]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/filemap.c
btrfs: minimal conversion to errseq_t writeback error reporting on fsync
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63 /*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116 {
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140 /* Wakeup waiters for exceptional entry lock */
141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
142 true);
143 }
144 }
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
147 mapping->nrpages++;
148 return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153 {
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163 for (i = 0; i < nr; i++) {
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
170 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
175 }
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
188 }
189
190 /*
191 * Delete a page from the page cache and free it. Caller has to make
192 * sure the page is locked and that nobody else uses it - or that usage
193 * is safe. The caller must hold the mapping's tree_lock.
194 */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197 struct address_space *mapping = page->mapping;
198 int nr = hpage_nr_pages(page);
199
200 trace_mm_filemap_delete_from_page_cache(page);
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
209 cleancache_invalidate_page(mapping, page);
210
211 VM_BUG_ON_PAGE(PageTail(page), page);
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
232 page_ref_sub(page, mapcount);
233 }
234 }
235
236 page_cache_tree_delete(mapping, page, shadow);
237
238 page->mapping = NULL;
239 /* Leave page->index set: truncation lookup relies upon it */
240
241 /* hugetlb pages do not participate in page cache accounting. */
242 if (!PageHuge(page))
243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
244 if (PageSwapBacked(page)) {
245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
246 if (PageTransHuge(page))
247 __dec_node_page_state(page, NR_SHMEM_THPS);
248 } else {
249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250 }
251
252 /*
253 * At this point page must be either written or cleaned by truncate.
254 * Dirty page here signals a bug and loss of unwritten data.
255 *
256 * This fixes dirty accounting after removing the page entirely but
257 * leaves PageDirty set: it has no effect for truncated page and
258 * anyway will be cleared before returning page into buddy allocator.
259 */
260 if (WARN_ON_ONCE(PageDirty(page)))
261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
262 }
263
264 /**
265 * delete_from_page_cache - delete page from page cache
266 * @page: the page which the kernel is trying to remove from page cache
267 *
268 * This must be called only on pages that have been verified to be in the page
269 * cache and locked. It will never put the page into the free list, the caller
270 * has a reference on the page.
271 */
272 void delete_from_page_cache(struct page *page)
273 {
274 struct address_space *mapping = page_mapping(page);
275 unsigned long flags;
276 void (*freepage)(struct page *);
277
278 BUG_ON(!PageLocked(page));
279
280 freepage = mapping->a_ops->freepage;
281
282 spin_lock_irqsave(&mapping->tree_lock, flags);
283 __delete_from_page_cache(page, NULL);
284 spin_unlock_irqrestore(&mapping->tree_lock, flags);
285
286 if (freepage)
287 freepage(page);
288
289 if (PageTransHuge(page) && !PageHuge(page)) {
290 page_ref_sub(page, HPAGE_PMD_NR);
291 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292 } else {
293 put_page(page);
294 }
295 }
296 EXPORT_SYMBOL(delete_from_page_cache);
297
298 int filemap_check_errors(struct address_space *mapping)
299 {
300 int ret = 0;
301 /* Check for outstanding write errors */
302 if (test_bit(AS_ENOSPC, &mapping->flags) &&
303 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304 ret = -ENOSPC;
305 if (test_bit(AS_EIO, &mapping->flags) &&
306 test_and_clear_bit(AS_EIO, &mapping->flags))
307 ret = -EIO;
308 return ret;
309 }
310 EXPORT_SYMBOL(filemap_check_errors);
311
312 static int filemap_check_and_keep_errors(struct address_space *mapping)
313 {
314 /* Check for outstanding write errors */
315 if (test_bit(AS_EIO, &mapping->flags))
316 return -EIO;
317 if (test_bit(AS_ENOSPC, &mapping->flags))
318 return -ENOSPC;
319 return 0;
320 }
321
322 /**
323 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
324 * @mapping: address space structure to write
325 * @start: offset in bytes where the range starts
326 * @end: offset in bytes where the range ends (inclusive)
327 * @sync_mode: enable synchronous operation
328 *
329 * Start writeback against all of a mapping's dirty pages that lie
330 * within the byte offsets <start, end> inclusive.
331 *
332 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
333 * opposed to a regular memory cleansing writeback. The difference between
334 * these two operations is that if a dirty page/buffer is encountered, it must
335 * be waited upon, and not just skipped over.
336 */
337 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
338 loff_t end, int sync_mode)
339 {
340 int ret;
341 struct writeback_control wbc = {
342 .sync_mode = sync_mode,
343 .nr_to_write = LONG_MAX,
344 .range_start = start,
345 .range_end = end,
346 };
347
348 if (!mapping_cap_writeback_dirty(mapping))
349 return 0;
350
351 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
352 ret = do_writepages(mapping, &wbc);
353 wbc_detach_inode(&wbc);
354 return ret;
355 }
356
357 static inline int __filemap_fdatawrite(struct address_space *mapping,
358 int sync_mode)
359 {
360 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
361 }
362
363 int filemap_fdatawrite(struct address_space *mapping)
364 {
365 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite);
368
369 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
370 loff_t end)
371 {
372 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
373 }
374 EXPORT_SYMBOL(filemap_fdatawrite_range);
375
376 /**
377 * filemap_flush - mostly a non-blocking flush
378 * @mapping: target address_space
379 *
380 * This is a mostly non-blocking flush. Not suitable for data-integrity
381 * purposes - I/O may not be started against all dirty pages.
382 */
383 int filemap_flush(struct address_space *mapping)
384 {
385 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
386 }
387 EXPORT_SYMBOL(filemap_flush);
388
389 static void __filemap_fdatawait_range(struct address_space *mapping,
390 loff_t start_byte, loff_t end_byte)
391 {
392 pgoff_t index = start_byte >> PAGE_SHIFT;
393 pgoff_t end = end_byte >> PAGE_SHIFT;
394 struct pagevec pvec;
395 int nr_pages;
396
397 if (end_byte < start_byte)
398 return;
399
400 pagevec_init(&pvec, 0);
401 while ((index <= end) &&
402 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
403 PAGECACHE_TAG_WRITEBACK,
404 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
405 unsigned i;
406
407 for (i = 0; i < nr_pages; i++) {
408 struct page *page = pvec.pages[i];
409
410 /* until radix tree lookup accepts end_index */
411 if (page->index > end)
412 continue;
413
414 wait_on_page_writeback(page);
415 ClearPageError(page);
416 }
417 pagevec_release(&pvec);
418 cond_resched();
419 }
420 }
421
422 /**
423 * filemap_fdatawait_range - wait for writeback to complete
424 * @mapping: address space structure to wait for
425 * @start_byte: offset in bytes where the range starts
426 * @end_byte: offset in bytes where the range ends (inclusive)
427 *
428 * Walk the list of under-writeback pages of the given address space
429 * in the given range and wait for all of them. Check error status of
430 * the address space and return it.
431 *
432 * Since the error status of the address space is cleared by this function,
433 * callers are responsible for checking the return value and handling and/or
434 * reporting the error.
435 */
436 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
437 loff_t end_byte)
438 {
439 __filemap_fdatawait_range(mapping, start_byte, end_byte);
440 return filemap_check_errors(mapping);
441 }
442 EXPORT_SYMBOL(filemap_fdatawait_range);
443
444 /**
445 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
446 * @mapping: address space structure to wait for
447 *
448 * Walk the list of under-writeback pages of the given address space
449 * and wait for all of them. Unlike filemap_fdatawait(), this function
450 * does not clear error status of the address space.
451 *
452 * Use this function if callers don't handle errors themselves. Expected
453 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
454 * fsfreeze(8)
455 */
456 int filemap_fdatawait_keep_errors(struct address_space *mapping)
457 {
458 loff_t i_size = i_size_read(mapping->host);
459
460 if (i_size == 0)
461 return 0;
462
463 __filemap_fdatawait_range(mapping, 0, i_size - 1);
464 return filemap_check_and_keep_errors(mapping);
465 }
466 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
467
468 /**
469 * filemap_fdatawait - wait for all under-writeback pages to complete
470 * @mapping: address space structure to wait for
471 *
472 * Walk the list of under-writeback pages of the given address space
473 * and wait for all of them. Check error status of the address space
474 * and return it.
475 *
476 * Since the error status of the address space is cleared by this function,
477 * callers are responsible for checking the return value and handling and/or
478 * reporting the error.
479 */
480 int filemap_fdatawait(struct address_space *mapping)
481 {
482 loff_t i_size = i_size_read(mapping->host);
483
484 if (i_size == 0)
485 return 0;
486
487 return filemap_fdatawait_range(mapping, 0, i_size - 1);
488 }
489 EXPORT_SYMBOL(filemap_fdatawait);
490
491 int filemap_write_and_wait(struct address_space *mapping)
492 {
493 int err = 0;
494
495 if ((!dax_mapping(mapping) && mapping->nrpages) ||
496 (dax_mapping(mapping) && mapping->nrexceptional)) {
497 err = filemap_fdatawrite(mapping);
498 /*
499 * Even if the above returned error, the pages may be
500 * written partially (e.g. -ENOSPC), so we wait for it.
501 * But the -EIO is special case, it may indicate the worst
502 * thing (e.g. bug) happened, so we avoid waiting for it.
503 */
504 if (err != -EIO) {
505 int err2 = filemap_fdatawait(mapping);
506 if (!err)
507 err = err2;
508 } else {
509 /* Clear any previously stored errors */
510 filemap_check_errors(mapping);
511 }
512 } else {
513 err = filemap_check_errors(mapping);
514 }
515 return err;
516 }
517 EXPORT_SYMBOL(filemap_write_and_wait);
518
519 /**
520 * filemap_write_and_wait_range - write out & wait on a file range
521 * @mapping: the address_space for the pages
522 * @lstart: offset in bytes where the range starts
523 * @lend: offset in bytes where the range ends (inclusive)
524 *
525 * Write out and wait upon file offsets lstart->lend, inclusive.
526 *
527 * Note that @lend is inclusive (describes the last byte to be written) so
528 * that this function can be used to write to the very end-of-file (end = -1).
529 */
530 int filemap_write_and_wait_range(struct address_space *mapping,
531 loff_t lstart, loff_t lend)
532 {
533 int err = 0;
534
535 if ((!dax_mapping(mapping) && mapping->nrpages) ||
536 (dax_mapping(mapping) && mapping->nrexceptional)) {
537 err = __filemap_fdatawrite_range(mapping, lstart, lend,
538 WB_SYNC_ALL);
539 /* See comment of filemap_write_and_wait() */
540 if (err != -EIO) {
541 int err2 = filemap_fdatawait_range(mapping,
542 lstart, lend);
543 if (!err)
544 err = err2;
545 } else {
546 /* Clear any previously stored errors */
547 filemap_check_errors(mapping);
548 }
549 } else {
550 err = filemap_check_errors(mapping);
551 }
552 return err;
553 }
554 EXPORT_SYMBOL(filemap_write_and_wait_range);
555
556 void __filemap_set_wb_err(struct address_space *mapping, int err)
557 {
558 errseq_t eseq = __errseq_set(&mapping->wb_err, err);
559
560 trace_filemap_set_wb_err(mapping, eseq);
561 }
562 EXPORT_SYMBOL(__filemap_set_wb_err);
563
564 /**
565 * file_check_and_advance_wb_err - report wb error (if any) that was previously
566 * and advance wb_err to current one
567 * @file: struct file on which the error is being reported
568 *
569 * When userland calls fsync (or something like nfsd does the equivalent), we
570 * want to report any writeback errors that occurred since the last fsync (or
571 * since the file was opened if there haven't been any).
572 *
573 * Grab the wb_err from the mapping. If it matches what we have in the file,
574 * then just quickly return 0. The file is all caught up.
575 *
576 * If it doesn't match, then take the mapping value, set the "seen" flag in
577 * it and try to swap it into place. If it works, or another task beat us
578 * to it with the new value, then update the f_wb_err and return the error
579 * portion. The error at this point must be reported via proper channels
580 * (a'la fsync, or NFS COMMIT operation, etc.).
581 *
582 * While we handle mapping->wb_err with atomic operations, the f_wb_err
583 * value is protected by the f_lock since we must ensure that it reflects
584 * the latest value swapped in for this file descriptor.
585 */
586 int file_check_and_advance_wb_err(struct file *file)
587 {
588 int err = 0;
589 errseq_t old = READ_ONCE(file->f_wb_err);
590 struct address_space *mapping = file->f_mapping;
591
592 /* Locklessly handle the common case where nothing has changed */
593 if (errseq_check(&mapping->wb_err, old)) {
594 /* Something changed, must use slow path */
595 spin_lock(&file->f_lock);
596 old = file->f_wb_err;
597 err = errseq_check_and_advance(&mapping->wb_err,
598 &file->f_wb_err);
599 trace_file_check_and_advance_wb_err(file, old);
600 spin_unlock(&file->f_lock);
601 }
602 return err;
603 }
604 EXPORT_SYMBOL(file_check_and_advance_wb_err);
605
606 /**
607 * file_write_and_wait_range - write out & wait on a file range
608 * @file: file pointing to address_space with pages
609 * @lstart: offset in bytes where the range starts
610 * @lend: offset in bytes where the range ends (inclusive)
611 *
612 * Write out and wait upon file offsets lstart->lend, inclusive.
613 *
614 * Note that @lend is inclusive (describes the last byte to be written) so
615 * that this function can be used to write to the very end-of-file (end = -1).
616 *
617 * After writing out and waiting on the data, we check and advance the
618 * f_wb_err cursor to the latest value, and return any errors detected there.
619 */
620 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
621 {
622 int err = 0, err2;
623 struct address_space *mapping = file->f_mapping;
624
625 if ((!dax_mapping(mapping) && mapping->nrpages) ||
626 (dax_mapping(mapping) && mapping->nrexceptional)) {
627 err = __filemap_fdatawrite_range(mapping, lstart, lend,
628 WB_SYNC_ALL);
629 /* See comment of filemap_write_and_wait() */
630 if (err != -EIO)
631 __filemap_fdatawait_range(mapping, lstart, lend);
632 }
633 err2 = file_check_and_advance_wb_err(file);
634 if (!err)
635 err = err2;
636 return err;
637 }
638 EXPORT_SYMBOL(file_write_and_wait_range);
639
640 /**
641 * replace_page_cache_page - replace a pagecache page with a new one
642 * @old: page to be replaced
643 * @new: page to replace with
644 * @gfp_mask: allocation mode
645 *
646 * This function replaces a page in the pagecache with a new one. On
647 * success it acquires the pagecache reference for the new page and
648 * drops it for the old page. Both the old and new pages must be
649 * locked. This function does not add the new page to the LRU, the
650 * caller must do that.
651 *
652 * The remove + add is atomic. The only way this function can fail is
653 * memory allocation failure.
654 */
655 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
656 {
657 int error;
658
659 VM_BUG_ON_PAGE(!PageLocked(old), old);
660 VM_BUG_ON_PAGE(!PageLocked(new), new);
661 VM_BUG_ON_PAGE(new->mapping, new);
662
663 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
664 if (!error) {
665 struct address_space *mapping = old->mapping;
666 void (*freepage)(struct page *);
667 unsigned long flags;
668
669 pgoff_t offset = old->index;
670 freepage = mapping->a_ops->freepage;
671
672 get_page(new);
673 new->mapping = mapping;
674 new->index = offset;
675
676 spin_lock_irqsave(&mapping->tree_lock, flags);
677 __delete_from_page_cache(old, NULL);
678 error = page_cache_tree_insert(mapping, new, NULL);
679 BUG_ON(error);
680
681 /*
682 * hugetlb pages do not participate in page cache accounting.
683 */
684 if (!PageHuge(new))
685 __inc_node_page_state(new, NR_FILE_PAGES);
686 if (PageSwapBacked(new))
687 __inc_node_page_state(new, NR_SHMEM);
688 spin_unlock_irqrestore(&mapping->tree_lock, flags);
689 mem_cgroup_migrate(old, new);
690 radix_tree_preload_end();
691 if (freepage)
692 freepage(old);
693 put_page(old);
694 }
695
696 return error;
697 }
698 EXPORT_SYMBOL_GPL(replace_page_cache_page);
699
700 static int __add_to_page_cache_locked(struct page *page,
701 struct address_space *mapping,
702 pgoff_t offset, gfp_t gfp_mask,
703 void **shadowp)
704 {
705 int huge = PageHuge(page);
706 struct mem_cgroup *memcg;
707 int error;
708
709 VM_BUG_ON_PAGE(!PageLocked(page), page);
710 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
711
712 if (!huge) {
713 error = mem_cgroup_try_charge(page, current->mm,
714 gfp_mask, &memcg, false);
715 if (error)
716 return error;
717 }
718
719 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
720 if (error) {
721 if (!huge)
722 mem_cgroup_cancel_charge(page, memcg, false);
723 return error;
724 }
725
726 get_page(page);
727 page->mapping = mapping;
728 page->index = offset;
729
730 spin_lock_irq(&mapping->tree_lock);
731 error = page_cache_tree_insert(mapping, page, shadowp);
732 radix_tree_preload_end();
733 if (unlikely(error))
734 goto err_insert;
735
736 /* hugetlb pages do not participate in page cache accounting. */
737 if (!huge)
738 __inc_node_page_state(page, NR_FILE_PAGES);
739 spin_unlock_irq(&mapping->tree_lock);
740 if (!huge)
741 mem_cgroup_commit_charge(page, memcg, false, false);
742 trace_mm_filemap_add_to_page_cache(page);
743 return 0;
744 err_insert:
745 page->mapping = NULL;
746 /* Leave page->index set: truncation relies upon it */
747 spin_unlock_irq(&mapping->tree_lock);
748 if (!huge)
749 mem_cgroup_cancel_charge(page, memcg, false);
750 put_page(page);
751 return error;
752 }
753
754 /**
755 * add_to_page_cache_locked - add a locked page to the pagecache
756 * @page: page to add
757 * @mapping: the page's address_space
758 * @offset: page index
759 * @gfp_mask: page allocation mode
760 *
761 * This function is used to add a page to the pagecache. It must be locked.
762 * This function does not add the page to the LRU. The caller must do that.
763 */
764 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
765 pgoff_t offset, gfp_t gfp_mask)
766 {
767 return __add_to_page_cache_locked(page, mapping, offset,
768 gfp_mask, NULL);
769 }
770 EXPORT_SYMBOL(add_to_page_cache_locked);
771
772 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
773 pgoff_t offset, gfp_t gfp_mask)
774 {
775 void *shadow = NULL;
776 int ret;
777
778 __SetPageLocked(page);
779 ret = __add_to_page_cache_locked(page, mapping, offset,
780 gfp_mask, &shadow);
781 if (unlikely(ret))
782 __ClearPageLocked(page);
783 else {
784 /*
785 * The page might have been evicted from cache only
786 * recently, in which case it should be activated like
787 * any other repeatedly accessed page.
788 * The exception is pages getting rewritten; evicting other
789 * data from the working set, only to cache data that will
790 * get overwritten with something else, is a waste of memory.
791 */
792 if (!(gfp_mask & __GFP_WRITE) &&
793 shadow && workingset_refault(shadow)) {
794 SetPageActive(page);
795 workingset_activation(page);
796 } else
797 ClearPageActive(page);
798 lru_cache_add(page);
799 }
800 return ret;
801 }
802 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
803
804 #ifdef CONFIG_NUMA
805 struct page *__page_cache_alloc(gfp_t gfp)
806 {
807 int n;
808 struct page *page;
809
810 if (cpuset_do_page_mem_spread()) {
811 unsigned int cpuset_mems_cookie;
812 do {
813 cpuset_mems_cookie = read_mems_allowed_begin();
814 n = cpuset_mem_spread_node();
815 page = __alloc_pages_node(n, gfp, 0);
816 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
817
818 return page;
819 }
820 return alloc_pages(gfp, 0);
821 }
822 EXPORT_SYMBOL(__page_cache_alloc);
823 #endif
824
825 /*
826 * In order to wait for pages to become available there must be
827 * waitqueues associated with pages. By using a hash table of
828 * waitqueues where the bucket discipline is to maintain all
829 * waiters on the same queue and wake all when any of the pages
830 * become available, and for the woken contexts to check to be
831 * sure the appropriate page became available, this saves space
832 * at a cost of "thundering herd" phenomena during rare hash
833 * collisions.
834 */
835 #define PAGE_WAIT_TABLE_BITS 8
836 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
837 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
838
839 static wait_queue_head_t *page_waitqueue(struct page *page)
840 {
841 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
842 }
843
844 void __init pagecache_init(void)
845 {
846 int i;
847
848 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
849 init_waitqueue_head(&page_wait_table[i]);
850
851 page_writeback_init();
852 }
853
854 struct wait_page_key {
855 struct page *page;
856 int bit_nr;
857 int page_match;
858 };
859
860 struct wait_page_queue {
861 struct page *page;
862 int bit_nr;
863 wait_queue_t wait;
864 };
865
866 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
867 {
868 struct wait_page_key *key = arg;
869 struct wait_page_queue *wait_page
870 = container_of(wait, struct wait_page_queue, wait);
871
872 if (wait_page->page != key->page)
873 return 0;
874 key->page_match = 1;
875
876 if (wait_page->bit_nr != key->bit_nr)
877 return 0;
878 if (test_bit(key->bit_nr, &key->page->flags))
879 return 0;
880
881 return autoremove_wake_function(wait, mode, sync, key);
882 }
883
884 static void wake_up_page_bit(struct page *page, int bit_nr)
885 {
886 wait_queue_head_t *q = page_waitqueue(page);
887 struct wait_page_key key;
888 unsigned long flags;
889
890 key.page = page;
891 key.bit_nr = bit_nr;
892 key.page_match = 0;
893
894 spin_lock_irqsave(&q->lock, flags);
895 __wake_up_locked_key(q, TASK_NORMAL, &key);
896 /*
897 * It is possible for other pages to have collided on the waitqueue
898 * hash, so in that case check for a page match. That prevents a long-
899 * term waiter
900 *
901 * It is still possible to miss a case here, when we woke page waiters
902 * and removed them from the waitqueue, but there are still other
903 * page waiters.
904 */
905 if (!waitqueue_active(q) || !key.page_match) {
906 ClearPageWaiters(page);
907 /*
908 * It's possible to miss clearing Waiters here, when we woke
909 * our page waiters, but the hashed waitqueue has waiters for
910 * other pages on it.
911 *
912 * That's okay, it's a rare case. The next waker will clear it.
913 */
914 }
915 spin_unlock_irqrestore(&q->lock, flags);
916 }
917
918 static void wake_up_page(struct page *page, int bit)
919 {
920 if (!PageWaiters(page))
921 return;
922 wake_up_page_bit(page, bit);
923 }
924
925 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
926 struct page *page, int bit_nr, int state, bool lock)
927 {
928 struct wait_page_queue wait_page;
929 wait_queue_t *wait = &wait_page.wait;
930 int ret = 0;
931
932 init_wait(wait);
933 wait->func = wake_page_function;
934 wait_page.page = page;
935 wait_page.bit_nr = bit_nr;
936
937 for (;;) {
938 spin_lock_irq(&q->lock);
939
940 if (likely(list_empty(&wait->task_list))) {
941 if (lock)
942 __add_wait_queue_tail_exclusive(q, wait);
943 else
944 __add_wait_queue(q, wait);
945 SetPageWaiters(page);
946 }
947
948 set_current_state(state);
949
950 spin_unlock_irq(&q->lock);
951
952 if (likely(test_bit(bit_nr, &page->flags))) {
953 io_schedule();
954 if (unlikely(signal_pending_state(state, current))) {
955 ret = -EINTR;
956 break;
957 }
958 }
959
960 if (lock) {
961 if (!test_and_set_bit_lock(bit_nr, &page->flags))
962 break;
963 } else {
964 if (!test_bit(bit_nr, &page->flags))
965 break;
966 }
967 }
968
969 finish_wait(q, wait);
970
971 /*
972 * A signal could leave PageWaiters set. Clearing it here if
973 * !waitqueue_active would be possible (by open-coding finish_wait),
974 * but still fail to catch it in the case of wait hash collision. We
975 * already can fail to clear wait hash collision cases, so don't
976 * bother with signals either.
977 */
978
979 return ret;
980 }
981
982 void wait_on_page_bit(struct page *page, int bit_nr)
983 {
984 wait_queue_head_t *q = page_waitqueue(page);
985 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
986 }
987 EXPORT_SYMBOL(wait_on_page_bit);
988
989 int wait_on_page_bit_killable(struct page *page, int bit_nr)
990 {
991 wait_queue_head_t *q = page_waitqueue(page);
992 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
993 }
994
995 /**
996 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
997 * @page: Page defining the wait queue of interest
998 * @waiter: Waiter to add to the queue
999 *
1000 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1001 */
1002 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
1003 {
1004 wait_queue_head_t *q = page_waitqueue(page);
1005 unsigned long flags;
1006
1007 spin_lock_irqsave(&q->lock, flags);
1008 __add_wait_queue(q, waiter);
1009 SetPageWaiters(page);
1010 spin_unlock_irqrestore(&q->lock, flags);
1011 }
1012 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1013
1014 #ifndef clear_bit_unlock_is_negative_byte
1015
1016 /*
1017 * PG_waiters is the high bit in the same byte as PG_lock.
1018 *
1019 * On x86 (and on many other architectures), we can clear PG_lock and
1020 * test the sign bit at the same time. But if the architecture does
1021 * not support that special operation, we just do this all by hand
1022 * instead.
1023 *
1024 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1025 * being cleared, but a memory barrier should be unneccssary since it is
1026 * in the same byte as PG_locked.
1027 */
1028 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1029 {
1030 clear_bit_unlock(nr, mem);
1031 /* smp_mb__after_atomic(); */
1032 return test_bit(PG_waiters, mem);
1033 }
1034
1035 #endif
1036
1037 /**
1038 * unlock_page - unlock a locked page
1039 * @page: the page
1040 *
1041 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1042 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1043 * mechanism between PageLocked pages and PageWriteback pages is shared.
1044 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1045 *
1046 * Note that this depends on PG_waiters being the sign bit in the byte
1047 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1048 * clear the PG_locked bit and test PG_waiters at the same time fairly
1049 * portably (architectures that do LL/SC can test any bit, while x86 can
1050 * test the sign bit).
1051 */
1052 void unlock_page(struct page *page)
1053 {
1054 BUILD_BUG_ON(PG_waiters != 7);
1055 page = compound_head(page);
1056 VM_BUG_ON_PAGE(!PageLocked(page), page);
1057 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1058 wake_up_page_bit(page, PG_locked);
1059 }
1060 EXPORT_SYMBOL(unlock_page);
1061
1062 /**
1063 * end_page_writeback - end writeback against a page
1064 * @page: the page
1065 */
1066 void end_page_writeback(struct page *page)
1067 {
1068 /*
1069 * TestClearPageReclaim could be used here but it is an atomic
1070 * operation and overkill in this particular case. Failing to
1071 * shuffle a page marked for immediate reclaim is too mild to
1072 * justify taking an atomic operation penalty at the end of
1073 * ever page writeback.
1074 */
1075 if (PageReclaim(page)) {
1076 ClearPageReclaim(page);
1077 rotate_reclaimable_page(page);
1078 }
1079
1080 if (!test_clear_page_writeback(page))
1081 BUG();
1082
1083 smp_mb__after_atomic();
1084 wake_up_page(page, PG_writeback);
1085 }
1086 EXPORT_SYMBOL(end_page_writeback);
1087
1088 /*
1089 * After completing I/O on a page, call this routine to update the page
1090 * flags appropriately
1091 */
1092 void page_endio(struct page *page, bool is_write, int err)
1093 {
1094 if (!is_write) {
1095 if (!err) {
1096 SetPageUptodate(page);
1097 } else {
1098 ClearPageUptodate(page);
1099 SetPageError(page);
1100 }
1101 unlock_page(page);
1102 } else {
1103 if (err) {
1104 struct address_space *mapping;
1105
1106 SetPageError(page);
1107 mapping = page_mapping(page);
1108 if (mapping)
1109 mapping_set_error(mapping, err);
1110 }
1111 end_page_writeback(page);
1112 }
1113 }
1114 EXPORT_SYMBOL_GPL(page_endio);
1115
1116 /**
1117 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1118 * @__page: the page to lock
1119 */
1120 void __lock_page(struct page *__page)
1121 {
1122 struct page *page = compound_head(__page);
1123 wait_queue_head_t *q = page_waitqueue(page);
1124 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1125 }
1126 EXPORT_SYMBOL(__lock_page);
1127
1128 int __lock_page_killable(struct page *__page)
1129 {
1130 struct page *page = compound_head(__page);
1131 wait_queue_head_t *q = page_waitqueue(page);
1132 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1133 }
1134 EXPORT_SYMBOL_GPL(__lock_page_killable);
1135
1136 /*
1137 * Return values:
1138 * 1 - page is locked; mmap_sem is still held.
1139 * 0 - page is not locked.
1140 * mmap_sem has been released (up_read()), unless flags had both
1141 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1142 * which case mmap_sem is still held.
1143 *
1144 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1145 * with the page locked and the mmap_sem unperturbed.
1146 */
1147 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1148 unsigned int flags)
1149 {
1150 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1151 /*
1152 * CAUTION! In this case, mmap_sem is not released
1153 * even though return 0.
1154 */
1155 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1156 return 0;
1157
1158 up_read(&mm->mmap_sem);
1159 if (flags & FAULT_FLAG_KILLABLE)
1160 wait_on_page_locked_killable(page);
1161 else
1162 wait_on_page_locked(page);
1163 return 0;
1164 } else {
1165 if (flags & FAULT_FLAG_KILLABLE) {
1166 int ret;
1167
1168 ret = __lock_page_killable(page);
1169 if (ret) {
1170 up_read(&mm->mmap_sem);
1171 return 0;
1172 }
1173 } else
1174 __lock_page(page);
1175 return 1;
1176 }
1177 }
1178
1179 /**
1180 * page_cache_next_hole - find the next hole (not-present entry)
1181 * @mapping: mapping
1182 * @index: index
1183 * @max_scan: maximum range to search
1184 *
1185 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1186 * lowest indexed hole.
1187 *
1188 * Returns: the index of the hole if found, otherwise returns an index
1189 * outside of the set specified (in which case 'return - index >=
1190 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1191 * be returned.
1192 *
1193 * page_cache_next_hole may be called under rcu_read_lock. However,
1194 * like radix_tree_gang_lookup, this will not atomically search a
1195 * snapshot of the tree at a single point in time. For example, if a
1196 * hole is created at index 5, then subsequently a hole is created at
1197 * index 10, page_cache_next_hole covering both indexes may return 10
1198 * if called under rcu_read_lock.
1199 */
1200 pgoff_t page_cache_next_hole(struct address_space *mapping,
1201 pgoff_t index, unsigned long max_scan)
1202 {
1203 unsigned long i;
1204
1205 for (i = 0; i < max_scan; i++) {
1206 struct page *page;
1207
1208 page = radix_tree_lookup(&mapping->page_tree, index);
1209 if (!page || radix_tree_exceptional_entry(page))
1210 break;
1211 index++;
1212 if (index == 0)
1213 break;
1214 }
1215
1216 return index;
1217 }
1218 EXPORT_SYMBOL(page_cache_next_hole);
1219
1220 /**
1221 * page_cache_prev_hole - find the prev hole (not-present entry)
1222 * @mapping: mapping
1223 * @index: index
1224 * @max_scan: maximum range to search
1225 *
1226 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1227 * the first hole.
1228 *
1229 * Returns: the index of the hole if found, otherwise returns an index
1230 * outside of the set specified (in which case 'index - return >=
1231 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1232 * will be returned.
1233 *
1234 * page_cache_prev_hole may be called under rcu_read_lock. However,
1235 * like radix_tree_gang_lookup, this will not atomically search a
1236 * snapshot of the tree at a single point in time. For example, if a
1237 * hole is created at index 10, then subsequently a hole is created at
1238 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1239 * called under rcu_read_lock.
1240 */
1241 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1242 pgoff_t index, unsigned long max_scan)
1243 {
1244 unsigned long i;
1245
1246 for (i = 0; i < max_scan; i++) {
1247 struct page *page;
1248
1249 page = radix_tree_lookup(&mapping->page_tree, index);
1250 if (!page || radix_tree_exceptional_entry(page))
1251 break;
1252 index--;
1253 if (index == ULONG_MAX)
1254 break;
1255 }
1256
1257 return index;
1258 }
1259 EXPORT_SYMBOL(page_cache_prev_hole);
1260
1261 /**
1262 * find_get_entry - find and get a page cache entry
1263 * @mapping: the address_space to search
1264 * @offset: the page cache index
1265 *
1266 * Looks up the page cache slot at @mapping & @offset. If there is a
1267 * page cache page, it is returned with an increased refcount.
1268 *
1269 * If the slot holds a shadow entry of a previously evicted page, or a
1270 * swap entry from shmem/tmpfs, it is returned.
1271 *
1272 * Otherwise, %NULL is returned.
1273 */
1274 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1275 {
1276 void **pagep;
1277 struct page *head, *page;
1278
1279 rcu_read_lock();
1280 repeat:
1281 page = NULL;
1282 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1283 if (pagep) {
1284 page = radix_tree_deref_slot(pagep);
1285 if (unlikely(!page))
1286 goto out;
1287 if (radix_tree_exception(page)) {
1288 if (radix_tree_deref_retry(page))
1289 goto repeat;
1290 /*
1291 * A shadow entry of a recently evicted page,
1292 * or a swap entry from shmem/tmpfs. Return
1293 * it without attempting to raise page count.
1294 */
1295 goto out;
1296 }
1297
1298 head = compound_head(page);
1299 if (!page_cache_get_speculative(head))
1300 goto repeat;
1301
1302 /* The page was split under us? */
1303 if (compound_head(page) != head) {
1304 put_page(head);
1305 goto repeat;
1306 }
1307
1308 /*
1309 * Has the page moved?
1310 * This is part of the lockless pagecache protocol. See
1311 * include/linux/pagemap.h for details.
1312 */
1313 if (unlikely(page != *pagep)) {
1314 put_page(head);
1315 goto repeat;
1316 }
1317 }
1318 out:
1319 rcu_read_unlock();
1320
1321 return page;
1322 }
1323 EXPORT_SYMBOL(find_get_entry);
1324
1325 /**
1326 * find_lock_entry - locate, pin and lock a page cache entry
1327 * @mapping: the address_space to search
1328 * @offset: the page cache index
1329 *
1330 * Looks up the page cache slot at @mapping & @offset. If there is a
1331 * page cache page, it is returned locked and with an increased
1332 * refcount.
1333 *
1334 * If the slot holds a shadow entry of a previously evicted page, or a
1335 * swap entry from shmem/tmpfs, it is returned.
1336 *
1337 * Otherwise, %NULL is returned.
1338 *
1339 * find_lock_entry() may sleep.
1340 */
1341 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1342 {
1343 struct page *page;
1344
1345 repeat:
1346 page = find_get_entry(mapping, offset);
1347 if (page && !radix_tree_exception(page)) {
1348 lock_page(page);
1349 /* Has the page been truncated? */
1350 if (unlikely(page_mapping(page) != mapping)) {
1351 unlock_page(page);
1352 put_page(page);
1353 goto repeat;
1354 }
1355 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1356 }
1357 return page;
1358 }
1359 EXPORT_SYMBOL(find_lock_entry);
1360
1361 /**
1362 * pagecache_get_page - find and get a page reference
1363 * @mapping: the address_space to search
1364 * @offset: the page index
1365 * @fgp_flags: PCG flags
1366 * @gfp_mask: gfp mask to use for the page cache data page allocation
1367 *
1368 * Looks up the page cache slot at @mapping & @offset.
1369 *
1370 * PCG flags modify how the page is returned.
1371 *
1372 * @fgp_flags can be:
1373 *
1374 * - FGP_ACCESSED: the page will be marked accessed
1375 * - FGP_LOCK: Page is return locked
1376 * - FGP_CREAT: If page is not present then a new page is allocated using
1377 * @gfp_mask and added to the page cache and the VM's LRU
1378 * list. The page is returned locked and with an increased
1379 * refcount. Otherwise, NULL is returned.
1380 *
1381 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1382 * if the GFP flags specified for FGP_CREAT are atomic.
1383 *
1384 * If there is a page cache page, it is returned with an increased refcount.
1385 */
1386 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1387 int fgp_flags, gfp_t gfp_mask)
1388 {
1389 struct page *page;
1390
1391 repeat:
1392 page = find_get_entry(mapping, offset);
1393 if (radix_tree_exceptional_entry(page))
1394 page = NULL;
1395 if (!page)
1396 goto no_page;
1397
1398 if (fgp_flags & FGP_LOCK) {
1399 if (fgp_flags & FGP_NOWAIT) {
1400 if (!trylock_page(page)) {
1401 put_page(page);
1402 return NULL;
1403 }
1404 } else {
1405 lock_page(page);
1406 }
1407
1408 /* Has the page been truncated? */
1409 if (unlikely(page->mapping != mapping)) {
1410 unlock_page(page);
1411 put_page(page);
1412 goto repeat;
1413 }
1414 VM_BUG_ON_PAGE(page->index != offset, page);
1415 }
1416
1417 if (page && (fgp_flags & FGP_ACCESSED))
1418 mark_page_accessed(page);
1419
1420 no_page:
1421 if (!page && (fgp_flags & FGP_CREAT)) {
1422 int err;
1423 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1424 gfp_mask |= __GFP_WRITE;
1425 if (fgp_flags & FGP_NOFS)
1426 gfp_mask &= ~__GFP_FS;
1427
1428 page = __page_cache_alloc(gfp_mask);
1429 if (!page)
1430 return NULL;
1431
1432 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1433 fgp_flags |= FGP_LOCK;
1434
1435 /* Init accessed so avoid atomic mark_page_accessed later */
1436 if (fgp_flags & FGP_ACCESSED)
1437 __SetPageReferenced(page);
1438
1439 err = add_to_page_cache_lru(page, mapping, offset,
1440 gfp_mask & GFP_RECLAIM_MASK);
1441 if (unlikely(err)) {
1442 put_page(page);
1443 page = NULL;
1444 if (err == -EEXIST)
1445 goto repeat;
1446 }
1447 }
1448
1449 return page;
1450 }
1451 EXPORT_SYMBOL(pagecache_get_page);
1452
1453 /**
1454 * find_get_entries - gang pagecache lookup
1455 * @mapping: The address_space to search
1456 * @start: The starting page cache index
1457 * @nr_entries: The maximum number of entries
1458 * @entries: Where the resulting entries are placed
1459 * @indices: The cache indices corresponding to the entries in @entries
1460 *
1461 * find_get_entries() will search for and return a group of up to
1462 * @nr_entries entries in the mapping. The entries are placed at
1463 * @entries. find_get_entries() takes a reference against any actual
1464 * pages it returns.
1465 *
1466 * The search returns a group of mapping-contiguous page cache entries
1467 * with ascending indexes. There may be holes in the indices due to
1468 * not-present pages.
1469 *
1470 * Any shadow entries of evicted pages, or swap entries from
1471 * shmem/tmpfs, are included in the returned array.
1472 *
1473 * find_get_entries() returns the number of pages and shadow entries
1474 * which were found.
1475 */
1476 unsigned find_get_entries(struct address_space *mapping,
1477 pgoff_t start, unsigned int nr_entries,
1478 struct page **entries, pgoff_t *indices)
1479 {
1480 void **slot;
1481 unsigned int ret = 0;
1482 struct radix_tree_iter iter;
1483
1484 if (!nr_entries)
1485 return 0;
1486
1487 rcu_read_lock();
1488 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1489 struct page *head, *page;
1490 repeat:
1491 page = radix_tree_deref_slot(slot);
1492 if (unlikely(!page))
1493 continue;
1494 if (radix_tree_exception(page)) {
1495 if (radix_tree_deref_retry(page)) {
1496 slot = radix_tree_iter_retry(&iter);
1497 continue;
1498 }
1499 /*
1500 * A shadow entry of a recently evicted page, a swap
1501 * entry from shmem/tmpfs or a DAX entry. Return it
1502 * without attempting to raise page count.
1503 */
1504 goto export;
1505 }
1506
1507 head = compound_head(page);
1508 if (!page_cache_get_speculative(head))
1509 goto repeat;
1510
1511 /* The page was split under us? */
1512 if (compound_head(page) != head) {
1513 put_page(head);
1514 goto repeat;
1515 }
1516
1517 /* Has the page moved? */
1518 if (unlikely(page != *slot)) {
1519 put_page(head);
1520 goto repeat;
1521 }
1522 export:
1523 indices[ret] = iter.index;
1524 entries[ret] = page;
1525 if (++ret == nr_entries)
1526 break;
1527 }
1528 rcu_read_unlock();
1529 return ret;
1530 }
1531
1532 /**
1533 * find_get_pages - gang pagecache lookup
1534 * @mapping: The address_space to search
1535 * @start: The starting page index
1536 * @nr_pages: The maximum number of pages
1537 * @pages: Where the resulting pages are placed
1538 *
1539 * find_get_pages() will search for and return a group of up to
1540 * @nr_pages pages in the mapping. The pages are placed at @pages.
1541 * find_get_pages() takes a reference against the returned pages.
1542 *
1543 * The search returns a group of mapping-contiguous pages with ascending
1544 * indexes. There may be holes in the indices due to not-present pages.
1545 *
1546 * find_get_pages() returns the number of pages which were found.
1547 */
1548 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1549 unsigned int nr_pages, struct page **pages)
1550 {
1551 struct radix_tree_iter iter;
1552 void **slot;
1553 unsigned ret = 0;
1554
1555 if (unlikely(!nr_pages))
1556 return 0;
1557
1558 rcu_read_lock();
1559 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1560 struct page *head, *page;
1561 repeat:
1562 page = radix_tree_deref_slot(slot);
1563 if (unlikely(!page))
1564 continue;
1565
1566 if (radix_tree_exception(page)) {
1567 if (radix_tree_deref_retry(page)) {
1568 slot = radix_tree_iter_retry(&iter);
1569 continue;
1570 }
1571 /*
1572 * A shadow entry of a recently evicted page,
1573 * or a swap entry from shmem/tmpfs. Skip
1574 * over it.
1575 */
1576 continue;
1577 }
1578
1579 head = compound_head(page);
1580 if (!page_cache_get_speculative(head))
1581 goto repeat;
1582
1583 /* The page was split under us? */
1584 if (compound_head(page) != head) {
1585 put_page(head);
1586 goto repeat;
1587 }
1588
1589 /* Has the page moved? */
1590 if (unlikely(page != *slot)) {
1591 put_page(head);
1592 goto repeat;
1593 }
1594
1595 pages[ret] = page;
1596 if (++ret == nr_pages)
1597 break;
1598 }
1599
1600 rcu_read_unlock();
1601 return ret;
1602 }
1603
1604 /**
1605 * find_get_pages_contig - gang contiguous pagecache lookup
1606 * @mapping: The address_space to search
1607 * @index: The starting page index
1608 * @nr_pages: The maximum number of pages
1609 * @pages: Where the resulting pages are placed
1610 *
1611 * find_get_pages_contig() works exactly like find_get_pages(), except
1612 * that the returned number of pages are guaranteed to be contiguous.
1613 *
1614 * find_get_pages_contig() returns the number of pages which were found.
1615 */
1616 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1617 unsigned int nr_pages, struct page **pages)
1618 {
1619 struct radix_tree_iter iter;
1620 void **slot;
1621 unsigned int ret = 0;
1622
1623 if (unlikely(!nr_pages))
1624 return 0;
1625
1626 rcu_read_lock();
1627 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1628 struct page *head, *page;
1629 repeat:
1630 page = radix_tree_deref_slot(slot);
1631 /* The hole, there no reason to continue */
1632 if (unlikely(!page))
1633 break;
1634
1635 if (radix_tree_exception(page)) {
1636 if (radix_tree_deref_retry(page)) {
1637 slot = radix_tree_iter_retry(&iter);
1638 continue;
1639 }
1640 /*
1641 * A shadow entry of a recently evicted page,
1642 * or a swap entry from shmem/tmpfs. Stop
1643 * looking for contiguous pages.
1644 */
1645 break;
1646 }
1647
1648 head = compound_head(page);
1649 if (!page_cache_get_speculative(head))
1650 goto repeat;
1651
1652 /* The page was split under us? */
1653 if (compound_head(page) != head) {
1654 put_page(head);
1655 goto repeat;
1656 }
1657
1658 /* Has the page moved? */
1659 if (unlikely(page != *slot)) {
1660 put_page(head);
1661 goto repeat;
1662 }
1663
1664 /*
1665 * must check mapping and index after taking the ref.
1666 * otherwise we can get both false positives and false
1667 * negatives, which is just confusing to the caller.
1668 */
1669 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1670 put_page(page);
1671 break;
1672 }
1673
1674 pages[ret] = page;
1675 if (++ret == nr_pages)
1676 break;
1677 }
1678 rcu_read_unlock();
1679 return ret;
1680 }
1681 EXPORT_SYMBOL(find_get_pages_contig);
1682
1683 /**
1684 * find_get_pages_tag - find and return pages that match @tag
1685 * @mapping: the address_space to search
1686 * @index: the starting page index
1687 * @tag: the tag index
1688 * @nr_pages: the maximum number of pages
1689 * @pages: where the resulting pages are placed
1690 *
1691 * Like find_get_pages, except we only return pages which are tagged with
1692 * @tag. We update @index to index the next page for the traversal.
1693 */
1694 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1695 int tag, unsigned int nr_pages, struct page **pages)
1696 {
1697 struct radix_tree_iter iter;
1698 void **slot;
1699 unsigned ret = 0;
1700
1701 if (unlikely(!nr_pages))
1702 return 0;
1703
1704 rcu_read_lock();
1705 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1706 &iter, *index, tag) {
1707 struct page *head, *page;
1708 repeat:
1709 page = radix_tree_deref_slot(slot);
1710 if (unlikely(!page))
1711 continue;
1712
1713 if (radix_tree_exception(page)) {
1714 if (radix_tree_deref_retry(page)) {
1715 slot = radix_tree_iter_retry(&iter);
1716 continue;
1717 }
1718 /*
1719 * A shadow entry of a recently evicted page.
1720 *
1721 * Those entries should never be tagged, but
1722 * this tree walk is lockless and the tags are
1723 * looked up in bulk, one radix tree node at a
1724 * time, so there is a sizable window for page
1725 * reclaim to evict a page we saw tagged.
1726 *
1727 * Skip over it.
1728 */
1729 continue;
1730 }
1731
1732 head = compound_head(page);
1733 if (!page_cache_get_speculative(head))
1734 goto repeat;
1735
1736 /* The page was split under us? */
1737 if (compound_head(page) != head) {
1738 put_page(head);
1739 goto repeat;
1740 }
1741
1742 /* Has the page moved? */
1743 if (unlikely(page != *slot)) {
1744 put_page(head);
1745 goto repeat;
1746 }
1747
1748 pages[ret] = page;
1749 if (++ret == nr_pages)
1750 break;
1751 }
1752
1753 rcu_read_unlock();
1754
1755 if (ret)
1756 *index = pages[ret - 1]->index + 1;
1757
1758 return ret;
1759 }
1760 EXPORT_SYMBOL(find_get_pages_tag);
1761
1762 /**
1763 * find_get_entries_tag - find and return entries that match @tag
1764 * @mapping: the address_space to search
1765 * @start: the starting page cache index
1766 * @tag: the tag index
1767 * @nr_entries: the maximum number of entries
1768 * @entries: where the resulting entries are placed
1769 * @indices: the cache indices corresponding to the entries in @entries
1770 *
1771 * Like find_get_entries, except we only return entries which are tagged with
1772 * @tag.
1773 */
1774 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1775 int tag, unsigned int nr_entries,
1776 struct page **entries, pgoff_t *indices)
1777 {
1778 void **slot;
1779 unsigned int ret = 0;
1780 struct radix_tree_iter iter;
1781
1782 if (!nr_entries)
1783 return 0;
1784
1785 rcu_read_lock();
1786 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1787 &iter, start, tag) {
1788 struct page *head, *page;
1789 repeat:
1790 page = radix_tree_deref_slot(slot);
1791 if (unlikely(!page))
1792 continue;
1793 if (radix_tree_exception(page)) {
1794 if (radix_tree_deref_retry(page)) {
1795 slot = radix_tree_iter_retry(&iter);
1796 continue;
1797 }
1798
1799 /*
1800 * A shadow entry of a recently evicted page, a swap
1801 * entry from shmem/tmpfs or a DAX entry. Return it
1802 * without attempting to raise page count.
1803 */
1804 goto export;
1805 }
1806
1807 head = compound_head(page);
1808 if (!page_cache_get_speculative(head))
1809 goto repeat;
1810
1811 /* The page was split under us? */
1812 if (compound_head(page) != head) {
1813 put_page(head);
1814 goto repeat;
1815 }
1816
1817 /* Has the page moved? */
1818 if (unlikely(page != *slot)) {
1819 put_page(head);
1820 goto repeat;
1821 }
1822 export:
1823 indices[ret] = iter.index;
1824 entries[ret] = page;
1825 if (++ret == nr_entries)
1826 break;
1827 }
1828 rcu_read_unlock();
1829 return ret;
1830 }
1831 EXPORT_SYMBOL(find_get_entries_tag);
1832
1833 /*
1834 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1835 * a _large_ part of the i/o request. Imagine the worst scenario:
1836 *
1837 * ---R__________________________________________B__________
1838 * ^ reading here ^ bad block(assume 4k)
1839 *
1840 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1841 * => failing the whole request => read(R) => read(R+1) =>
1842 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1843 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1844 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1845 *
1846 * It is going insane. Fix it by quickly scaling down the readahead size.
1847 */
1848 static void shrink_readahead_size_eio(struct file *filp,
1849 struct file_ra_state *ra)
1850 {
1851 ra->ra_pages /= 4;
1852 }
1853
1854 /**
1855 * do_generic_file_read - generic file read routine
1856 * @filp: the file to read
1857 * @ppos: current file position
1858 * @iter: data destination
1859 * @written: already copied
1860 *
1861 * This is a generic file read routine, and uses the
1862 * mapping->a_ops->readpage() function for the actual low-level stuff.
1863 *
1864 * This is really ugly. But the goto's actually try to clarify some
1865 * of the logic when it comes to error handling etc.
1866 */
1867 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1868 struct iov_iter *iter, ssize_t written)
1869 {
1870 struct address_space *mapping = filp->f_mapping;
1871 struct inode *inode = mapping->host;
1872 struct file_ra_state *ra = &filp->f_ra;
1873 pgoff_t index;
1874 pgoff_t last_index;
1875 pgoff_t prev_index;
1876 unsigned long offset; /* offset into pagecache page */
1877 unsigned int prev_offset;
1878 int error = 0;
1879
1880 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1881 return 0;
1882 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1883
1884 index = *ppos >> PAGE_SHIFT;
1885 prev_index = ra->prev_pos >> PAGE_SHIFT;
1886 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1887 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1888 offset = *ppos & ~PAGE_MASK;
1889
1890 for (;;) {
1891 struct page *page;
1892 pgoff_t end_index;
1893 loff_t isize;
1894 unsigned long nr, ret;
1895
1896 cond_resched();
1897 find_page:
1898 if (fatal_signal_pending(current)) {
1899 error = -EINTR;
1900 goto out;
1901 }
1902
1903 page = find_get_page(mapping, index);
1904 if (!page) {
1905 page_cache_sync_readahead(mapping,
1906 ra, filp,
1907 index, last_index - index);
1908 page = find_get_page(mapping, index);
1909 if (unlikely(page == NULL))
1910 goto no_cached_page;
1911 }
1912 if (PageReadahead(page)) {
1913 page_cache_async_readahead(mapping,
1914 ra, filp, page,
1915 index, last_index - index);
1916 }
1917 if (!PageUptodate(page)) {
1918 /*
1919 * See comment in do_read_cache_page on why
1920 * wait_on_page_locked is used to avoid unnecessarily
1921 * serialisations and why it's safe.
1922 */
1923 error = wait_on_page_locked_killable(page);
1924 if (unlikely(error))
1925 goto readpage_error;
1926 if (PageUptodate(page))
1927 goto page_ok;
1928
1929 if (inode->i_blkbits == PAGE_SHIFT ||
1930 !mapping->a_ops->is_partially_uptodate)
1931 goto page_not_up_to_date;
1932 /* pipes can't handle partially uptodate pages */
1933 if (unlikely(iter->type & ITER_PIPE))
1934 goto page_not_up_to_date;
1935 if (!trylock_page(page))
1936 goto page_not_up_to_date;
1937 /* Did it get truncated before we got the lock? */
1938 if (!page->mapping)
1939 goto page_not_up_to_date_locked;
1940 if (!mapping->a_ops->is_partially_uptodate(page,
1941 offset, iter->count))
1942 goto page_not_up_to_date_locked;
1943 unlock_page(page);
1944 }
1945 page_ok:
1946 /*
1947 * i_size must be checked after we know the page is Uptodate.
1948 *
1949 * Checking i_size after the check allows us to calculate
1950 * the correct value for "nr", which means the zero-filled
1951 * part of the page is not copied back to userspace (unless
1952 * another truncate extends the file - this is desired though).
1953 */
1954
1955 isize = i_size_read(inode);
1956 end_index = (isize - 1) >> PAGE_SHIFT;
1957 if (unlikely(!isize || index > end_index)) {
1958 put_page(page);
1959 goto out;
1960 }
1961
1962 /* nr is the maximum number of bytes to copy from this page */
1963 nr = PAGE_SIZE;
1964 if (index == end_index) {
1965 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1966 if (nr <= offset) {
1967 put_page(page);
1968 goto out;
1969 }
1970 }
1971 nr = nr - offset;
1972
1973 /* If users can be writing to this page using arbitrary
1974 * virtual addresses, take care about potential aliasing
1975 * before reading the page on the kernel side.
1976 */
1977 if (mapping_writably_mapped(mapping))
1978 flush_dcache_page(page);
1979
1980 /*
1981 * When a sequential read accesses a page several times,
1982 * only mark it as accessed the first time.
1983 */
1984 if (prev_index != index || offset != prev_offset)
1985 mark_page_accessed(page);
1986 prev_index = index;
1987
1988 /*
1989 * Ok, we have the page, and it's up-to-date, so
1990 * now we can copy it to user space...
1991 */
1992
1993 ret = copy_page_to_iter(page, offset, nr, iter);
1994 offset += ret;
1995 index += offset >> PAGE_SHIFT;
1996 offset &= ~PAGE_MASK;
1997 prev_offset = offset;
1998
1999 put_page(page);
2000 written += ret;
2001 if (!iov_iter_count(iter))
2002 goto out;
2003 if (ret < nr) {
2004 error = -EFAULT;
2005 goto out;
2006 }
2007 continue;
2008
2009 page_not_up_to_date:
2010 /* Get exclusive access to the page ... */
2011 error = lock_page_killable(page);
2012 if (unlikely(error))
2013 goto readpage_error;
2014
2015 page_not_up_to_date_locked:
2016 /* Did it get truncated before we got the lock? */
2017 if (!page->mapping) {
2018 unlock_page(page);
2019 put_page(page);
2020 continue;
2021 }
2022
2023 /* Did somebody else fill it already? */
2024 if (PageUptodate(page)) {
2025 unlock_page(page);
2026 goto page_ok;
2027 }
2028
2029 readpage:
2030 /*
2031 * A previous I/O error may have been due to temporary
2032 * failures, eg. multipath errors.
2033 * PG_error will be set again if readpage fails.
2034 */
2035 ClearPageError(page);
2036 /* Start the actual read. The read will unlock the page. */
2037 error = mapping->a_ops->readpage(filp, page);
2038
2039 if (unlikely(error)) {
2040 if (error == AOP_TRUNCATED_PAGE) {
2041 put_page(page);
2042 error = 0;
2043 goto find_page;
2044 }
2045 goto readpage_error;
2046 }
2047
2048 if (!PageUptodate(page)) {
2049 error = lock_page_killable(page);
2050 if (unlikely(error))
2051 goto readpage_error;
2052 if (!PageUptodate(page)) {
2053 if (page->mapping == NULL) {
2054 /*
2055 * invalidate_mapping_pages got it
2056 */
2057 unlock_page(page);
2058 put_page(page);
2059 goto find_page;
2060 }
2061 unlock_page(page);
2062 shrink_readahead_size_eio(filp, ra);
2063 error = -EIO;
2064 goto readpage_error;
2065 }
2066 unlock_page(page);
2067 }
2068
2069 goto page_ok;
2070
2071 readpage_error:
2072 /* UHHUH! A synchronous read error occurred. Report it */
2073 put_page(page);
2074 goto out;
2075
2076 no_cached_page:
2077 /*
2078 * Ok, it wasn't cached, so we need to create a new
2079 * page..
2080 */
2081 page = page_cache_alloc_cold(mapping);
2082 if (!page) {
2083 error = -ENOMEM;
2084 goto out;
2085 }
2086 error = add_to_page_cache_lru(page, mapping, index,
2087 mapping_gfp_constraint(mapping, GFP_KERNEL));
2088 if (error) {
2089 put_page(page);
2090 if (error == -EEXIST) {
2091 error = 0;
2092 goto find_page;
2093 }
2094 goto out;
2095 }
2096 goto readpage;
2097 }
2098
2099 out:
2100 ra->prev_pos = prev_index;
2101 ra->prev_pos <<= PAGE_SHIFT;
2102 ra->prev_pos |= prev_offset;
2103
2104 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2105 file_accessed(filp);
2106 return written ? written : error;
2107 }
2108
2109 /**
2110 * generic_file_read_iter - generic filesystem read routine
2111 * @iocb: kernel I/O control block
2112 * @iter: destination for the data read
2113 *
2114 * This is the "read_iter()" routine for all filesystems
2115 * that can use the page cache directly.
2116 */
2117 ssize_t
2118 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2119 {
2120 struct file *file = iocb->ki_filp;
2121 ssize_t retval = 0;
2122 size_t count = iov_iter_count(iter);
2123
2124 if (!count)
2125 goto out; /* skip atime */
2126
2127 if (iocb->ki_flags & IOCB_DIRECT) {
2128 struct address_space *mapping = file->f_mapping;
2129 struct inode *inode = mapping->host;
2130 loff_t size;
2131
2132 size = i_size_read(inode);
2133 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2134 iocb->ki_pos + count - 1);
2135 if (retval < 0)
2136 goto out;
2137
2138 file_accessed(file);
2139
2140 retval = mapping->a_ops->direct_IO(iocb, iter);
2141 if (retval >= 0) {
2142 iocb->ki_pos += retval;
2143 count -= retval;
2144 }
2145 iov_iter_revert(iter, count - iov_iter_count(iter));
2146
2147 /*
2148 * Btrfs can have a short DIO read if we encounter
2149 * compressed extents, so if there was an error, or if
2150 * we've already read everything we wanted to, or if
2151 * there was a short read because we hit EOF, go ahead
2152 * and return. Otherwise fallthrough to buffered io for
2153 * the rest of the read. Buffered reads will not work for
2154 * DAX files, so don't bother trying.
2155 */
2156 if (retval < 0 || !count || iocb->ki_pos >= size ||
2157 IS_DAX(inode))
2158 goto out;
2159 }
2160
2161 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2162 out:
2163 return retval;
2164 }
2165 EXPORT_SYMBOL(generic_file_read_iter);
2166
2167 #ifdef CONFIG_MMU
2168 /**
2169 * page_cache_read - adds requested page to the page cache if not already there
2170 * @file: file to read
2171 * @offset: page index
2172 * @gfp_mask: memory allocation flags
2173 *
2174 * This adds the requested page to the page cache if it isn't already there,
2175 * and schedules an I/O to read in its contents from disk.
2176 */
2177 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2178 {
2179 struct address_space *mapping = file->f_mapping;
2180 struct page *page;
2181 int ret;
2182
2183 do {
2184 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2185 if (!page)
2186 return -ENOMEM;
2187
2188 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2189 if (ret == 0)
2190 ret = mapping->a_ops->readpage(file, page);
2191 else if (ret == -EEXIST)
2192 ret = 0; /* losing race to add is OK */
2193
2194 put_page(page);
2195
2196 } while (ret == AOP_TRUNCATED_PAGE);
2197
2198 return ret;
2199 }
2200
2201 #define MMAP_LOTSAMISS (100)
2202
2203 /*
2204 * Synchronous readahead happens when we don't even find
2205 * a page in the page cache at all.
2206 */
2207 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2208 struct file_ra_state *ra,
2209 struct file *file,
2210 pgoff_t offset)
2211 {
2212 struct address_space *mapping = file->f_mapping;
2213
2214 /* If we don't want any read-ahead, don't bother */
2215 if (vma->vm_flags & VM_RAND_READ)
2216 return;
2217 if (!ra->ra_pages)
2218 return;
2219
2220 if (vma->vm_flags & VM_SEQ_READ) {
2221 page_cache_sync_readahead(mapping, ra, file, offset,
2222 ra->ra_pages);
2223 return;
2224 }
2225
2226 /* Avoid banging the cache line if not needed */
2227 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2228 ra->mmap_miss++;
2229
2230 /*
2231 * Do we miss much more than hit in this file? If so,
2232 * stop bothering with read-ahead. It will only hurt.
2233 */
2234 if (ra->mmap_miss > MMAP_LOTSAMISS)
2235 return;
2236
2237 /*
2238 * mmap read-around
2239 */
2240 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2241 ra->size = ra->ra_pages;
2242 ra->async_size = ra->ra_pages / 4;
2243 ra_submit(ra, mapping, file);
2244 }
2245
2246 /*
2247 * Asynchronous readahead happens when we find the page and PG_readahead,
2248 * so we want to possibly extend the readahead further..
2249 */
2250 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2251 struct file_ra_state *ra,
2252 struct file *file,
2253 struct page *page,
2254 pgoff_t offset)
2255 {
2256 struct address_space *mapping = file->f_mapping;
2257
2258 /* If we don't want any read-ahead, don't bother */
2259 if (vma->vm_flags & VM_RAND_READ)
2260 return;
2261 if (ra->mmap_miss > 0)
2262 ra->mmap_miss--;
2263 if (PageReadahead(page))
2264 page_cache_async_readahead(mapping, ra, file,
2265 page, offset, ra->ra_pages);
2266 }
2267
2268 /**
2269 * filemap_fault - read in file data for page fault handling
2270 * @vmf: struct vm_fault containing details of the fault
2271 *
2272 * filemap_fault() is invoked via the vma operations vector for a
2273 * mapped memory region to read in file data during a page fault.
2274 *
2275 * The goto's are kind of ugly, but this streamlines the normal case of having
2276 * it in the page cache, and handles the special cases reasonably without
2277 * having a lot of duplicated code.
2278 *
2279 * vma->vm_mm->mmap_sem must be held on entry.
2280 *
2281 * If our return value has VM_FAULT_RETRY set, it's because
2282 * lock_page_or_retry() returned 0.
2283 * The mmap_sem has usually been released in this case.
2284 * See __lock_page_or_retry() for the exception.
2285 *
2286 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2287 * has not been released.
2288 *
2289 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2290 */
2291 int filemap_fault(struct vm_fault *vmf)
2292 {
2293 int error;
2294 struct file *file = vmf->vma->vm_file;
2295 struct address_space *mapping = file->f_mapping;
2296 struct file_ra_state *ra = &file->f_ra;
2297 struct inode *inode = mapping->host;
2298 pgoff_t offset = vmf->pgoff;
2299 pgoff_t max_off;
2300 struct page *page;
2301 int ret = 0;
2302
2303 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2304 if (unlikely(offset >= max_off))
2305 return VM_FAULT_SIGBUS;
2306
2307 /*
2308 * Do we have something in the page cache already?
2309 */
2310 page = find_get_page(mapping, offset);
2311 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2312 /*
2313 * We found the page, so try async readahead before
2314 * waiting for the lock.
2315 */
2316 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2317 } else if (!page) {
2318 /* No page in the page cache at all */
2319 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2320 count_vm_event(PGMAJFAULT);
2321 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2322 ret = VM_FAULT_MAJOR;
2323 retry_find:
2324 page = find_get_page(mapping, offset);
2325 if (!page)
2326 goto no_cached_page;
2327 }
2328
2329 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2330 put_page(page);
2331 return ret | VM_FAULT_RETRY;
2332 }
2333
2334 /* Did it get truncated? */
2335 if (unlikely(page->mapping != mapping)) {
2336 unlock_page(page);
2337 put_page(page);
2338 goto retry_find;
2339 }
2340 VM_BUG_ON_PAGE(page->index != offset, page);
2341
2342 /*
2343 * We have a locked page in the page cache, now we need to check
2344 * that it's up-to-date. If not, it is going to be due to an error.
2345 */
2346 if (unlikely(!PageUptodate(page)))
2347 goto page_not_uptodate;
2348
2349 /*
2350 * Found the page and have a reference on it.
2351 * We must recheck i_size under page lock.
2352 */
2353 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2354 if (unlikely(offset >= max_off)) {
2355 unlock_page(page);
2356 put_page(page);
2357 return VM_FAULT_SIGBUS;
2358 }
2359
2360 vmf->page = page;
2361 return ret | VM_FAULT_LOCKED;
2362
2363 no_cached_page:
2364 /*
2365 * We're only likely to ever get here if MADV_RANDOM is in
2366 * effect.
2367 */
2368 error = page_cache_read(file, offset, vmf->gfp_mask);
2369
2370 /*
2371 * The page we want has now been added to the page cache.
2372 * In the unlikely event that someone removed it in the
2373 * meantime, we'll just come back here and read it again.
2374 */
2375 if (error >= 0)
2376 goto retry_find;
2377
2378 /*
2379 * An error return from page_cache_read can result if the
2380 * system is low on memory, or a problem occurs while trying
2381 * to schedule I/O.
2382 */
2383 if (error == -ENOMEM)
2384 return VM_FAULT_OOM;
2385 return VM_FAULT_SIGBUS;
2386
2387 page_not_uptodate:
2388 /*
2389 * Umm, take care of errors if the page isn't up-to-date.
2390 * Try to re-read it _once_. We do this synchronously,
2391 * because there really aren't any performance issues here
2392 * and we need to check for errors.
2393 */
2394 ClearPageError(page);
2395 error = mapping->a_ops->readpage(file, page);
2396 if (!error) {
2397 wait_on_page_locked(page);
2398 if (!PageUptodate(page))
2399 error = -EIO;
2400 }
2401 put_page(page);
2402
2403 if (!error || error == AOP_TRUNCATED_PAGE)
2404 goto retry_find;
2405
2406 /* Things didn't work out. Return zero to tell the mm layer so. */
2407 shrink_readahead_size_eio(file, ra);
2408 return VM_FAULT_SIGBUS;
2409 }
2410 EXPORT_SYMBOL(filemap_fault);
2411
2412 void filemap_map_pages(struct vm_fault *vmf,
2413 pgoff_t start_pgoff, pgoff_t end_pgoff)
2414 {
2415 struct radix_tree_iter iter;
2416 void **slot;
2417 struct file *file = vmf->vma->vm_file;
2418 struct address_space *mapping = file->f_mapping;
2419 pgoff_t last_pgoff = start_pgoff;
2420 unsigned long max_idx;
2421 struct page *head, *page;
2422
2423 rcu_read_lock();
2424 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2425 start_pgoff) {
2426 if (iter.index > end_pgoff)
2427 break;
2428 repeat:
2429 page = radix_tree_deref_slot(slot);
2430 if (unlikely(!page))
2431 goto next;
2432 if (radix_tree_exception(page)) {
2433 if (radix_tree_deref_retry(page)) {
2434 slot = radix_tree_iter_retry(&iter);
2435 continue;
2436 }
2437 goto next;
2438 }
2439
2440 head = compound_head(page);
2441 if (!page_cache_get_speculative(head))
2442 goto repeat;
2443
2444 /* The page was split under us? */
2445 if (compound_head(page) != head) {
2446 put_page(head);
2447 goto repeat;
2448 }
2449
2450 /* Has the page moved? */
2451 if (unlikely(page != *slot)) {
2452 put_page(head);
2453 goto repeat;
2454 }
2455
2456 if (!PageUptodate(page) ||
2457 PageReadahead(page) ||
2458 PageHWPoison(page))
2459 goto skip;
2460 if (!trylock_page(page))
2461 goto skip;
2462
2463 if (page->mapping != mapping || !PageUptodate(page))
2464 goto unlock;
2465
2466 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2467 if (page->index >= max_idx)
2468 goto unlock;
2469
2470 if (file->f_ra.mmap_miss > 0)
2471 file->f_ra.mmap_miss--;
2472
2473 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2474 if (vmf->pte)
2475 vmf->pte += iter.index - last_pgoff;
2476 last_pgoff = iter.index;
2477 if (alloc_set_pte(vmf, NULL, page))
2478 goto unlock;
2479 unlock_page(page);
2480 goto next;
2481 unlock:
2482 unlock_page(page);
2483 skip:
2484 put_page(page);
2485 next:
2486 /* Huge page is mapped? No need to proceed. */
2487 if (pmd_trans_huge(*vmf->pmd))
2488 break;
2489 if (iter.index == end_pgoff)
2490 break;
2491 }
2492 rcu_read_unlock();
2493 }
2494 EXPORT_SYMBOL(filemap_map_pages);
2495
2496 int filemap_page_mkwrite(struct vm_fault *vmf)
2497 {
2498 struct page *page = vmf->page;
2499 struct inode *inode = file_inode(vmf->vma->vm_file);
2500 int ret = VM_FAULT_LOCKED;
2501
2502 sb_start_pagefault(inode->i_sb);
2503 file_update_time(vmf->vma->vm_file);
2504 lock_page(page);
2505 if (page->mapping != inode->i_mapping) {
2506 unlock_page(page);
2507 ret = VM_FAULT_NOPAGE;
2508 goto out;
2509 }
2510 /*
2511 * We mark the page dirty already here so that when freeze is in
2512 * progress, we are guaranteed that writeback during freezing will
2513 * see the dirty page and writeprotect it again.
2514 */
2515 set_page_dirty(page);
2516 wait_for_stable_page(page);
2517 out:
2518 sb_end_pagefault(inode->i_sb);
2519 return ret;
2520 }
2521 EXPORT_SYMBOL(filemap_page_mkwrite);
2522
2523 const struct vm_operations_struct generic_file_vm_ops = {
2524 .fault = filemap_fault,
2525 .map_pages = filemap_map_pages,
2526 .page_mkwrite = filemap_page_mkwrite,
2527 };
2528
2529 /* This is used for a general mmap of a disk file */
2530
2531 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2532 {
2533 struct address_space *mapping = file->f_mapping;
2534
2535 if (!mapping->a_ops->readpage)
2536 return -ENOEXEC;
2537 file_accessed(file);
2538 vma->vm_ops = &generic_file_vm_ops;
2539 return 0;
2540 }
2541
2542 /*
2543 * This is for filesystems which do not implement ->writepage.
2544 */
2545 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2546 {
2547 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2548 return -EINVAL;
2549 return generic_file_mmap(file, vma);
2550 }
2551 #else
2552 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2553 {
2554 return -ENOSYS;
2555 }
2556 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2557 {
2558 return -ENOSYS;
2559 }
2560 #endif /* CONFIG_MMU */
2561
2562 EXPORT_SYMBOL(generic_file_mmap);
2563 EXPORT_SYMBOL(generic_file_readonly_mmap);
2564
2565 static struct page *wait_on_page_read(struct page *page)
2566 {
2567 if (!IS_ERR(page)) {
2568 wait_on_page_locked(page);
2569 if (!PageUptodate(page)) {
2570 put_page(page);
2571 page = ERR_PTR(-EIO);
2572 }
2573 }
2574 return page;
2575 }
2576
2577 static struct page *do_read_cache_page(struct address_space *mapping,
2578 pgoff_t index,
2579 int (*filler)(void *, struct page *),
2580 void *data,
2581 gfp_t gfp)
2582 {
2583 struct page *page;
2584 int err;
2585 repeat:
2586 page = find_get_page(mapping, index);
2587 if (!page) {
2588 page = __page_cache_alloc(gfp | __GFP_COLD);
2589 if (!page)
2590 return ERR_PTR(-ENOMEM);
2591 err = add_to_page_cache_lru(page, mapping, index, gfp);
2592 if (unlikely(err)) {
2593 put_page(page);
2594 if (err == -EEXIST)
2595 goto repeat;
2596 /* Presumably ENOMEM for radix tree node */
2597 return ERR_PTR(err);
2598 }
2599
2600 filler:
2601 err = filler(data, page);
2602 if (err < 0) {
2603 put_page(page);
2604 return ERR_PTR(err);
2605 }
2606
2607 page = wait_on_page_read(page);
2608 if (IS_ERR(page))
2609 return page;
2610 goto out;
2611 }
2612 if (PageUptodate(page))
2613 goto out;
2614
2615 /*
2616 * Page is not up to date and may be locked due one of the following
2617 * case a: Page is being filled and the page lock is held
2618 * case b: Read/write error clearing the page uptodate status
2619 * case c: Truncation in progress (page locked)
2620 * case d: Reclaim in progress
2621 *
2622 * Case a, the page will be up to date when the page is unlocked.
2623 * There is no need to serialise on the page lock here as the page
2624 * is pinned so the lock gives no additional protection. Even if the
2625 * the page is truncated, the data is still valid if PageUptodate as
2626 * it's a race vs truncate race.
2627 * Case b, the page will not be up to date
2628 * Case c, the page may be truncated but in itself, the data may still
2629 * be valid after IO completes as it's a read vs truncate race. The
2630 * operation must restart if the page is not uptodate on unlock but
2631 * otherwise serialising on page lock to stabilise the mapping gives
2632 * no additional guarantees to the caller as the page lock is
2633 * released before return.
2634 * Case d, similar to truncation. If reclaim holds the page lock, it
2635 * will be a race with remove_mapping that determines if the mapping
2636 * is valid on unlock but otherwise the data is valid and there is
2637 * no need to serialise with page lock.
2638 *
2639 * As the page lock gives no additional guarantee, we optimistically
2640 * wait on the page to be unlocked and check if it's up to date and
2641 * use the page if it is. Otherwise, the page lock is required to
2642 * distinguish between the different cases. The motivation is that we
2643 * avoid spurious serialisations and wakeups when multiple processes
2644 * wait on the same page for IO to complete.
2645 */
2646 wait_on_page_locked(page);
2647 if (PageUptodate(page))
2648 goto out;
2649
2650 /* Distinguish between all the cases under the safety of the lock */
2651 lock_page(page);
2652
2653 /* Case c or d, restart the operation */
2654 if (!page->mapping) {
2655 unlock_page(page);
2656 put_page(page);
2657 goto repeat;
2658 }
2659
2660 /* Someone else locked and filled the page in a very small window */
2661 if (PageUptodate(page)) {
2662 unlock_page(page);
2663 goto out;
2664 }
2665 goto filler;
2666
2667 out:
2668 mark_page_accessed(page);
2669 return page;
2670 }
2671
2672 /**
2673 * read_cache_page - read into page cache, fill it if needed
2674 * @mapping: the page's address_space
2675 * @index: the page index
2676 * @filler: function to perform the read
2677 * @data: first arg to filler(data, page) function, often left as NULL
2678 *
2679 * Read into the page cache. If a page already exists, and PageUptodate() is
2680 * not set, try to fill the page and wait for it to become unlocked.
2681 *
2682 * If the page does not get brought uptodate, return -EIO.
2683 */
2684 struct page *read_cache_page(struct address_space *mapping,
2685 pgoff_t index,
2686 int (*filler)(void *, struct page *),
2687 void *data)
2688 {
2689 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2690 }
2691 EXPORT_SYMBOL(read_cache_page);
2692
2693 /**
2694 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2695 * @mapping: the page's address_space
2696 * @index: the page index
2697 * @gfp: the page allocator flags to use if allocating
2698 *
2699 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2700 * any new page allocations done using the specified allocation flags.
2701 *
2702 * If the page does not get brought uptodate, return -EIO.
2703 */
2704 struct page *read_cache_page_gfp(struct address_space *mapping,
2705 pgoff_t index,
2706 gfp_t gfp)
2707 {
2708 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2709
2710 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2711 }
2712 EXPORT_SYMBOL(read_cache_page_gfp);
2713
2714 /*
2715 * Performs necessary checks before doing a write
2716 *
2717 * Can adjust writing position or amount of bytes to write.
2718 * Returns appropriate error code that caller should return or
2719 * zero in case that write should be allowed.
2720 */
2721 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2722 {
2723 struct file *file = iocb->ki_filp;
2724 struct inode *inode = file->f_mapping->host;
2725 unsigned long limit = rlimit(RLIMIT_FSIZE);
2726 loff_t pos;
2727
2728 if (!iov_iter_count(from))
2729 return 0;
2730
2731 /* FIXME: this is for backwards compatibility with 2.4 */
2732 if (iocb->ki_flags & IOCB_APPEND)
2733 iocb->ki_pos = i_size_read(inode);
2734
2735 pos = iocb->ki_pos;
2736
2737 if (limit != RLIM_INFINITY) {
2738 if (iocb->ki_pos >= limit) {
2739 send_sig(SIGXFSZ, current, 0);
2740 return -EFBIG;
2741 }
2742 iov_iter_truncate(from, limit - (unsigned long)pos);
2743 }
2744
2745 /*
2746 * LFS rule
2747 */
2748 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2749 !(file->f_flags & O_LARGEFILE))) {
2750 if (pos >= MAX_NON_LFS)
2751 return -EFBIG;
2752 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2753 }
2754
2755 /*
2756 * Are we about to exceed the fs block limit ?
2757 *
2758 * If we have written data it becomes a short write. If we have
2759 * exceeded without writing data we send a signal and return EFBIG.
2760 * Linus frestrict idea will clean these up nicely..
2761 */
2762 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2763 return -EFBIG;
2764
2765 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2766 return iov_iter_count(from);
2767 }
2768 EXPORT_SYMBOL(generic_write_checks);
2769
2770 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2771 loff_t pos, unsigned len, unsigned flags,
2772 struct page **pagep, void **fsdata)
2773 {
2774 const struct address_space_operations *aops = mapping->a_ops;
2775
2776 return aops->write_begin(file, mapping, pos, len, flags,
2777 pagep, fsdata);
2778 }
2779 EXPORT_SYMBOL(pagecache_write_begin);
2780
2781 int pagecache_write_end(struct file *file, struct address_space *mapping,
2782 loff_t pos, unsigned len, unsigned copied,
2783 struct page *page, void *fsdata)
2784 {
2785 const struct address_space_operations *aops = mapping->a_ops;
2786
2787 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2788 }
2789 EXPORT_SYMBOL(pagecache_write_end);
2790
2791 ssize_t
2792 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2793 {
2794 struct file *file = iocb->ki_filp;
2795 struct address_space *mapping = file->f_mapping;
2796 struct inode *inode = mapping->host;
2797 loff_t pos = iocb->ki_pos;
2798 ssize_t written;
2799 size_t write_len;
2800 pgoff_t end;
2801
2802 write_len = iov_iter_count(from);
2803 end = (pos + write_len - 1) >> PAGE_SHIFT;
2804
2805 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2806 if (written)
2807 goto out;
2808
2809 /*
2810 * After a write we want buffered reads to be sure to go to disk to get
2811 * the new data. We invalidate clean cached page from the region we're
2812 * about to write. We do this *before* the write so that we can return
2813 * without clobbering -EIOCBQUEUED from ->direct_IO().
2814 */
2815 written = invalidate_inode_pages2_range(mapping,
2816 pos >> PAGE_SHIFT, end);
2817 /*
2818 * If a page can not be invalidated, return 0 to fall back
2819 * to buffered write.
2820 */
2821 if (written) {
2822 if (written == -EBUSY)
2823 return 0;
2824 goto out;
2825 }
2826
2827 written = mapping->a_ops->direct_IO(iocb, from);
2828
2829 /*
2830 * Finally, try again to invalidate clean pages which might have been
2831 * cached by non-direct readahead, or faulted in by get_user_pages()
2832 * if the source of the write was an mmap'ed region of the file
2833 * we're writing. Either one is a pretty crazy thing to do,
2834 * so we don't support it 100%. If this invalidation
2835 * fails, tough, the write still worked...
2836 */
2837 invalidate_inode_pages2_range(mapping,
2838 pos >> PAGE_SHIFT, end);
2839
2840 if (written > 0) {
2841 pos += written;
2842 write_len -= written;
2843 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2844 i_size_write(inode, pos);
2845 mark_inode_dirty(inode);
2846 }
2847 iocb->ki_pos = pos;
2848 }
2849 iov_iter_revert(from, write_len - iov_iter_count(from));
2850 out:
2851 return written;
2852 }
2853 EXPORT_SYMBOL(generic_file_direct_write);
2854
2855 /*
2856 * Find or create a page at the given pagecache position. Return the locked
2857 * page. This function is specifically for buffered writes.
2858 */
2859 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2860 pgoff_t index, unsigned flags)
2861 {
2862 struct page *page;
2863 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2864
2865 if (flags & AOP_FLAG_NOFS)
2866 fgp_flags |= FGP_NOFS;
2867
2868 page = pagecache_get_page(mapping, index, fgp_flags,
2869 mapping_gfp_mask(mapping));
2870 if (page)
2871 wait_for_stable_page(page);
2872
2873 return page;
2874 }
2875 EXPORT_SYMBOL(grab_cache_page_write_begin);
2876
2877 ssize_t generic_perform_write(struct file *file,
2878 struct iov_iter *i, loff_t pos)
2879 {
2880 struct address_space *mapping = file->f_mapping;
2881 const struct address_space_operations *a_ops = mapping->a_ops;
2882 long status = 0;
2883 ssize_t written = 0;
2884 unsigned int flags = 0;
2885
2886 do {
2887 struct page *page;
2888 unsigned long offset; /* Offset into pagecache page */
2889 unsigned long bytes; /* Bytes to write to page */
2890 size_t copied; /* Bytes copied from user */
2891 void *fsdata;
2892
2893 offset = (pos & (PAGE_SIZE - 1));
2894 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2895 iov_iter_count(i));
2896
2897 again:
2898 /*
2899 * Bring in the user page that we will copy from _first_.
2900 * Otherwise there's a nasty deadlock on copying from the
2901 * same page as we're writing to, without it being marked
2902 * up-to-date.
2903 *
2904 * Not only is this an optimisation, but it is also required
2905 * to check that the address is actually valid, when atomic
2906 * usercopies are used, below.
2907 */
2908 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2909 status = -EFAULT;
2910 break;
2911 }
2912
2913 if (fatal_signal_pending(current)) {
2914 status = -EINTR;
2915 break;
2916 }
2917
2918 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2919 &page, &fsdata);
2920 if (unlikely(status < 0))
2921 break;
2922
2923 if (mapping_writably_mapped(mapping))
2924 flush_dcache_page(page);
2925
2926 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2927 flush_dcache_page(page);
2928
2929 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2930 page, fsdata);
2931 if (unlikely(status < 0))
2932 break;
2933 copied = status;
2934
2935 cond_resched();
2936
2937 iov_iter_advance(i, copied);
2938 if (unlikely(copied == 0)) {
2939 /*
2940 * If we were unable to copy any data at all, we must
2941 * fall back to a single segment length write.
2942 *
2943 * If we didn't fallback here, we could livelock
2944 * because not all segments in the iov can be copied at
2945 * once without a pagefault.
2946 */
2947 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2948 iov_iter_single_seg_count(i));
2949 goto again;
2950 }
2951 pos += copied;
2952 written += copied;
2953
2954 balance_dirty_pages_ratelimited(mapping);
2955 } while (iov_iter_count(i));
2956
2957 return written ? written : status;
2958 }
2959 EXPORT_SYMBOL(generic_perform_write);
2960
2961 /**
2962 * __generic_file_write_iter - write data to a file
2963 * @iocb: IO state structure (file, offset, etc.)
2964 * @from: iov_iter with data to write
2965 *
2966 * This function does all the work needed for actually writing data to a
2967 * file. It does all basic checks, removes SUID from the file, updates
2968 * modification times and calls proper subroutines depending on whether we
2969 * do direct IO or a standard buffered write.
2970 *
2971 * It expects i_mutex to be grabbed unless we work on a block device or similar
2972 * object which does not need locking at all.
2973 *
2974 * This function does *not* take care of syncing data in case of O_SYNC write.
2975 * A caller has to handle it. This is mainly due to the fact that we want to
2976 * avoid syncing under i_mutex.
2977 */
2978 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2979 {
2980 struct file *file = iocb->ki_filp;
2981 struct address_space * mapping = file->f_mapping;
2982 struct inode *inode = mapping->host;
2983 ssize_t written = 0;
2984 ssize_t err;
2985 ssize_t status;
2986
2987 /* We can write back this queue in page reclaim */
2988 current->backing_dev_info = inode_to_bdi(inode);
2989 err = file_remove_privs(file);
2990 if (err)
2991 goto out;
2992
2993 err = file_update_time(file);
2994 if (err)
2995 goto out;
2996
2997 if (iocb->ki_flags & IOCB_DIRECT) {
2998 loff_t pos, endbyte;
2999
3000 written = generic_file_direct_write(iocb, from);
3001 /*
3002 * If the write stopped short of completing, fall back to
3003 * buffered writes. Some filesystems do this for writes to
3004 * holes, for example. For DAX files, a buffered write will
3005 * not succeed (even if it did, DAX does not handle dirty
3006 * page-cache pages correctly).
3007 */
3008 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3009 goto out;
3010
3011 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3012 /*
3013 * If generic_perform_write() returned a synchronous error
3014 * then we want to return the number of bytes which were
3015 * direct-written, or the error code if that was zero. Note
3016 * that this differs from normal direct-io semantics, which
3017 * will return -EFOO even if some bytes were written.
3018 */
3019 if (unlikely(status < 0)) {
3020 err = status;
3021 goto out;
3022 }
3023 /*
3024 * We need to ensure that the page cache pages are written to
3025 * disk and invalidated to preserve the expected O_DIRECT
3026 * semantics.
3027 */
3028 endbyte = pos + status - 1;
3029 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3030 if (err == 0) {
3031 iocb->ki_pos = endbyte + 1;
3032 written += status;
3033 invalidate_mapping_pages(mapping,
3034 pos >> PAGE_SHIFT,
3035 endbyte >> PAGE_SHIFT);
3036 } else {
3037 /*
3038 * We don't know how much we wrote, so just return
3039 * the number of bytes which were direct-written
3040 */
3041 }
3042 } else {
3043 written = generic_perform_write(file, from, iocb->ki_pos);
3044 if (likely(written > 0))
3045 iocb->ki_pos += written;
3046 }
3047 out:
3048 current->backing_dev_info = NULL;
3049 return written ? written : err;
3050 }
3051 EXPORT_SYMBOL(__generic_file_write_iter);
3052
3053 /**
3054 * generic_file_write_iter - write data to a file
3055 * @iocb: IO state structure
3056 * @from: iov_iter with data to write
3057 *
3058 * This is a wrapper around __generic_file_write_iter() to be used by most
3059 * filesystems. It takes care of syncing the file in case of O_SYNC file
3060 * and acquires i_mutex as needed.
3061 */
3062 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3063 {
3064 struct file *file = iocb->ki_filp;
3065 struct inode *inode = file->f_mapping->host;
3066 ssize_t ret;
3067
3068 inode_lock(inode);
3069 ret = generic_write_checks(iocb, from);
3070 if (ret > 0)
3071 ret = __generic_file_write_iter(iocb, from);
3072 inode_unlock(inode);
3073
3074 if (ret > 0)
3075 ret = generic_write_sync(iocb, ret);
3076 return ret;
3077 }
3078 EXPORT_SYMBOL(generic_file_write_iter);
3079
3080 /**
3081 * try_to_release_page() - release old fs-specific metadata on a page
3082 *
3083 * @page: the page which the kernel is trying to free
3084 * @gfp_mask: memory allocation flags (and I/O mode)
3085 *
3086 * The address_space is to try to release any data against the page
3087 * (presumably at page->private). If the release was successful, return '1'.
3088 * Otherwise return zero.
3089 *
3090 * This may also be called if PG_fscache is set on a page, indicating that the
3091 * page is known to the local caching routines.
3092 *
3093 * The @gfp_mask argument specifies whether I/O may be performed to release
3094 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3095 *
3096 */
3097 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3098 {
3099 struct address_space * const mapping = page->mapping;
3100
3101 BUG_ON(!PageLocked(page));
3102 if (PageWriteback(page))
3103 return 0;
3104
3105 if (mapping && mapping->a_ops->releasepage)
3106 return mapping->a_ops->releasepage(page, gfp_mask);
3107 return try_to_free_buffers(page);
3108 }
3109
3110 EXPORT_SYMBOL(try_to_release_page);