]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/filemap.c
mm: move most file-based accounting to the node
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115 {
116 struct radix_tree_node *node;
117 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
118
119 VM_BUG_ON_PAGE(!PageLocked(page), page);
120 VM_BUG_ON_PAGE(PageTail(page), page);
121 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
122
123 if (shadow) {
124 mapping->nrexceptional += nr;
125 /*
126 * Make sure the nrexceptional update is committed before
127 * the nrpages update so that final truncate racing
128 * with reclaim does not see both counters 0 at the
129 * same time and miss a shadow entry.
130 */
131 smp_wmb();
132 }
133 mapping->nrpages -= nr;
134
135 for (i = 0; i < nr; i++) {
136 node = radix_tree_replace_clear_tags(&mapping->page_tree,
137 page->index + i, shadow);
138 if (!node) {
139 VM_BUG_ON_PAGE(nr != 1, page);
140 return;
141 }
142
143 workingset_node_pages_dec(node);
144 if (shadow)
145 workingset_node_shadows_inc(node);
146 else
147 if (__radix_tree_delete_node(&mapping->page_tree, node))
148 continue;
149
150 /*
151 * Track node that only contains shadow entries. DAX mappings
152 * contain no shadow entries and may contain other exceptional
153 * entries so skip those.
154 *
155 * Avoid acquiring the list_lru lock if already tracked.
156 * The list_empty() test is safe as node->private_list is
157 * protected by mapping->tree_lock.
158 */
159 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
160 list_empty(&node->private_list)) {
161 node->private_data = mapping;
162 list_lru_add(&workingset_shadow_nodes,
163 &node->private_list);
164 }
165 }
166 }
167
168 /*
169 * Delete a page from the page cache and free it. Caller has to make
170 * sure the page is locked and that nobody else uses it - or that usage
171 * is safe. The caller must hold the mapping's tree_lock.
172 */
173 void __delete_from_page_cache(struct page *page, void *shadow)
174 {
175 struct address_space *mapping = page->mapping;
176 int nr = hpage_nr_pages(page);
177
178 trace_mm_filemap_delete_from_page_cache(page);
179 /*
180 * if we're uptodate, flush out into the cleancache, otherwise
181 * invalidate any existing cleancache entries. We can't leave
182 * stale data around in the cleancache once our page is gone
183 */
184 if (PageUptodate(page) && PageMappedToDisk(page))
185 cleancache_put_page(page);
186 else
187 cleancache_invalidate_page(mapping, page);
188
189 VM_BUG_ON_PAGE(PageTail(page), page);
190 VM_BUG_ON_PAGE(page_mapped(page), page);
191 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
192 int mapcount;
193
194 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
195 current->comm, page_to_pfn(page));
196 dump_page(page, "still mapped when deleted");
197 dump_stack();
198 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
199
200 mapcount = page_mapcount(page);
201 if (mapping_exiting(mapping) &&
202 page_count(page) >= mapcount + 2) {
203 /*
204 * All vmas have already been torn down, so it's
205 * a good bet that actually the page is unmapped,
206 * and we'd prefer not to leak it: if we're wrong,
207 * some other bad page check should catch it later.
208 */
209 page_mapcount_reset(page);
210 page_ref_sub(page, mapcount);
211 }
212 }
213
214 page_cache_tree_delete(mapping, page, shadow);
215
216 page->mapping = NULL;
217 /* Leave page->index set: truncation lookup relies upon it */
218
219 /* hugetlb pages do not participate in page cache accounting. */
220 if (!PageHuge(page))
221 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
222 if (PageSwapBacked(page)) {
223 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
224 if (PageTransHuge(page))
225 __dec_node_page_state(page, NR_SHMEM_THPS);
226 } else {
227 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
228 }
229
230 /*
231 * At this point page must be either written or cleaned by truncate.
232 * Dirty page here signals a bug and loss of unwritten data.
233 *
234 * This fixes dirty accounting after removing the page entirely but
235 * leaves PageDirty set: it has no effect for truncated page and
236 * anyway will be cleared before returning page into buddy allocator.
237 */
238 if (WARN_ON_ONCE(PageDirty(page)))
239 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
240 }
241
242 /**
243 * delete_from_page_cache - delete page from page cache
244 * @page: the page which the kernel is trying to remove from page cache
245 *
246 * This must be called only on pages that have been verified to be in the page
247 * cache and locked. It will never put the page into the free list, the caller
248 * has a reference on the page.
249 */
250 void delete_from_page_cache(struct page *page)
251 {
252 struct address_space *mapping = page_mapping(page);
253 unsigned long flags;
254 void (*freepage)(struct page *);
255
256 BUG_ON(!PageLocked(page));
257
258 freepage = mapping->a_ops->freepage;
259
260 spin_lock_irqsave(&mapping->tree_lock, flags);
261 __delete_from_page_cache(page, NULL);
262 spin_unlock_irqrestore(&mapping->tree_lock, flags);
263
264 if (freepage)
265 freepage(page);
266
267 if (PageTransHuge(page) && !PageHuge(page)) {
268 page_ref_sub(page, HPAGE_PMD_NR);
269 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
270 } else {
271 put_page(page);
272 }
273 }
274 EXPORT_SYMBOL(delete_from_page_cache);
275
276 static int filemap_check_errors(struct address_space *mapping)
277 {
278 int ret = 0;
279 /* Check for outstanding write errors */
280 if (test_bit(AS_ENOSPC, &mapping->flags) &&
281 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 ret = -ENOSPC;
283 if (test_bit(AS_EIO, &mapping->flags) &&
284 test_and_clear_bit(AS_EIO, &mapping->flags))
285 ret = -EIO;
286 return ret;
287 }
288
289 /**
290 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
291 * @mapping: address space structure to write
292 * @start: offset in bytes where the range starts
293 * @end: offset in bytes where the range ends (inclusive)
294 * @sync_mode: enable synchronous operation
295 *
296 * Start writeback against all of a mapping's dirty pages that lie
297 * within the byte offsets <start, end> inclusive.
298 *
299 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
300 * opposed to a regular memory cleansing writeback. The difference between
301 * these two operations is that if a dirty page/buffer is encountered, it must
302 * be waited upon, and not just skipped over.
303 */
304 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
305 loff_t end, int sync_mode)
306 {
307 int ret;
308 struct writeback_control wbc = {
309 .sync_mode = sync_mode,
310 .nr_to_write = LONG_MAX,
311 .range_start = start,
312 .range_end = end,
313 };
314
315 if (!mapping_cap_writeback_dirty(mapping))
316 return 0;
317
318 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
319 ret = do_writepages(mapping, &wbc);
320 wbc_detach_inode(&wbc);
321 return ret;
322 }
323
324 static inline int __filemap_fdatawrite(struct address_space *mapping,
325 int sync_mode)
326 {
327 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
328 }
329
330 int filemap_fdatawrite(struct address_space *mapping)
331 {
332 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
333 }
334 EXPORT_SYMBOL(filemap_fdatawrite);
335
336 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
337 loff_t end)
338 {
339 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
340 }
341 EXPORT_SYMBOL(filemap_fdatawrite_range);
342
343 /**
344 * filemap_flush - mostly a non-blocking flush
345 * @mapping: target address_space
346 *
347 * This is a mostly non-blocking flush. Not suitable for data-integrity
348 * purposes - I/O may not be started against all dirty pages.
349 */
350 int filemap_flush(struct address_space *mapping)
351 {
352 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
353 }
354 EXPORT_SYMBOL(filemap_flush);
355
356 static int __filemap_fdatawait_range(struct address_space *mapping,
357 loff_t start_byte, loff_t end_byte)
358 {
359 pgoff_t index = start_byte >> PAGE_SHIFT;
360 pgoff_t end = end_byte >> PAGE_SHIFT;
361 struct pagevec pvec;
362 int nr_pages;
363 int ret = 0;
364
365 if (end_byte < start_byte)
366 goto out;
367
368 pagevec_init(&pvec, 0);
369 while ((index <= end) &&
370 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
371 PAGECACHE_TAG_WRITEBACK,
372 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
373 unsigned i;
374
375 for (i = 0; i < nr_pages; i++) {
376 struct page *page = pvec.pages[i];
377
378 /* until radix tree lookup accepts end_index */
379 if (page->index > end)
380 continue;
381
382 wait_on_page_writeback(page);
383 if (TestClearPageError(page))
384 ret = -EIO;
385 }
386 pagevec_release(&pvec);
387 cond_resched();
388 }
389 out:
390 return ret;
391 }
392
393 /**
394 * filemap_fdatawait_range - wait for writeback to complete
395 * @mapping: address space structure to wait for
396 * @start_byte: offset in bytes where the range starts
397 * @end_byte: offset in bytes where the range ends (inclusive)
398 *
399 * Walk the list of under-writeback pages of the given address space
400 * in the given range and wait for all of them. Check error status of
401 * the address space and return it.
402 *
403 * Since the error status of the address space is cleared by this function,
404 * callers are responsible for checking the return value and handling and/or
405 * reporting the error.
406 */
407 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
408 loff_t end_byte)
409 {
410 int ret, ret2;
411
412 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
413 ret2 = filemap_check_errors(mapping);
414 if (!ret)
415 ret = ret2;
416
417 return ret;
418 }
419 EXPORT_SYMBOL(filemap_fdatawait_range);
420
421 /**
422 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
423 * @mapping: address space structure to wait for
424 *
425 * Walk the list of under-writeback pages of the given address space
426 * and wait for all of them. Unlike filemap_fdatawait(), this function
427 * does not clear error status of the address space.
428 *
429 * Use this function if callers don't handle errors themselves. Expected
430 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
431 * fsfreeze(8)
432 */
433 void filemap_fdatawait_keep_errors(struct address_space *mapping)
434 {
435 loff_t i_size = i_size_read(mapping->host);
436
437 if (i_size == 0)
438 return;
439
440 __filemap_fdatawait_range(mapping, 0, i_size - 1);
441 }
442
443 /**
444 * filemap_fdatawait - wait for all under-writeback pages to complete
445 * @mapping: address space structure to wait for
446 *
447 * Walk the list of under-writeback pages of the given address space
448 * and wait for all of them. Check error status of the address space
449 * and return it.
450 *
451 * Since the error status of the address space is cleared by this function,
452 * callers are responsible for checking the return value and handling and/or
453 * reporting the error.
454 */
455 int filemap_fdatawait(struct address_space *mapping)
456 {
457 loff_t i_size = i_size_read(mapping->host);
458
459 if (i_size == 0)
460 return 0;
461
462 return filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464 EXPORT_SYMBOL(filemap_fdatawait);
465
466 int filemap_write_and_wait(struct address_space *mapping)
467 {
468 int err = 0;
469
470 if ((!dax_mapping(mapping) && mapping->nrpages) ||
471 (dax_mapping(mapping) && mapping->nrexceptional)) {
472 err = filemap_fdatawrite(mapping);
473 /*
474 * Even if the above returned error, the pages may be
475 * written partially (e.g. -ENOSPC), so we wait for it.
476 * But the -EIO is special case, it may indicate the worst
477 * thing (e.g. bug) happened, so we avoid waiting for it.
478 */
479 if (err != -EIO) {
480 int err2 = filemap_fdatawait(mapping);
481 if (!err)
482 err = err2;
483 }
484 } else {
485 err = filemap_check_errors(mapping);
486 }
487 return err;
488 }
489 EXPORT_SYMBOL(filemap_write_and_wait);
490
491 /**
492 * filemap_write_and_wait_range - write out & wait on a file range
493 * @mapping: the address_space for the pages
494 * @lstart: offset in bytes where the range starts
495 * @lend: offset in bytes where the range ends (inclusive)
496 *
497 * Write out and wait upon file offsets lstart->lend, inclusive.
498 *
499 * Note that `lend' is inclusive (describes the last byte to be written) so
500 * that this function can be used to write to the very end-of-file (end = -1).
501 */
502 int filemap_write_and_wait_range(struct address_space *mapping,
503 loff_t lstart, loff_t lend)
504 {
505 int err = 0;
506
507 if ((!dax_mapping(mapping) && mapping->nrpages) ||
508 (dax_mapping(mapping) && mapping->nrexceptional)) {
509 err = __filemap_fdatawrite_range(mapping, lstart, lend,
510 WB_SYNC_ALL);
511 /* See comment of filemap_write_and_wait() */
512 if (err != -EIO) {
513 int err2 = filemap_fdatawait_range(mapping,
514 lstart, lend);
515 if (!err)
516 err = err2;
517 }
518 } else {
519 err = filemap_check_errors(mapping);
520 }
521 return err;
522 }
523 EXPORT_SYMBOL(filemap_write_and_wait_range);
524
525 /**
526 * replace_page_cache_page - replace a pagecache page with a new one
527 * @old: page to be replaced
528 * @new: page to replace with
529 * @gfp_mask: allocation mode
530 *
531 * This function replaces a page in the pagecache with a new one. On
532 * success it acquires the pagecache reference for the new page and
533 * drops it for the old page. Both the old and new pages must be
534 * locked. This function does not add the new page to the LRU, the
535 * caller must do that.
536 *
537 * The remove + add is atomic. The only way this function can fail is
538 * memory allocation failure.
539 */
540 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
541 {
542 int error;
543
544 VM_BUG_ON_PAGE(!PageLocked(old), old);
545 VM_BUG_ON_PAGE(!PageLocked(new), new);
546 VM_BUG_ON_PAGE(new->mapping, new);
547
548 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
549 if (!error) {
550 struct address_space *mapping = old->mapping;
551 void (*freepage)(struct page *);
552 unsigned long flags;
553
554 pgoff_t offset = old->index;
555 freepage = mapping->a_ops->freepage;
556
557 get_page(new);
558 new->mapping = mapping;
559 new->index = offset;
560
561 spin_lock_irqsave(&mapping->tree_lock, flags);
562 __delete_from_page_cache(old, NULL);
563 error = radix_tree_insert(&mapping->page_tree, offset, new);
564 BUG_ON(error);
565 mapping->nrpages++;
566
567 /*
568 * hugetlb pages do not participate in page cache accounting.
569 */
570 if (!PageHuge(new))
571 __inc_node_page_state(new, NR_FILE_PAGES);
572 if (PageSwapBacked(new))
573 __inc_node_page_state(new, NR_SHMEM);
574 spin_unlock_irqrestore(&mapping->tree_lock, flags);
575 mem_cgroup_migrate(old, new);
576 radix_tree_preload_end();
577 if (freepage)
578 freepage(old);
579 put_page(old);
580 }
581
582 return error;
583 }
584 EXPORT_SYMBOL_GPL(replace_page_cache_page);
585
586 static int page_cache_tree_insert(struct address_space *mapping,
587 struct page *page, void **shadowp)
588 {
589 struct radix_tree_node *node;
590 void **slot;
591 int error;
592
593 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
594 &node, &slot);
595 if (error)
596 return error;
597 if (*slot) {
598 void *p;
599
600 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
601 if (!radix_tree_exceptional_entry(p))
602 return -EEXIST;
603
604 mapping->nrexceptional--;
605 if (!dax_mapping(mapping)) {
606 if (shadowp)
607 *shadowp = p;
608 if (node)
609 workingset_node_shadows_dec(node);
610 } else {
611 /* DAX can replace empty locked entry with a hole */
612 WARN_ON_ONCE(p !=
613 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
614 RADIX_DAX_ENTRY_LOCK));
615 /* DAX accounts exceptional entries as normal pages */
616 if (node)
617 workingset_node_pages_dec(node);
618 /* Wakeup waiters for exceptional entry lock */
619 dax_wake_mapping_entry_waiter(mapping, page->index,
620 false);
621 }
622 }
623 radix_tree_replace_slot(slot, page);
624 mapping->nrpages++;
625 if (node) {
626 workingset_node_pages_inc(node);
627 /*
628 * Don't track node that contains actual pages.
629 *
630 * Avoid acquiring the list_lru lock if already
631 * untracked. The list_empty() test is safe as
632 * node->private_list is protected by
633 * mapping->tree_lock.
634 */
635 if (!list_empty(&node->private_list))
636 list_lru_del(&workingset_shadow_nodes,
637 &node->private_list);
638 }
639 return 0;
640 }
641
642 static int __add_to_page_cache_locked(struct page *page,
643 struct address_space *mapping,
644 pgoff_t offset, gfp_t gfp_mask,
645 void **shadowp)
646 {
647 int huge = PageHuge(page);
648 struct mem_cgroup *memcg;
649 int error;
650
651 VM_BUG_ON_PAGE(!PageLocked(page), page);
652 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
653
654 if (!huge) {
655 error = mem_cgroup_try_charge(page, current->mm,
656 gfp_mask, &memcg, false);
657 if (error)
658 return error;
659 }
660
661 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
662 if (error) {
663 if (!huge)
664 mem_cgroup_cancel_charge(page, memcg, false);
665 return error;
666 }
667
668 get_page(page);
669 page->mapping = mapping;
670 page->index = offset;
671
672 spin_lock_irq(&mapping->tree_lock);
673 error = page_cache_tree_insert(mapping, page, shadowp);
674 radix_tree_preload_end();
675 if (unlikely(error))
676 goto err_insert;
677
678 /* hugetlb pages do not participate in page cache accounting. */
679 if (!huge)
680 __inc_node_page_state(page, NR_FILE_PAGES);
681 spin_unlock_irq(&mapping->tree_lock);
682 if (!huge)
683 mem_cgroup_commit_charge(page, memcg, false, false);
684 trace_mm_filemap_add_to_page_cache(page);
685 return 0;
686 err_insert:
687 page->mapping = NULL;
688 /* Leave page->index set: truncation relies upon it */
689 spin_unlock_irq(&mapping->tree_lock);
690 if (!huge)
691 mem_cgroup_cancel_charge(page, memcg, false);
692 put_page(page);
693 return error;
694 }
695
696 /**
697 * add_to_page_cache_locked - add a locked page to the pagecache
698 * @page: page to add
699 * @mapping: the page's address_space
700 * @offset: page index
701 * @gfp_mask: page allocation mode
702 *
703 * This function is used to add a page to the pagecache. It must be locked.
704 * This function does not add the page to the LRU. The caller must do that.
705 */
706 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
707 pgoff_t offset, gfp_t gfp_mask)
708 {
709 return __add_to_page_cache_locked(page, mapping, offset,
710 gfp_mask, NULL);
711 }
712 EXPORT_SYMBOL(add_to_page_cache_locked);
713
714 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
715 pgoff_t offset, gfp_t gfp_mask)
716 {
717 void *shadow = NULL;
718 int ret;
719
720 __SetPageLocked(page);
721 ret = __add_to_page_cache_locked(page, mapping, offset,
722 gfp_mask, &shadow);
723 if (unlikely(ret))
724 __ClearPageLocked(page);
725 else {
726 /*
727 * The page might have been evicted from cache only
728 * recently, in which case it should be activated like
729 * any other repeatedly accessed page.
730 * The exception is pages getting rewritten; evicting other
731 * data from the working set, only to cache data that will
732 * get overwritten with something else, is a waste of memory.
733 */
734 if (!(gfp_mask & __GFP_WRITE) &&
735 shadow && workingset_refault(shadow)) {
736 SetPageActive(page);
737 workingset_activation(page);
738 } else
739 ClearPageActive(page);
740 lru_cache_add(page);
741 }
742 return ret;
743 }
744 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
745
746 #ifdef CONFIG_NUMA
747 struct page *__page_cache_alloc(gfp_t gfp)
748 {
749 int n;
750 struct page *page;
751
752 if (cpuset_do_page_mem_spread()) {
753 unsigned int cpuset_mems_cookie;
754 do {
755 cpuset_mems_cookie = read_mems_allowed_begin();
756 n = cpuset_mem_spread_node();
757 page = __alloc_pages_node(n, gfp, 0);
758 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
759
760 return page;
761 }
762 return alloc_pages(gfp, 0);
763 }
764 EXPORT_SYMBOL(__page_cache_alloc);
765 #endif
766
767 /*
768 * In order to wait for pages to become available there must be
769 * waitqueues associated with pages. By using a hash table of
770 * waitqueues where the bucket discipline is to maintain all
771 * waiters on the same queue and wake all when any of the pages
772 * become available, and for the woken contexts to check to be
773 * sure the appropriate page became available, this saves space
774 * at a cost of "thundering herd" phenomena during rare hash
775 * collisions.
776 */
777 wait_queue_head_t *page_waitqueue(struct page *page)
778 {
779 const struct zone *zone = page_zone(page);
780
781 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
782 }
783 EXPORT_SYMBOL(page_waitqueue);
784
785 void wait_on_page_bit(struct page *page, int bit_nr)
786 {
787 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
788
789 if (test_bit(bit_nr, &page->flags))
790 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
791 TASK_UNINTERRUPTIBLE);
792 }
793 EXPORT_SYMBOL(wait_on_page_bit);
794
795 int wait_on_page_bit_killable(struct page *page, int bit_nr)
796 {
797 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
798
799 if (!test_bit(bit_nr, &page->flags))
800 return 0;
801
802 return __wait_on_bit(page_waitqueue(page), &wait,
803 bit_wait_io, TASK_KILLABLE);
804 }
805
806 int wait_on_page_bit_killable_timeout(struct page *page,
807 int bit_nr, unsigned long timeout)
808 {
809 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
810
811 wait.key.timeout = jiffies + timeout;
812 if (!test_bit(bit_nr, &page->flags))
813 return 0;
814 return __wait_on_bit(page_waitqueue(page), &wait,
815 bit_wait_io_timeout, TASK_KILLABLE);
816 }
817 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
818
819 /**
820 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
821 * @page: Page defining the wait queue of interest
822 * @waiter: Waiter to add to the queue
823 *
824 * Add an arbitrary @waiter to the wait queue for the nominated @page.
825 */
826 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
827 {
828 wait_queue_head_t *q = page_waitqueue(page);
829 unsigned long flags;
830
831 spin_lock_irqsave(&q->lock, flags);
832 __add_wait_queue(q, waiter);
833 spin_unlock_irqrestore(&q->lock, flags);
834 }
835 EXPORT_SYMBOL_GPL(add_page_wait_queue);
836
837 /**
838 * unlock_page - unlock a locked page
839 * @page: the page
840 *
841 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
842 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
843 * mechanism between PageLocked pages and PageWriteback pages is shared.
844 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
845 *
846 * The mb is necessary to enforce ordering between the clear_bit and the read
847 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
848 */
849 void unlock_page(struct page *page)
850 {
851 page = compound_head(page);
852 VM_BUG_ON_PAGE(!PageLocked(page), page);
853 clear_bit_unlock(PG_locked, &page->flags);
854 smp_mb__after_atomic();
855 wake_up_page(page, PG_locked);
856 }
857 EXPORT_SYMBOL(unlock_page);
858
859 /**
860 * end_page_writeback - end writeback against a page
861 * @page: the page
862 */
863 void end_page_writeback(struct page *page)
864 {
865 /*
866 * TestClearPageReclaim could be used here but it is an atomic
867 * operation and overkill in this particular case. Failing to
868 * shuffle a page marked for immediate reclaim is too mild to
869 * justify taking an atomic operation penalty at the end of
870 * ever page writeback.
871 */
872 if (PageReclaim(page)) {
873 ClearPageReclaim(page);
874 rotate_reclaimable_page(page);
875 }
876
877 if (!test_clear_page_writeback(page))
878 BUG();
879
880 smp_mb__after_atomic();
881 wake_up_page(page, PG_writeback);
882 }
883 EXPORT_SYMBOL(end_page_writeback);
884
885 /*
886 * After completing I/O on a page, call this routine to update the page
887 * flags appropriately
888 */
889 void page_endio(struct page *page, int rw, int err)
890 {
891 if (rw == READ) {
892 if (!err) {
893 SetPageUptodate(page);
894 } else {
895 ClearPageUptodate(page);
896 SetPageError(page);
897 }
898 unlock_page(page);
899 } else { /* rw == WRITE */
900 if (err) {
901 SetPageError(page);
902 if (page->mapping)
903 mapping_set_error(page->mapping, err);
904 }
905 end_page_writeback(page);
906 }
907 }
908 EXPORT_SYMBOL_GPL(page_endio);
909
910 /**
911 * __lock_page - get a lock on the page, assuming we need to sleep to get it
912 * @page: the page to lock
913 */
914 void __lock_page(struct page *page)
915 {
916 struct page *page_head = compound_head(page);
917 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
918
919 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
920 TASK_UNINTERRUPTIBLE);
921 }
922 EXPORT_SYMBOL(__lock_page);
923
924 int __lock_page_killable(struct page *page)
925 {
926 struct page *page_head = compound_head(page);
927 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
928
929 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
930 bit_wait_io, TASK_KILLABLE);
931 }
932 EXPORT_SYMBOL_GPL(__lock_page_killable);
933
934 /*
935 * Return values:
936 * 1 - page is locked; mmap_sem is still held.
937 * 0 - page is not locked.
938 * mmap_sem has been released (up_read()), unless flags had both
939 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
940 * which case mmap_sem is still held.
941 *
942 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
943 * with the page locked and the mmap_sem unperturbed.
944 */
945 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
946 unsigned int flags)
947 {
948 if (flags & FAULT_FLAG_ALLOW_RETRY) {
949 /*
950 * CAUTION! In this case, mmap_sem is not released
951 * even though return 0.
952 */
953 if (flags & FAULT_FLAG_RETRY_NOWAIT)
954 return 0;
955
956 up_read(&mm->mmap_sem);
957 if (flags & FAULT_FLAG_KILLABLE)
958 wait_on_page_locked_killable(page);
959 else
960 wait_on_page_locked(page);
961 return 0;
962 } else {
963 if (flags & FAULT_FLAG_KILLABLE) {
964 int ret;
965
966 ret = __lock_page_killable(page);
967 if (ret) {
968 up_read(&mm->mmap_sem);
969 return 0;
970 }
971 } else
972 __lock_page(page);
973 return 1;
974 }
975 }
976
977 /**
978 * page_cache_next_hole - find the next hole (not-present entry)
979 * @mapping: mapping
980 * @index: index
981 * @max_scan: maximum range to search
982 *
983 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
984 * lowest indexed hole.
985 *
986 * Returns: the index of the hole if found, otherwise returns an index
987 * outside of the set specified (in which case 'return - index >=
988 * max_scan' will be true). In rare cases of index wrap-around, 0 will
989 * be returned.
990 *
991 * page_cache_next_hole may be called under rcu_read_lock. However,
992 * like radix_tree_gang_lookup, this will not atomically search a
993 * snapshot of the tree at a single point in time. For example, if a
994 * hole is created at index 5, then subsequently a hole is created at
995 * index 10, page_cache_next_hole covering both indexes may return 10
996 * if called under rcu_read_lock.
997 */
998 pgoff_t page_cache_next_hole(struct address_space *mapping,
999 pgoff_t index, unsigned long max_scan)
1000 {
1001 unsigned long i;
1002
1003 for (i = 0; i < max_scan; i++) {
1004 struct page *page;
1005
1006 page = radix_tree_lookup(&mapping->page_tree, index);
1007 if (!page || radix_tree_exceptional_entry(page))
1008 break;
1009 index++;
1010 if (index == 0)
1011 break;
1012 }
1013
1014 return index;
1015 }
1016 EXPORT_SYMBOL(page_cache_next_hole);
1017
1018 /**
1019 * page_cache_prev_hole - find the prev hole (not-present entry)
1020 * @mapping: mapping
1021 * @index: index
1022 * @max_scan: maximum range to search
1023 *
1024 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1025 * the first hole.
1026 *
1027 * Returns: the index of the hole if found, otherwise returns an index
1028 * outside of the set specified (in which case 'index - return >=
1029 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1030 * will be returned.
1031 *
1032 * page_cache_prev_hole may be called under rcu_read_lock. However,
1033 * like radix_tree_gang_lookup, this will not atomically search a
1034 * snapshot of the tree at a single point in time. For example, if a
1035 * hole is created at index 10, then subsequently a hole is created at
1036 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1037 * called under rcu_read_lock.
1038 */
1039 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1040 pgoff_t index, unsigned long max_scan)
1041 {
1042 unsigned long i;
1043
1044 for (i = 0; i < max_scan; i++) {
1045 struct page *page;
1046
1047 page = radix_tree_lookup(&mapping->page_tree, index);
1048 if (!page || radix_tree_exceptional_entry(page))
1049 break;
1050 index--;
1051 if (index == ULONG_MAX)
1052 break;
1053 }
1054
1055 return index;
1056 }
1057 EXPORT_SYMBOL(page_cache_prev_hole);
1058
1059 /**
1060 * find_get_entry - find and get a page cache entry
1061 * @mapping: the address_space to search
1062 * @offset: the page cache index
1063 *
1064 * Looks up the page cache slot at @mapping & @offset. If there is a
1065 * page cache page, it is returned with an increased refcount.
1066 *
1067 * If the slot holds a shadow entry of a previously evicted page, or a
1068 * swap entry from shmem/tmpfs, it is returned.
1069 *
1070 * Otherwise, %NULL is returned.
1071 */
1072 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1073 {
1074 void **pagep;
1075 struct page *head, *page;
1076
1077 rcu_read_lock();
1078 repeat:
1079 page = NULL;
1080 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1081 if (pagep) {
1082 page = radix_tree_deref_slot(pagep);
1083 if (unlikely(!page))
1084 goto out;
1085 if (radix_tree_exception(page)) {
1086 if (radix_tree_deref_retry(page))
1087 goto repeat;
1088 /*
1089 * A shadow entry of a recently evicted page,
1090 * or a swap entry from shmem/tmpfs. Return
1091 * it without attempting to raise page count.
1092 */
1093 goto out;
1094 }
1095
1096 head = compound_head(page);
1097 if (!page_cache_get_speculative(head))
1098 goto repeat;
1099
1100 /* The page was split under us? */
1101 if (compound_head(page) != head) {
1102 put_page(head);
1103 goto repeat;
1104 }
1105
1106 /*
1107 * Has the page moved?
1108 * This is part of the lockless pagecache protocol. See
1109 * include/linux/pagemap.h for details.
1110 */
1111 if (unlikely(page != *pagep)) {
1112 put_page(head);
1113 goto repeat;
1114 }
1115 }
1116 out:
1117 rcu_read_unlock();
1118
1119 return page;
1120 }
1121 EXPORT_SYMBOL(find_get_entry);
1122
1123 /**
1124 * find_lock_entry - locate, pin and lock a page cache entry
1125 * @mapping: the address_space to search
1126 * @offset: the page cache index
1127 *
1128 * Looks up the page cache slot at @mapping & @offset. If there is a
1129 * page cache page, it is returned locked and with an increased
1130 * refcount.
1131 *
1132 * If the slot holds a shadow entry of a previously evicted page, or a
1133 * swap entry from shmem/tmpfs, it is returned.
1134 *
1135 * Otherwise, %NULL is returned.
1136 *
1137 * find_lock_entry() may sleep.
1138 */
1139 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1140 {
1141 struct page *page;
1142
1143 repeat:
1144 page = find_get_entry(mapping, offset);
1145 if (page && !radix_tree_exception(page)) {
1146 lock_page(page);
1147 /* Has the page been truncated? */
1148 if (unlikely(page_mapping(page) != mapping)) {
1149 unlock_page(page);
1150 put_page(page);
1151 goto repeat;
1152 }
1153 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1154 }
1155 return page;
1156 }
1157 EXPORT_SYMBOL(find_lock_entry);
1158
1159 /**
1160 * pagecache_get_page - find and get a page reference
1161 * @mapping: the address_space to search
1162 * @offset: the page index
1163 * @fgp_flags: PCG flags
1164 * @gfp_mask: gfp mask to use for the page cache data page allocation
1165 *
1166 * Looks up the page cache slot at @mapping & @offset.
1167 *
1168 * PCG flags modify how the page is returned.
1169 *
1170 * FGP_ACCESSED: the page will be marked accessed
1171 * FGP_LOCK: Page is return locked
1172 * FGP_CREAT: If page is not present then a new page is allocated using
1173 * @gfp_mask and added to the page cache and the VM's LRU
1174 * list. The page is returned locked and with an increased
1175 * refcount. Otherwise, %NULL is returned.
1176 *
1177 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1178 * if the GFP flags specified for FGP_CREAT are atomic.
1179 *
1180 * If there is a page cache page, it is returned with an increased refcount.
1181 */
1182 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1183 int fgp_flags, gfp_t gfp_mask)
1184 {
1185 struct page *page;
1186
1187 repeat:
1188 page = find_get_entry(mapping, offset);
1189 if (radix_tree_exceptional_entry(page))
1190 page = NULL;
1191 if (!page)
1192 goto no_page;
1193
1194 if (fgp_flags & FGP_LOCK) {
1195 if (fgp_flags & FGP_NOWAIT) {
1196 if (!trylock_page(page)) {
1197 put_page(page);
1198 return NULL;
1199 }
1200 } else {
1201 lock_page(page);
1202 }
1203
1204 /* Has the page been truncated? */
1205 if (unlikely(page->mapping != mapping)) {
1206 unlock_page(page);
1207 put_page(page);
1208 goto repeat;
1209 }
1210 VM_BUG_ON_PAGE(page->index != offset, page);
1211 }
1212
1213 if (page && (fgp_flags & FGP_ACCESSED))
1214 mark_page_accessed(page);
1215
1216 no_page:
1217 if (!page && (fgp_flags & FGP_CREAT)) {
1218 int err;
1219 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1220 gfp_mask |= __GFP_WRITE;
1221 if (fgp_flags & FGP_NOFS)
1222 gfp_mask &= ~__GFP_FS;
1223
1224 page = __page_cache_alloc(gfp_mask);
1225 if (!page)
1226 return NULL;
1227
1228 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1229 fgp_flags |= FGP_LOCK;
1230
1231 /* Init accessed so avoid atomic mark_page_accessed later */
1232 if (fgp_flags & FGP_ACCESSED)
1233 __SetPageReferenced(page);
1234
1235 err = add_to_page_cache_lru(page, mapping, offset,
1236 gfp_mask & GFP_RECLAIM_MASK);
1237 if (unlikely(err)) {
1238 put_page(page);
1239 page = NULL;
1240 if (err == -EEXIST)
1241 goto repeat;
1242 }
1243 }
1244
1245 return page;
1246 }
1247 EXPORT_SYMBOL(pagecache_get_page);
1248
1249 /**
1250 * find_get_entries - gang pagecache lookup
1251 * @mapping: The address_space to search
1252 * @start: The starting page cache index
1253 * @nr_entries: The maximum number of entries
1254 * @entries: Where the resulting entries are placed
1255 * @indices: The cache indices corresponding to the entries in @entries
1256 *
1257 * find_get_entries() will search for and return a group of up to
1258 * @nr_entries entries in the mapping. The entries are placed at
1259 * @entries. find_get_entries() takes a reference against any actual
1260 * pages it returns.
1261 *
1262 * The search returns a group of mapping-contiguous page cache entries
1263 * with ascending indexes. There may be holes in the indices due to
1264 * not-present pages.
1265 *
1266 * Any shadow entries of evicted pages, or swap entries from
1267 * shmem/tmpfs, are included in the returned array.
1268 *
1269 * find_get_entries() returns the number of pages and shadow entries
1270 * which were found.
1271 */
1272 unsigned find_get_entries(struct address_space *mapping,
1273 pgoff_t start, unsigned int nr_entries,
1274 struct page **entries, pgoff_t *indices)
1275 {
1276 void **slot;
1277 unsigned int ret = 0;
1278 struct radix_tree_iter iter;
1279
1280 if (!nr_entries)
1281 return 0;
1282
1283 rcu_read_lock();
1284 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1285 struct page *head, *page;
1286 repeat:
1287 page = radix_tree_deref_slot(slot);
1288 if (unlikely(!page))
1289 continue;
1290 if (radix_tree_exception(page)) {
1291 if (radix_tree_deref_retry(page)) {
1292 slot = radix_tree_iter_retry(&iter);
1293 continue;
1294 }
1295 /*
1296 * A shadow entry of a recently evicted page, a swap
1297 * entry from shmem/tmpfs or a DAX entry. Return it
1298 * without attempting to raise page count.
1299 */
1300 goto export;
1301 }
1302
1303 head = compound_head(page);
1304 if (!page_cache_get_speculative(head))
1305 goto repeat;
1306
1307 /* The page was split under us? */
1308 if (compound_head(page) != head) {
1309 put_page(head);
1310 goto repeat;
1311 }
1312
1313 /* Has the page moved? */
1314 if (unlikely(page != *slot)) {
1315 put_page(head);
1316 goto repeat;
1317 }
1318 export:
1319 indices[ret] = iter.index;
1320 entries[ret] = page;
1321 if (++ret == nr_entries)
1322 break;
1323 }
1324 rcu_read_unlock();
1325 return ret;
1326 }
1327
1328 /**
1329 * find_get_pages - gang pagecache lookup
1330 * @mapping: The address_space to search
1331 * @start: The starting page index
1332 * @nr_pages: The maximum number of pages
1333 * @pages: Where the resulting pages are placed
1334 *
1335 * find_get_pages() will search for and return a group of up to
1336 * @nr_pages pages in the mapping. The pages are placed at @pages.
1337 * find_get_pages() takes a reference against the returned pages.
1338 *
1339 * The search returns a group of mapping-contiguous pages with ascending
1340 * indexes. There may be holes in the indices due to not-present pages.
1341 *
1342 * find_get_pages() returns the number of pages which were found.
1343 */
1344 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1345 unsigned int nr_pages, struct page **pages)
1346 {
1347 struct radix_tree_iter iter;
1348 void **slot;
1349 unsigned ret = 0;
1350
1351 if (unlikely(!nr_pages))
1352 return 0;
1353
1354 rcu_read_lock();
1355 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1356 struct page *head, *page;
1357 repeat:
1358 page = radix_tree_deref_slot(slot);
1359 if (unlikely(!page))
1360 continue;
1361
1362 if (radix_tree_exception(page)) {
1363 if (radix_tree_deref_retry(page)) {
1364 slot = radix_tree_iter_retry(&iter);
1365 continue;
1366 }
1367 /*
1368 * A shadow entry of a recently evicted page,
1369 * or a swap entry from shmem/tmpfs. Skip
1370 * over it.
1371 */
1372 continue;
1373 }
1374
1375 head = compound_head(page);
1376 if (!page_cache_get_speculative(head))
1377 goto repeat;
1378
1379 /* The page was split under us? */
1380 if (compound_head(page) != head) {
1381 put_page(head);
1382 goto repeat;
1383 }
1384
1385 /* Has the page moved? */
1386 if (unlikely(page != *slot)) {
1387 put_page(head);
1388 goto repeat;
1389 }
1390
1391 pages[ret] = page;
1392 if (++ret == nr_pages)
1393 break;
1394 }
1395
1396 rcu_read_unlock();
1397 return ret;
1398 }
1399
1400 /**
1401 * find_get_pages_contig - gang contiguous pagecache lookup
1402 * @mapping: The address_space to search
1403 * @index: The starting page index
1404 * @nr_pages: The maximum number of pages
1405 * @pages: Where the resulting pages are placed
1406 *
1407 * find_get_pages_contig() works exactly like find_get_pages(), except
1408 * that the returned number of pages are guaranteed to be contiguous.
1409 *
1410 * find_get_pages_contig() returns the number of pages which were found.
1411 */
1412 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1413 unsigned int nr_pages, struct page **pages)
1414 {
1415 struct radix_tree_iter iter;
1416 void **slot;
1417 unsigned int ret = 0;
1418
1419 if (unlikely(!nr_pages))
1420 return 0;
1421
1422 rcu_read_lock();
1423 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1424 struct page *head, *page;
1425 repeat:
1426 page = radix_tree_deref_slot(slot);
1427 /* The hole, there no reason to continue */
1428 if (unlikely(!page))
1429 break;
1430
1431 if (radix_tree_exception(page)) {
1432 if (radix_tree_deref_retry(page)) {
1433 slot = radix_tree_iter_retry(&iter);
1434 continue;
1435 }
1436 /*
1437 * A shadow entry of a recently evicted page,
1438 * or a swap entry from shmem/tmpfs. Stop
1439 * looking for contiguous pages.
1440 */
1441 break;
1442 }
1443
1444 head = compound_head(page);
1445 if (!page_cache_get_speculative(head))
1446 goto repeat;
1447
1448 /* The page was split under us? */
1449 if (compound_head(page) != head) {
1450 put_page(head);
1451 goto repeat;
1452 }
1453
1454 /* Has the page moved? */
1455 if (unlikely(page != *slot)) {
1456 put_page(head);
1457 goto repeat;
1458 }
1459
1460 /*
1461 * must check mapping and index after taking the ref.
1462 * otherwise we can get both false positives and false
1463 * negatives, which is just confusing to the caller.
1464 */
1465 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1466 put_page(page);
1467 break;
1468 }
1469
1470 pages[ret] = page;
1471 if (++ret == nr_pages)
1472 break;
1473 }
1474 rcu_read_unlock();
1475 return ret;
1476 }
1477 EXPORT_SYMBOL(find_get_pages_contig);
1478
1479 /**
1480 * find_get_pages_tag - find and return pages that match @tag
1481 * @mapping: the address_space to search
1482 * @index: the starting page index
1483 * @tag: the tag index
1484 * @nr_pages: the maximum number of pages
1485 * @pages: where the resulting pages are placed
1486 *
1487 * Like find_get_pages, except we only return pages which are tagged with
1488 * @tag. We update @index to index the next page for the traversal.
1489 */
1490 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1491 int tag, unsigned int nr_pages, struct page **pages)
1492 {
1493 struct radix_tree_iter iter;
1494 void **slot;
1495 unsigned ret = 0;
1496
1497 if (unlikely(!nr_pages))
1498 return 0;
1499
1500 rcu_read_lock();
1501 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1502 &iter, *index, tag) {
1503 struct page *head, *page;
1504 repeat:
1505 page = radix_tree_deref_slot(slot);
1506 if (unlikely(!page))
1507 continue;
1508
1509 if (radix_tree_exception(page)) {
1510 if (radix_tree_deref_retry(page)) {
1511 slot = radix_tree_iter_retry(&iter);
1512 continue;
1513 }
1514 /*
1515 * A shadow entry of a recently evicted page.
1516 *
1517 * Those entries should never be tagged, but
1518 * this tree walk is lockless and the tags are
1519 * looked up in bulk, one radix tree node at a
1520 * time, so there is a sizable window for page
1521 * reclaim to evict a page we saw tagged.
1522 *
1523 * Skip over it.
1524 */
1525 continue;
1526 }
1527
1528 head = compound_head(page);
1529 if (!page_cache_get_speculative(head))
1530 goto repeat;
1531
1532 /* The page was split under us? */
1533 if (compound_head(page) != head) {
1534 put_page(head);
1535 goto repeat;
1536 }
1537
1538 /* Has the page moved? */
1539 if (unlikely(page != *slot)) {
1540 put_page(head);
1541 goto repeat;
1542 }
1543
1544 pages[ret] = page;
1545 if (++ret == nr_pages)
1546 break;
1547 }
1548
1549 rcu_read_unlock();
1550
1551 if (ret)
1552 *index = pages[ret - 1]->index + 1;
1553
1554 return ret;
1555 }
1556 EXPORT_SYMBOL(find_get_pages_tag);
1557
1558 /**
1559 * find_get_entries_tag - find and return entries that match @tag
1560 * @mapping: the address_space to search
1561 * @start: the starting page cache index
1562 * @tag: the tag index
1563 * @nr_entries: the maximum number of entries
1564 * @entries: where the resulting entries are placed
1565 * @indices: the cache indices corresponding to the entries in @entries
1566 *
1567 * Like find_get_entries, except we only return entries which are tagged with
1568 * @tag.
1569 */
1570 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1571 int tag, unsigned int nr_entries,
1572 struct page **entries, pgoff_t *indices)
1573 {
1574 void **slot;
1575 unsigned int ret = 0;
1576 struct radix_tree_iter iter;
1577
1578 if (!nr_entries)
1579 return 0;
1580
1581 rcu_read_lock();
1582 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1583 &iter, start, tag) {
1584 struct page *head, *page;
1585 repeat:
1586 page = radix_tree_deref_slot(slot);
1587 if (unlikely(!page))
1588 continue;
1589 if (radix_tree_exception(page)) {
1590 if (radix_tree_deref_retry(page)) {
1591 slot = radix_tree_iter_retry(&iter);
1592 continue;
1593 }
1594
1595 /*
1596 * A shadow entry of a recently evicted page, a swap
1597 * entry from shmem/tmpfs or a DAX entry. Return it
1598 * without attempting to raise page count.
1599 */
1600 goto export;
1601 }
1602
1603 head = compound_head(page);
1604 if (!page_cache_get_speculative(head))
1605 goto repeat;
1606
1607 /* The page was split under us? */
1608 if (compound_head(page) != head) {
1609 put_page(head);
1610 goto repeat;
1611 }
1612
1613 /* Has the page moved? */
1614 if (unlikely(page != *slot)) {
1615 put_page(head);
1616 goto repeat;
1617 }
1618 export:
1619 indices[ret] = iter.index;
1620 entries[ret] = page;
1621 if (++ret == nr_entries)
1622 break;
1623 }
1624 rcu_read_unlock();
1625 return ret;
1626 }
1627 EXPORT_SYMBOL(find_get_entries_tag);
1628
1629 /*
1630 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1631 * a _large_ part of the i/o request. Imagine the worst scenario:
1632 *
1633 * ---R__________________________________________B__________
1634 * ^ reading here ^ bad block(assume 4k)
1635 *
1636 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1637 * => failing the whole request => read(R) => read(R+1) =>
1638 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1639 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1640 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1641 *
1642 * It is going insane. Fix it by quickly scaling down the readahead size.
1643 */
1644 static void shrink_readahead_size_eio(struct file *filp,
1645 struct file_ra_state *ra)
1646 {
1647 ra->ra_pages /= 4;
1648 }
1649
1650 /**
1651 * do_generic_file_read - generic file read routine
1652 * @filp: the file to read
1653 * @ppos: current file position
1654 * @iter: data destination
1655 * @written: already copied
1656 *
1657 * This is a generic file read routine, and uses the
1658 * mapping->a_ops->readpage() function for the actual low-level stuff.
1659 *
1660 * This is really ugly. But the goto's actually try to clarify some
1661 * of the logic when it comes to error handling etc.
1662 */
1663 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1664 struct iov_iter *iter, ssize_t written)
1665 {
1666 struct address_space *mapping = filp->f_mapping;
1667 struct inode *inode = mapping->host;
1668 struct file_ra_state *ra = &filp->f_ra;
1669 pgoff_t index;
1670 pgoff_t last_index;
1671 pgoff_t prev_index;
1672 unsigned long offset; /* offset into pagecache page */
1673 unsigned int prev_offset;
1674 int error = 0;
1675
1676 index = *ppos >> PAGE_SHIFT;
1677 prev_index = ra->prev_pos >> PAGE_SHIFT;
1678 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1679 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1680 offset = *ppos & ~PAGE_MASK;
1681
1682 for (;;) {
1683 struct page *page;
1684 pgoff_t end_index;
1685 loff_t isize;
1686 unsigned long nr, ret;
1687
1688 cond_resched();
1689 find_page:
1690 page = find_get_page(mapping, index);
1691 if (!page) {
1692 page_cache_sync_readahead(mapping,
1693 ra, filp,
1694 index, last_index - index);
1695 page = find_get_page(mapping, index);
1696 if (unlikely(page == NULL))
1697 goto no_cached_page;
1698 }
1699 if (PageReadahead(page)) {
1700 page_cache_async_readahead(mapping,
1701 ra, filp, page,
1702 index, last_index - index);
1703 }
1704 if (!PageUptodate(page)) {
1705 /*
1706 * See comment in do_read_cache_page on why
1707 * wait_on_page_locked is used to avoid unnecessarily
1708 * serialisations and why it's safe.
1709 */
1710 wait_on_page_locked_killable(page);
1711 if (PageUptodate(page))
1712 goto page_ok;
1713
1714 if (inode->i_blkbits == PAGE_SHIFT ||
1715 !mapping->a_ops->is_partially_uptodate)
1716 goto page_not_up_to_date;
1717 if (!trylock_page(page))
1718 goto page_not_up_to_date;
1719 /* Did it get truncated before we got the lock? */
1720 if (!page->mapping)
1721 goto page_not_up_to_date_locked;
1722 if (!mapping->a_ops->is_partially_uptodate(page,
1723 offset, iter->count))
1724 goto page_not_up_to_date_locked;
1725 unlock_page(page);
1726 }
1727 page_ok:
1728 /*
1729 * i_size must be checked after we know the page is Uptodate.
1730 *
1731 * Checking i_size after the check allows us to calculate
1732 * the correct value for "nr", which means the zero-filled
1733 * part of the page is not copied back to userspace (unless
1734 * another truncate extends the file - this is desired though).
1735 */
1736
1737 isize = i_size_read(inode);
1738 end_index = (isize - 1) >> PAGE_SHIFT;
1739 if (unlikely(!isize || index > end_index)) {
1740 put_page(page);
1741 goto out;
1742 }
1743
1744 /* nr is the maximum number of bytes to copy from this page */
1745 nr = PAGE_SIZE;
1746 if (index == end_index) {
1747 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1748 if (nr <= offset) {
1749 put_page(page);
1750 goto out;
1751 }
1752 }
1753 nr = nr - offset;
1754
1755 /* If users can be writing to this page using arbitrary
1756 * virtual addresses, take care about potential aliasing
1757 * before reading the page on the kernel side.
1758 */
1759 if (mapping_writably_mapped(mapping))
1760 flush_dcache_page(page);
1761
1762 /*
1763 * When a sequential read accesses a page several times,
1764 * only mark it as accessed the first time.
1765 */
1766 if (prev_index != index || offset != prev_offset)
1767 mark_page_accessed(page);
1768 prev_index = index;
1769
1770 /*
1771 * Ok, we have the page, and it's up-to-date, so
1772 * now we can copy it to user space...
1773 */
1774
1775 ret = copy_page_to_iter(page, offset, nr, iter);
1776 offset += ret;
1777 index += offset >> PAGE_SHIFT;
1778 offset &= ~PAGE_MASK;
1779 prev_offset = offset;
1780
1781 put_page(page);
1782 written += ret;
1783 if (!iov_iter_count(iter))
1784 goto out;
1785 if (ret < nr) {
1786 error = -EFAULT;
1787 goto out;
1788 }
1789 continue;
1790
1791 page_not_up_to_date:
1792 /* Get exclusive access to the page ... */
1793 error = lock_page_killable(page);
1794 if (unlikely(error))
1795 goto readpage_error;
1796
1797 page_not_up_to_date_locked:
1798 /* Did it get truncated before we got the lock? */
1799 if (!page->mapping) {
1800 unlock_page(page);
1801 put_page(page);
1802 continue;
1803 }
1804
1805 /* Did somebody else fill it already? */
1806 if (PageUptodate(page)) {
1807 unlock_page(page);
1808 goto page_ok;
1809 }
1810
1811 readpage:
1812 /*
1813 * A previous I/O error may have been due to temporary
1814 * failures, eg. multipath errors.
1815 * PG_error will be set again if readpage fails.
1816 */
1817 ClearPageError(page);
1818 /* Start the actual read. The read will unlock the page. */
1819 error = mapping->a_ops->readpage(filp, page);
1820
1821 if (unlikely(error)) {
1822 if (error == AOP_TRUNCATED_PAGE) {
1823 put_page(page);
1824 error = 0;
1825 goto find_page;
1826 }
1827 goto readpage_error;
1828 }
1829
1830 if (!PageUptodate(page)) {
1831 error = lock_page_killable(page);
1832 if (unlikely(error))
1833 goto readpage_error;
1834 if (!PageUptodate(page)) {
1835 if (page->mapping == NULL) {
1836 /*
1837 * invalidate_mapping_pages got it
1838 */
1839 unlock_page(page);
1840 put_page(page);
1841 goto find_page;
1842 }
1843 unlock_page(page);
1844 shrink_readahead_size_eio(filp, ra);
1845 error = -EIO;
1846 goto readpage_error;
1847 }
1848 unlock_page(page);
1849 }
1850
1851 goto page_ok;
1852
1853 readpage_error:
1854 /* UHHUH! A synchronous read error occurred. Report it */
1855 put_page(page);
1856 goto out;
1857
1858 no_cached_page:
1859 /*
1860 * Ok, it wasn't cached, so we need to create a new
1861 * page..
1862 */
1863 page = page_cache_alloc_cold(mapping);
1864 if (!page) {
1865 error = -ENOMEM;
1866 goto out;
1867 }
1868 error = add_to_page_cache_lru(page, mapping, index,
1869 mapping_gfp_constraint(mapping, GFP_KERNEL));
1870 if (error) {
1871 put_page(page);
1872 if (error == -EEXIST) {
1873 error = 0;
1874 goto find_page;
1875 }
1876 goto out;
1877 }
1878 goto readpage;
1879 }
1880
1881 out:
1882 ra->prev_pos = prev_index;
1883 ra->prev_pos <<= PAGE_SHIFT;
1884 ra->prev_pos |= prev_offset;
1885
1886 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1887 file_accessed(filp);
1888 return written ? written : error;
1889 }
1890
1891 /**
1892 * generic_file_read_iter - generic filesystem read routine
1893 * @iocb: kernel I/O control block
1894 * @iter: destination for the data read
1895 *
1896 * This is the "read_iter()" routine for all filesystems
1897 * that can use the page cache directly.
1898 */
1899 ssize_t
1900 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1901 {
1902 struct file *file = iocb->ki_filp;
1903 ssize_t retval = 0;
1904 size_t count = iov_iter_count(iter);
1905
1906 if (!count)
1907 goto out; /* skip atime */
1908
1909 if (iocb->ki_flags & IOCB_DIRECT) {
1910 struct address_space *mapping = file->f_mapping;
1911 struct inode *inode = mapping->host;
1912 loff_t size;
1913
1914 size = i_size_read(inode);
1915 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1916 iocb->ki_pos + count - 1);
1917 if (!retval) {
1918 struct iov_iter data = *iter;
1919 retval = mapping->a_ops->direct_IO(iocb, &data);
1920 }
1921
1922 if (retval > 0) {
1923 iocb->ki_pos += retval;
1924 iov_iter_advance(iter, retval);
1925 }
1926
1927 /*
1928 * Btrfs can have a short DIO read if we encounter
1929 * compressed extents, so if there was an error, or if
1930 * we've already read everything we wanted to, or if
1931 * there was a short read because we hit EOF, go ahead
1932 * and return. Otherwise fallthrough to buffered io for
1933 * the rest of the read. Buffered reads will not work for
1934 * DAX files, so don't bother trying.
1935 */
1936 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1937 IS_DAX(inode)) {
1938 file_accessed(file);
1939 goto out;
1940 }
1941 }
1942
1943 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1944 out:
1945 return retval;
1946 }
1947 EXPORT_SYMBOL(generic_file_read_iter);
1948
1949 #ifdef CONFIG_MMU
1950 /**
1951 * page_cache_read - adds requested page to the page cache if not already there
1952 * @file: file to read
1953 * @offset: page index
1954 * @gfp_mask: memory allocation flags
1955 *
1956 * This adds the requested page to the page cache if it isn't already there,
1957 * and schedules an I/O to read in its contents from disk.
1958 */
1959 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1960 {
1961 struct address_space *mapping = file->f_mapping;
1962 struct page *page;
1963 int ret;
1964
1965 do {
1966 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1967 if (!page)
1968 return -ENOMEM;
1969
1970 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1971 if (ret == 0)
1972 ret = mapping->a_ops->readpage(file, page);
1973 else if (ret == -EEXIST)
1974 ret = 0; /* losing race to add is OK */
1975
1976 put_page(page);
1977
1978 } while (ret == AOP_TRUNCATED_PAGE);
1979
1980 return ret;
1981 }
1982
1983 #define MMAP_LOTSAMISS (100)
1984
1985 /*
1986 * Synchronous readahead happens when we don't even find
1987 * a page in the page cache at all.
1988 */
1989 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1990 struct file_ra_state *ra,
1991 struct file *file,
1992 pgoff_t offset)
1993 {
1994 struct address_space *mapping = file->f_mapping;
1995
1996 /* If we don't want any read-ahead, don't bother */
1997 if (vma->vm_flags & VM_RAND_READ)
1998 return;
1999 if (!ra->ra_pages)
2000 return;
2001
2002 if (vma->vm_flags & VM_SEQ_READ) {
2003 page_cache_sync_readahead(mapping, ra, file, offset,
2004 ra->ra_pages);
2005 return;
2006 }
2007
2008 /* Avoid banging the cache line if not needed */
2009 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2010 ra->mmap_miss++;
2011
2012 /*
2013 * Do we miss much more than hit in this file? If so,
2014 * stop bothering with read-ahead. It will only hurt.
2015 */
2016 if (ra->mmap_miss > MMAP_LOTSAMISS)
2017 return;
2018
2019 /*
2020 * mmap read-around
2021 */
2022 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2023 ra->size = ra->ra_pages;
2024 ra->async_size = ra->ra_pages / 4;
2025 ra_submit(ra, mapping, file);
2026 }
2027
2028 /*
2029 * Asynchronous readahead happens when we find the page and PG_readahead,
2030 * so we want to possibly extend the readahead further..
2031 */
2032 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2033 struct file_ra_state *ra,
2034 struct file *file,
2035 struct page *page,
2036 pgoff_t offset)
2037 {
2038 struct address_space *mapping = file->f_mapping;
2039
2040 /* If we don't want any read-ahead, don't bother */
2041 if (vma->vm_flags & VM_RAND_READ)
2042 return;
2043 if (ra->mmap_miss > 0)
2044 ra->mmap_miss--;
2045 if (PageReadahead(page))
2046 page_cache_async_readahead(mapping, ra, file,
2047 page, offset, ra->ra_pages);
2048 }
2049
2050 /**
2051 * filemap_fault - read in file data for page fault handling
2052 * @vma: vma in which the fault was taken
2053 * @vmf: struct vm_fault containing details of the fault
2054 *
2055 * filemap_fault() is invoked via the vma operations vector for a
2056 * mapped memory region to read in file data during a page fault.
2057 *
2058 * The goto's are kind of ugly, but this streamlines the normal case of having
2059 * it in the page cache, and handles the special cases reasonably without
2060 * having a lot of duplicated code.
2061 *
2062 * vma->vm_mm->mmap_sem must be held on entry.
2063 *
2064 * If our return value has VM_FAULT_RETRY set, it's because
2065 * lock_page_or_retry() returned 0.
2066 * The mmap_sem has usually been released in this case.
2067 * See __lock_page_or_retry() for the exception.
2068 *
2069 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2070 * has not been released.
2071 *
2072 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2073 */
2074 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2075 {
2076 int error;
2077 struct file *file = vma->vm_file;
2078 struct address_space *mapping = file->f_mapping;
2079 struct file_ra_state *ra = &file->f_ra;
2080 struct inode *inode = mapping->host;
2081 pgoff_t offset = vmf->pgoff;
2082 struct page *page;
2083 loff_t size;
2084 int ret = 0;
2085
2086 size = round_up(i_size_read(inode), PAGE_SIZE);
2087 if (offset >= size >> PAGE_SHIFT)
2088 return VM_FAULT_SIGBUS;
2089
2090 /*
2091 * Do we have something in the page cache already?
2092 */
2093 page = find_get_page(mapping, offset);
2094 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2095 /*
2096 * We found the page, so try async readahead before
2097 * waiting for the lock.
2098 */
2099 do_async_mmap_readahead(vma, ra, file, page, offset);
2100 } else if (!page) {
2101 /* No page in the page cache at all */
2102 do_sync_mmap_readahead(vma, ra, file, offset);
2103 count_vm_event(PGMAJFAULT);
2104 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2105 ret = VM_FAULT_MAJOR;
2106 retry_find:
2107 page = find_get_page(mapping, offset);
2108 if (!page)
2109 goto no_cached_page;
2110 }
2111
2112 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2113 put_page(page);
2114 return ret | VM_FAULT_RETRY;
2115 }
2116
2117 /* Did it get truncated? */
2118 if (unlikely(page->mapping != mapping)) {
2119 unlock_page(page);
2120 put_page(page);
2121 goto retry_find;
2122 }
2123 VM_BUG_ON_PAGE(page->index != offset, page);
2124
2125 /*
2126 * We have a locked page in the page cache, now we need to check
2127 * that it's up-to-date. If not, it is going to be due to an error.
2128 */
2129 if (unlikely(!PageUptodate(page)))
2130 goto page_not_uptodate;
2131
2132 /*
2133 * Found the page and have a reference on it.
2134 * We must recheck i_size under page lock.
2135 */
2136 size = round_up(i_size_read(inode), PAGE_SIZE);
2137 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2138 unlock_page(page);
2139 put_page(page);
2140 return VM_FAULT_SIGBUS;
2141 }
2142
2143 vmf->page = page;
2144 return ret | VM_FAULT_LOCKED;
2145
2146 no_cached_page:
2147 /*
2148 * We're only likely to ever get here if MADV_RANDOM is in
2149 * effect.
2150 */
2151 error = page_cache_read(file, offset, vmf->gfp_mask);
2152
2153 /*
2154 * The page we want has now been added to the page cache.
2155 * In the unlikely event that someone removed it in the
2156 * meantime, we'll just come back here and read it again.
2157 */
2158 if (error >= 0)
2159 goto retry_find;
2160
2161 /*
2162 * An error return from page_cache_read can result if the
2163 * system is low on memory, or a problem occurs while trying
2164 * to schedule I/O.
2165 */
2166 if (error == -ENOMEM)
2167 return VM_FAULT_OOM;
2168 return VM_FAULT_SIGBUS;
2169
2170 page_not_uptodate:
2171 /*
2172 * Umm, take care of errors if the page isn't up-to-date.
2173 * Try to re-read it _once_. We do this synchronously,
2174 * because there really aren't any performance issues here
2175 * and we need to check for errors.
2176 */
2177 ClearPageError(page);
2178 error = mapping->a_ops->readpage(file, page);
2179 if (!error) {
2180 wait_on_page_locked(page);
2181 if (!PageUptodate(page))
2182 error = -EIO;
2183 }
2184 put_page(page);
2185
2186 if (!error || error == AOP_TRUNCATED_PAGE)
2187 goto retry_find;
2188
2189 /* Things didn't work out. Return zero to tell the mm layer so. */
2190 shrink_readahead_size_eio(file, ra);
2191 return VM_FAULT_SIGBUS;
2192 }
2193 EXPORT_SYMBOL(filemap_fault);
2194
2195 void filemap_map_pages(struct fault_env *fe,
2196 pgoff_t start_pgoff, pgoff_t end_pgoff)
2197 {
2198 struct radix_tree_iter iter;
2199 void **slot;
2200 struct file *file = fe->vma->vm_file;
2201 struct address_space *mapping = file->f_mapping;
2202 pgoff_t last_pgoff = start_pgoff;
2203 loff_t size;
2204 struct page *head, *page;
2205
2206 rcu_read_lock();
2207 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2208 start_pgoff) {
2209 if (iter.index > end_pgoff)
2210 break;
2211 repeat:
2212 page = radix_tree_deref_slot(slot);
2213 if (unlikely(!page))
2214 goto next;
2215 if (radix_tree_exception(page)) {
2216 if (radix_tree_deref_retry(page)) {
2217 slot = radix_tree_iter_retry(&iter);
2218 continue;
2219 }
2220 goto next;
2221 }
2222
2223 head = compound_head(page);
2224 if (!page_cache_get_speculative(head))
2225 goto repeat;
2226
2227 /* The page was split under us? */
2228 if (compound_head(page) != head) {
2229 put_page(head);
2230 goto repeat;
2231 }
2232
2233 /* Has the page moved? */
2234 if (unlikely(page != *slot)) {
2235 put_page(head);
2236 goto repeat;
2237 }
2238
2239 if (!PageUptodate(page) ||
2240 PageReadahead(page) ||
2241 PageHWPoison(page))
2242 goto skip;
2243 if (!trylock_page(page))
2244 goto skip;
2245
2246 if (page->mapping != mapping || !PageUptodate(page))
2247 goto unlock;
2248
2249 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2250 if (page->index >= size >> PAGE_SHIFT)
2251 goto unlock;
2252
2253 if (file->f_ra.mmap_miss > 0)
2254 file->f_ra.mmap_miss--;
2255
2256 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2257 if (fe->pte)
2258 fe->pte += iter.index - last_pgoff;
2259 last_pgoff = iter.index;
2260 if (alloc_set_pte(fe, NULL, page))
2261 goto unlock;
2262 unlock_page(page);
2263 goto next;
2264 unlock:
2265 unlock_page(page);
2266 skip:
2267 put_page(page);
2268 next:
2269 /* Huge page is mapped? No need to proceed. */
2270 if (pmd_trans_huge(*fe->pmd))
2271 break;
2272 if (iter.index == end_pgoff)
2273 break;
2274 }
2275 rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(filemap_map_pages);
2278
2279 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2280 {
2281 struct page *page = vmf->page;
2282 struct inode *inode = file_inode(vma->vm_file);
2283 int ret = VM_FAULT_LOCKED;
2284
2285 sb_start_pagefault(inode->i_sb);
2286 file_update_time(vma->vm_file);
2287 lock_page(page);
2288 if (page->mapping != inode->i_mapping) {
2289 unlock_page(page);
2290 ret = VM_FAULT_NOPAGE;
2291 goto out;
2292 }
2293 /*
2294 * We mark the page dirty already here so that when freeze is in
2295 * progress, we are guaranteed that writeback during freezing will
2296 * see the dirty page and writeprotect it again.
2297 */
2298 set_page_dirty(page);
2299 wait_for_stable_page(page);
2300 out:
2301 sb_end_pagefault(inode->i_sb);
2302 return ret;
2303 }
2304 EXPORT_SYMBOL(filemap_page_mkwrite);
2305
2306 const struct vm_operations_struct generic_file_vm_ops = {
2307 .fault = filemap_fault,
2308 .map_pages = filemap_map_pages,
2309 .page_mkwrite = filemap_page_mkwrite,
2310 };
2311
2312 /* This is used for a general mmap of a disk file */
2313
2314 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2315 {
2316 struct address_space *mapping = file->f_mapping;
2317
2318 if (!mapping->a_ops->readpage)
2319 return -ENOEXEC;
2320 file_accessed(file);
2321 vma->vm_ops = &generic_file_vm_ops;
2322 return 0;
2323 }
2324
2325 /*
2326 * This is for filesystems which do not implement ->writepage.
2327 */
2328 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2329 {
2330 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2331 return -EINVAL;
2332 return generic_file_mmap(file, vma);
2333 }
2334 #else
2335 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2336 {
2337 return -ENOSYS;
2338 }
2339 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2340 {
2341 return -ENOSYS;
2342 }
2343 #endif /* CONFIG_MMU */
2344
2345 EXPORT_SYMBOL(generic_file_mmap);
2346 EXPORT_SYMBOL(generic_file_readonly_mmap);
2347
2348 static struct page *wait_on_page_read(struct page *page)
2349 {
2350 if (!IS_ERR(page)) {
2351 wait_on_page_locked(page);
2352 if (!PageUptodate(page)) {
2353 put_page(page);
2354 page = ERR_PTR(-EIO);
2355 }
2356 }
2357 return page;
2358 }
2359
2360 static struct page *do_read_cache_page(struct address_space *mapping,
2361 pgoff_t index,
2362 int (*filler)(void *, struct page *),
2363 void *data,
2364 gfp_t gfp)
2365 {
2366 struct page *page;
2367 int err;
2368 repeat:
2369 page = find_get_page(mapping, index);
2370 if (!page) {
2371 page = __page_cache_alloc(gfp | __GFP_COLD);
2372 if (!page)
2373 return ERR_PTR(-ENOMEM);
2374 err = add_to_page_cache_lru(page, mapping, index, gfp);
2375 if (unlikely(err)) {
2376 put_page(page);
2377 if (err == -EEXIST)
2378 goto repeat;
2379 /* Presumably ENOMEM for radix tree node */
2380 return ERR_PTR(err);
2381 }
2382
2383 filler:
2384 err = filler(data, page);
2385 if (err < 0) {
2386 put_page(page);
2387 return ERR_PTR(err);
2388 }
2389
2390 page = wait_on_page_read(page);
2391 if (IS_ERR(page))
2392 return page;
2393 goto out;
2394 }
2395 if (PageUptodate(page))
2396 goto out;
2397
2398 /*
2399 * Page is not up to date and may be locked due one of the following
2400 * case a: Page is being filled and the page lock is held
2401 * case b: Read/write error clearing the page uptodate status
2402 * case c: Truncation in progress (page locked)
2403 * case d: Reclaim in progress
2404 *
2405 * Case a, the page will be up to date when the page is unlocked.
2406 * There is no need to serialise on the page lock here as the page
2407 * is pinned so the lock gives no additional protection. Even if the
2408 * the page is truncated, the data is still valid if PageUptodate as
2409 * it's a race vs truncate race.
2410 * Case b, the page will not be up to date
2411 * Case c, the page may be truncated but in itself, the data may still
2412 * be valid after IO completes as it's a read vs truncate race. The
2413 * operation must restart if the page is not uptodate on unlock but
2414 * otherwise serialising on page lock to stabilise the mapping gives
2415 * no additional guarantees to the caller as the page lock is
2416 * released before return.
2417 * Case d, similar to truncation. If reclaim holds the page lock, it
2418 * will be a race with remove_mapping that determines if the mapping
2419 * is valid on unlock but otherwise the data is valid and there is
2420 * no need to serialise with page lock.
2421 *
2422 * As the page lock gives no additional guarantee, we optimistically
2423 * wait on the page to be unlocked and check if it's up to date and
2424 * use the page if it is. Otherwise, the page lock is required to
2425 * distinguish between the different cases. The motivation is that we
2426 * avoid spurious serialisations and wakeups when multiple processes
2427 * wait on the same page for IO to complete.
2428 */
2429 wait_on_page_locked(page);
2430 if (PageUptodate(page))
2431 goto out;
2432
2433 /* Distinguish between all the cases under the safety of the lock */
2434 lock_page(page);
2435
2436 /* Case c or d, restart the operation */
2437 if (!page->mapping) {
2438 unlock_page(page);
2439 put_page(page);
2440 goto repeat;
2441 }
2442
2443 /* Someone else locked and filled the page in a very small window */
2444 if (PageUptodate(page)) {
2445 unlock_page(page);
2446 goto out;
2447 }
2448 goto filler;
2449
2450 out:
2451 mark_page_accessed(page);
2452 return page;
2453 }
2454
2455 /**
2456 * read_cache_page - read into page cache, fill it if needed
2457 * @mapping: the page's address_space
2458 * @index: the page index
2459 * @filler: function to perform the read
2460 * @data: first arg to filler(data, page) function, often left as NULL
2461 *
2462 * Read into the page cache. If a page already exists, and PageUptodate() is
2463 * not set, try to fill the page and wait for it to become unlocked.
2464 *
2465 * If the page does not get brought uptodate, return -EIO.
2466 */
2467 struct page *read_cache_page(struct address_space *mapping,
2468 pgoff_t index,
2469 int (*filler)(void *, struct page *),
2470 void *data)
2471 {
2472 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2473 }
2474 EXPORT_SYMBOL(read_cache_page);
2475
2476 /**
2477 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2478 * @mapping: the page's address_space
2479 * @index: the page index
2480 * @gfp: the page allocator flags to use if allocating
2481 *
2482 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2483 * any new page allocations done using the specified allocation flags.
2484 *
2485 * If the page does not get brought uptodate, return -EIO.
2486 */
2487 struct page *read_cache_page_gfp(struct address_space *mapping,
2488 pgoff_t index,
2489 gfp_t gfp)
2490 {
2491 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2492
2493 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2494 }
2495 EXPORT_SYMBOL(read_cache_page_gfp);
2496
2497 /*
2498 * Performs necessary checks before doing a write
2499 *
2500 * Can adjust writing position or amount of bytes to write.
2501 * Returns appropriate error code that caller should return or
2502 * zero in case that write should be allowed.
2503 */
2504 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2505 {
2506 struct file *file = iocb->ki_filp;
2507 struct inode *inode = file->f_mapping->host;
2508 unsigned long limit = rlimit(RLIMIT_FSIZE);
2509 loff_t pos;
2510
2511 if (!iov_iter_count(from))
2512 return 0;
2513
2514 /* FIXME: this is for backwards compatibility with 2.4 */
2515 if (iocb->ki_flags & IOCB_APPEND)
2516 iocb->ki_pos = i_size_read(inode);
2517
2518 pos = iocb->ki_pos;
2519
2520 if (limit != RLIM_INFINITY) {
2521 if (iocb->ki_pos >= limit) {
2522 send_sig(SIGXFSZ, current, 0);
2523 return -EFBIG;
2524 }
2525 iov_iter_truncate(from, limit - (unsigned long)pos);
2526 }
2527
2528 /*
2529 * LFS rule
2530 */
2531 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2532 !(file->f_flags & O_LARGEFILE))) {
2533 if (pos >= MAX_NON_LFS)
2534 return -EFBIG;
2535 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2536 }
2537
2538 /*
2539 * Are we about to exceed the fs block limit ?
2540 *
2541 * If we have written data it becomes a short write. If we have
2542 * exceeded without writing data we send a signal and return EFBIG.
2543 * Linus frestrict idea will clean these up nicely..
2544 */
2545 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2546 return -EFBIG;
2547
2548 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2549 return iov_iter_count(from);
2550 }
2551 EXPORT_SYMBOL(generic_write_checks);
2552
2553 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2554 loff_t pos, unsigned len, unsigned flags,
2555 struct page **pagep, void **fsdata)
2556 {
2557 const struct address_space_operations *aops = mapping->a_ops;
2558
2559 return aops->write_begin(file, mapping, pos, len, flags,
2560 pagep, fsdata);
2561 }
2562 EXPORT_SYMBOL(pagecache_write_begin);
2563
2564 int pagecache_write_end(struct file *file, struct address_space *mapping,
2565 loff_t pos, unsigned len, unsigned copied,
2566 struct page *page, void *fsdata)
2567 {
2568 const struct address_space_operations *aops = mapping->a_ops;
2569
2570 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2571 }
2572 EXPORT_SYMBOL(pagecache_write_end);
2573
2574 ssize_t
2575 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2576 {
2577 struct file *file = iocb->ki_filp;
2578 struct address_space *mapping = file->f_mapping;
2579 struct inode *inode = mapping->host;
2580 loff_t pos = iocb->ki_pos;
2581 ssize_t written;
2582 size_t write_len;
2583 pgoff_t end;
2584 struct iov_iter data;
2585
2586 write_len = iov_iter_count(from);
2587 end = (pos + write_len - 1) >> PAGE_SHIFT;
2588
2589 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2590 if (written)
2591 goto out;
2592
2593 /*
2594 * After a write we want buffered reads to be sure to go to disk to get
2595 * the new data. We invalidate clean cached page from the region we're
2596 * about to write. We do this *before* the write so that we can return
2597 * without clobbering -EIOCBQUEUED from ->direct_IO().
2598 */
2599 if (mapping->nrpages) {
2600 written = invalidate_inode_pages2_range(mapping,
2601 pos >> PAGE_SHIFT, end);
2602 /*
2603 * If a page can not be invalidated, return 0 to fall back
2604 * to buffered write.
2605 */
2606 if (written) {
2607 if (written == -EBUSY)
2608 return 0;
2609 goto out;
2610 }
2611 }
2612
2613 data = *from;
2614 written = mapping->a_ops->direct_IO(iocb, &data);
2615
2616 /*
2617 * Finally, try again to invalidate clean pages which might have been
2618 * cached by non-direct readahead, or faulted in by get_user_pages()
2619 * if the source of the write was an mmap'ed region of the file
2620 * we're writing. Either one is a pretty crazy thing to do,
2621 * so we don't support it 100%. If this invalidation
2622 * fails, tough, the write still worked...
2623 */
2624 if (mapping->nrpages) {
2625 invalidate_inode_pages2_range(mapping,
2626 pos >> PAGE_SHIFT, end);
2627 }
2628
2629 if (written > 0) {
2630 pos += written;
2631 iov_iter_advance(from, written);
2632 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2633 i_size_write(inode, pos);
2634 mark_inode_dirty(inode);
2635 }
2636 iocb->ki_pos = pos;
2637 }
2638 out:
2639 return written;
2640 }
2641 EXPORT_SYMBOL(generic_file_direct_write);
2642
2643 /*
2644 * Find or create a page at the given pagecache position. Return the locked
2645 * page. This function is specifically for buffered writes.
2646 */
2647 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2648 pgoff_t index, unsigned flags)
2649 {
2650 struct page *page;
2651 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2652
2653 if (flags & AOP_FLAG_NOFS)
2654 fgp_flags |= FGP_NOFS;
2655
2656 page = pagecache_get_page(mapping, index, fgp_flags,
2657 mapping_gfp_mask(mapping));
2658 if (page)
2659 wait_for_stable_page(page);
2660
2661 return page;
2662 }
2663 EXPORT_SYMBOL(grab_cache_page_write_begin);
2664
2665 ssize_t generic_perform_write(struct file *file,
2666 struct iov_iter *i, loff_t pos)
2667 {
2668 struct address_space *mapping = file->f_mapping;
2669 const struct address_space_operations *a_ops = mapping->a_ops;
2670 long status = 0;
2671 ssize_t written = 0;
2672 unsigned int flags = 0;
2673
2674 /*
2675 * Copies from kernel address space cannot fail (NFSD is a big user).
2676 */
2677 if (!iter_is_iovec(i))
2678 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2679
2680 do {
2681 struct page *page;
2682 unsigned long offset; /* Offset into pagecache page */
2683 unsigned long bytes; /* Bytes to write to page */
2684 size_t copied; /* Bytes copied from user */
2685 void *fsdata;
2686
2687 offset = (pos & (PAGE_SIZE - 1));
2688 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2689 iov_iter_count(i));
2690
2691 again:
2692 /*
2693 * Bring in the user page that we will copy from _first_.
2694 * Otherwise there's a nasty deadlock on copying from the
2695 * same page as we're writing to, without it being marked
2696 * up-to-date.
2697 *
2698 * Not only is this an optimisation, but it is also required
2699 * to check that the address is actually valid, when atomic
2700 * usercopies are used, below.
2701 */
2702 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2703 status = -EFAULT;
2704 break;
2705 }
2706
2707 if (fatal_signal_pending(current)) {
2708 status = -EINTR;
2709 break;
2710 }
2711
2712 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2713 &page, &fsdata);
2714 if (unlikely(status < 0))
2715 break;
2716
2717 if (mapping_writably_mapped(mapping))
2718 flush_dcache_page(page);
2719
2720 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2721 flush_dcache_page(page);
2722
2723 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2724 page, fsdata);
2725 if (unlikely(status < 0))
2726 break;
2727 copied = status;
2728
2729 cond_resched();
2730
2731 iov_iter_advance(i, copied);
2732 if (unlikely(copied == 0)) {
2733 /*
2734 * If we were unable to copy any data at all, we must
2735 * fall back to a single segment length write.
2736 *
2737 * If we didn't fallback here, we could livelock
2738 * because not all segments in the iov can be copied at
2739 * once without a pagefault.
2740 */
2741 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2742 iov_iter_single_seg_count(i));
2743 goto again;
2744 }
2745 pos += copied;
2746 written += copied;
2747
2748 balance_dirty_pages_ratelimited(mapping);
2749 } while (iov_iter_count(i));
2750
2751 return written ? written : status;
2752 }
2753 EXPORT_SYMBOL(generic_perform_write);
2754
2755 /**
2756 * __generic_file_write_iter - write data to a file
2757 * @iocb: IO state structure (file, offset, etc.)
2758 * @from: iov_iter with data to write
2759 *
2760 * This function does all the work needed for actually writing data to a
2761 * file. It does all basic checks, removes SUID from the file, updates
2762 * modification times and calls proper subroutines depending on whether we
2763 * do direct IO or a standard buffered write.
2764 *
2765 * It expects i_mutex to be grabbed unless we work on a block device or similar
2766 * object which does not need locking at all.
2767 *
2768 * This function does *not* take care of syncing data in case of O_SYNC write.
2769 * A caller has to handle it. This is mainly due to the fact that we want to
2770 * avoid syncing under i_mutex.
2771 */
2772 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2773 {
2774 struct file *file = iocb->ki_filp;
2775 struct address_space * mapping = file->f_mapping;
2776 struct inode *inode = mapping->host;
2777 ssize_t written = 0;
2778 ssize_t err;
2779 ssize_t status;
2780
2781 /* We can write back this queue in page reclaim */
2782 current->backing_dev_info = inode_to_bdi(inode);
2783 err = file_remove_privs(file);
2784 if (err)
2785 goto out;
2786
2787 err = file_update_time(file);
2788 if (err)
2789 goto out;
2790
2791 if (iocb->ki_flags & IOCB_DIRECT) {
2792 loff_t pos, endbyte;
2793
2794 written = generic_file_direct_write(iocb, from);
2795 /*
2796 * If the write stopped short of completing, fall back to
2797 * buffered writes. Some filesystems do this for writes to
2798 * holes, for example. For DAX files, a buffered write will
2799 * not succeed (even if it did, DAX does not handle dirty
2800 * page-cache pages correctly).
2801 */
2802 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2803 goto out;
2804
2805 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2806 /*
2807 * If generic_perform_write() returned a synchronous error
2808 * then we want to return the number of bytes which were
2809 * direct-written, or the error code if that was zero. Note
2810 * that this differs from normal direct-io semantics, which
2811 * will return -EFOO even if some bytes were written.
2812 */
2813 if (unlikely(status < 0)) {
2814 err = status;
2815 goto out;
2816 }
2817 /*
2818 * We need to ensure that the page cache pages are written to
2819 * disk and invalidated to preserve the expected O_DIRECT
2820 * semantics.
2821 */
2822 endbyte = pos + status - 1;
2823 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2824 if (err == 0) {
2825 iocb->ki_pos = endbyte + 1;
2826 written += status;
2827 invalidate_mapping_pages(mapping,
2828 pos >> PAGE_SHIFT,
2829 endbyte >> PAGE_SHIFT);
2830 } else {
2831 /*
2832 * We don't know how much we wrote, so just return
2833 * the number of bytes which were direct-written
2834 */
2835 }
2836 } else {
2837 written = generic_perform_write(file, from, iocb->ki_pos);
2838 if (likely(written > 0))
2839 iocb->ki_pos += written;
2840 }
2841 out:
2842 current->backing_dev_info = NULL;
2843 return written ? written : err;
2844 }
2845 EXPORT_SYMBOL(__generic_file_write_iter);
2846
2847 /**
2848 * generic_file_write_iter - write data to a file
2849 * @iocb: IO state structure
2850 * @from: iov_iter with data to write
2851 *
2852 * This is a wrapper around __generic_file_write_iter() to be used by most
2853 * filesystems. It takes care of syncing the file in case of O_SYNC file
2854 * and acquires i_mutex as needed.
2855 */
2856 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2857 {
2858 struct file *file = iocb->ki_filp;
2859 struct inode *inode = file->f_mapping->host;
2860 ssize_t ret;
2861
2862 inode_lock(inode);
2863 ret = generic_write_checks(iocb, from);
2864 if (ret > 0)
2865 ret = __generic_file_write_iter(iocb, from);
2866 inode_unlock(inode);
2867
2868 if (ret > 0)
2869 ret = generic_write_sync(iocb, ret);
2870 return ret;
2871 }
2872 EXPORT_SYMBOL(generic_file_write_iter);
2873
2874 /**
2875 * try_to_release_page() - release old fs-specific metadata on a page
2876 *
2877 * @page: the page which the kernel is trying to free
2878 * @gfp_mask: memory allocation flags (and I/O mode)
2879 *
2880 * The address_space is to try to release any data against the page
2881 * (presumably at page->private). If the release was successful, return `1'.
2882 * Otherwise return zero.
2883 *
2884 * This may also be called if PG_fscache is set on a page, indicating that the
2885 * page is known to the local caching routines.
2886 *
2887 * The @gfp_mask argument specifies whether I/O may be performed to release
2888 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2889 *
2890 */
2891 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2892 {
2893 struct address_space * const mapping = page->mapping;
2894
2895 BUG_ON(!PageLocked(page));
2896 if (PageWriteback(page))
2897 return 0;
2898
2899 if (mapping && mapping->a_ops->releasepage)
2900 return mapping->a_ops->releasepage(page, gfp_mask);
2901 return try_to_free_buffers(page);
2902 }
2903
2904 EXPORT_SYMBOL(try_to_release_page);