1504 page = find_get_page(mapping, index);
1505 if (!page) {
1506 page_cache_sync_readahead(mapping,
1507 ra, filp,
1508 index, last_index - index);
1509 page = find_get_page(mapping, index);
1510 if (unlikely(page == NULL))
1511 goto no_cached_page;
1512 }
1513 if (PageReadahead(page)) {
1514 page_cache_async_readahead(mapping,
1515 ra, filp, page,
1516 index, last_index - index);
1517 }
1518 if (!PageUptodate(page)) {
1519 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1520 !mapping->a_ops->is_partially_uptodate)
1521 goto page_not_up_to_date;
1522 if (!trylock_page(page))
1523 goto page_not_up_to_date;
1524 /* Did it get truncated before we got the lock? */
1525 if (!page->mapping)
1526 goto page_not_up_to_date_locked;
1527 if (!mapping->a_ops->is_partially_uptodate(page,
1528 offset, iter->count))
1529 goto page_not_up_to_date_locked;
1530 unlock_page(page);
1531 }
1532 page_ok:
1533 /*
1534 * i_size must be checked after we know the page is Uptodate.
1535 *
1536 * Checking i_size after the check allows us to calculate
1537 * the correct value for "nr", which means the zero-filled
1538 * part of the page is not copied back to userspace (unless
1539 * another truncate extends the file - this is desired though).
1540 */
1541
1542 isize = i_size_read(inode);
1543 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1544 if (unlikely(!isize || index > end_index)) {
1545 page_cache_release(page);
1546 goto out;
1547 }
1548
1549 /* nr is the maximum number of bytes to copy from this page */
1550 nr = PAGE_CACHE_SIZE;
1551 if (index == end_index) {
1552 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1553 if (nr <= offset) {
1554 page_cache_release(page);
1555 goto out;
1556 }
1557 }
1558 nr = nr - offset;
1559
1560 /* If users can be writing to this page using arbitrary
1561 * virtual addresses, take care about potential aliasing
1562 * before reading the page on the kernel side.
1563 */
1564 if (mapping_writably_mapped(mapping))
1565 flush_dcache_page(page);
1566
1567 /*
1568 * When a sequential read accesses a page several times,
1569 * only mark it as accessed the first time.
1570 */
1571 if (prev_index != index || offset != prev_offset)
1572 mark_page_accessed(page);
1573 prev_index = index;
1574
1575 /*
1576 * Ok, we have the page, and it's up-to-date, so
1577 * now we can copy it to user space...
1578 */
1579
1580 ret = copy_page_to_iter(page, offset, nr, iter);
1581 offset += ret;
1582 index += offset >> PAGE_CACHE_SHIFT;
1583 offset &= ~PAGE_CACHE_MASK;
1584 prev_offset = offset;
1585
1586 page_cache_release(page);
1587 written += ret;
1588 if (!iov_iter_count(iter))
1589 goto out;
1590 if (ret < nr) {
1591 error = -EFAULT;
1592 goto out;
1593 }
1594 continue;
1595
1596 page_not_up_to_date:
1597 /* Get exclusive access to the page ... */
1598 error = lock_page_killable(page);
1599 if (unlikely(error))
1600 goto readpage_error;
1601
1602 page_not_up_to_date_locked:
1603 /* Did it get truncated before we got the lock? */
1604 if (!page->mapping) {
1605 unlock_page(page);
1606 page_cache_release(page);
1607 continue;
1608 }
1609
1610 /* Did somebody else fill it already? */
1611 if (PageUptodate(page)) {
1612 unlock_page(page);
1613 goto page_ok;
1614 }
1615
1616 readpage:
1617 /*
1618 * A previous I/O error may have been due to temporary
1619 * failures, eg. multipath errors.
1620 * PG_error will be set again if readpage fails.
1621 */
1622 ClearPageError(page);
1623 /* Start the actual read. The read will unlock the page. */
1624 error = mapping->a_ops->readpage(filp, page);
1625
1626 if (unlikely(error)) {
1627 if (error == AOP_TRUNCATED_PAGE) {
1628 page_cache_release(page);
1629 error = 0;
1630 goto find_page;
1631 }
1632 goto readpage_error;
1633 }
1634
1635 if (!PageUptodate(page)) {
1636 error = lock_page_killable(page);
1637 if (unlikely(error))
1638 goto readpage_error;
1639 if (!PageUptodate(page)) {
1640 if (page->mapping == NULL) {
1641 /*
1642 * invalidate_mapping_pages got it
1643 */
1644 unlock_page(page);
1645 page_cache_release(page);
1646 goto find_page;
1647 }
1648 unlock_page(page);
1649 shrink_readahead_size_eio(filp, ra);
1650 error = -EIO;
1651 goto readpage_error;
1652 }
1653 unlock_page(page);
1654 }
1655
1656 goto page_ok;
1657
1658 readpage_error:
1659 /* UHHUH! A synchronous read error occurred. Report it */
1660 page_cache_release(page);
1661 goto out;
1662
1663 no_cached_page:
1664 /*
1665 * Ok, it wasn't cached, so we need to create a new
1666 * page..
1667 */
1668 page = page_cache_alloc_cold(mapping);
1669 if (!page) {
1670 error = -ENOMEM;
1671 goto out;
1672 }
1673 error = add_to_page_cache_lru(page, mapping,
1674 index, GFP_KERNEL);
1675 if (error) {
1676 page_cache_release(page);
1677 if (error == -EEXIST) {
1678 error = 0;
1679 goto find_page;
1680 }
1681 goto out;
1682 }
1683 goto readpage;
1684 }
1685
1686 out:
1687 ra->prev_pos = prev_index;
1688 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1689 ra->prev_pos |= prev_offset;
1690
1691 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1692 file_accessed(filp);
1693 return written ? written : error;
1694 }
1695
1696 /**
1697 * generic_file_read_iter - generic filesystem read routine
1698 * @iocb: kernel I/O control block
1699 * @iter: destination for the data read
1700 *
1701 * This is the "read_iter()" routine for all filesystems
1702 * that can use the page cache directly.
1703 */
1704 ssize_t
1705 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1706 {
1707 struct file *file = iocb->ki_filp;
1708 ssize_t retval = 0;
1709 loff_t *ppos = &iocb->ki_pos;
1710 loff_t pos = *ppos;
1711
1712 if (iocb->ki_flags & IOCB_DIRECT) {
1713 struct address_space *mapping = file->f_mapping;
1714 struct inode *inode = mapping->host;
1715 size_t count = iov_iter_count(iter);
1716 loff_t size;
1717
1718 if (!count)
1719 goto out; /* skip atime */
1720 size = i_size_read(inode);
1721 retval = filemap_write_and_wait_range(mapping, pos,
1722 pos + count - 1);
1723 if (!retval) {
1724 struct iov_iter data = *iter;
1725 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1726 }
1727
1728 if (retval > 0) {
1729 *ppos = pos + retval;
1730 iov_iter_advance(iter, retval);
1731 }
1732
1733 /*
1734 * Btrfs can have a short DIO read if we encounter
1735 * compressed extents, so if there was an error, or if
1736 * we've already read everything we wanted to, or if
1737 * there was a short read because we hit EOF, go ahead
1738 * and return. Otherwise fallthrough to buffered io for
1739 * the rest of the read. Buffered reads will not work for
1740 * DAX files, so don't bother trying.
1741 */
1742 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1743 IS_DAX(inode)) {
1744 file_accessed(file);
1745 goto out;
1746 }
1747 }
1748
1749 retval = do_generic_file_read(file, ppos, iter, retval);
1750 out:
1751 return retval;
1752 }
1753 EXPORT_SYMBOL(generic_file_read_iter);
1754
1755 #ifdef CONFIG_MMU
1756 /**
1757 * page_cache_read - adds requested page to the page cache if not already there
1758 * @file: file to read
1759 * @offset: page index
1760 *
1761 * This adds the requested page to the page cache if it isn't already there,
1762 * and schedules an I/O to read in its contents from disk.
1763 */
1764 static int page_cache_read(struct file *file, pgoff_t offset)
1765 {
1766 struct address_space *mapping = file->f_mapping;
1767 struct page *page;
1768 int ret;
1769
1770 do {
1771 page = page_cache_alloc_cold(mapping);
1772 if (!page)
1773 return -ENOMEM;
1774
1775 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1776 if (ret == 0)
1777 ret = mapping->a_ops->readpage(file, page);
1778 else if (ret == -EEXIST)
1779 ret = 0; /* losing race to add is OK */
1780
1781 page_cache_release(page);
1782
1783 } while (ret == AOP_TRUNCATED_PAGE);
1784
1785 return ret;
1786 }
1787
1788 #define MMAP_LOTSAMISS (100)
1789
1790 /*
1791 * Synchronous readahead happens when we don't even find
1792 * a page in the page cache at all.
1793 */
1794 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1795 struct file_ra_state *ra,
1796 struct file *file,
1797 pgoff_t offset)
1798 {
1799 unsigned long ra_pages;
1800 struct address_space *mapping = file->f_mapping;
1801
1802 /* If we don't want any read-ahead, don't bother */
1803 if (vma->vm_flags & VM_RAND_READ)
1804 return;
1805 if (!ra->ra_pages)
1806 return;
1807
1808 if (vma->vm_flags & VM_SEQ_READ) {
1809 page_cache_sync_readahead(mapping, ra, file, offset,
1810 ra->ra_pages);
1811 return;
1812 }
1813
1814 /* Avoid banging the cache line if not needed */
1815 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1816 ra->mmap_miss++;
1817
1818 /*
1819 * Do we miss much more than hit in this file? If so,
1820 * stop bothering with read-ahead. It will only hurt.
1821 */
1822 if (ra->mmap_miss > MMAP_LOTSAMISS)
1823 return;
1824
1825 /*
1826 * mmap read-around
1827 */
1828 ra_pages = max_sane_readahead(ra->ra_pages);
1829 ra->start = max_t(long, 0, offset - ra_pages / 2);
1830 ra->size = ra_pages;
1831 ra->async_size = ra_pages / 4;
1832 ra_submit(ra, mapping, file);
1833 }
1834
1835 /*
1836 * Asynchronous readahead happens when we find the page and PG_readahead,
1837 * so we want to possibly extend the readahead further..
1838 */
1839 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1840 struct file_ra_state *ra,
1841 struct file *file,
1842 struct page *page,
1843 pgoff_t offset)
1844 {
1845 struct address_space *mapping = file->f_mapping;
1846
1847 /* If we don't want any read-ahead, don't bother */
1848 if (vma->vm_flags & VM_RAND_READ)
1849 return;
1850 if (ra->mmap_miss > 0)
1851 ra->mmap_miss--;
1852 if (PageReadahead(page))
1853 page_cache_async_readahead(mapping, ra, file,
1854 page, offset, ra->ra_pages);
1855 }
1856
1857 /**
1858 * filemap_fault - read in file data for page fault handling
1859 * @vma: vma in which the fault was taken
1860 * @vmf: struct vm_fault containing details of the fault
1861 *
1862 * filemap_fault() is invoked via the vma operations vector for a
1863 * mapped memory region to read in file data during a page fault.
1864 *
1865 * The goto's are kind of ugly, but this streamlines the normal case of having
1866 * it in the page cache, and handles the special cases reasonably without
1867 * having a lot of duplicated code.
1868 *
1869 * vma->vm_mm->mmap_sem must be held on entry.
1870 *
1871 * If our return value has VM_FAULT_RETRY set, it's because
1872 * lock_page_or_retry() returned 0.
1873 * The mmap_sem has usually been released in this case.
1874 * See __lock_page_or_retry() for the exception.
1875 *
1876 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1877 * has not been released.
1878 *
1879 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1880 */
1881 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1882 {
1883 int error;
1884 struct file *file = vma->vm_file;
1885 struct address_space *mapping = file->f_mapping;
1886 struct file_ra_state *ra = &file->f_ra;
1887 struct inode *inode = mapping->host;
1888 pgoff_t offset = vmf->pgoff;
1889 struct page *page;
1890 loff_t size;
1891 int ret = 0;
1892
1893 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1894 if (offset >= size >> PAGE_CACHE_SHIFT)
1895 return VM_FAULT_SIGBUS;
1896
1897 /*
1898 * Do we have something in the page cache already?
1899 */
1900 page = find_get_page(mapping, offset);
1901 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1902 /*
1903 * We found the page, so try async readahead before
1904 * waiting for the lock.
1905 */
1906 do_async_mmap_readahead(vma, ra, file, page, offset);
1907 } else if (!page) {
1908 /* No page in the page cache at all */
1909 do_sync_mmap_readahead(vma, ra, file, offset);
1910 count_vm_event(PGMAJFAULT);
1911 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1912 ret = VM_FAULT_MAJOR;
1913 retry_find:
1914 page = find_get_page(mapping, offset);
1915 if (!page)
1916 goto no_cached_page;
1917 }
1918
1919 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1920 page_cache_release(page);
1921 return ret | VM_FAULT_RETRY;
1922 }
1923
1924 /* Did it get truncated? */
1925 if (unlikely(page->mapping != mapping)) {
1926 unlock_page(page);
1927 put_page(page);
1928 goto retry_find;
1929 }
1930 VM_BUG_ON_PAGE(page->index != offset, page);
1931
1932 /*
1933 * We have a locked page in the page cache, now we need to check
1934 * that it's up-to-date. If not, it is going to be due to an error.
1935 */
1936 if (unlikely(!PageUptodate(page)))
1937 goto page_not_uptodate;
1938
1939 /*
1940 * Found the page and have a reference on it.
1941 * We must recheck i_size under page lock.
1942 */
1943 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1944 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1945 unlock_page(page);
1946 page_cache_release(page);
1947 return VM_FAULT_SIGBUS;
1948 }
1949
1950 vmf->page = page;
1951 return ret | VM_FAULT_LOCKED;
1952
1953 no_cached_page:
1954 /*
1955 * We're only likely to ever get here if MADV_RANDOM is in
1956 * effect.
1957 */
1958 error = page_cache_read(file, offset);
1959
1960 /*
1961 * The page we want has now been added to the page cache.
1962 * In the unlikely event that someone removed it in the
1963 * meantime, we'll just come back here and read it again.
1964 */
1965 if (error >= 0)
1966 goto retry_find;
1967
1968 /*
1969 * An error return from page_cache_read can result if the
1970 * system is low on memory, or a problem occurs while trying
1971 * to schedule I/O.
1972 */
1973 if (error == -ENOMEM)
1974 return VM_FAULT_OOM;
1975 return VM_FAULT_SIGBUS;
1976
1977 page_not_uptodate:
1978 /*
1979 * Umm, take care of errors if the page isn't up-to-date.
1980 * Try to re-read it _once_. We do this synchronously,
1981 * because there really aren't any performance issues here
1982 * and we need to check for errors.
1983 */
1984 ClearPageError(page);
1985 error = mapping->a_ops->readpage(file, page);
1986 if (!error) {
1987 wait_on_page_locked(page);
1988 if (!PageUptodate(page))
1989 error = -EIO;
1990 }
1991 page_cache_release(page);
1992
1993 if (!error || error == AOP_TRUNCATED_PAGE)
1994 goto retry_find;
1995
1996 /* Things didn't work out. Return zero to tell the mm layer so. */
1997 shrink_readahead_size_eio(file, ra);
1998 return VM_FAULT_SIGBUS;
1999 }
2000 EXPORT_SYMBOL(filemap_fault);
2001
2002 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2003 {
2004 struct radix_tree_iter iter;
2005 void **slot;
2006 struct file *file = vma->vm_file;
2007 struct address_space *mapping = file->f_mapping;
2008 loff_t size;
2009 struct page *page;
2010 unsigned long address = (unsigned long) vmf->virtual_address;
2011 unsigned long addr;
2012 pte_t *pte;
2013
2014 rcu_read_lock();
2015 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2016 if (iter.index > vmf->max_pgoff)
2017 break;
2018 repeat:
2019 page = radix_tree_deref_slot(slot);
2020 if (unlikely(!page))
2021 goto next;
2022 if (radix_tree_exception(page)) {
2023 if (radix_tree_deref_retry(page))
2024 break;
2025 else
2026 goto next;
2027 }
2028
2029 if (!page_cache_get_speculative(page))
2030 goto repeat;
2031
2032 /* Has the page moved? */
2033 if (unlikely(page != *slot)) {
2034 page_cache_release(page);
2035 goto repeat;
2036 }
2037
2038 if (!PageUptodate(page) ||
2039 PageReadahead(page) ||
2040 PageHWPoison(page))
2041 goto skip;
2042 if (!trylock_page(page))
2043 goto skip;
2044
2045 if (page->mapping != mapping || !PageUptodate(page))
2046 goto unlock;
2047
2048 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2049 if (page->index >= size >> PAGE_CACHE_SHIFT)
2050 goto unlock;
2051
2052 pte = vmf->pte + page->index - vmf->pgoff;
2053 if (!pte_none(*pte))
2054 goto unlock;
2055
2056 if (file->f_ra.mmap_miss > 0)
2057 file->f_ra.mmap_miss--;
2058 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2059 do_set_pte(vma, addr, page, pte, false, false);
2060 unlock_page(page);
2061 goto next;
2062 unlock:
2063 unlock_page(page);
2064 skip:
2065 page_cache_release(page);
2066 next:
2067 if (iter.index == vmf->max_pgoff)
2068 break;
2069 }
2070 rcu_read_unlock();
2071 }
2072 EXPORT_SYMBOL(filemap_map_pages);
2073
2074 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2075 {
2076 struct page *page = vmf->page;
2077 struct inode *inode = file_inode(vma->vm_file);
2078 int ret = VM_FAULT_LOCKED;
2079
2080 sb_start_pagefault(inode->i_sb);
2081 file_update_time(vma->vm_file);
2082 lock_page(page);
2083 if (page->mapping != inode->i_mapping) {
2084 unlock_page(page);
2085 ret = VM_FAULT_NOPAGE;
2086 goto out;
2087 }
2088 /*
2089 * We mark the page dirty already here so that when freeze is in
2090 * progress, we are guaranteed that writeback during freezing will
2091 * see the dirty page and writeprotect it again.
2092 */
2093 set_page_dirty(page);
2094 wait_for_stable_page(page);
2095 out:
2096 sb_end_pagefault(inode->i_sb);
2097 return ret;
2098 }
2099 EXPORT_SYMBOL(filemap_page_mkwrite);
2100
2101 const struct vm_operations_struct generic_file_vm_ops = {
2102 .fault = filemap_fault,
2103 .map_pages = filemap_map_pages,
2104 .page_mkwrite = filemap_page_mkwrite,
2105 };
2106
2107 /* This is used for a general mmap of a disk file */
2108
2109 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2110 {
2111 struct address_space *mapping = file->f_mapping;
2112
2113 if (!mapping->a_ops->readpage)
2114 return -ENOEXEC;
2115 file_accessed(file);
2116 vma->vm_ops = &generic_file_vm_ops;
2117 return 0;
2118 }
2119
2120 /*
2121 * This is for filesystems which do not implement ->writepage.
2122 */
2123 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2124 {
2125 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2126 return -EINVAL;
2127 return generic_file_mmap(file, vma);
2128 }
2129 #else
2130 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2131 {
2132 return -ENOSYS;
2133 }
2134 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2135 {
2136 return -ENOSYS;
2137 }
2138 #endif /* CONFIG_MMU */
2139
2140 EXPORT_SYMBOL(generic_file_mmap);
2141 EXPORT_SYMBOL(generic_file_readonly_mmap);
2142
2143 static struct page *wait_on_page_read(struct page *page)
2144 {
2145 if (!IS_ERR(page)) {
2146 wait_on_page_locked(page);
2147 if (!PageUptodate(page)) {
2148 page_cache_release(page);
2149 page = ERR_PTR(-EIO);
2150 }
2151 }
2152 return page;
2153 }
2154
2155 static struct page *__read_cache_page(struct address_space *mapping,
2156 pgoff_t index,
2157 int (*filler)(void *, struct page *),
2158 void *data,
2159 gfp_t gfp)
2160 {
2161 struct page *page;
2162 int err;
2163 repeat:
2164 page = find_get_page(mapping, index);
2165 if (!page) {
2166 page = __page_cache_alloc(gfp | __GFP_COLD);
2167 if (!page)
2168 return ERR_PTR(-ENOMEM);
2169 err = add_to_page_cache_lru(page, mapping, index, gfp);
2170 if (unlikely(err)) {
2171 page_cache_release(page);
2172 if (err == -EEXIST)
2173 goto repeat;
2174 /* Presumably ENOMEM for radix tree node */
2175 return ERR_PTR(err);
2176 }
2177 err = filler(data, page);
2178 if (err < 0) {
2179 page_cache_release(page);
2180 page = ERR_PTR(err);
2181 } else {
2182 page = wait_on_page_read(page);
2183 }
2184 }
2185 return page;
2186 }
2187
2188 static struct page *do_read_cache_page(struct address_space *mapping,
2189 pgoff_t index,
2190 int (*filler)(void *, struct page *),
2191 void *data,
2192 gfp_t gfp)
2193
2194 {
2195 struct page *page;
2196 int err;
2197
2198 retry:
2199 page = __read_cache_page(mapping, index, filler, data, gfp);
2200 if (IS_ERR(page))
2201 return page;
2202 if (PageUptodate(page))
2203 goto out;
2204
2205 lock_page(page);
2206 if (!page->mapping) {
2207 unlock_page(page);
2208 page_cache_release(page);
2209 goto retry;
2210 }
2211 if (PageUptodate(page)) {
2212 unlock_page(page);
2213 goto out;
2214 }
2215 err = filler(data, page);
2216 if (err < 0) {
2217 page_cache_release(page);
2218 return ERR_PTR(err);
2219 } else {
2220 page = wait_on_page_read(page);
2221 if (IS_ERR(page))
2222 return page;
2223 }
2224 out:
2225 mark_page_accessed(page);
2226 return page;
2227 }
2228
2229 /**
2230 * read_cache_page - read into page cache, fill it if needed
2231 * @mapping: the page's address_space
2232 * @index: the page index
2233 * @filler: function to perform the read
2234 * @data: first arg to filler(data, page) function, often left as NULL
2235 *
2236 * Read into the page cache. If a page already exists, and PageUptodate() is
2237 * not set, try to fill the page and wait for it to become unlocked.
2238 *
2239 * If the page does not get brought uptodate, return -EIO.
2240 */
2241 struct page *read_cache_page(struct address_space *mapping,
2242 pgoff_t index,
2243 int (*filler)(void *, struct page *),
2244 void *data)
2245 {
2246 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2247 }
2248 EXPORT_SYMBOL(read_cache_page);
2249
2250 /**
2251 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2252 * @mapping: the page's address_space
2253 * @index: the page index
2254 * @gfp: the page allocator flags to use if allocating
2255 *
2256 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2257 * any new page allocations done using the specified allocation flags.
2258 *
2259 * If the page does not get brought uptodate, return -EIO.
2260 */
2261 struct page *read_cache_page_gfp(struct address_space *mapping,
2262 pgoff_t index,
2263 gfp_t gfp)
2264 {
2265 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2266
2267 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2268 }
2269 EXPORT_SYMBOL(read_cache_page_gfp);
2270
2271 /*
2272 * Performs necessary checks before doing a write
2273 *
2274 * Can adjust writing position or amount of bytes to write.
2275 * Returns appropriate error code that caller should return or
2276 * zero in case that write should be allowed.
2277 */
2278 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2279 {
2280 struct file *file = iocb->ki_filp;
2281 struct inode *inode = file->f_mapping->host;
2282 unsigned long limit = rlimit(RLIMIT_FSIZE);
2283 loff_t pos;
2284
2285 if (!iov_iter_count(from))
2286 return 0;
2287
2288 /* FIXME: this is for backwards compatibility with 2.4 */
2289 if (iocb->ki_flags & IOCB_APPEND)
2290 iocb->ki_pos = i_size_read(inode);
2291
2292 pos = iocb->ki_pos;
2293
2294 if (limit != RLIM_INFINITY) {
2295 if (iocb->ki_pos >= limit) {
2296 send_sig(SIGXFSZ, current, 0);
2297 return -EFBIG;
2298 }
2299 iov_iter_truncate(from, limit - (unsigned long)pos);
2300 }
2301
2302 /*
2303 * LFS rule
2304 */
2305 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2306 !(file->f_flags & O_LARGEFILE))) {
2307 if (pos >= MAX_NON_LFS)
2308 return -EFBIG;
2309 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2310 }
2311
2312 /*
2313 * Are we about to exceed the fs block limit ?
2314 *
2315 * If we have written data it becomes a short write. If we have
2316 * exceeded without writing data we send a signal and return EFBIG.
2317 * Linus frestrict idea will clean these up nicely..
2318 */
2319 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2320 return -EFBIG;
2321
2322 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2323 return iov_iter_count(from);
2324 }
2325 EXPORT_SYMBOL(generic_write_checks);
2326
2327 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2328 loff_t pos, unsigned len, unsigned flags,
2329 struct page **pagep, void **fsdata)
2330 {
2331 const struct address_space_operations *aops = mapping->a_ops;
2332
2333 return aops->write_begin(file, mapping, pos, len, flags,
2334 pagep, fsdata);
2335 }
2336 EXPORT_SYMBOL(pagecache_write_begin);
2337
2338 int pagecache_write_end(struct file *file, struct address_space *mapping,
2339 loff_t pos, unsigned len, unsigned copied,
2340 struct page *page, void *fsdata)
2341 {
2342 const struct address_space_operations *aops = mapping->a_ops;
2343
2344 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2345 }
2346 EXPORT_SYMBOL(pagecache_write_end);
2347
2348 ssize_t
2349 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2350 {
2351 struct file *file = iocb->ki_filp;
2352 struct address_space *mapping = file->f_mapping;
2353 struct inode *inode = mapping->host;
2354 ssize_t written;
2355 size_t write_len;
2356 pgoff_t end;
2357 struct iov_iter data;
2358
2359 write_len = iov_iter_count(from);
2360 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2361
2362 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2363 if (written)
2364 goto out;
2365
2366 /*
2367 * After a write we want buffered reads to be sure to go to disk to get
2368 * the new data. We invalidate clean cached page from the region we're
2369 * about to write. We do this *before* the write so that we can return
2370 * without clobbering -EIOCBQUEUED from ->direct_IO().
2371 */
2372 if (mapping->nrpages) {
2373 written = invalidate_inode_pages2_range(mapping,
2374 pos >> PAGE_CACHE_SHIFT, end);
2375 /*
2376 * If a page can not be invalidated, return 0 to fall back
2377 * to buffered write.
2378 */
2379 if (written) {
2380 if (written == -EBUSY)
2381 return 0;
2382 goto out;
2383 }
2384 }
2385
2386 data = *from;
2387 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2388
2389 /*
2390 * Finally, try again to invalidate clean pages which might have been
2391 * cached by non-direct readahead, or faulted in by get_user_pages()
2392 * if the source of the write was an mmap'ed region of the file
2393 * we're writing. Either one is a pretty crazy thing to do,
2394 * so we don't support it 100%. If this invalidation
2395 * fails, tough, the write still worked...
2396 */
2397 if (mapping->nrpages) {
2398 invalidate_inode_pages2_range(mapping,
2399 pos >> PAGE_CACHE_SHIFT, end);
2400 }
2401
2402 if (written > 0) {
2403 pos += written;
2404 iov_iter_advance(from, written);
2405 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2406 i_size_write(inode, pos);
2407 mark_inode_dirty(inode);
2408 }
2409 iocb->ki_pos = pos;
2410 }
2411 out:
2412 return written;
2413 }
2414 EXPORT_SYMBOL(generic_file_direct_write);
2415
2416 /*
2417 * Find or create a page at the given pagecache position. Return the locked
2418 * page. This function is specifically for buffered writes.
2419 */
2420 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2421 pgoff_t index, unsigned flags)
2422 {
2423 struct page *page;
2424 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2425
2426 if (flags & AOP_FLAG_NOFS)
2427 fgp_flags |= FGP_NOFS;
2428
2429 page = pagecache_get_page(mapping, index, fgp_flags,
2430 mapping_gfp_mask(mapping));
2431 if (page)
2432 wait_for_stable_page(page);
2433
2434 return page;
2435 }
2436 EXPORT_SYMBOL(grab_cache_page_write_begin);
2437
2438 ssize_t generic_perform_write(struct file *file,
2439 struct iov_iter *i, loff_t pos)
2440 {
2441 struct address_space *mapping = file->f_mapping;
2442 const struct address_space_operations *a_ops = mapping->a_ops;
2443 long status = 0;
2444 ssize_t written = 0;
2445 unsigned int flags = 0;
2446
2447 /*
2448 * Copies from kernel address space cannot fail (NFSD is a big user).
2449 */
2450 if (!iter_is_iovec(i))
2451 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2452
2453 do {
2454 struct page *page;
2455 unsigned long offset; /* Offset into pagecache page */
2456 unsigned long bytes; /* Bytes to write to page */
2457 size_t copied; /* Bytes copied from user */
2458 void *fsdata;
2459
2460 offset = (pos & (PAGE_CACHE_SIZE - 1));
2461 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2462 iov_iter_count(i));
2463
2464 again:
2465 /*
2466 * Bring in the user page that we will copy from _first_.
2467 * Otherwise there's a nasty deadlock on copying from the
2468 * same page as we're writing to, without it being marked
2469 * up-to-date.
2470 *
2471 * Not only is this an optimisation, but it is also required
2472 * to check that the address is actually valid, when atomic
2473 * usercopies are used, below.
2474 */
2475 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2476 status = -EFAULT;
2477 break;
2478 }
2479
2480 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2481 &page, &fsdata);
2482 if (unlikely(status < 0))
2483 break;
2484
2485 if (mapping_writably_mapped(mapping))
2486 flush_dcache_page(page);
2487
2488 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2489 flush_dcache_page(page);
2490
2491 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2492 page, fsdata);
2493 if (unlikely(status < 0))
2494 break;
2495 copied = status;
2496
2497 cond_resched();
2498
2499 iov_iter_advance(i, copied);
2500 if (unlikely(copied == 0)) {
2501 /*
2502 * If we were unable to copy any data at all, we must
2503 * fall back to a single segment length write.
2504 *
2505 * If we didn't fallback here, we could livelock
2506 * because not all segments in the iov can be copied at
2507 * once without a pagefault.
2508 */
2509 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2510 iov_iter_single_seg_count(i));
2511 goto again;
2512 }
2513 pos += copied;
2514 written += copied;
2515
2516 balance_dirty_pages_ratelimited(mapping);
2517 if (fatal_signal_pending(current)) {
2518 status = -EINTR;
2519 break;
2520 }
2521 } while (iov_iter_count(i));
2522
2523 return written ? written : status;
2524 }
2525 EXPORT_SYMBOL(generic_perform_write);
2526
2527 /**
2528 * __generic_file_write_iter - write data to a file
2529 * @iocb: IO state structure (file, offset, etc.)
2530 * @from: iov_iter with data to write
2531 *
2532 * This function does all the work needed for actually writing data to a
2533 * file. It does all basic checks, removes SUID from the file, updates
2534 * modification times and calls proper subroutines depending on whether we
2535 * do direct IO or a standard buffered write.
2536 *
2537 * It expects i_mutex to be grabbed unless we work on a block device or similar
2538 * object which does not need locking at all.
2539 *
2540 * This function does *not* take care of syncing data in case of O_SYNC write.
2541 * A caller has to handle it. This is mainly due to the fact that we want to
2542 * avoid syncing under i_mutex.
2543 */
2544 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2545 {
2546 struct file *file = iocb->ki_filp;
2547 struct address_space * mapping = file->f_mapping;
2548 struct inode *inode = mapping->host;
2549 ssize_t written = 0;
2550 ssize_t err;
2551 ssize_t status;
2552
2553 /* We can write back this queue in page reclaim */
2554 current->backing_dev_info = inode_to_bdi(inode);
2555 err = file_remove_suid(file);
2556 if (err)
2557 goto out;
2558
2559 err = file_update_time(file);
2560 if (err)
2561 goto out;
2562
2563 if (iocb->ki_flags & IOCB_DIRECT) {
2564 loff_t pos, endbyte;
2565
2566 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2567 /*
2568 * If the write stopped short of completing, fall back to
2569 * buffered writes. Some filesystems do this for writes to
2570 * holes, for example. For DAX files, a buffered write will
2571 * not succeed (even if it did, DAX does not handle dirty
2572 * page-cache pages correctly).
2573 */
2574 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2575 goto out;
2576
2577 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2578 /*
2579 * If generic_perform_write() returned a synchronous error
2580 * then we want to return the number of bytes which were
2581 * direct-written, or the error code if that was zero. Note
2582 * that this differs from normal direct-io semantics, which
2583 * will return -EFOO even if some bytes were written.
2584 */
2585 if (unlikely(status < 0)) {
2586 err = status;
2587 goto out;
2588 }
2589 /*
2590 * We need to ensure that the page cache pages are written to
2591 * disk and invalidated to preserve the expected O_DIRECT
2592 * semantics.
2593 */
2594 endbyte = pos + status - 1;
2595 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2596 if (err == 0) {
2597 iocb->ki_pos = endbyte + 1;
2598 written += status;
2599 invalidate_mapping_pages(mapping,
2600 pos >> PAGE_CACHE_SHIFT,
2601 endbyte >> PAGE_CACHE_SHIFT);
2602 } else {
2603 /*
2604 * We don't know how much we wrote, so just return
2605 * the number of bytes which were direct-written
2606 */
2607 }
2608 } else {
2609 written = generic_perform_write(file, from, iocb->ki_pos);
2610 if (likely(written > 0))
2611 iocb->ki_pos += written;
2612 }
2613 out:
2614 current->backing_dev_info = NULL;
2615 return written ? written : err;
2616 }
2617 EXPORT_SYMBOL(__generic_file_write_iter);
2618
2619 /**
2620 * generic_file_write_iter - write data to a file
2621 * @iocb: IO state structure
2622 * @from: iov_iter with data to write
2623 *
2624 * This is a wrapper around __generic_file_write_iter() to be used by most
2625 * filesystems. It takes care of syncing the file in case of O_SYNC file
2626 * and acquires i_mutex as needed.
2627 */
2628 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2629 {
2630 struct file *file = iocb->ki_filp;
2631 struct inode *inode = file->f_mapping->host;
2632 ssize_t ret;
2633
2634 mutex_lock(&inode->i_mutex);
2635 ret = generic_write_checks(iocb, from);
2636 if (ret > 0)
2637 ret = __generic_file_write_iter(iocb, from);
2638 mutex_unlock(&inode->i_mutex);
2639
2640 if (ret > 0) {
2641 ssize_t err;
2642
2643 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2644 if (err < 0)
2645 ret = err;
2646 }
2647 return ret;
2648 }
2649 EXPORT_SYMBOL(generic_file_write_iter);
2650
2651 /**
2652 * try_to_release_page() - release old fs-specific metadata on a page
2653 *
2654 * @page: the page which the kernel is trying to free
2655 * @gfp_mask: memory allocation flags (and I/O mode)
2656 *
2657 * The address_space is to try to release any data against the page
2658 * (presumably at page->private). If the release was successful, return `1'.
2659 * Otherwise return zero.
2660 *
2661 * This may also be called if PG_fscache is set on a page, indicating that the
2662 * page is known to the local caching routines.
2663 *
2664 * The @gfp_mask argument specifies whether I/O may be performed to release
2665 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2666 *
2667 */
2668 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2669 {
2670 struct address_space * const mapping = page->mapping;
2671
2672 BUG_ON(!PageLocked(page));
2673 if (PageWriteback(page))
2674 return 0;
2675
2676 if (mapping && mapping->a_ops->releasepage)
2677 return mapping->a_ops->releasepage(page, gfp_mask);
2678 return try_to_free_buffers(page);
2679 }
2680
2681 EXPORT_SYMBOL(try_to_release_page);