]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/filemap.c
drm/i915/display/psr: Disable DC3CO when the PSR2 is used
[mirror_ubuntu-hirsute-kernel.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include "internal.h"
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/filemap.h>
49
50 /*
51 * FIXME: remove all knowledge of the buffer layer from the core VM
52 */
53 #include <linux/buffer_head.h> /* for try_to_free_buffers */
54
55 #include <asm/mman.h>
56
57 /*
58 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * though.
60 *
61 * Shared mappings now work. 15.8.1995 Bruno.
62 *
63 * finished 'unifying' the page and buffer cache and SMP-threaded the
64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65 *
66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
67 */
68
69 /*
70 * Lock ordering:
71 *
72 * ->i_mmap_rwsem (truncate_pagecache)
73 * ->private_lock (__free_pte->__set_page_dirty_buffers)
74 * ->swap_lock (exclusive_swap_page, others)
75 * ->i_pages lock
76 *
77 * ->i_mutex
78 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
79 *
80 * ->mmap_lock
81 * ->i_mmap_rwsem
82 * ->page_table_lock or pte_lock (various, mainly in memory.c)
83 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
84 *
85 * ->mmap_lock
86 * ->lock_page (access_process_vm)
87 *
88 * ->i_mutex (generic_perform_write)
89 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
90 *
91 * bdi->wb.list_lock
92 * sb_lock (fs/fs-writeback.c)
93 * ->i_pages lock (__sync_single_inode)
94 *
95 * ->i_mmap_rwsem
96 * ->anon_vma.lock (vma_adjust)
97 *
98 * ->anon_vma.lock
99 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
100 *
101 * ->page_table_lock or pte_lock
102 * ->swap_lock (try_to_unmap_one)
103 * ->private_lock (try_to_unmap_one)
104 * ->i_pages lock (try_to_unmap_one)
105 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
106 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
107 * ->private_lock (page_remove_rmap->set_page_dirty)
108 * ->i_pages lock (page_remove_rmap->set_page_dirty)
109 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
110 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
111 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
112 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
113 * ->inode->i_lock (zap_pte_range->set_page_dirty)
114 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 *
116 * ->i_mmap_rwsem
117 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 */
119
120 static void page_cache_delete(struct address_space *mapping,
121 struct page *page, void *shadow)
122 {
123 XA_STATE(xas, &mapping->i_pages, page->index);
124 unsigned int nr = 1;
125
126 mapping_set_update(&xas, mapping);
127
128 /* hugetlb pages are represented by a single entry in the xarray */
129 if (!PageHuge(page)) {
130 xas_set_order(&xas, page->index, compound_order(page));
131 nr = compound_nr(page);
132 }
133
134 VM_BUG_ON_PAGE(!PageLocked(page), page);
135 VM_BUG_ON_PAGE(PageTail(page), page);
136 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
137
138 xas_store(&xas, shadow);
139 xas_init_marks(&xas);
140
141 page->mapping = NULL;
142 /* Leave page->index set: truncation lookup relies upon it */
143
144 if (shadow) {
145 mapping->nrexceptional += nr;
146 /*
147 * Make sure the nrexceptional update is committed before
148 * the nrpages update so that final truncate racing
149 * with reclaim does not see both counters 0 at the
150 * same time and miss a shadow entry.
151 */
152 smp_wmb();
153 }
154 mapping->nrpages -= nr;
155 }
156
157 static void unaccount_page_cache_page(struct address_space *mapping,
158 struct page *page)
159 {
160 int nr;
161
162 /*
163 * if we're uptodate, flush out into the cleancache, otherwise
164 * invalidate any existing cleancache entries. We can't leave
165 * stale data around in the cleancache once our page is gone
166 */
167 if (PageUptodate(page) && PageMappedToDisk(page))
168 cleancache_put_page(page);
169 else
170 cleancache_invalidate_page(mapping, page);
171
172 VM_BUG_ON_PAGE(PageTail(page), page);
173 VM_BUG_ON_PAGE(page_mapped(page), page);
174 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 int mapcount;
176
177 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
178 current->comm, page_to_pfn(page));
179 dump_page(page, "still mapped when deleted");
180 dump_stack();
181 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
182
183 mapcount = page_mapcount(page);
184 if (mapping_exiting(mapping) &&
185 page_count(page) >= mapcount + 2) {
186 /*
187 * All vmas have already been torn down, so it's
188 * a good bet that actually the page is unmapped,
189 * and we'd prefer not to leak it: if we're wrong,
190 * some other bad page check should catch it later.
191 */
192 page_mapcount_reset(page);
193 page_ref_sub(page, mapcount);
194 }
195 }
196
197 /* hugetlb pages do not participate in page cache accounting. */
198 if (PageHuge(page))
199 return;
200
201 nr = thp_nr_pages(page);
202
203 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204 if (PageSwapBacked(page)) {
205 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 if (PageTransHuge(page))
207 __dec_lruvec_page_state(page, NR_SHMEM_THPS);
208 } else if (PageTransHuge(page)) {
209 __dec_lruvec_page_state(page, NR_FILE_THPS);
210 filemap_nr_thps_dec(mapping);
211 }
212
213 /*
214 * At this point page must be either written or cleaned by
215 * truncate. Dirty page here signals a bug and loss of
216 * unwritten data.
217 *
218 * This fixes dirty accounting after removing the page entirely
219 * but leaves PageDirty set: it has no effect for truncated
220 * page and anyway will be cleared before returning page into
221 * buddy allocator.
222 */
223 if (WARN_ON_ONCE(PageDirty(page)))
224 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 }
226
227 /*
228 * Delete a page from the page cache and free it. Caller has to make
229 * sure the page is locked and that nobody else uses it - or that usage
230 * is safe. The caller must hold the i_pages lock.
231 */
232 void __delete_from_page_cache(struct page *page, void *shadow)
233 {
234 struct address_space *mapping = page->mapping;
235
236 trace_mm_filemap_delete_from_page_cache(page);
237
238 unaccount_page_cache_page(mapping, page);
239 page_cache_delete(mapping, page, shadow);
240 }
241
242 static void page_cache_free_page(struct address_space *mapping,
243 struct page *page)
244 {
245 void (*freepage)(struct page *);
246
247 freepage = mapping->a_ops->freepage;
248 if (freepage)
249 freepage(page);
250
251 if (PageTransHuge(page) && !PageHuge(page)) {
252 page_ref_sub(page, thp_nr_pages(page));
253 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
254 } else {
255 put_page(page);
256 }
257 }
258
259 /**
260 * delete_from_page_cache - delete page from page cache
261 * @page: the page which the kernel is trying to remove from page cache
262 *
263 * This must be called only on pages that have been verified to be in the page
264 * cache and locked. It will never put the page into the free list, the caller
265 * has a reference on the page.
266 */
267 void delete_from_page_cache(struct page *page)
268 {
269 struct address_space *mapping = page_mapping(page);
270 unsigned long flags;
271
272 BUG_ON(!PageLocked(page));
273 xa_lock_irqsave(&mapping->i_pages, flags);
274 __delete_from_page_cache(page, NULL);
275 xa_unlock_irqrestore(&mapping->i_pages, flags);
276
277 page_cache_free_page(mapping, page);
278 }
279 EXPORT_SYMBOL(delete_from_page_cache);
280
281 /*
282 * page_cache_delete_batch - delete several pages from page cache
283 * @mapping: the mapping to which pages belong
284 * @pvec: pagevec with pages to delete
285 *
286 * The function walks over mapping->i_pages and removes pages passed in @pvec
287 * from the mapping. The function expects @pvec to be sorted by page index
288 * and is optimised for it to be dense.
289 * It tolerates holes in @pvec (mapping entries at those indices are not
290 * modified). The function expects only THP head pages to be present in the
291 * @pvec.
292 *
293 * The function expects the i_pages lock to be held.
294 */
295 static void page_cache_delete_batch(struct address_space *mapping,
296 struct pagevec *pvec)
297 {
298 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
299 int total_pages = 0;
300 int i = 0;
301 struct page *page;
302
303 mapping_set_update(&xas, mapping);
304 xas_for_each(&xas, page, ULONG_MAX) {
305 if (i >= pagevec_count(pvec))
306 break;
307
308 /* A swap/dax/shadow entry got inserted? Skip it. */
309 if (xa_is_value(page))
310 continue;
311 /*
312 * A page got inserted in our range? Skip it. We have our
313 * pages locked so they are protected from being removed.
314 * If we see a page whose index is higher than ours, it
315 * means our page has been removed, which shouldn't be
316 * possible because we're holding the PageLock.
317 */
318 if (page != pvec->pages[i]) {
319 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
320 page);
321 continue;
322 }
323
324 WARN_ON_ONCE(!PageLocked(page));
325
326 if (page->index == xas.xa_index)
327 page->mapping = NULL;
328 /* Leave page->index set: truncation lookup relies on it */
329
330 /*
331 * Move to the next page in the vector if this is a regular
332 * page or the index is of the last sub-page of this compound
333 * page.
334 */
335 if (page->index + compound_nr(page) - 1 == xas.xa_index)
336 i++;
337 xas_store(&xas, NULL);
338 total_pages++;
339 }
340 mapping->nrpages -= total_pages;
341 }
342
343 void delete_from_page_cache_batch(struct address_space *mapping,
344 struct pagevec *pvec)
345 {
346 int i;
347 unsigned long flags;
348
349 if (!pagevec_count(pvec))
350 return;
351
352 xa_lock_irqsave(&mapping->i_pages, flags);
353 for (i = 0; i < pagevec_count(pvec); i++) {
354 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
355
356 unaccount_page_cache_page(mapping, pvec->pages[i]);
357 }
358 page_cache_delete_batch(mapping, pvec);
359 xa_unlock_irqrestore(&mapping->i_pages, flags);
360
361 for (i = 0; i < pagevec_count(pvec); i++)
362 page_cache_free_page(mapping, pvec->pages[i]);
363 }
364
365 int filemap_check_errors(struct address_space *mapping)
366 {
367 int ret = 0;
368 /* Check for outstanding write errors */
369 if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371 ret = -ENOSPC;
372 if (test_bit(AS_EIO, &mapping->flags) &&
373 test_and_clear_bit(AS_EIO, &mapping->flags))
374 ret = -EIO;
375 return ret;
376 }
377 EXPORT_SYMBOL(filemap_check_errors);
378
379 static int filemap_check_and_keep_errors(struct address_space *mapping)
380 {
381 /* Check for outstanding write errors */
382 if (test_bit(AS_EIO, &mapping->flags))
383 return -EIO;
384 if (test_bit(AS_ENOSPC, &mapping->flags))
385 return -ENOSPC;
386 return 0;
387 }
388
389 /**
390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391 * @mapping: address space structure to write
392 * @start: offset in bytes where the range starts
393 * @end: offset in bytes where the range ends (inclusive)
394 * @sync_mode: enable synchronous operation
395 *
396 * Start writeback against all of a mapping's dirty pages that lie
397 * within the byte offsets <start, end> inclusive.
398 *
399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400 * opposed to a regular memory cleansing writeback. The difference between
401 * these two operations is that if a dirty page/buffer is encountered, it must
402 * be waited upon, and not just skipped over.
403 *
404 * Return: %0 on success, negative error code otherwise.
405 */
406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 loff_t end, int sync_mode)
408 {
409 int ret;
410 struct writeback_control wbc = {
411 .sync_mode = sync_mode,
412 .nr_to_write = LONG_MAX,
413 .range_start = start,
414 .range_end = end,
415 };
416
417 if (!mapping_can_writeback(mapping) ||
418 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
419 return 0;
420
421 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
422 ret = do_writepages(mapping, &wbc);
423 wbc_detach_inode(&wbc);
424 return ret;
425 }
426
427 static inline int __filemap_fdatawrite(struct address_space *mapping,
428 int sync_mode)
429 {
430 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
431 }
432
433 int filemap_fdatawrite(struct address_space *mapping)
434 {
435 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite);
438
439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
440 loff_t end)
441 {
442 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
443 }
444 EXPORT_SYMBOL(filemap_fdatawrite_range);
445
446 /**
447 * filemap_flush - mostly a non-blocking flush
448 * @mapping: target address_space
449 *
450 * This is a mostly non-blocking flush. Not suitable for data-integrity
451 * purposes - I/O may not be started against all dirty pages.
452 *
453 * Return: %0 on success, negative error code otherwise.
454 */
455 int filemap_flush(struct address_space *mapping)
456 {
457 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
458 }
459 EXPORT_SYMBOL(filemap_flush);
460
461 /**
462 * filemap_range_has_page - check if a page exists in range.
463 * @mapping: address space within which to check
464 * @start_byte: offset in bytes where the range starts
465 * @end_byte: offset in bytes where the range ends (inclusive)
466 *
467 * Find at least one page in the range supplied, usually used to check if
468 * direct writing in this range will trigger a writeback.
469 *
470 * Return: %true if at least one page exists in the specified range,
471 * %false otherwise.
472 */
473 bool filemap_range_has_page(struct address_space *mapping,
474 loff_t start_byte, loff_t end_byte)
475 {
476 struct page *page;
477 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 pgoff_t max = end_byte >> PAGE_SHIFT;
479
480 if (end_byte < start_byte)
481 return false;
482
483 rcu_read_lock();
484 for (;;) {
485 page = xas_find(&xas, max);
486 if (xas_retry(&xas, page))
487 continue;
488 /* Shadow entries don't count */
489 if (xa_is_value(page))
490 continue;
491 /*
492 * We don't need to try to pin this page; we're about to
493 * release the RCU lock anyway. It is enough to know that
494 * there was a page here recently.
495 */
496 break;
497 }
498 rcu_read_unlock();
499
500 return page != NULL;
501 }
502 EXPORT_SYMBOL(filemap_range_has_page);
503
504 static void __filemap_fdatawait_range(struct address_space *mapping,
505 loff_t start_byte, loff_t end_byte)
506 {
507 pgoff_t index = start_byte >> PAGE_SHIFT;
508 pgoff_t end = end_byte >> PAGE_SHIFT;
509 struct pagevec pvec;
510 int nr_pages;
511
512 if (end_byte < start_byte)
513 return;
514
515 pagevec_init(&pvec);
516 while (index <= end) {
517 unsigned i;
518
519 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520 end, PAGECACHE_TAG_WRITEBACK);
521 if (!nr_pages)
522 break;
523
524 for (i = 0; i < nr_pages; i++) {
525 struct page *page = pvec.pages[i];
526
527 wait_on_page_writeback(page);
528 ClearPageError(page);
529 }
530 pagevec_release(&pvec);
531 cond_resched();
532 }
533 }
534
535 /**
536 * filemap_fdatawait_range - wait for writeback to complete
537 * @mapping: address space structure to wait for
538 * @start_byte: offset in bytes where the range starts
539 * @end_byte: offset in bytes where the range ends (inclusive)
540 *
541 * Walk the list of under-writeback pages of the given address space
542 * in the given range and wait for all of them. Check error status of
543 * the address space and return it.
544 *
545 * Since the error status of the address space is cleared by this function,
546 * callers are responsible for checking the return value and handling and/or
547 * reporting the error.
548 *
549 * Return: error status of the address space.
550 */
551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
552 loff_t end_byte)
553 {
554 __filemap_fdatawait_range(mapping, start_byte, end_byte);
555 return filemap_check_errors(mapping);
556 }
557 EXPORT_SYMBOL(filemap_fdatawait_range);
558
559 /**
560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561 * @mapping: address space structure to wait for
562 * @start_byte: offset in bytes where the range starts
563 * @end_byte: offset in bytes where the range ends (inclusive)
564 *
565 * Walk the list of under-writeback pages of the given address space in the
566 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
567 * this function does not clear error status of the address space.
568 *
569 * Use this function if callers don't handle errors themselves. Expected
570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571 * fsfreeze(8)
572 */
573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 loff_t start_byte, loff_t end_byte)
575 {
576 __filemap_fdatawait_range(mapping, start_byte, end_byte);
577 return filemap_check_and_keep_errors(mapping);
578 }
579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
580
581 /**
582 * file_fdatawait_range - wait for writeback to complete
583 * @file: file pointing to address space structure to wait for
584 * @start_byte: offset in bytes where the range starts
585 * @end_byte: offset in bytes where the range ends (inclusive)
586 *
587 * Walk the list of under-writeback pages of the address space that file
588 * refers to, in the given range and wait for all of them. Check error
589 * status of the address space vs. the file->f_wb_err cursor and return it.
590 *
591 * Since the error status of the file is advanced by this function,
592 * callers are responsible for checking the return value and handling and/or
593 * reporting the error.
594 *
595 * Return: error status of the address space vs. the file->f_wb_err cursor.
596 */
597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
598 {
599 struct address_space *mapping = file->f_mapping;
600
601 __filemap_fdatawait_range(mapping, start_byte, end_byte);
602 return file_check_and_advance_wb_err(file);
603 }
604 EXPORT_SYMBOL(file_fdatawait_range);
605
606 /**
607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608 * @mapping: address space structure to wait for
609 *
610 * Walk the list of under-writeback pages of the given address space
611 * and wait for all of them. Unlike filemap_fdatawait(), this function
612 * does not clear error status of the address space.
613 *
614 * Use this function if callers don't handle errors themselves. Expected
615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616 * fsfreeze(8)
617 *
618 * Return: error status of the address space.
619 */
620 int filemap_fdatawait_keep_errors(struct address_space *mapping)
621 {
622 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623 return filemap_check_and_keep_errors(mapping);
624 }
625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
626
627 /* Returns true if writeback might be needed or already in progress. */
628 static bool mapping_needs_writeback(struct address_space *mapping)
629 {
630 if (dax_mapping(mapping))
631 return mapping->nrexceptional;
632
633 return mapping->nrpages;
634 }
635
636 /**
637 * filemap_write_and_wait_range - write out & wait on a file range
638 * @mapping: the address_space for the pages
639 * @lstart: offset in bytes where the range starts
640 * @lend: offset in bytes where the range ends (inclusive)
641 *
642 * Write out and wait upon file offsets lstart->lend, inclusive.
643 *
644 * Note that @lend is inclusive (describes the last byte to be written) so
645 * that this function can be used to write to the very end-of-file (end = -1).
646 *
647 * Return: error status of the address space.
648 */
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 loff_t lstart, loff_t lend)
651 {
652 int err = 0;
653
654 if (mapping_needs_writeback(mapping)) {
655 err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 WB_SYNC_ALL);
657 /*
658 * Even if the above returned error, the pages may be
659 * written partially (e.g. -ENOSPC), so we wait for it.
660 * But the -EIO is special case, it may indicate the worst
661 * thing (e.g. bug) happened, so we avoid waiting for it.
662 */
663 if (err != -EIO) {
664 int err2 = filemap_fdatawait_range(mapping,
665 lstart, lend);
666 if (!err)
667 err = err2;
668 } else {
669 /* Clear any previously stored errors */
670 filemap_check_errors(mapping);
671 }
672 } else {
673 err = filemap_check_errors(mapping);
674 }
675 return err;
676 }
677 EXPORT_SYMBOL(filemap_write_and_wait_range);
678
679 void __filemap_set_wb_err(struct address_space *mapping, int err)
680 {
681 errseq_t eseq = errseq_set(&mapping->wb_err, err);
682
683 trace_filemap_set_wb_err(mapping, eseq);
684 }
685 EXPORT_SYMBOL(__filemap_set_wb_err);
686
687 /**
688 * file_check_and_advance_wb_err - report wb error (if any) that was previously
689 * and advance wb_err to current one
690 * @file: struct file on which the error is being reported
691 *
692 * When userland calls fsync (or something like nfsd does the equivalent), we
693 * want to report any writeback errors that occurred since the last fsync (or
694 * since the file was opened if there haven't been any).
695 *
696 * Grab the wb_err from the mapping. If it matches what we have in the file,
697 * then just quickly return 0. The file is all caught up.
698 *
699 * If it doesn't match, then take the mapping value, set the "seen" flag in
700 * it and try to swap it into place. If it works, or another task beat us
701 * to it with the new value, then update the f_wb_err and return the error
702 * portion. The error at this point must be reported via proper channels
703 * (a'la fsync, or NFS COMMIT operation, etc.).
704 *
705 * While we handle mapping->wb_err with atomic operations, the f_wb_err
706 * value is protected by the f_lock since we must ensure that it reflects
707 * the latest value swapped in for this file descriptor.
708 *
709 * Return: %0 on success, negative error code otherwise.
710 */
711 int file_check_and_advance_wb_err(struct file *file)
712 {
713 int err = 0;
714 errseq_t old = READ_ONCE(file->f_wb_err);
715 struct address_space *mapping = file->f_mapping;
716
717 /* Locklessly handle the common case where nothing has changed */
718 if (errseq_check(&mapping->wb_err, old)) {
719 /* Something changed, must use slow path */
720 spin_lock(&file->f_lock);
721 old = file->f_wb_err;
722 err = errseq_check_and_advance(&mapping->wb_err,
723 &file->f_wb_err);
724 trace_file_check_and_advance_wb_err(file, old);
725 spin_unlock(&file->f_lock);
726 }
727
728 /*
729 * We're mostly using this function as a drop in replacement for
730 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 * that the legacy code would have had on these flags.
732 */
733 clear_bit(AS_EIO, &mapping->flags);
734 clear_bit(AS_ENOSPC, &mapping->flags);
735 return err;
736 }
737 EXPORT_SYMBOL(file_check_and_advance_wb_err);
738
739 /**
740 * file_write_and_wait_range - write out & wait on a file range
741 * @file: file pointing to address_space with pages
742 * @lstart: offset in bytes where the range starts
743 * @lend: offset in bytes where the range ends (inclusive)
744 *
745 * Write out and wait upon file offsets lstart->lend, inclusive.
746 *
747 * Note that @lend is inclusive (describes the last byte to be written) so
748 * that this function can be used to write to the very end-of-file (end = -1).
749 *
750 * After writing out and waiting on the data, we check and advance the
751 * f_wb_err cursor to the latest value, and return any errors detected there.
752 *
753 * Return: %0 on success, negative error code otherwise.
754 */
755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
756 {
757 int err = 0, err2;
758 struct address_space *mapping = file->f_mapping;
759
760 if (mapping_needs_writeback(mapping)) {
761 err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 WB_SYNC_ALL);
763 /* See comment of filemap_write_and_wait() */
764 if (err != -EIO)
765 __filemap_fdatawait_range(mapping, lstart, lend);
766 }
767 err2 = file_check_and_advance_wb_err(file);
768 if (!err)
769 err = err2;
770 return err;
771 }
772 EXPORT_SYMBOL(file_write_and_wait_range);
773
774 /**
775 * replace_page_cache_page - replace a pagecache page with a new one
776 * @old: page to be replaced
777 * @new: page to replace with
778 * @gfp_mask: allocation mode
779 *
780 * This function replaces a page in the pagecache with a new one. On
781 * success it acquires the pagecache reference for the new page and
782 * drops it for the old page. Both the old and new pages must be
783 * locked. This function does not add the new page to the LRU, the
784 * caller must do that.
785 *
786 * The remove + add is atomic. This function cannot fail.
787 *
788 * Return: %0
789 */
790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
791 {
792 struct address_space *mapping = old->mapping;
793 void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 pgoff_t offset = old->index;
795 XA_STATE(xas, &mapping->i_pages, offset);
796 unsigned long flags;
797
798 VM_BUG_ON_PAGE(!PageLocked(old), old);
799 VM_BUG_ON_PAGE(!PageLocked(new), new);
800 VM_BUG_ON_PAGE(new->mapping, new);
801
802 get_page(new);
803 new->mapping = mapping;
804 new->index = offset;
805
806 mem_cgroup_migrate(old, new);
807
808 xas_lock_irqsave(&xas, flags);
809 xas_store(&xas, new);
810
811 old->mapping = NULL;
812 /* hugetlb pages do not participate in page cache accounting. */
813 if (!PageHuge(old))
814 __dec_lruvec_page_state(old, NR_FILE_PAGES);
815 if (!PageHuge(new))
816 __inc_lruvec_page_state(new, NR_FILE_PAGES);
817 if (PageSwapBacked(old))
818 __dec_lruvec_page_state(old, NR_SHMEM);
819 if (PageSwapBacked(new))
820 __inc_lruvec_page_state(new, NR_SHMEM);
821 xas_unlock_irqrestore(&xas, flags);
822 if (freepage)
823 freepage(old);
824 put_page(old);
825
826 return 0;
827 }
828 EXPORT_SYMBOL_GPL(replace_page_cache_page);
829
830 noinline int __add_to_page_cache_locked(struct page *page,
831 struct address_space *mapping,
832 pgoff_t offset, gfp_t gfp,
833 void **shadowp)
834 {
835 XA_STATE(xas, &mapping->i_pages, offset);
836 int huge = PageHuge(page);
837 int error;
838 bool charged = false;
839
840 VM_BUG_ON_PAGE(!PageLocked(page), page);
841 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
842 mapping_set_update(&xas, mapping);
843
844 get_page(page);
845 page->mapping = mapping;
846 page->index = offset;
847
848 if (!huge) {
849 error = mem_cgroup_charge(page, current->mm, gfp);
850 if (error)
851 goto error;
852 charged = true;
853 }
854
855 gfp &= GFP_RECLAIM_MASK;
856
857 do {
858 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
859 void *entry, *old = NULL;
860
861 if (order > thp_order(page))
862 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
863 order, gfp);
864 xas_lock_irq(&xas);
865 xas_for_each_conflict(&xas, entry) {
866 old = entry;
867 if (!xa_is_value(entry)) {
868 xas_set_err(&xas, -EEXIST);
869 goto unlock;
870 }
871 }
872
873 if (old) {
874 if (shadowp)
875 *shadowp = old;
876 /* entry may have been split before we acquired lock */
877 order = xa_get_order(xas.xa, xas.xa_index);
878 if (order > thp_order(page)) {
879 xas_split(&xas, old, order);
880 xas_reset(&xas);
881 }
882 }
883
884 xas_store(&xas, page);
885 if (xas_error(&xas))
886 goto unlock;
887
888 if (old)
889 mapping->nrexceptional--;
890 mapping->nrpages++;
891
892 /* hugetlb pages do not participate in page cache accounting */
893 if (!huge)
894 __inc_lruvec_page_state(page, NR_FILE_PAGES);
895 unlock:
896 xas_unlock_irq(&xas);
897 } while (xas_nomem(&xas, gfp));
898
899 if (xas_error(&xas)) {
900 error = xas_error(&xas);
901 if (charged)
902 mem_cgroup_uncharge(page);
903 goto error;
904 }
905
906 trace_mm_filemap_add_to_page_cache(page);
907 return 0;
908 error:
909 page->mapping = NULL;
910 /* Leave page->index set: truncation relies upon it */
911 put_page(page);
912 return error;
913 }
914 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
915
916 /**
917 * add_to_page_cache_locked - add a locked page to the pagecache
918 * @page: page to add
919 * @mapping: the page's address_space
920 * @offset: page index
921 * @gfp_mask: page allocation mode
922 *
923 * This function is used to add a page to the pagecache. It must be locked.
924 * This function does not add the page to the LRU. The caller must do that.
925 *
926 * Return: %0 on success, negative error code otherwise.
927 */
928 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
929 pgoff_t offset, gfp_t gfp_mask)
930 {
931 return __add_to_page_cache_locked(page, mapping, offset,
932 gfp_mask, NULL);
933 }
934 EXPORT_SYMBOL(add_to_page_cache_locked);
935
936 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
937 pgoff_t offset, gfp_t gfp_mask)
938 {
939 void *shadow = NULL;
940 int ret;
941
942 __SetPageLocked(page);
943 ret = __add_to_page_cache_locked(page, mapping, offset,
944 gfp_mask, &shadow);
945 if (unlikely(ret))
946 __ClearPageLocked(page);
947 else {
948 /*
949 * The page might have been evicted from cache only
950 * recently, in which case it should be activated like
951 * any other repeatedly accessed page.
952 * The exception is pages getting rewritten; evicting other
953 * data from the working set, only to cache data that will
954 * get overwritten with something else, is a waste of memory.
955 */
956 WARN_ON_ONCE(PageActive(page));
957 if (!(gfp_mask & __GFP_WRITE) && shadow)
958 workingset_refault(page, shadow);
959 lru_cache_add(page);
960 }
961 return ret;
962 }
963 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
964
965 #ifdef CONFIG_NUMA
966 struct page *__page_cache_alloc(gfp_t gfp)
967 {
968 int n;
969 struct page *page;
970
971 if (cpuset_do_page_mem_spread()) {
972 unsigned int cpuset_mems_cookie;
973 do {
974 cpuset_mems_cookie = read_mems_allowed_begin();
975 n = cpuset_mem_spread_node();
976 page = __alloc_pages_node(n, gfp, 0);
977 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
978
979 return page;
980 }
981 return alloc_pages(gfp, 0);
982 }
983 EXPORT_SYMBOL(__page_cache_alloc);
984 #endif
985
986 /*
987 * In order to wait for pages to become available there must be
988 * waitqueues associated with pages. By using a hash table of
989 * waitqueues where the bucket discipline is to maintain all
990 * waiters on the same queue and wake all when any of the pages
991 * become available, and for the woken contexts to check to be
992 * sure the appropriate page became available, this saves space
993 * at a cost of "thundering herd" phenomena during rare hash
994 * collisions.
995 */
996 #define PAGE_WAIT_TABLE_BITS 8
997 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
998 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
999
1000 static wait_queue_head_t *page_waitqueue(struct page *page)
1001 {
1002 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1003 }
1004
1005 void __init pagecache_init(void)
1006 {
1007 int i;
1008
1009 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1010 init_waitqueue_head(&page_wait_table[i]);
1011
1012 page_writeback_init();
1013 }
1014
1015 /*
1016 * The page wait code treats the "wait->flags" somewhat unusually, because
1017 * we have multiple different kinds of waits, not just the usual "exclusive"
1018 * one.
1019 *
1020 * We have:
1021 *
1022 * (a) no special bits set:
1023 *
1024 * We're just waiting for the bit to be released, and when a waker
1025 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1026 * and remove it from the wait queue.
1027 *
1028 * Simple and straightforward.
1029 *
1030 * (b) WQ_FLAG_EXCLUSIVE:
1031 *
1032 * The waiter is waiting to get the lock, and only one waiter should
1033 * be woken up to avoid any thundering herd behavior. We'll set the
1034 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1035 *
1036 * This is the traditional exclusive wait.
1037 *
1038 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1039 *
1040 * The waiter is waiting to get the bit, and additionally wants the
1041 * lock to be transferred to it for fair lock behavior. If the lock
1042 * cannot be taken, we stop walking the wait queue without waking
1043 * the waiter.
1044 *
1045 * This is the "fair lock handoff" case, and in addition to setting
1046 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1047 * that it now has the lock.
1048 */
1049 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1050 {
1051 unsigned int flags;
1052 struct wait_page_key *key = arg;
1053 struct wait_page_queue *wait_page
1054 = container_of(wait, struct wait_page_queue, wait);
1055
1056 if (!wake_page_match(wait_page, key))
1057 return 0;
1058
1059 /*
1060 * If it's a lock handoff wait, we get the bit for it, and
1061 * stop walking (and do not wake it up) if we can't.
1062 */
1063 flags = wait->flags;
1064 if (flags & WQ_FLAG_EXCLUSIVE) {
1065 if (test_bit(key->bit_nr, &key->page->flags))
1066 return -1;
1067 if (flags & WQ_FLAG_CUSTOM) {
1068 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1069 return -1;
1070 flags |= WQ_FLAG_DONE;
1071 }
1072 }
1073
1074 /*
1075 * We are holding the wait-queue lock, but the waiter that
1076 * is waiting for this will be checking the flags without
1077 * any locking.
1078 *
1079 * So update the flags atomically, and wake up the waiter
1080 * afterwards to avoid any races. This store-release pairs
1081 * with the load-acquire in wait_on_page_bit_common().
1082 */
1083 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1084 wake_up_state(wait->private, mode);
1085
1086 /*
1087 * Ok, we have successfully done what we're waiting for,
1088 * and we can unconditionally remove the wait entry.
1089 *
1090 * Note that this pairs with the "finish_wait()" in the
1091 * waiter, and has to be the absolute last thing we do.
1092 * After this list_del_init(&wait->entry) the wait entry
1093 * might be de-allocated and the process might even have
1094 * exited.
1095 */
1096 list_del_init_careful(&wait->entry);
1097 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1098 }
1099
1100 static void wake_up_page_bit(struct page *page, int bit_nr)
1101 {
1102 wait_queue_head_t *q = page_waitqueue(page);
1103 struct wait_page_key key;
1104 unsigned long flags;
1105 wait_queue_entry_t bookmark;
1106
1107 key.page = page;
1108 key.bit_nr = bit_nr;
1109 key.page_match = 0;
1110
1111 bookmark.flags = 0;
1112 bookmark.private = NULL;
1113 bookmark.func = NULL;
1114 INIT_LIST_HEAD(&bookmark.entry);
1115
1116 spin_lock_irqsave(&q->lock, flags);
1117 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1118
1119 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1120 /*
1121 * Take a breather from holding the lock,
1122 * allow pages that finish wake up asynchronously
1123 * to acquire the lock and remove themselves
1124 * from wait queue
1125 */
1126 spin_unlock_irqrestore(&q->lock, flags);
1127 cpu_relax();
1128 spin_lock_irqsave(&q->lock, flags);
1129 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1130 }
1131
1132 /*
1133 * It is possible for other pages to have collided on the waitqueue
1134 * hash, so in that case check for a page match. That prevents a long-
1135 * term waiter
1136 *
1137 * It is still possible to miss a case here, when we woke page waiters
1138 * and removed them from the waitqueue, but there are still other
1139 * page waiters.
1140 */
1141 if (!waitqueue_active(q) || !key.page_match) {
1142 ClearPageWaiters(page);
1143 /*
1144 * It's possible to miss clearing Waiters here, when we woke
1145 * our page waiters, but the hashed waitqueue has waiters for
1146 * other pages on it.
1147 *
1148 * That's okay, it's a rare case. The next waker will clear it.
1149 */
1150 }
1151 spin_unlock_irqrestore(&q->lock, flags);
1152 }
1153
1154 static void wake_up_page(struct page *page, int bit)
1155 {
1156 if (!PageWaiters(page))
1157 return;
1158 wake_up_page_bit(page, bit);
1159 }
1160
1161 /*
1162 * A choice of three behaviors for wait_on_page_bit_common():
1163 */
1164 enum behavior {
1165 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1166 * __lock_page() waiting on then setting PG_locked.
1167 */
1168 SHARED, /* Hold ref to page and check the bit when woken, like
1169 * wait_on_page_writeback() waiting on PG_writeback.
1170 */
1171 DROP, /* Drop ref to page before wait, no check when woken,
1172 * like put_and_wait_on_page_locked() on PG_locked.
1173 */
1174 };
1175
1176 /*
1177 * Attempt to check (or get) the page bit, and mark us done
1178 * if successful.
1179 */
1180 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1181 struct wait_queue_entry *wait)
1182 {
1183 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1184 if (test_and_set_bit(bit_nr, &page->flags))
1185 return false;
1186 } else if (test_bit(bit_nr, &page->flags))
1187 return false;
1188
1189 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1190 return true;
1191 }
1192
1193 /* How many times do we accept lock stealing from under a waiter? */
1194 int sysctl_page_lock_unfairness = 5;
1195
1196 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1197 struct page *page, int bit_nr, int state, enum behavior behavior)
1198 {
1199 int unfairness = sysctl_page_lock_unfairness;
1200 struct wait_page_queue wait_page;
1201 wait_queue_entry_t *wait = &wait_page.wait;
1202 bool thrashing = false;
1203 bool delayacct = false;
1204 unsigned long pflags;
1205
1206 if (bit_nr == PG_locked &&
1207 !PageUptodate(page) && PageWorkingset(page)) {
1208 if (!PageSwapBacked(page)) {
1209 delayacct_thrashing_start();
1210 delayacct = true;
1211 }
1212 psi_memstall_enter(&pflags);
1213 thrashing = true;
1214 }
1215
1216 init_wait(wait);
1217 wait->func = wake_page_function;
1218 wait_page.page = page;
1219 wait_page.bit_nr = bit_nr;
1220
1221 repeat:
1222 wait->flags = 0;
1223 if (behavior == EXCLUSIVE) {
1224 wait->flags = WQ_FLAG_EXCLUSIVE;
1225 if (--unfairness < 0)
1226 wait->flags |= WQ_FLAG_CUSTOM;
1227 }
1228
1229 /*
1230 * Do one last check whether we can get the
1231 * page bit synchronously.
1232 *
1233 * Do the SetPageWaiters() marking before that
1234 * to let any waker we _just_ missed know they
1235 * need to wake us up (otherwise they'll never
1236 * even go to the slow case that looks at the
1237 * page queue), and add ourselves to the wait
1238 * queue if we need to sleep.
1239 *
1240 * This part needs to be done under the queue
1241 * lock to avoid races.
1242 */
1243 spin_lock_irq(&q->lock);
1244 SetPageWaiters(page);
1245 if (!trylock_page_bit_common(page, bit_nr, wait))
1246 __add_wait_queue_entry_tail(q, wait);
1247 spin_unlock_irq(&q->lock);
1248
1249 /*
1250 * From now on, all the logic will be based on
1251 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1252 * see whether the page bit testing has already
1253 * been done by the wake function.
1254 *
1255 * We can drop our reference to the page.
1256 */
1257 if (behavior == DROP)
1258 put_page(page);
1259
1260 /*
1261 * Note that until the "finish_wait()", or until
1262 * we see the WQ_FLAG_WOKEN flag, we need to
1263 * be very careful with the 'wait->flags', because
1264 * we may race with a waker that sets them.
1265 */
1266 for (;;) {
1267 unsigned int flags;
1268
1269 set_current_state(state);
1270
1271 /* Loop until we've been woken or interrupted */
1272 flags = smp_load_acquire(&wait->flags);
1273 if (!(flags & WQ_FLAG_WOKEN)) {
1274 if (signal_pending_state(state, current))
1275 break;
1276
1277 io_schedule();
1278 continue;
1279 }
1280
1281 /* If we were non-exclusive, we're done */
1282 if (behavior != EXCLUSIVE)
1283 break;
1284
1285 /* If the waker got the lock for us, we're done */
1286 if (flags & WQ_FLAG_DONE)
1287 break;
1288
1289 /*
1290 * Otherwise, if we're getting the lock, we need to
1291 * try to get it ourselves.
1292 *
1293 * And if that fails, we'll have to retry this all.
1294 */
1295 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1296 goto repeat;
1297
1298 wait->flags |= WQ_FLAG_DONE;
1299 break;
1300 }
1301
1302 /*
1303 * If a signal happened, this 'finish_wait()' may remove the last
1304 * waiter from the wait-queues, but the PageWaiters bit will remain
1305 * set. That's ok. The next wakeup will take care of it, and trying
1306 * to do it here would be difficult and prone to races.
1307 */
1308 finish_wait(q, wait);
1309
1310 if (thrashing) {
1311 if (delayacct)
1312 delayacct_thrashing_end();
1313 psi_memstall_leave(&pflags);
1314 }
1315
1316 /*
1317 * NOTE! The wait->flags weren't stable until we've done the
1318 * 'finish_wait()', and we could have exited the loop above due
1319 * to a signal, and had a wakeup event happen after the signal
1320 * test but before the 'finish_wait()'.
1321 *
1322 * So only after the finish_wait() can we reliably determine
1323 * if we got woken up or not, so we can now figure out the final
1324 * return value based on that state without races.
1325 *
1326 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1327 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1328 */
1329 if (behavior == EXCLUSIVE)
1330 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1331
1332 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1333 }
1334
1335 void wait_on_page_bit(struct page *page, int bit_nr)
1336 {
1337 wait_queue_head_t *q = page_waitqueue(page);
1338 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1339 }
1340 EXPORT_SYMBOL(wait_on_page_bit);
1341
1342 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1343 {
1344 wait_queue_head_t *q = page_waitqueue(page);
1345 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1346 }
1347 EXPORT_SYMBOL(wait_on_page_bit_killable);
1348
1349 static int __wait_on_page_locked_async(struct page *page,
1350 struct wait_page_queue *wait, bool set)
1351 {
1352 struct wait_queue_head *q = page_waitqueue(page);
1353 int ret = 0;
1354
1355 wait->page = page;
1356 wait->bit_nr = PG_locked;
1357
1358 spin_lock_irq(&q->lock);
1359 __add_wait_queue_entry_tail(q, &wait->wait);
1360 SetPageWaiters(page);
1361 if (set)
1362 ret = !trylock_page(page);
1363 else
1364 ret = PageLocked(page);
1365 /*
1366 * If we were successful now, we know we're still on the
1367 * waitqueue as we're still under the lock. This means it's
1368 * safe to remove and return success, we know the callback
1369 * isn't going to trigger.
1370 */
1371 if (!ret)
1372 __remove_wait_queue(q, &wait->wait);
1373 else
1374 ret = -EIOCBQUEUED;
1375 spin_unlock_irq(&q->lock);
1376 return ret;
1377 }
1378
1379 static int wait_on_page_locked_async(struct page *page,
1380 struct wait_page_queue *wait)
1381 {
1382 if (!PageLocked(page))
1383 return 0;
1384 return __wait_on_page_locked_async(compound_head(page), wait, false);
1385 }
1386
1387 /**
1388 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1389 * @page: The page to wait for.
1390 *
1391 * The caller should hold a reference on @page. They expect the page to
1392 * become unlocked relatively soon, but do not wish to hold up migration
1393 * (for example) by holding the reference while waiting for the page to
1394 * come unlocked. After this function returns, the caller should not
1395 * dereference @page.
1396 */
1397 void put_and_wait_on_page_locked(struct page *page)
1398 {
1399 wait_queue_head_t *q;
1400
1401 page = compound_head(page);
1402 q = page_waitqueue(page);
1403 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1404 }
1405
1406 /**
1407 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1408 * @page: Page defining the wait queue of interest
1409 * @waiter: Waiter to add to the queue
1410 *
1411 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1412 */
1413 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1414 {
1415 wait_queue_head_t *q = page_waitqueue(page);
1416 unsigned long flags;
1417
1418 spin_lock_irqsave(&q->lock, flags);
1419 __add_wait_queue_entry_tail(q, waiter);
1420 SetPageWaiters(page);
1421 spin_unlock_irqrestore(&q->lock, flags);
1422 }
1423 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1424
1425 #ifndef clear_bit_unlock_is_negative_byte
1426
1427 /*
1428 * PG_waiters is the high bit in the same byte as PG_lock.
1429 *
1430 * On x86 (and on many other architectures), we can clear PG_lock and
1431 * test the sign bit at the same time. But if the architecture does
1432 * not support that special operation, we just do this all by hand
1433 * instead.
1434 *
1435 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1436 * being cleared, but a memory barrier should be unnecessary since it is
1437 * in the same byte as PG_locked.
1438 */
1439 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1440 {
1441 clear_bit_unlock(nr, mem);
1442 /* smp_mb__after_atomic(); */
1443 return test_bit(PG_waiters, mem);
1444 }
1445
1446 #endif
1447
1448 /**
1449 * unlock_page - unlock a locked page
1450 * @page: the page
1451 *
1452 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1453 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1454 * mechanism between PageLocked pages and PageWriteback pages is shared.
1455 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1456 *
1457 * Note that this depends on PG_waiters being the sign bit in the byte
1458 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1459 * clear the PG_locked bit and test PG_waiters at the same time fairly
1460 * portably (architectures that do LL/SC can test any bit, while x86 can
1461 * test the sign bit).
1462 */
1463 void unlock_page(struct page *page)
1464 {
1465 BUILD_BUG_ON(PG_waiters != 7);
1466 page = compound_head(page);
1467 VM_BUG_ON_PAGE(!PageLocked(page), page);
1468 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1469 wake_up_page_bit(page, PG_locked);
1470 }
1471 EXPORT_SYMBOL(unlock_page);
1472
1473 /**
1474 * end_page_writeback - end writeback against a page
1475 * @page: the page
1476 */
1477 void end_page_writeback(struct page *page)
1478 {
1479 /*
1480 * TestClearPageReclaim could be used here but it is an atomic
1481 * operation and overkill in this particular case. Failing to
1482 * shuffle a page marked for immediate reclaim is too mild to
1483 * justify taking an atomic operation penalty at the end of
1484 * ever page writeback.
1485 */
1486 if (PageReclaim(page)) {
1487 ClearPageReclaim(page);
1488 rotate_reclaimable_page(page);
1489 }
1490
1491 /*
1492 * Writeback does not hold a page reference of its own, relying
1493 * on truncation to wait for the clearing of PG_writeback.
1494 * But here we must make sure that the page is not freed and
1495 * reused before the wake_up_page().
1496 */
1497 get_page(page);
1498 if (!test_clear_page_writeback(page))
1499 BUG();
1500
1501 smp_mb__after_atomic();
1502 wake_up_page(page, PG_writeback);
1503 put_page(page);
1504 }
1505 EXPORT_SYMBOL(end_page_writeback);
1506
1507 /*
1508 * After completing I/O on a page, call this routine to update the page
1509 * flags appropriately
1510 */
1511 void page_endio(struct page *page, bool is_write, int err)
1512 {
1513 if (!is_write) {
1514 if (!err) {
1515 SetPageUptodate(page);
1516 } else {
1517 ClearPageUptodate(page);
1518 SetPageError(page);
1519 }
1520 unlock_page(page);
1521 } else {
1522 if (err) {
1523 struct address_space *mapping;
1524
1525 SetPageError(page);
1526 mapping = page_mapping(page);
1527 if (mapping)
1528 mapping_set_error(mapping, err);
1529 }
1530 end_page_writeback(page);
1531 }
1532 }
1533 EXPORT_SYMBOL_GPL(page_endio);
1534
1535 /**
1536 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1537 * @__page: the page to lock
1538 */
1539 void __lock_page(struct page *__page)
1540 {
1541 struct page *page = compound_head(__page);
1542 wait_queue_head_t *q = page_waitqueue(page);
1543 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1544 EXCLUSIVE);
1545 }
1546 EXPORT_SYMBOL(__lock_page);
1547
1548 int __lock_page_killable(struct page *__page)
1549 {
1550 struct page *page = compound_head(__page);
1551 wait_queue_head_t *q = page_waitqueue(page);
1552 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1553 EXCLUSIVE);
1554 }
1555 EXPORT_SYMBOL_GPL(__lock_page_killable);
1556
1557 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1558 {
1559 return __wait_on_page_locked_async(page, wait, true);
1560 }
1561
1562 /*
1563 * Return values:
1564 * 1 - page is locked; mmap_lock is still held.
1565 * 0 - page is not locked.
1566 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1567 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1568 * which case mmap_lock is still held.
1569 *
1570 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1571 * with the page locked and the mmap_lock unperturbed.
1572 */
1573 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1574 unsigned int flags)
1575 {
1576 if (fault_flag_allow_retry_first(flags)) {
1577 /*
1578 * CAUTION! In this case, mmap_lock is not released
1579 * even though return 0.
1580 */
1581 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1582 return 0;
1583
1584 mmap_read_unlock(mm);
1585 if (flags & FAULT_FLAG_KILLABLE)
1586 wait_on_page_locked_killable(page);
1587 else
1588 wait_on_page_locked(page);
1589 return 0;
1590 }
1591 if (flags & FAULT_FLAG_KILLABLE) {
1592 int ret;
1593
1594 ret = __lock_page_killable(page);
1595 if (ret) {
1596 mmap_read_unlock(mm);
1597 return 0;
1598 }
1599 } else {
1600 __lock_page(page);
1601 }
1602 return 1;
1603
1604 }
1605
1606 /**
1607 * page_cache_next_miss() - Find the next gap in the page cache.
1608 * @mapping: Mapping.
1609 * @index: Index.
1610 * @max_scan: Maximum range to search.
1611 *
1612 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1613 * gap with the lowest index.
1614 *
1615 * This function may be called under the rcu_read_lock. However, this will
1616 * not atomically search a snapshot of the cache at a single point in time.
1617 * For example, if a gap is created at index 5, then subsequently a gap is
1618 * created at index 10, page_cache_next_miss covering both indices may
1619 * return 10 if called under the rcu_read_lock.
1620 *
1621 * Return: The index of the gap if found, otherwise an index outside the
1622 * range specified (in which case 'return - index >= max_scan' will be true).
1623 * In the rare case of index wrap-around, 0 will be returned.
1624 */
1625 pgoff_t page_cache_next_miss(struct address_space *mapping,
1626 pgoff_t index, unsigned long max_scan)
1627 {
1628 XA_STATE(xas, &mapping->i_pages, index);
1629
1630 while (max_scan--) {
1631 void *entry = xas_next(&xas);
1632 if (!entry || xa_is_value(entry))
1633 break;
1634 if (xas.xa_index == 0)
1635 break;
1636 }
1637
1638 return xas.xa_index;
1639 }
1640 EXPORT_SYMBOL(page_cache_next_miss);
1641
1642 /**
1643 * page_cache_prev_miss() - Find the previous gap in the page cache.
1644 * @mapping: Mapping.
1645 * @index: Index.
1646 * @max_scan: Maximum range to search.
1647 *
1648 * Search the range [max(index - max_scan + 1, 0), index] for the
1649 * gap with the highest index.
1650 *
1651 * This function may be called under the rcu_read_lock. However, this will
1652 * not atomically search a snapshot of the cache at a single point in time.
1653 * For example, if a gap is created at index 10, then subsequently a gap is
1654 * created at index 5, page_cache_prev_miss() covering both indices may
1655 * return 5 if called under the rcu_read_lock.
1656 *
1657 * Return: The index of the gap if found, otherwise an index outside the
1658 * range specified (in which case 'index - return >= max_scan' will be true).
1659 * In the rare case of wrap-around, ULONG_MAX will be returned.
1660 */
1661 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1662 pgoff_t index, unsigned long max_scan)
1663 {
1664 XA_STATE(xas, &mapping->i_pages, index);
1665
1666 while (max_scan--) {
1667 void *entry = xas_prev(&xas);
1668 if (!entry || xa_is_value(entry))
1669 break;
1670 if (xas.xa_index == ULONG_MAX)
1671 break;
1672 }
1673
1674 return xas.xa_index;
1675 }
1676 EXPORT_SYMBOL(page_cache_prev_miss);
1677
1678 /**
1679 * find_get_entry - find and get a page cache entry
1680 * @mapping: the address_space to search
1681 * @index: The page cache index.
1682 *
1683 * Looks up the page cache slot at @mapping & @offset. If there is a
1684 * page cache page, the head page is returned with an increased refcount.
1685 *
1686 * If the slot holds a shadow entry of a previously evicted page, or a
1687 * swap entry from shmem/tmpfs, it is returned.
1688 *
1689 * Return: The head page or shadow entry, %NULL if nothing is found.
1690 */
1691 struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
1692 {
1693 XA_STATE(xas, &mapping->i_pages, index);
1694 struct page *page;
1695
1696 rcu_read_lock();
1697 repeat:
1698 xas_reset(&xas);
1699 page = xas_load(&xas);
1700 if (xas_retry(&xas, page))
1701 goto repeat;
1702 /*
1703 * A shadow entry of a recently evicted page, or a swap entry from
1704 * shmem/tmpfs. Return it without attempting to raise page count.
1705 */
1706 if (!page || xa_is_value(page))
1707 goto out;
1708
1709 if (!page_cache_get_speculative(page))
1710 goto repeat;
1711
1712 /*
1713 * Has the page moved or been split?
1714 * This is part of the lockless pagecache protocol. See
1715 * include/linux/pagemap.h for details.
1716 */
1717 if (unlikely(page != xas_reload(&xas))) {
1718 put_page(page);
1719 goto repeat;
1720 }
1721 out:
1722 rcu_read_unlock();
1723
1724 return page;
1725 }
1726
1727 /**
1728 * find_lock_entry - Locate and lock a page cache entry.
1729 * @mapping: The address_space to search.
1730 * @index: The page cache index.
1731 *
1732 * Looks up the page at @mapping & @index. If there is a page in the
1733 * cache, the head page is returned locked and with an increased refcount.
1734 *
1735 * If the slot holds a shadow entry of a previously evicted page, or a
1736 * swap entry from shmem/tmpfs, it is returned.
1737 *
1738 * Context: May sleep.
1739 * Return: The head page or shadow entry, %NULL if nothing is found.
1740 */
1741 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
1742 {
1743 struct page *page;
1744
1745 repeat:
1746 page = find_get_entry(mapping, index);
1747 if (page && !xa_is_value(page)) {
1748 lock_page(page);
1749 /* Has the page been truncated? */
1750 if (unlikely(page->mapping != mapping)) {
1751 unlock_page(page);
1752 put_page(page);
1753 goto repeat;
1754 }
1755 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1756 }
1757 return page;
1758 }
1759
1760 /**
1761 * pagecache_get_page - Find and get a reference to a page.
1762 * @mapping: The address_space to search.
1763 * @index: The page index.
1764 * @fgp_flags: %FGP flags modify how the page is returned.
1765 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1766 *
1767 * Looks up the page cache entry at @mapping & @index.
1768 *
1769 * @fgp_flags can be zero or more of these flags:
1770 *
1771 * * %FGP_ACCESSED - The page will be marked accessed.
1772 * * %FGP_LOCK - The page is returned locked.
1773 * * %FGP_HEAD - If the page is present and a THP, return the head page
1774 * rather than the exact page specified by the index.
1775 * * %FGP_CREAT - If no page is present then a new page is allocated using
1776 * @gfp_mask and added to the page cache and the VM's LRU list.
1777 * The page is returned locked and with an increased refcount.
1778 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1779 * page is already in cache. If the page was allocated, unlock it before
1780 * returning so the caller can do the same dance.
1781 * * %FGP_WRITE - The page will be written
1782 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1783 * * %FGP_NOWAIT - Don't get blocked by page lock
1784 *
1785 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1786 * if the %GFP flags specified for %FGP_CREAT are atomic.
1787 *
1788 * If there is a page cache page, it is returned with an increased refcount.
1789 *
1790 * Return: The found page or %NULL otherwise.
1791 */
1792 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1793 int fgp_flags, gfp_t gfp_mask)
1794 {
1795 struct page *page;
1796
1797 repeat:
1798 page = find_get_entry(mapping, index);
1799 if (xa_is_value(page))
1800 page = NULL;
1801 if (!page)
1802 goto no_page;
1803
1804 if (fgp_flags & FGP_LOCK) {
1805 if (fgp_flags & FGP_NOWAIT) {
1806 if (!trylock_page(page)) {
1807 put_page(page);
1808 return NULL;
1809 }
1810 } else {
1811 lock_page(page);
1812 }
1813
1814 /* Has the page been truncated? */
1815 if (unlikely(page->mapping != mapping)) {
1816 unlock_page(page);
1817 put_page(page);
1818 goto repeat;
1819 }
1820 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1821 }
1822
1823 if (fgp_flags & FGP_ACCESSED)
1824 mark_page_accessed(page);
1825 else if (fgp_flags & FGP_WRITE) {
1826 /* Clear idle flag for buffer write */
1827 if (page_is_idle(page))
1828 clear_page_idle(page);
1829 }
1830 if (!(fgp_flags & FGP_HEAD))
1831 page = find_subpage(page, index);
1832
1833 no_page:
1834 if (!page && (fgp_flags & FGP_CREAT)) {
1835 int err;
1836 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1837 gfp_mask |= __GFP_WRITE;
1838 if (fgp_flags & FGP_NOFS)
1839 gfp_mask &= ~__GFP_FS;
1840
1841 page = __page_cache_alloc(gfp_mask);
1842 if (!page)
1843 return NULL;
1844
1845 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1846 fgp_flags |= FGP_LOCK;
1847
1848 /* Init accessed so avoid atomic mark_page_accessed later */
1849 if (fgp_flags & FGP_ACCESSED)
1850 __SetPageReferenced(page);
1851
1852 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1853 if (unlikely(err)) {
1854 put_page(page);
1855 page = NULL;
1856 if (err == -EEXIST)
1857 goto repeat;
1858 }
1859
1860 /*
1861 * add_to_page_cache_lru locks the page, and for mmap we expect
1862 * an unlocked page.
1863 */
1864 if (page && (fgp_flags & FGP_FOR_MMAP))
1865 unlock_page(page);
1866 }
1867
1868 return page;
1869 }
1870 EXPORT_SYMBOL(pagecache_get_page);
1871
1872 /**
1873 * find_get_entries - gang pagecache lookup
1874 * @mapping: The address_space to search
1875 * @start: The starting page cache index
1876 * @nr_entries: The maximum number of entries
1877 * @entries: Where the resulting entries are placed
1878 * @indices: The cache indices corresponding to the entries in @entries
1879 *
1880 * find_get_entries() will search for and return a group of up to
1881 * @nr_entries entries in the mapping. The entries are placed at
1882 * @entries. find_get_entries() takes a reference against any actual
1883 * pages it returns.
1884 *
1885 * The search returns a group of mapping-contiguous page cache entries
1886 * with ascending indexes. There may be holes in the indices due to
1887 * not-present pages.
1888 *
1889 * Any shadow entries of evicted pages, or swap entries from
1890 * shmem/tmpfs, are included in the returned array.
1891 *
1892 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1893 * stops at that page: the caller is likely to have a better way to handle
1894 * the compound page as a whole, and then skip its extent, than repeatedly
1895 * calling find_get_entries() to return all its tails.
1896 *
1897 * Return: the number of pages and shadow entries which were found.
1898 */
1899 unsigned find_get_entries(struct address_space *mapping,
1900 pgoff_t start, unsigned int nr_entries,
1901 struct page **entries, pgoff_t *indices)
1902 {
1903 XA_STATE(xas, &mapping->i_pages, start);
1904 struct page *page;
1905 unsigned int ret = 0;
1906
1907 if (!nr_entries)
1908 return 0;
1909
1910 rcu_read_lock();
1911 xas_for_each(&xas, page, ULONG_MAX) {
1912 if (xas_retry(&xas, page))
1913 continue;
1914 /*
1915 * A shadow entry of a recently evicted page, a swap
1916 * entry from shmem/tmpfs or a DAX entry. Return it
1917 * without attempting to raise page count.
1918 */
1919 if (xa_is_value(page))
1920 goto export;
1921
1922 if (!page_cache_get_speculative(page))
1923 goto retry;
1924
1925 /* Has the page moved or been split? */
1926 if (unlikely(page != xas_reload(&xas)))
1927 goto put_page;
1928
1929 /*
1930 * Terminate early on finding a THP, to allow the caller to
1931 * handle it all at once; but continue if this is hugetlbfs.
1932 */
1933 if (PageTransHuge(page) && !PageHuge(page)) {
1934 page = find_subpage(page, xas.xa_index);
1935 nr_entries = ret + 1;
1936 }
1937 export:
1938 indices[ret] = xas.xa_index;
1939 entries[ret] = page;
1940 if (++ret == nr_entries)
1941 break;
1942 continue;
1943 put_page:
1944 put_page(page);
1945 retry:
1946 xas_reset(&xas);
1947 }
1948 rcu_read_unlock();
1949 return ret;
1950 }
1951
1952 /**
1953 * find_get_pages_range - gang pagecache lookup
1954 * @mapping: The address_space to search
1955 * @start: The starting page index
1956 * @end: The final page index (inclusive)
1957 * @nr_pages: The maximum number of pages
1958 * @pages: Where the resulting pages are placed
1959 *
1960 * find_get_pages_range() will search for and return a group of up to @nr_pages
1961 * pages in the mapping starting at index @start and up to index @end
1962 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1963 * a reference against the returned pages.
1964 *
1965 * The search returns a group of mapping-contiguous pages with ascending
1966 * indexes. There may be holes in the indices due to not-present pages.
1967 * We also update @start to index the next page for the traversal.
1968 *
1969 * Return: the number of pages which were found. If this number is
1970 * smaller than @nr_pages, the end of specified range has been
1971 * reached.
1972 */
1973 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1974 pgoff_t end, unsigned int nr_pages,
1975 struct page **pages)
1976 {
1977 XA_STATE(xas, &mapping->i_pages, *start);
1978 struct page *page;
1979 unsigned ret = 0;
1980
1981 if (unlikely(!nr_pages))
1982 return 0;
1983
1984 rcu_read_lock();
1985 xas_for_each(&xas, page, end) {
1986 if (xas_retry(&xas, page))
1987 continue;
1988 /* Skip over shadow, swap and DAX entries */
1989 if (xa_is_value(page))
1990 continue;
1991
1992 if (!page_cache_get_speculative(page))
1993 goto retry;
1994
1995 /* Has the page moved or been split? */
1996 if (unlikely(page != xas_reload(&xas)))
1997 goto put_page;
1998
1999 pages[ret] = find_subpage(page, xas.xa_index);
2000 if (++ret == nr_pages) {
2001 *start = xas.xa_index + 1;
2002 goto out;
2003 }
2004 continue;
2005 put_page:
2006 put_page(page);
2007 retry:
2008 xas_reset(&xas);
2009 }
2010
2011 /*
2012 * We come here when there is no page beyond @end. We take care to not
2013 * overflow the index @start as it confuses some of the callers. This
2014 * breaks the iteration when there is a page at index -1 but that is
2015 * already broken anyway.
2016 */
2017 if (end == (pgoff_t)-1)
2018 *start = (pgoff_t)-1;
2019 else
2020 *start = end + 1;
2021 out:
2022 rcu_read_unlock();
2023
2024 return ret;
2025 }
2026
2027 /**
2028 * find_get_pages_contig - gang contiguous pagecache lookup
2029 * @mapping: The address_space to search
2030 * @index: The starting page index
2031 * @nr_pages: The maximum number of pages
2032 * @pages: Where the resulting pages are placed
2033 *
2034 * find_get_pages_contig() works exactly like find_get_pages(), except
2035 * that the returned number of pages are guaranteed to be contiguous.
2036 *
2037 * Return: the number of pages which were found.
2038 */
2039 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2040 unsigned int nr_pages, struct page **pages)
2041 {
2042 XA_STATE(xas, &mapping->i_pages, index);
2043 struct page *page;
2044 unsigned int ret = 0;
2045
2046 if (unlikely(!nr_pages))
2047 return 0;
2048
2049 rcu_read_lock();
2050 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2051 if (xas_retry(&xas, page))
2052 continue;
2053 /*
2054 * If the entry has been swapped out, we can stop looking.
2055 * No current caller is looking for DAX entries.
2056 */
2057 if (xa_is_value(page))
2058 break;
2059
2060 if (!page_cache_get_speculative(page))
2061 goto retry;
2062
2063 /* Has the page moved or been split? */
2064 if (unlikely(page != xas_reload(&xas)))
2065 goto put_page;
2066
2067 pages[ret] = find_subpage(page, xas.xa_index);
2068 if (++ret == nr_pages)
2069 break;
2070 continue;
2071 put_page:
2072 put_page(page);
2073 retry:
2074 xas_reset(&xas);
2075 }
2076 rcu_read_unlock();
2077 return ret;
2078 }
2079 EXPORT_SYMBOL(find_get_pages_contig);
2080
2081 /**
2082 * find_get_pages_range_tag - find and return pages in given range matching @tag
2083 * @mapping: the address_space to search
2084 * @index: the starting page index
2085 * @end: The final page index (inclusive)
2086 * @tag: the tag index
2087 * @nr_pages: the maximum number of pages
2088 * @pages: where the resulting pages are placed
2089 *
2090 * Like find_get_pages, except we only return pages which are tagged with
2091 * @tag. We update @index to index the next page for the traversal.
2092 *
2093 * Return: the number of pages which were found.
2094 */
2095 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2096 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2097 struct page **pages)
2098 {
2099 XA_STATE(xas, &mapping->i_pages, *index);
2100 struct page *page;
2101 unsigned ret = 0;
2102
2103 if (unlikely(!nr_pages))
2104 return 0;
2105
2106 rcu_read_lock();
2107 xas_for_each_marked(&xas, page, end, tag) {
2108 if (xas_retry(&xas, page))
2109 continue;
2110 /*
2111 * Shadow entries should never be tagged, but this iteration
2112 * is lockless so there is a window for page reclaim to evict
2113 * a page we saw tagged. Skip over it.
2114 */
2115 if (xa_is_value(page))
2116 continue;
2117
2118 if (!page_cache_get_speculative(page))
2119 goto retry;
2120
2121 /* Has the page moved or been split? */
2122 if (unlikely(page != xas_reload(&xas)))
2123 goto put_page;
2124
2125 pages[ret] = find_subpage(page, xas.xa_index);
2126 if (++ret == nr_pages) {
2127 *index = xas.xa_index + 1;
2128 goto out;
2129 }
2130 continue;
2131 put_page:
2132 put_page(page);
2133 retry:
2134 xas_reset(&xas);
2135 }
2136
2137 /*
2138 * We come here when we got to @end. We take care to not overflow the
2139 * index @index as it confuses some of the callers. This breaks the
2140 * iteration when there is a page at index -1 but that is already
2141 * broken anyway.
2142 */
2143 if (end == (pgoff_t)-1)
2144 *index = (pgoff_t)-1;
2145 else
2146 *index = end + 1;
2147 out:
2148 rcu_read_unlock();
2149
2150 return ret;
2151 }
2152 EXPORT_SYMBOL(find_get_pages_range_tag);
2153
2154 /*
2155 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2156 * a _large_ part of the i/o request. Imagine the worst scenario:
2157 *
2158 * ---R__________________________________________B__________
2159 * ^ reading here ^ bad block(assume 4k)
2160 *
2161 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2162 * => failing the whole request => read(R) => read(R+1) =>
2163 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2164 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2165 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2166 *
2167 * It is going insane. Fix it by quickly scaling down the readahead size.
2168 */
2169 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2170 {
2171 ra->ra_pages /= 4;
2172 }
2173
2174 static int lock_page_for_iocb(struct kiocb *iocb, struct page *page)
2175 {
2176 if (iocb->ki_flags & IOCB_WAITQ)
2177 return lock_page_async(page, iocb->ki_waitq);
2178 else if (iocb->ki_flags & IOCB_NOWAIT)
2179 return trylock_page(page) ? 0 : -EAGAIN;
2180 else
2181 return lock_page_killable(page);
2182 }
2183
2184 static struct page *
2185 generic_file_buffered_read_readpage(struct kiocb *iocb,
2186 struct file *filp,
2187 struct address_space *mapping,
2188 struct page *page)
2189 {
2190 struct file_ra_state *ra = &filp->f_ra;
2191 int error;
2192
2193 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2194 unlock_page(page);
2195 put_page(page);
2196 return ERR_PTR(-EAGAIN);
2197 }
2198
2199 /*
2200 * A previous I/O error may have been due to temporary
2201 * failures, eg. multipath errors.
2202 * PG_error will be set again if readpage fails.
2203 */
2204 ClearPageError(page);
2205 /* Start the actual read. The read will unlock the page. */
2206 error = mapping->a_ops->readpage(filp, page);
2207
2208 if (unlikely(error)) {
2209 put_page(page);
2210 return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL;
2211 }
2212
2213 if (!PageUptodate(page)) {
2214 error = lock_page_for_iocb(iocb, page);
2215 if (unlikely(error)) {
2216 put_page(page);
2217 return ERR_PTR(error);
2218 }
2219 if (!PageUptodate(page)) {
2220 if (page->mapping == NULL) {
2221 /*
2222 * invalidate_mapping_pages got it
2223 */
2224 unlock_page(page);
2225 put_page(page);
2226 return NULL;
2227 }
2228 unlock_page(page);
2229 shrink_readahead_size_eio(ra);
2230 put_page(page);
2231 return ERR_PTR(-EIO);
2232 }
2233 unlock_page(page);
2234 }
2235
2236 return page;
2237 }
2238
2239 static struct page *
2240 generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb,
2241 struct file *filp,
2242 struct iov_iter *iter,
2243 struct page *page,
2244 loff_t pos, loff_t count)
2245 {
2246 struct address_space *mapping = filp->f_mapping;
2247 struct inode *inode = mapping->host;
2248 int error;
2249
2250 /*
2251 * See comment in do_read_cache_page on why
2252 * wait_on_page_locked is used to avoid unnecessarily
2253 * serialisations and why it's safe.
2254 */
2255 if (iocb->ki_flags & IOCB_WAITQ) {
2256 error = wait_on_page_locked_async(page,
2257 iocb->ki_waitq);
2258 } else {
2259 error = wait_on_page_locked_killable(page);
2260 }
2261 if (unlikely(error)) {
2262 put_page(page);
2263 return ERR_PTR(error);
2264 }
2265 if (PageUptodate(page))
2266 return page;
2267
2268 if (inode->i_blkbits == PAGE_SHIFT ||
2269 !mapping->a_ops->is_partially_uptodate)
2270 goto page_not_up_to_date;
2271 /* pipes can't handle partially uptodate pages */
2272 if (unlikely(iov_iter_is_pipe(iter)))
2273 goto page_not_up_to_date;
2274 if (!trylock_page(page))
2275 goto page_not_up_to_date;
2276 /* Did it get truncated before we got the lock? */
2277 if (!page->mapping)
2278 goto page_not_up_to_date_locked;
2279 if (!mapping->a_ops->is_partially_uptodate(page,
2280 pos & ~PAGE_MASK, count))
2281 goto page_not_up_to_date_locked;
2282 unlock_page(page);
2283 return page;
2284
2285 page_not_up_to_date:
2286 /* Get exclusive access to the page ... */
2287 error = lock_page_for_iocb(iocb, page);
2288 if (unlikely(error)) {
2289 put_page(page);
2290 return ERR_PTR(error);
2291 }
2292
2293 page_not_up_to_date_locked:
2294 /* Did it get truncated before we got the lock? */
2295 if (!page->mapping) {
2296 unlock_page(page);
2297 put_page(page);
2298 return NULL;
2299 }
2300
2301 /* Did somebody else fill it already? */
2302 if (PageUptodate(page)) {
2303 unlock_page(page);
2304 return page;
2305 }
2306
2307 return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
2308 }
2309
2310 static struct page *
2311 generic_file_buffered_read_no_cached_page(struct kiocb *iocb,
2312 struct iov_iter *iter)
2313 {
2314 struct file *filp = iocb->ki_filp;
2315 struct address_space *mapping = filp->f_mapping;
2316 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2317 struct page *page;
2318 int error;
2319
2320 if (iocb->ki_flags & IOCB_NOIO)
2321 return ERR_PTR(-EAGAIN);
2322
2323 /*
2324 * Ok, it wasn't cached, so we need to create a new
2325 * page..
2326 */
2327 page = page_cache_alloc(mapping);
2328 if (!page)
2329 return ERR_PTR(-ENOMEM);
2330
2331 error = add_to_page_cache_lru(page, mapping, index,
2332 mapping_gfp_constraint(mapping, GFP_KERNEL));
2333 if (error) {
2334 put_page(page);
2335 return error != -EEXIST ? ERR_PTR(error) : NULL;
2336 }
2337
2338 return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
2339 }
2340
2341 static int generic_file_buffered_read_get_pages(struct kiocb *iocb,
2342 struct iov_iter *iter,
2343 struct page **pages,
2344 unsigned int nr)
2345 {
2346 struct file *filp = iocb->ki_filp;
2347 struct address_space *mapping = filp->f_mapping;
2348 struct file_ra_state *ra = &filp->f_ra;
2349 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2350 pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2351 int i, j, nr_got, err = 0;
2352
2353 nr = min_t(unsigned long, last_index - index, nr);
2354 find_page:
2355 if (fatal_signal_pending(current))
2356 return -EINTR;
2357
2358 nr_got = find_get_pages_contig(mapping, index, nr, pages);
2359 if (nr_got)
2360 goto got_pages;
2361
2362 if (iocb->ki_flags & IOCB_NOIO)
2363 return -EAGAIN;
2364
2365 page_cache_sync_readahead(mapping, ra, filp, index, last_index - index);
2366
2367 nr_got = find_get_pages_contig(mapping, index, nr, pages);
2368 if (nr_got)
2369 goto got_pages;
2370
2371 pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter);
2372 err = PTR_ERR_OR_ZERO(pages[0]);
2373 if (!IS_ERR_OR_NULL(pages[0]))
2374 nr_got = 1;
2375 got_pages:
2376 for (i = 0; i < nr_got; i++) {
2377 struct page *page = pages[i];
2378 pgoff_t pg_index = index + i;
2379 loff_t pg_pos = max(iocb->ki_pos,
2380 (loff_t) pg_index << PAGE_SHIFT);
2381 loff_t pg_count = iocb->ki_pos + iter->count - pg_pos;
2382
2383 if (PageReadahead(page)) {
2384 if (iocb->ki_flags & IOCB_NOIO) {
2385 for (j = i; j < nr_got; j++)
2386 put_page(pages[j]);
2387 nr_got = i;
2388 err = -EAGAIN;
2389 break;
2390 }
2391 page_cache_async_readahead(mapping, ra, filp, page,
2392 pg_index, last_index - pg_index);
2393 }
2394
2395 if (!PageUptodate(page)) {
2396 if ((iocb->ki_flags & IOCB_NOWAIT) ||
2397 ((iocb->ki_flags & IOCB_WAITQ) && i)) {
2398 for (j = i; j < nr_got; j++)
2399 put_page(pages[j]);
2400 nr_got = i;
2401 err = -EAGAIN;
2402 break;
2403 }
2404
2405 page = generic_file_buffered_read_pagenotuptodate(iocb,
2406 filp, iter, page, pg_pos, pg_count);
2407 if (IS_ERR_OR_NULL(page)) {
2408 for (j = i + 1; j < nr_got; j++)
2409 put_page(pages[j]);
2410 nr_got = i;
2411 err = PTR_ERR_OR_ZERO(page);
2412 break;
2413 }
2414 }
2415 }
2416
2417 if (likely(nr_got))
2418 return nr_got;
2419 if (err)
2420 return err;
2421 /*
2422 * No pages and no error means we raced and should retry:
2423 */
2424 goto find_page;
2425 }
2426
2427 /**
2428 * generic_file_buffered_read - generic file read routine
2429 * @iocb: the iocb to read
2430 * @iter: data destination
2431 * @written: already copied
2432 *
2433 * This is a generic file read routine, and uses the
2434 * mapping->a_ops->readpage() function for the actual low-level stuff.
2435 *
2436 * This is really ugly. But the goto's actually try to clarify some
2437 * of the logic when it comes to error handling etc.
2438 *
2439 * Return:
2440 * * total number of bytes copied, including those the were already @written
2441 * * negative error code if nothing was copied
2442 */
2443 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2444 struct iov_iter *iter, ssize_t written)
2445 {
2446 struct file *filp = iocb->ki_filp;
2447 struct file_ra_state *ra = &filp->f_ra;
2448 struct address_space *mapping = filp->f_mapping;
2449 struct inode *inode = mapping->host;
2450 struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL;
2451 unsigned int nr_pages = min_t(unsigned int, 512,
2452 ((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) -
2453 (iocb->ki_pos >> PAGE_SHIFT));
2454 int i, pg_nr, error = 0;
2455 bool writably_mapped;
2456 loff_t isize, end_offset;
2457
2458 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2459 return 0;
2460 if (unlikely(!iov_iter_count(iter)))
2461 return 0;
2462
2463 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2464
2465 if (nr_pages > ARRAY_SIZE(pages_onstack))
2466 pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
2467
2468 if (!pages) {
2469 pages = pages_onstack;
2470 nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack));
2471 }
2472
2473 do {
2474 cond_resched();
2475
2476 /*
2477 * If we've already successfully copied some data, then we
2478 * can no longer safely return -EIOCBQUEUED. Hence mark
2479 * an async read NOWAIT at that point.
2480 */
2481 if ((iocb->ki_flags & IOCB_WAITQ) && written)
2482 iocb->ki_flags |= IOCB_NOWAIT;
2483
2484 i = 0;
2485 pg_nr = generic_file_buffered_read_get_pages(iocb, iter,
2486 pages, nr_pages);
2487 if (pg_nr < 0) {
2488 error = pg_nr;
2489 break;
2490 }
2491
2492 /*
2493 * i_size must be checked after we know the pages are Uptodate.
2494 *
2495 * Checking i_size after the check allows us to calculate
2496 * the correct value for "nr", which means the zero-filled
2497 * part of the page is not copied back to userspace (unless
2498 * another truncate extends the file - this is desired though).
2499 */
2500 isize = i_size_read(inode);
2501 if (unlikely(iocb->ki_pos >= isize))
2502 goto put_pages;
2503
2504 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2505
2506 while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr >
2507 (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT)
2508 put_page(pages[--pg_nr]);
2509
2510 /*
2511 * Once we start copying data, we don't want to be touching any
2512 * cachelines that might be contended:
2513 */
2514 writably_mapped = mapping_writably_mapped(mapping);
2515
2516 /*
2517 * When a sequential read accesses a page several times, only
2518 * mark it as accessed the first time.
2519 */
2520 if (iocb->ki_pos >> PAGE_SHIFT !=
2521 ra->prev_pos >> PAGE_SHIFT)
2522 mark_page_accessed(pages[0]);
2523 for (i = 1; i < pg_nr; i++)
2524 mark_page_accessed(pages[i]);
2525
2526 for (i = 0; i < pg_nr; i++) {
2527 unsigned int offset = iocb->ki_pos & ~PAGE_MASK;
2528 unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2529 PAGE_SIZE - offset);
2530 unsigned int copied;
2531
2532 /*
2533 * If users can be writing to this page using arbitrary
2534 * virtual addresses, take care about potential aliasing
2535 * before reading the page on the kernel side.
2536 */
2537 if (writably_mapped)
2538 flush_dcache_page(pages[i]);
2539
2540 copied = copy_page_to_iter(pages[i], offset, bytes, iter);
2541
2542 written += copied;
2543 iocb->ki_pos += copied;
2544 ra->prev_pos = iocb->ki_pos;
2545
2546 if (copied < bytes) {
2547 error = -EFAULT;
2548 break;
2549 }
2550 }
2551 put_pages:
2552 for (i = 0; i < pg_nr; i++)
2553 put_page(pages[i]);
2554 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2555
2556 file_accessed(filp);
2557
2558 if (pages != pages_onstack)
2559 kfree(pages);
2560
2561 return written ? written : error;
2562 }
2563 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2564
2565 /**
2566 * generic_file_read_iter - generic filesystem read routine
2567 * @iocb: kernel I/O control block
2568 * @iter: destination for the data read
2569 *
2570 * This is the "read_iter()" routine for all filesystems
2571 * that can use the page cache directly.
2572 *
2573 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2574 * be returned when no data can be read without waiting for I/O requests
2575 * to complete; it doesn't prevent readahead.
2576 *
2577 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2578 * requests shall be made for the read or for readahead. When no data
2579 * can be read, -EAGAIN shall be returned. When readahead would be
2580 * triggered, a partial, possibly empty read shall be returned.
2581 *
2582 * Return:
2583 * * number of bytes copied, even for partial reads
2584 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2585 */
2586 ssize_t
2587 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2588 {
2589 size_t count = iov_iter_count(iter);
2590 ssize_t retval = 0;
2591
2592 if (!count)
2593 goto out; /* skip atime */
2594
2595 if (iocb->ki_flags & IOCB_DIRECT) {
2596 struct file *file = iocb->ki_filp;
2597 struct address_space *mapping = file->f_mapping;
2598 struct inode *inode = mapping->host;
2599 loff_t size;
2600
2601 size = i_size_read(inode);
2602 if (iocb->ki_flags & IOCB_NOWAIT) {
2603 if (filemap_range_has_page(mapping, iocb->ki_pos,
2604 iocb->ki_pos + count - 1))
2605 return -EAGAIN;
2606 } else {
2607 retval = filemap_write_and_wait_range(mapping,
2608 iocb->ki_pos,
2609 iocb->ki_pos + count - 1);
2610 if (retval < 0)
2611 goto out;
2612 }
2613
2614 file_accessed(file);
2615
2616 retval = mapping->a_ops->direct_IO(iocb, iter);
2617 if (retval >= 0) {
2618 iocb->ki_pos += retval;
2619 count -= retval;
2620 }
2621 iov_iter_revert(iter, count - iov_iter_count(iter));
2622
2623 /*
2624 * Btrfs can have a short DIO read if we encounter
2625 * compressed extents, so if there was an error, or if
2626 * we've already read everything we wanted to, or if
2627 * there was a short read because we hit EOF, go ahead
2628 * and return. Otherwise fallthrough to buffered io for
2629 * the rest of the read. Buffered reads will not work for
2630 * DAX files, so don't bother trying.
2631 */
2632 if (retval < 0 || !count || iocb->ki_pos >= size ||
2633 IS_DAX(inode))
2634 goto out;
2635 }
2636
2637 retval = generic_file_buffered_read(iocb, iter, retval);
2638 out:
2639 return retval;
2640 }
2641 EXPORT_SYMBOL(generic_file_read_iter);
2642
2643 #ifdef CONFIG_MMU
2644 #define MMAP_LOTSAMISS (100)
2645 /*
2646 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2647 * @vmf - the vm_fault for this fault.
2648 * @page - the page to lock.
2649 * @fpin - the pointer to the file we may pin (or is already pinned).
2650 *
2651 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2652 * It differs in that it actually returns the page locked if it returns 1 and 0
2653 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2654 * will point to the pinned file and needs to be fput()'ed at a later point.
2655 */
2656 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2657 struct file **fpin)
2658 {
2659 if (trylock_page(page))
2660 return 1;
2661
2662 /*
2663 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2664 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2665 * is supposed to work. We have way too many special cases..
2666 */
2667 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2668 return 0;
2669
2670 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2671 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2672 if (__lock_page_killable(page)) {
2673 /*
2674 * We didn't have the right flags to drop the mmap_lock,
2675 * but all fault_handlers only check for fatal signals
2676 * if we return VM_FAULT_RETRY, so we need to drop the
2677 * mmap_lock here and return 0 if we don't have a fpin.
2678 */
2679 if (*fpin == NULL)
2680 mmap_read_unlock(vmf->vma->vm_mm);
2681 return 0;
2682 }
2683 } else
2684 __lock_page(page);
2685 return 1;
2686 }
2687
2688
2689 /*
2690 * Synchronous readahead happens when we don't even find a page in the page
2691 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2692 * to drop the mmap sem we return the file that was pinned in order for us to do
2693 * that. If we didn't pin a file then we return NULL. The file that is
2694 * returned needs to be fput()'ed when we're done with it.
2695 */
2696 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2697 {
2698 struct file *file = vmf->vma->vm_file;
2699 struct file_ra_state *ra = &file->f_ra;
2700 struct address_space *mapping = file->f_mapping;
2701 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2702 struct file *fpin = NULL;
2703 unsigned int mmap_miss;
2704
2705 /* If we don't want any read-ahead, don't bother */
2706 if (vmf->vma->vm_flags & VM_RAND_READ)
2707 return fpin;
2708 if (!ra->ra_pages)
2709 return fpin;
2710
2711 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2712 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2713 page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2714 return fpin;
2715 }
2716
2717 /* Avoid banging the cache line if not needed */
2718 mmap_miss = READ_ONCE(ra->mmap_miss);
2719 if (mmap_miss < MMAP_LOTSAMISS * 10)
2720 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2721
2722 /*
2723 * Do we miss much more than hit in this file? If so,
2724 * stop bothering with read-ahead. It will only hurt.
2725 */
2726 if (mmap_miss > MMAP_LOTSAMISS)
2727 return fpin;
2728
2729 /*
2730 * mmap read-around
2731 */
2732 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2733 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2734 ra->size = ra->ra_pages;
2735 ra->async_size = ra->ra_pages / 4;
2736 ractl._index = ra->start;
2737 do_page_cache_ra(&ractl, ra->size, ra->async_size);
2738 return fpin;
2739 }
2740
2741 /*
2742 * Asynchronous readahead happens when we find the page and PG_readahead,
2743 * so we want to possibly extend the readahead further. We return the file that
2744 * was pinned if we have to drop the mmap_lock in order to do IO.
2745 */
2746 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2747 struct page *page)
2748 {
2749 struct file *file = vmf->vma->vm_file;
2750 struct file_ra_state *ra = &file->f_ra;
2751 struct address_space *mapping = file->f_mapping;
2752 struct file *fpin = NULL;
2753 unsigned int mmap_miss;
2754 pgoff_t offset = vmf->pgoff;
2755
2756 /* If we don't want any read-ahead, don't bother */
2757 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2758 return fpin;
2759 mmap_miss = READ_ONCE(ra->mmap_miss);
2760 if (mmap_miss)
2761 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2762 if (PageReadahead(page)) {
2763 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2764 page_cache_async_readahead(mapping, ra, file,
2765 page, offset, ra->ra_pages);
2766 }
2767 return fpin;
2768 }
2769
2770 /**
2771 * filemap_fault - read in file data for page fault handling
2772 * @vmf: struct vm_fault containing details of the fault
2773 *
2774 * filemap_fault() is invoked via the vma operations vector for a
2775 * mapped memory region to read in file data during a page fault.
2776 *
2777 * The goto's are kind of ugly, but this streamlines the normal case of having
2778 * it in the page cache, and handles the special cases reasonably without
2779 * having a lot of duplicated code.
2780 *
2781 * vma->vm_mm->mmap_lock must be held on entry.
2782 *
2783 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2784 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2785 *
2786 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2787 * has not been released.
2788 *
2789 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2790 *
2791 * Return: bitwise-OR of %VM_FAULT_ codes.
2792 */
2793 vm_fault_t filemap_fault(struct vm_fault *vmf)
2794 {
2795 int error;
2796 struct file *file = vmf->vma->vm_file;
2797 struct file *fpin = NULL;
2798 struct address_space *mapping = file->f_mapping;
2799 struct file_ra_state *ra = &file->f_ra;
2800 struct inode *inode = mapping->host;
2801 pgoff_t offset = vmf->pgoff;
2802 pgoff_t max_off;
2803 struct page *page;
2804 vm_fault_t ret = 0;
2805
2806 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2807 if (unlikely(offset >= max_off))
2808 return VM_FAULT_SIGBUS;
2809
2810 /*
2811 * Do we have something in the page cache already?
2812 */
2813 page = find_get_page(mapping, offset);
2814 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2815 /*
2816 * We found the page, so try async readahead before
2817 * waiting for the lock.
2818 */
2819 fpin = do_async_mmap_readahead(vmf, page);
2820 } else if (!page) {
2821 /* No page in the page cache at all */
2822 count_vm_event(PGMAJFAULT);
2823 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2824 ret = VM_FAULT_MAJOR;
2825 fpin = do_sync_mmap_readahead(vmf);
2826 retry_find:
2827 page = pagecache_get_page(mapping, offset,
2828 FGP_CREAT|FGP_FOR_MMAP,
2829 vmf->gfp_mask);
2830 if (!page) {
2831 if (fpin)
2832 goto out_retry;
2833 return VM_FAULT_OOM;
2834 }
2835 }
2836
2837 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2838 goto out_retry;
2839
2840 /* Did it get truncated? */
2841 if (unlikely(compound_head(page)->mapping != mapping)) {
2842 unlock_page(page);
2843 put_page(page);
2844 goto retry_find;
2845 }
2846 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2847
2848 /*
2849 * We have a locked page in the page cache, now we need to check
2850 * that it's up-to-date. If not, it is going to be due to an error.
2851 */
2852 if (unlikely(!PageUptodate(page)))
2853 goto page_not_uptodate;
2854
2855 /*
2856 * We've made it this far and we had to drop our mmap_lock, now is the
2857 * time to return to the upper layer and have it re-find the vma and
2858 * redo the fault.
2859 */
2860 if (fpin) {
2861 unlock_page(page);
2862 goto out_retry;
2863 }
2864
2865 /*
2866 * Found the page and have a reference on it.
2867 * We must recheck i_size under page lock.
2868 */
2869 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2870 if (unlikely(offset >= max_off)) {
2871 unlock_page(page);
2872 put_page(page);
2873 return VM_FAULT_SIGBUS;
2874 }
2875
2876 vmf->page = page;
2877 return ret | VM_FAULT_LOCKED;
2878
2879 page_not_uptodate:
2880 /*
2881 * Umm, take care of errors if the page isn't up-to-date.
2882 * Try to re-read it _once_. We do this synchronously,
2883 * because there really aren't any performance issues here
2884 * and we need to check for errors.
2885 */
2886 ClearPageError(page);
2887 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2888 error = mapping->a_ops->readpage(file, page);
2889 if (!error) {
2890 wait_on_page_locked(page);
2891 if (!PageUptodate(page))
2892 error = -EIO;
2893 }
2894 if (fpin)
2895 goto out_retry;
2896 put_page(page);
2897
2898 if (!error || error == AOP_TRUNCATED_PAGE)
2899 goto retry_find;
2900
2901 shrink_readahead_size_eio(ra);
2902 return VM_FAULT_SIGBUS;
2903
2904 out_retry:
2905 /*
2906 * We dropped the mmap_lock, we need to return to the fault handler to
2907 * re-find the vma and come back and find our hopefully still populated
2908 * page.
2909 */
2910 if (page)
2911 put_page(page);
2912 if (fpin)
2913 fput(fpin);
2914 return ret | VM_FAULT_RETRY;
2915 }
2916 EXPORT_SYMBOL(filemap_fault);
2917
2918 void filemap_map_pages(struct vm_fault *vmf,
2919 pgoff_t start_pgoff, pgoff_t end_pgoff)
2920 {
2921 struct file *file = vmf->vma->vm_file;
2922 struct address_space *mapping = file->f_mapping;
2923 pgoff_t last_pgoff = start_pgoff;
2924 unsigned long max_idx;
2925 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2926 struct page *head, *page;
2927 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2928
2929 rcu_read_lock();
2930 xas_for_each(&xas, head, end_pgoff) {
2931 if (xas_retry(&xas, head))
2932 continue;
2933 if (xa_is_value(head))
2934 goto next;
2935
2936 /*
2937 * Check for a locked page first, as a speculative
2938 * reference may adversely influence page migration.
2939 */
2940 if (PageLocked(head))
2941 goto next;
2942 if (!page_cache_get_speculative(head))
2943 goto next;
2944
2945 /* Has the page moved or been split? */
2946 if (unlikely(head != xas_reload(&xas)))
2947 goto skip;
2948 page = find_subpage(head, xas.xa_index);
2949
2950 if (!PageUptodate(head) ||
2951 PageReadahead(page) ||
2952 PageHWPoison(page))
2953 goto skip;
2954 if (!trylock_page(head))
2955 goto skip;
2956
2957 if (head->mapping != mapping || !PageUptodate(head))
2958 goto unlock;
2959
2960 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2961 if (xas.xa_index >= max_idx)
2962 goto unlock;
2963
2964 if (mmap_miss > 0)
2965 mmap_miss--;
2966
2967 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2968 if (vmf->pte)
2969 vmf->pte += xas.xa_index - last_pgoff;
2970 last_pgoff = xas.xa_index;
2971 if (alloc_set_pte(vmf, page))
2972 goto unlock;
2973 unlock_page(head);
2974 goto next;
2975 unlock:
2976 unlock_page(head);
2977 skip:
2978 put_page(head);
2979 next:
2980 /* Huge page is mapped? No need to proceed. */
2981 if (pmd_trans_huge(*vmf->pmd))
2982 break;
2983 }
2984 rcu_read_unlock();
2985 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2986 }
2987 EXPORT_SYMBOL(filemap_map_pages);
2988
2989 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2990 {
2991 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
2992 struct page *page = vmf->page;
2993 vm_fault_t ret = VM_FAULT_LOCKED;
2994
2995 sb_start_pagefault(mapping->host->i_sb);
2996 vma_file_update_time(vmf->vma);
2997 lock_page(page);
2998 if (page->mapping != mapping) {
2999 unlock_page(page);
3000 ret = VM_FAULT_NOPAGE;
3001 goto out;
3002 }
3003 /*
3004 * We mark the page dirty already here so that when freeze is in
3005 * progress, we are guaranteed that writeback during freezing will
3006 * see the dirty page and writeprotect it again.
3007 */
3008 set_page_dirty(page);
3009 wait_for_stable_page(page);
3010 out:
3011 sb_end_pagefault(mapping->host->i_sb);
3012 return ret;
3013 }
3014
3015 const struct vm_operations_struct generic_file_vm_ops = {
3016 .fault = filemap_fault,
3017 .map_pages = filemap_map_pages,
3018 .page_mkwrite = filemap_page_mkwrite,
3019 };
3020
3021 /* This is used for a general mmap of a disk file */
3022
3023 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3024 {
3025 struct address_space *mapping = file->f_mapping;
3026
3027 if (!mapping->a_ops->readpage)
3028 return -ENOEXEC;
3029 file_accessed(file);
3030 vma->vm_ops = &generic_file_vm_ops;
3031 return 0;
3032 }
3033
3034 /*
3035 * This is for filesystems which do not implement ->writepage.
3036 */
3037 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3038 {
3039 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3040 return -EINVAL;
3041 return generic_file_mmap(file, vma);
3042 }
3043 #else
3044 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3045 {
3046 return VM_FAULT_SIGBUS;
3047 }
3048 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3049 {
3050 return -ENOSYS;
3051 }
3052 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3053 {
3054 return -ENOSYS;
3055 }
3056 #endif /* CONFIG_MMU */
3057
3058 EXPORT_SYMBOL(filemap_page_mkwrite);
3059 EXPORT_SYMBOL(generic_file_mmap);
3060 EXPORT_SYMBOL(generic_file_readonly_mmap);
3061
3062 static struct page *wait_on_page_read(struct page *page)
3063 {
3064 if (!IS_ERR(page)) {
3065 wait_on_page_locked(page);
3066 if (!PageUptodate(page)) {
3067 put_page(page);
3068 page = ERR_PTR(-EIO);
3069 }
3070 }
3071 return page;
3072 }
3073
3074 static struct page *do_read_cache_page(struct address_space *mapping,
3075 pgoff_t index,
3076 int (*filler)(void *, struct page *),
3077 void *data,
3078 gfp_t gfp)
3079 {
3080 struct page *page;
3081 int err;
3082 repeat:
3083 page = find_get_page(mapping, index);
3084 if (!page) {
3085 page = __page_cache_alloc(gfp);
3086 if (!page)
3087 return ERR_PTR(-ENOMEM);
3088 err = add_to_page_cache_lru(page, mapping, index, gfp);
3089 if (unlikely(err)) {
3090 put_page(page);
3091 if (err == -EEXIST)
3092 goto repeat;
3093 /* Presumably ENOMEM for xarray node */
3094 return ERR_PTR(err);
3095 }
3096
3097 filler:
3098 if (filler)
3099 err = filler(data, page);
3100 else
3101 err = mapping->a_ops->readpage(data, page);
3102
3103 if (err < 0) {
3104 put_page(page);
3105 return ERR_PTR(err);
3106 }
3107
3108 page = wait_on_page_read(page);
3109 if (IS_ERR(page))
3110 return page;
3111 goto out;
3112 }
3113 if (PageUptodate(page))
3114 goto out;
3115
3116 /*
3117 * Page is not up to date and may be locked due to one of the following
3118 * case a: Page is being filled and the page lock is held
3119 * case b: Read/write error clearing the page uptodate status
3120 * case c: Truncation in progress (page locked)
3121 * case d: Reclaim in progress
3122 *
3123 * Case a, the page will be up to date when the page is unlocked.
3124 * There is no need to serialise on the page lock here as the page
3125 * is pinned so the lock gives no additional protection. Even if the
3126 * page is truncated, the data is still valid if PageUptodate as
3127 * it's a race vs truncate race.
3128 * Case b, the page will not be up to date
3129 * Case c, the page may be truncated but in itself, the data may still
3130 * be valid after IO completes as it's a read vs truncate race. The
3131 * operation must restart if the page is not uptodate on unlock but
3132 * otherwise serialising on page lock to stabilise the mapping gives
3133 * no additional guarantees to the caller as the page lock is
3134 * released before return.
3135 * Case d, similar to truncation. If reclaim holds the page lock, it
3136 * will be a race with remove_mapping that determines if the mapping
3137 * is valid on unlock but otherwise the data is valid and there is
3138 * no need to serialise with page lock.
3139 *
3140 * As the page lock gives no additional guarantee, we optimistically
3141 * wait on the page to be unlocked and check if it's up to date and
3142 * use the page if it is. Otherwise, the page lock is required to
3143 * distinguish between the different cases. The motivation is that we
3144 * avoid spurious serialisations and wakeups when multiple processes
3145 * wait on the same page for IO to complete.
3146 */
3147 wait_on_page_locked(page);
3148 if (PageUptodate(page))
3149 goto out;
3150
3151 /* Distinguish between all the cases under the safety of the lock */
3152 lock_page(page);
3153
3154 /* Case c or d, restart the operation */
3155 if (!page->mapping) {
3156 unlock_page(page);
3157 put_page(page);
3158 goto repeat;
3159 }
3160
3161 /* Someone else locked and filled the page in a very small window */
3162 if (PageUptodate(page)) {
3163 unlock_page(page);
3164 goto out;
3165 }
3166
3167 /*
3168 * A previous I/O error may have been due to temporary
3169 * failures.
3170 * Clear page error before actual read, PG_error will be
3171 * set again if read page fails.
3172 */
3173 ClearPageError(page);
3174 goto filler;
3175
3176 out:
3177 mark_page_accessed(page);
3178 return page;
3179 }
3180
3181 /**
3182 * read_cache_page - read into page cache, fill it if needed
3183 * @mapping: the page's address_space
3184 * @index: the page index
3185 * @filler: function to perform the read
3186 * @data: first arg to filler(data, page) function, often left as NULL
3187 *
3188 * Read into the page cache. If a page already exists, and PageUptodate() is
3189 * not set, try to fill the page and wait for it to become unlocked.
3190 *
3191 * If the page does not get brought uptodate, return -EIO.
3192 *
3193 * Return: up to date page on success, ERR_PTR() on failure.
3194 */
3195 struct page *read_cache_page(struct address_space *mapping,
3196 pgoff_t index,
3197 int (*filler)(void *, struct page *),
3198 void *data)
3199 {
3200 return do_read_cache_page(mapping, index, filler, data,
3201 mapping_gfp_mask(mapping));
3202 }
3203 EXPORT_SYMBOL(read_cache_page);
3204
3205 /**
3206 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3207 * @mapping: the page's address_space
3208 * @index: the page index
3209 * @gfp: the page allocator flags to use if allocating
3210 *
3211 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3212 * any new page allocations done using the specified allocation flags.
3213 *
3214 * If the page does not get brought uptodate, return -EIO.
3215 *
3216 * Return: up to date page on success, ERR_PTR() on failure.
3217 */
3218 struct page *read_cache_page_gfp(struct address_space *mapping,
3219 pgoff_t index,
3220 gfp_t gfp)
3221 {
3222 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3223 }
3224 EXPORT_SYMBOL(read_cache_page_gfp);
3225
3226 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3227 loff_t pos, unsigned len, unsigned flags,
3228 struct page **pagep, void **fsdata)
3229 {
3230 const struct address_space_operations *aops = mapping->a_ops;
3231
3232 return aops->write_begin(file, mapping, pos, len, flags,
3233 pagep, fsdata);
3234 }
3235 EXPORT_SYMBOL(pagecache_write_begin);
3236
3237 int pagecache_write_end(struct file *file, struct address_space *mapping,
3238 loff_t pos, unsigned len, unsigned copied,
3239 struct page *page, void *fsdata)
3240 {
3241 const struct address_space_operations *aops = mapping->a_ops;
3242
3243 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3244 }
3245 EXPORT_SYMBOL(pagecache_write_end);
3246
3247 /*
3248 * Warn about a page cache invalidation failure during a direct I/O write.
3249 */
3250 void dio_warn_stale_pagecache(struct file *filp)
3251 {
3252 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3253 char pathname[128];
3254 char *path;
3255
3256 errseq_set(&filp->f_mapping->wb_err, -EIO);
3257 if (__ratelimit(&_rs)) {
3258 path = file_path(filp, pathname, sizeof(pathname));
3259 if (IS_ERR(path))
3260 path = "(unknown)";
3261 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3262 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3263 current->comm);
3264 }
3265 }
3266
3267 ssize_t
3268 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3269 {
3270 struct file *file = iocb->ki_filp;
3271 struct address_space *mapping = file->f_mapping;
3272 struct inode *inode = mapping->host;
3273 loff_t pos = iocb->ki_pos;
3274 ssize_t written;
3275 size_t write_len;
3276 pgoff_t end;
3277
3278 write_len = iov_iter_count(from);
3279 end = (pos + write_len - 1) >> PAGE_SHIFT;
3280
3281 if (iocb->ki_flags & IOCB_NOWAIT) {
3282 /* If there are pages to writeback, return */
3283 if (filemap_range_has_page(file->f_mapping, pos,
3284 pos + write_len - 1))
3285 return -EAGAIN;
3286 } else {
3287 written = filemap_write_and_wait_range(mapping, pos,
3288 pos + write_len - 1);
3289 if (written)
3290 goto out;
3291 }
3292
3293 /*
3294 * After a write we want buffered reads to be sure to go to disk to get
3295 * the new data. We invalidate clean cached page from the region we're
3296 * about to write. We do this *before* the write so that we can return
3297 * without clobbering -EIOCBQUEUED from ->direct_IO().
3298 */
3299 written = invalidate_inode_pages2_range(mapping,
3300 pos >> PAGE_SHIFT, end);
3301 /*
3302 * If a page can not be invalidated, return 0 to fall back
3303 * to buffered write.
3304 */
3305 if (written) {
3306 if (written == -EBUSY)
3307 return 0;
3308 goto out;
3309 }
3310
3311 written = mapping->a_ops->direct_IO(iocb, from);
3312
3313 /*
3314 * Finally, try again to invalidate clean pages which might have been
3315 * cached by non-direct readahead, or faulted in by get_user_pages()
3316 * if the source of the write was an mmap'ed region of the file
3317 * we're writing. Either one is a pretty crazy thing to do,
3318 * so we don't support it 100%. If this invalidation
3319 * fails, tough, the write still worked...
3320 *
3321 * Most of the time we do not need this since dio_complete() will do
3322 * the invalidation for us. However there are some file systems that
3323 * do not end up with dio_complete() being called, so let's not break
3324 * them by removing it completely.
3325 *
3326 * Noticeable example is a blkdev_direct_IO().
3327 *
3328 * Skip invalidation for async writes or if mapping has no pages.
3329 */
3330 if (written > 0 && mapping->nrpages &&
3331 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3332 dio_warn_stale_pagecache(file);
3333
3334 if (written > 0) {
3335 pos += written;
3336 write_len -= written;
3337 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3338 i_size_write(inode, pos);
3339 mark_inode_dirty(inode);
3340 }
3341 iocb->ki_pos = pos;
3342 }
3343 iov_iter_revert(from, write_len - iov_iter_count(from));
3344 out:
3345 return written;
3346 }
3347 EXPORT_SYMBOL(generic_file_direct_write);
3348
3349 /*
3350 * Find or create a page at the given pagecache position. Return the locked
3351 * page. This function is specifically for buffered writes.
3352 */
3353 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3354 pgoff_t index, unsigned flags)
3355 {
3356 struct page *page;
3357 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3358
3359 if (flags & AOP_FLAG_NOFS)
3360 fgp_flags |= FGP_NOFS;
3361
3362 page = pagecache_get_page(mapping, index, fgp_flags,
3363 mapping_gfp_mask(mapping));
3364 if (page)
3365 wait_for_stable_page(page);
3366
3367 return page;
3368 }
3369 EXPORT_SYMBOL(grab_cache_page_write_begin);
3370
3371 ssize_t generic_perform_write(struct file *file,
3372 struct iov_iter *i, loff_t pos)
3373 {
3374 struct address_space *mapping = file->f_mapping;
3375 const struct address_space_operations *a_ops = mapping->a_ops;
3376 long status = 0;
3377 ssize_t written = 0;
3378 unsigned int flags = 0;
3379
3380 do {
3381 struct page *page;
3382 unsigned long offset; /* Offset into pagecache page */
3383 unsigned long bytes; /* Bytes to write to page */
3384 size_t copied; /* Bytes copied from user */
3385 void *fsdata;
3386
3387 offset = (pos & (PAGE_SIZE - 1));
3388 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3389 iov_iter_count(i));
3390
3391 again:
3392 /*
3393 * Bring in the user page that we will copy from _first_.
3394 * Otherwise there's a nasty deadlock on copying from the
3395 * same page as we're writing to, without it being marked
3396 * up-to-date.
3397 *
3398 * Not only is this an optimisation, but it is also required
3399 * to check that the address is actually valid, when atomic
3400 * usercopies are used, below.
3401 */
3402 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3403 status = -EFAULT;
3404 break;
3405 }
3406
3407 if (fatal_signal_pending(current)) {
3408 status = -EINTR;
3409 break;
3410 }
3411
3412 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3413 &page, &fsdata);
3414 if (unlikely(status < 0))
3415 break;
3416
3417 if (mapping_writably_mapped(mapping))
3418 flush_dcache_page(page);
3419
3420 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3421 flush_dcache_page(page);
3422
3423 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3424 page, fsdata);
3425 if (unlikely(status < 0))
3426 break;
3427 copied = status;
3428
3429 cond_resched();
3430
3431 iov_iter_advance(i, copied);
3432 if (unlikely(copied == 0)) {
3433 /*
3434 * If we were unable to copy any data at all, we must
3435 * fall back to a single segment length write.
3436 *
3437 * If we didn't fallback here, we could livelock
3438 * because not all segments in the iov can be copied at
3439 * once without a pagefault.
3440 */
3441 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3442 iov_iter_single_seg_count(i));
3443 goto again;
3444 }
3445 pos += copied;
3446 written += copied;
3447
3448 balance_dirty_pages_ratelimited(mapping);
3449 } while (iov_iter_count(i));
3450
3451 return written ? written : status;
3452 }
3453 EXPORT_SYMBOL(generic_perform_write);
3454
3455 /**
3456 * __generic_file_write_iter - write data to a file
3457 * @iocb: IO state structure (file, offset, etc.)
3458 * @from: iov_iter with data to write
3459 *
3460 * This function does all the work needed for actually writing data to a
3461 * file. It does all basic checks, removes SUID from the file, updates
3462 * modification times and calls proper subroutines depending on whether we
3463 * do direct IO or a standard buffered write.
3464 *
3465 * It expects i_mutex to be grabbed unless we work on a block device or similar
3466 * object which does not need locking at all.
3467 *
3468 * This function does *not* take care of syncing data in case of O_SYNC write.
3469 * A caller has to handle it. This is mainly due to the fact that we want to
3470 * avoid syncing under i_mutex.
3471 *
3472 * Return:
3473 * * number of bytes written, even for truncated writes
3474 * * negative error code if no data has been written at all
3475 */
3476 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3477 {
3478 struct file *file = iocb->ki_filp;
3479 struct address_space * mapping = file->f_mapping;
3480 struct inode *inode = mapping->host;
3481 ssize_t written = 0;
3482 ssize_t err;
3483 ssize_t status;
3484
3485 /* We can write back this queue in page reclaim */
3486 current->backing_dev_info = inode_to_bdi(inode);
3487 err = file_remove_privs(file);
3488 if (err)
3489 goto out;
3490
3491 err = file_update_time(file);
3492 if (err)
3493 goto out;
3494
3495 if (iocb->ki_flags & IOCB_DIRECT) {
3496 loff_t pos, endbyte;
3497
3498 written = generic_file_direct_write(iocb, from);
3499 /*
3500 * If the write stopped short of completing, fall back to
3501 * buffered writes. Some filesystems do this for writes to
3502 * holes, for example. For DAX files, a buffered write will
3503 * not succeed (even if it did, DAX does not handle dirty
3504 * page-cache pages correctly).
3505 */
3506 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3507 goto out;
3508
3509 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3510 /*
3511 * If generic_perform_write() returned a synchronous error
3512 * then we want to return the number of bytes which were
3513 * direct-written, or the error code if that was zero. Note
3514 * that this differs from normal direct-io semantics, which
3515 * will return -EFOO even if some bytes were written.
3516 */
3517 if (unlikely(status < 0)) {
3518 err = status;
3519 goto out;
3520 }
3521 /*
3522 * We need to ensure that the page cache pages are written to
3523 * disk and invalidated to preserve the expected O_DIRECT
3524 * semantics.
3525 */
3526 endbyte = pos + status - 1;
3527 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3528 if (err == 0) {
3529 iocb->ki_pos = endbyte + 1;
3530 written += status;
3531 invalidate_mapping_pages(mapping,
3532 pos >> PAGE_SHIFT,
3533 endbyte >> PAGE_SHIFT);
3534 } else {
3535 /*
3536 * We don't know how much we wrote, so just return
3537 * the number of bytes which were direct-written
3538 */
3539 }
3540 } else {
3541 written = generic_perform_write(file, from, iocb->ki_pos);
3542 if (likely(written > 0))
3543 iocb->ki_pos += written;
3544 }
3545 out:
3546 current->backing_dev_info = NULL;
3547 return written ? written : err;
3548 }
3549 EXPORT_SYMBOL(__generic_file_write_iter);
3550
3551 /**
3552 * generic_file_write_iter - write data to a file
3553 * @iocb: IO state structure
3554 * @from: iov_iter with data to write
3555 *
3556 * This is a wrapper around __generic_file_write_iter() to be used by most
3557 * filesystems. It takes care of syncing the file in case of O_SYNC file
3558 * and acquires i_mutex as needed.
3559 * Return:
3560 * * negative error code if no data has been written at all of
3561 * vfs_fsync_range() failed for a synchronous write
3562 * * number of bytes written, even for truncated writes
3563 */
3564 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3565 {
3566 struct file *file = iocb->ki_filp;
3567 struct inode *inode = file->f_mapping->host;
3568 ssize_t ret;
3569
3570 inode_lock(inode);
3571 ret = generic_write_checks(iocb, from);
3572 if (ret > 0)
3573 ret = __generic_file_write_iter(iocb, from);
3574 inode_unlock(inode);
3575
3576 if (ret > 0)
3577 ret = generic_write_sync(iocb, ret);
3578 return ret;
3579 }
3580 EXPORT_SYMBOL(generic_file_write_iter);
3581
3582 /**
3583 * try_to_release_page() - release old fs-specific metadata on a page
3584 *
3585 * @page: the page which the kernel is trying to free
3586 * @gfp_mask: memory allocation flags (and I/O mode)
3587 *
3588 * The address_space is to try to release any data against the page
3589 * (presumably at page->private).
3590 *
3591 * This may also be called if PG_fscache is set on a page, indicating that the
3592 * page is known to the local caching routines.
3593 *
3594 * The @gfp_mask argument specifies whether I/O may be performed to release
3595 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3596 *
3597 * Return: %1 if the release was successful, otherwise return zero.
3598 */
3599 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3600 {
3601 struct address_space * const mapping = page->mapping;
3602
3603 BUG_ON(!PageLocked(page));
3604 if (PageWriteback(page))
3605 return 0;
3606
3607 if (mapping && mapping->a_ops->releasepage)
3608 return mapping->a_ops->releasepage(page, gfp_mask);
3609 return try_to_free_buffers(page);
3610 }
3611
3612 EXPORT_SYMBOL(try_to_release_page);