]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/filemap.c
mm: direct IO starvation improvement
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43
44 #include <asm/mman.h>
45
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 *
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 *
81 * ->i_mutex
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
124 mem_cgroup_uncharge_cache_page(page);
125
126 /*
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
129 *
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
132 */
133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 dec_zone_page_state(page, NR_FILE_DIRTY);
135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136 }
137 }
138
139 void remove_from_page_cache(struct page *page)
140 {
141 struct address_space *mapping = page->mapping;
142
143 BUG_ON(!PageLocked(page));
144
145 spin_lock_irq(&mapping->tree_lock);
146 __remove_from_page_cache(page);
147 spin_unlock_irq(&mapping->tree_lock);
148 }
149
150 static int sync_page(void *word)
151 {
152 struct address_space *mapping;
153 struct page *page;
154
155 page = container_of((unsigned long *)word, struct page, flags);
156
157 /*
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
177 */
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
184 }
185
186 static int sync_page_killable(void *word)
187 {
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191
192 /**
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
198 *
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
209 {
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
215 .range_end = end,
216 };
217
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
220
221 ret = do_writepages(mapping, &wbc);
222 return ret;
223 }
224
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
227 {
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
239 {
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244 /**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
247 *
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251 int filemap_flush(struct address_space *mapping)
252 {
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256
257 /**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
262 *
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
268 {
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
273
274 if (end < start)
275 return 0;
276
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
284
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
287
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
291
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
295 }
296 pagevec_release(&pvec);
297 cond_resched();
298 }
299
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
305
306 return ret;
307 }
308
309 /**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
315 *
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
319 *
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
322 */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
325 {
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
329
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
337 }
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343
344 /**
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
350 *
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
357 {
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
361
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372
373 /**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 int err = 0;
395
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
398 /*
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
403 */
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
408 }
409 }
410 return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413
414 /**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
419 *
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
427 {
428 int err = 0;
429
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
440 }
441 }
442 return err;
443 }
444
445 /**
446 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
451 *
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU. The caller must do that.
454 */
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 pgoff_t offset, gfp_t gfp_mask)
457 {
458 int error;
459
460 VM_BUG_ON(!PageLocked(page));
461
462 error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & ~__GFP_HIGHMEM);
464 if (error)
465 goto out;
466
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 page_cache_get(page);
470 page->mapping = mapping;
471 page->index = offset;
472
473 spin_lock_irq(&mapping->tree_lock);
474 error = radix_tree_insert(&mapping->page_tree, offset, page);
475 if (likely(!error)) {
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else {
479 page->mapping = NULL;
480 mem_cgroup_uncharge_cache_page(page);
481 page_cache_release(page);
482 }
483
484 spin_unlock_irq(&mapping->tree_lock);
485 radix_tree_preload_end();
486 } else
487 mem_cgroup_uncharge_cache_page(page);
488 out:
489 return error;
490 }
491 EXPORT_SYMBOL(add_to_page_cache_locked);
492
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 pgoff_t offset, gfp_t gfp_mask)
495 {
496 int ret;
497
498 /*
499 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 * (called in add_to_page_cache) needs to know where they're going too.
503 */
504 if (mapping_cap_swap_backed(mapping))
505 SetPageSwapBacked(page);
506
507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 if (ret == 0) {
509 if (page_is_file_cache(page))
510 lru_cache_add_file(page);
511 else
512 lru_cache_add_active_anon(page);
513 }
514 return ret;
515 }
516
517 #ifdef CONFIG_NUMA
518 struct page *__page_cache_alloc(gfp_t gfp)
519 {
520 if (cpuset_do_page_mem_spread()) {
521 int n = cpuset_mem_spread_node();
522 return alloc_pages_node(n, gfp, 0);
523 }
524 return alloc_pages(gfp, 0);
525 }
526 EXPORT_SYMBOL(__page_cache_alloc);
527 #endif
528
529 static int __sleep_on_page_lock(void *word)
530 {
531 io_schedule();
532 return 0;
533 }
534
535 /*
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
544 */
545 static wait_queue_head_t *page_waitqueue(struct page *page)
546 {
547 const struct zone *zone = page_zone(page);
548
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550 }
551
552 static inline void wake_up_page(struct page *page, int bit)
553 {
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
555 }
556
557 void wait_on_page_bit(struct page *page, int bit_nr)
558 {
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560
561 if (test_bit(bit_nr, &page->flags))
562 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 TASK_UNINTERRUPTIBLE);
564 }
565 EXPORT_SYMBOL(wait_on_page_bit);
566
567 /**
568 * unlock_page - unlock a locked page
569 * @page: the page
570 *
571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573 * mechananism between PageLocked pages and PageWriteback pages is shared.
574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
575 *
576 * The mb is necessary to enforce ordering between the clear_bit and the read
577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
578 */
579 void unlock_page(struct page *page)
580 {
581 VM_BUG_ON(!PageLocked(page));
582 clear_bit_unlock(PG_locked, &page->flags);
583 smp_mb__after_clear_bit();
584 wake_up_page(page, PG_locked);
585 }
586 EXPORT_SYMBOL(unlock_page);
587
588 /**
589 * end_page_writeback - end writeback against a page
590 * @page: the page
591 */
592 void end_page_writeback(struct page *page)
593 {
594 if (TestClearPageReclaim(page))
595 rotate_reclaimable_page(page);
596
597 if (!test_clear_page_writeback(page))
598 BUG();
599
600 smp_mb__after_clear_bit();
601 wake_up_page(page, PG_writeback);
602 }
603 EXPORT_SYMBOL(end_page_writeback);
604
605 /**
606 * __lock_page - get a lock on the page, assuming we need to sleep to get it
607 * @page: the page to lock
608 *
609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
610 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
611 * chances are that on the second loop, the block layer's plug list is empty,
612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
613 */
614 void __lock_page(struct page *page)
615 {
616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
617
618 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
619 TASK_UNINTERRUPTIBLE);
620 }
621 EXPORT_SYMBOL(__lock_page);
622
623 int __lock_page_killable(struct page *page)
624 {
625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626
627 return __wait_on_bit_lock(page_waitqueue(page), &wait,
628 sync_page_killable, TASK_KILLABLE);
629 }
630
631 /**
632 * __lock_page_nosync - get a lock on the page, without calling sync_page()
633 * @page: the page to lock
634 *
635 * Variant of lock_page that does not require the caller to hold a reference
636 * on the page's mapping.
637 */
638 void __lock_page_nosync(struct page *page)
639 {
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
642 TASK_UNINTERRUPTIBLE);
643 }
644
645 /**
646 * find_get_page - find and get a page reference
647 * @mapping: the address_space to search
648 * @offset: the page index
649 *
650 * Is there a pagecache struct page at the given (mapping, offset) tuple?
651 * If yes, increment its refcount and return it; if no, return NULL.
652 */
653 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
654 {
655 void **pagep;
656 struct page *page;
657
658 rcu_read_lock();
659 repeat:
660 page = NULL;
661 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
662 if (pagep) {
663 page = radix_tree_deref_slot(pagep);
664 if (unlikely(!page || page == RADIX_TREE_RETRY))
665 goto repeat;
666
667 if (!page_cache_get_speculative(page))
668 goto repeat;
669
670 /*
671 * Has the page moved?
672 * This is part of the lockless pagecache protocol. See
673 * include/linux/pagemap.h for details.
674 */
675 if (unlikely(page != *pagep)) {
676 page_cache_release(page);
677 goto repeat;
678 }
679 }
680 rcu_read_unlock();
681
682 return page;
683 }
684 EXPORT_SYMBOL(find_get_page);
685
686 /**
687 * find_lock_page - locate, pin and lock a pagecache page
688 * @mapping: the address_space to search
689 * @offset: the page index
690 *
691 * Locates the desired pagecache page, locks it, increments its reference
692 * count and returns its address.
693 *
694 * Returns zero if the page was not present. find_lock_page() may sleep.
695 */
696 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
697 {
698 struct page *page;
699
700 repeat:
701 page = find_get_page(mapping, offset);
702 if (page) {
703 lock_page(page);
704 /* Has the page been truncated? */
705 if (unlikely(page->mapping != mapping)) {
706 unlock_page(page);
707 page_cache_release(page);
708 goto repeat;
709 }
710 VM_BUG_ON(page->index != offset);
711 }
712 return page;
713 }
714 EXPORT_SYMBOL(find_lock_page);
715
716 /**
717 * find_or_create_page - locate or add a pagecache page
718 * @mapping: the page's address_space
719 * @index: the page's index into the mapping
720 * @gfp_mask: page allocation mode
721 *
722 * Locates a page in the pagecache. If the page is not present, a new page
723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724 * LRU list. The returned page is locked and has its reference count
725 * incremented.
726 *
727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
728 * allocation!
729 *
730 * find_or_create_page() returns the desired page's address, or zero on
731 * memory exhaustion.
732 */
733 struct page *find_or_create_page(struct address_space *mapping,
734 pgoff_t index, gfp_t gfp_mask)
735 {
736 struct page *page;
737 int err;
738 repeat:
739 page = find_lock_page(mapping, index);
740 if (!page) {
741 page = __page_cache_alloc(gfp_mask);
742 if (!page)
743 return NULL;
744 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
745 if (unlikely(err)) {
746 page_cache_release(page);
747 page = NULL;
748 if (err == -EEXIST)
749 goto repeat;
750 }
751 }
752 return page;
753 }
754 EXPORT_SYMBOL(find_or_create_page);
755
756 /**
757 * find_get_pages - gang pagecache lookup
758 * @mapping: The address_space to search
759 * @start: The starting page index
760 * @nr_pages: The maximum number of pages
761 * @pages: Where the resulting pages are placed
762 *
763 * find_get_pages() will search for and return a group of up to
764 * @nr_pages pages in the mapping. The pages are placed at @pages.
765 * find_get_pages() takes a reference against the returned pages.
766 *
767 * The search returns a group of mapping-contiguous pages with ascending
768 * indexes. There may be holes in the indices due to not-present pages.
769 *
770 * find_get_pages() returns the number of pages which were found.
771 */
772 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
773 unsigned int nr_pages, struct page **pages)
774 {
775 unsigned int i;
776 unsigned int ret;
777 unsigned int nr_found;
778
779 rcu_read_lock();
780 restart:
781 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
782 (void ***)pages, start, nr_pages);
783 ret = 0;
784 for (i = 0; i < nr_found; i++) {
785 struct page *page;
786 repeat:
787 page = radix_tree_deref_slot((void **)pages[i]);
788 if (unlikely(!page))
789 continue;
790 /*
791 * this can only trigger if nr_found == 1, making livelock
792 * a non issue.
793 */
794 if (unlikely(page == RADIX_TREE_RETRY))
795 goto restart;
796
797 if (!page_cache_get_speculative(page))
798 goto repeat;
799
800 /* Has the page moved? */
801 if (unlikely(page != *((void **)pages[i]))) {
802 page_cache_release(page);
803 goto repeat;
804 }
805
806 pages[ret] = page;
807 ret++;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812
813 /**
814 * find_get_pages_contig - gang contiguous pagecache lookup
815 * @mapping: The address_space to search
816 * @index: The starting page index
817 * @nr_pages: The maximum number of pages
818 * @pages: Where the resulting pages are placed
819 *
820 * find_get_pages_contig() works exactly like find_get_pages(), except
821 * that the returned number of pages are guaranteed to be contiguous.
822 *
823 * find_get_pages_contig() returns the number of pages which were found.
824 */
825 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
826 unsigned int nr_pages, struct page **pages)
827 {
828 unsigned int i;
829 unsigned int ret;
830 unsigned int nr_found;
831
832 rcu_read_lock();
833 restart:
834 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
835 (void ***)pages, index, nr_pages);
836 ret = 0;
837 for (i = 0; i < nr_found; i++) {
838 struct page *page;
839 repeat:
840 page = radix_tree_deref_slot((void **)pages[i]);
841 if (unlikely(!page))
842 continue;
843 /*
844 * this can only trigger if nr_found == 1, making livelock
845 * a non issue.
846 */
847 if (unlikely(page == RADIX_TREE_RETRY))
848 goto restart;
849
850 if (page->mapping == NULL || page->index != index)
851 break;
852
853 if (!page_cache_get_speculative(page))
854 goto repeat;
855
856 /* Has the page moved? */
857 if (unlikely(page != *((void **)pages[i]))) {
858 page_cache_release(page);
859 goto repeat;
860 }
861
862 pages[ret] = page;
863 ret++;
864 index++;
865 }
866 rcu_read_unlock();
867 return ret;
868 }
869 EXPORT_SYMBOL(find_get_pages_contig);
870
871 /**
872 * find_get_pages_tag - find and return pages that match @tag
873 * @mapping: the address_space to search
874 * @index: the starting page index
875 * @tag: the tag index
876 * @nr_pages: the maximum number of pages
877 * @pages: where the resulting pages are placed
878 *
879 * Like find_get_pages, except we only return pages which are tagged with
880 * @tag. We update @index to index the next page for the traversal.
881 */
882 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
883 int tag, unsigned int nr_pages, struct page **pages)
884 {
885 unsigned int i;
886 unsigned int ret;
887 unsigned int nr_found;
888
889 rcu_read_lock();
890 restart:
891 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
892 (void ***)pages, *index, nr_pages, tag);
893 ret = 0;
894 for (i = 0; i < nr_found; i++) {
895 struct page *page;
896 repeat:
897 page = radix_tree_deref_slot((void **)pages[i]);
898 if (unlikely(!page))
899 continue;
900 /*
901 * this can only trigger if nr_found == 1, making livelock
902 * a non issue.
903 */
904 if (unlikely(page == RADIX_TREE_RETRY))
905 goto restart;
906
907 if (!page_cache_get_speculative(page))
908 goto repeat;
909
910 /* Has the page moved? */
911 if (unlikely(page != *((void **)pages[i]))) {
912 page_cache_release(page);
913 goto repeat;
914 }
915
916 pages[ret] = page;
917 ret++;
918 }
919 rcu_read_unlock();
920
921 if (ret)
922 *index = pages[ret - 1]->index + 1;
923
924 return ret;
925 }
926 EXPORT_SYMBOL(find_get_pages_tag);
927
928 /**
929 * grab_cache_page_nowait - returns locked page at given index in given cache
930 * @mapping: target address_space
931 * @index: the page index
932 *
933 * Same as grab_cache_page(), but do not wait if the page is unavailable.
934 * This is intended for speculative data generators, where the data can
935 * be regenerated if the page couldn't be grabbed. This routine should
936 * be safe to call while holding the lock for another page.
937 *
938 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
939 * and deadlock against the caller's locked page.
940 */
941 struct page *
942 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
943 {
944 struct page *page = find_get_page(mapping, index);
945
946 if (page) {
947 if (trylock_page(page))
948 return page;
949 page_cache_release(page);
950 return NULL;
951 }
952 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
953 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
954 page_cache_release(page);
955 page = NULL;
956 }
957 return page;
958 }
959 EXPORT_SYMBOL(grab_cache_page_nowait);
960
961 /*
962 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
963 * a _large_ part of the i/o request. Imagine the worst scenario:
964 *
965 * ---R__________________________________________B__________
966 * ^ reading here ^ bad block(assume 4k)
967 *
968 * read(R) => miss => readahead(R...B) => media error => frustrating retries
969 * => failing the whole request => read(R) => read(R+1) =>
970 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
971 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
972 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
973 *
974 * It is going insane. Fix it by quickly scaling down the readahead size.
975 */
976 static void shrink_readahead_size_eio(struct file *filp,
977 struct file_ra_state *ra)
978 {
979 if (!ra->ra_pages)
980 return;
981
982 ra->ra_pages /= 4;
983 }
984
985 /**
986 * do_generic_file_read - generic file read routine
987 * @filp: the file to read
988 * @ppos: current file position
989 * @desc: read_descriptor
990 * @actor: read method
991 *
992 * This is a generic file read routine, and uses the
993 * mapping->a_ops->readpage() function for the actual low-level stuff.
994 *
995 * This is really ugly. But the goto's actually try to clarify some
996 * of the logic when it comes to error handling etc.
997 */
998 static void do_generic_file_read(struct file *filp, loff_t *ppos,
999 read_descriptor_t *desc, read_actor_t actor)
1000 {
1001 struct address_space *mapping = filp->f_mapping;
1002 struct inode *inode = mapping->host;
1003 struct file_ra_state *ra = &filp->f_ra;
1004 pgoff_t index;
1005 pgoff_t last_index;
1006 pgoff_t prev_index;
1007 unsigned long offset; /* offset into pagecache page */
1008 unsigned int prev_offset;
1009 int error;
1010
1011 index = *ppos >> PAGE_CACHE_SHIFT;
1012 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1013 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1014 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1015 offset = *ppos & ~PAGE_CACHE_MASK;
1016
1017 for (;;) {
1018 struct page *page;
1019 pgoff_t end_index;
1020 loff_t isize;
1021 unsigned long nr, ret;
1022
1023 cond_resched();
1024 find_page:
1025 page = find_get_page(mapping, index);
1026 if (!page) {
1027 page_cache_sync_readahead(mapping,
1028 ra, filp,
1029 index, last_index - index);
1030 page = find_get_page(mapping, index);
1031 if (unlikely(page == NULL))
1032 goto no_cached_page;
1033 }
1034 if (PageReadahead(page)) {
1035 page_cache_async_readahead(mapping,
1036 ra, filp, page,
1037 index, last_index - index);
1038 }
1039 if (!PageUptodate(page)) {
1040 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1041 !mapping->a_ops->is_partially_uptodate)
1042 goto page_not_up_to_date;
1043 if (!trylock_page(page))
1044 goto page_not_up_to_date;
1045 if (!mapping->a_ops->is_partially_uptodate(page,
1046 desc, offset))
1047 goto page_not_up_to_date_locked;
1048 unlock_page(page);
1049 }
1050 page_ok:
1051 /*
1052 * i_size must be checked after we know the page is Uptodate.
1053 *
1054 * Checking i_size after the check allows us to calculate
1055 * the correct value for "nr", which means the zero-filled
1056 * part of the page is not copied back to userspace (unless
1057 * another truncate extends the file - this is desired though).
1058 */
1059
1060 isize = i_size_read(inode);
1061 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1062 if (unlikely(!isize || index > end_index)) {
1063 page_cache_release(page);
1064 goto out;
1065 }
1066
1067 /* nr is the maximum number of bytes to copy from this page */
1068 nr = PAGE_CACHE_SIZE;
1069 if (index == end_index) {
1070 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1071 if (nr <= offset) {
1072 page_cache_release(page);
1073 goto out;
1074 }
1075 }
1076 nr = nr - offset;
1077
1078 /* If users can be writing to this page using arbitrary
1079 * virtual addresses, take care about potential aliasing
1080 * before reading the page on the kernel side.
1081 */
1082 if (mapping_writably_mapped(mapping))
1083 flush_dcache_page(page);
1084
1085 /*
1086 * When a sequential read accesses a page several times,
1087 * only mark it as accessed the first time.
1088 */
1089 if (prev_index != index || offset != prev_offset)
1090 mark_page_accessed(page);
1091 prev_index = index;
1092
1093 /*
1094 * Ok, we have the page, and it's up-to-date, so
1095 * now we can copy it to user space...
1096 *
1097 * The actor routine returns how many bytes were actually used..
1098 * NOTE! This may not be the same as how much of a user buffer
1099 * we filled up (we may be padding etc), so we can only update
1100 * "pos" here (the actor routine has to update the user buffer
1101 * pointers and the remaining count).
1102 */
1103 ret = actor(desc, page, offset, nr);
1104 offset += ret;
1105 index += offset >> PAGE_CACHE_SHIFT;
1106 offset &= ~PAGE_CACHE_MASK;
1107 prev_offset = offset;
1108
1109 page_cache_release(page);
1110 if (ret == nr && desc->count)
1111 continue;
1112 goto out;
1113
1114 page_not_up_to_date:
1115 /* Get exclusive access to the page ... */
1116 error = lock_page_killable(page);
1117 if (unlikely(error))
1118 goto readpage_error;
1119
1120 page_not_up_to_date_locked:
1121 /* Did it get truncated before we got the lock? */
1122 if (!page->mapping) {
1123 unlock_page(page);
1124 page_cache_release(page);
1125 continue;
1126 }
1127
1128 /* Did somebody else fill it already? */
1129 if (PageUptodate(page)) {
1130 unlock_page(page);
1131 goto page_ok;
1132 }
1133
1134 readpage:
1135 /* Start the actual read. The read will unlock the page. */
1136 error = mapping->a_ops->readpage(filp, page);
1137
1138 if (unlikely(error)) {
1139 if (error == AOP_TRUNCATED_PAGE) {
1140 page_cache_release(page);
1141 goto find_page;
1142 }
1143 goto readpage_error;
1144 }
1145
1146 if (!PageUptodate(page)) {
1147 error = lock_page_killable(page);
1148 if (unlikely(error))
1149 goto readpage_error;
1150 if (!PageUptodate(page)) {
1151 if (page->mapping == NULL) {
1152 /*
1153 * invalidate_inode_pages got it
1154 */
1155 unlock_page(page);
1156 page_cache_release(page);
1157 goto find_page;
1158 }
1159 unlock_page(page);
1160 shrink_readahead_size_eio(filp, ra);
1161 error = -EIO;
1162 goto readpage_error;
1163 }
1164 unlock_page(page);
1165 }
1166
1167 goto page_ok;
1168
1169 readpage_error:
1170 /* UHHUH! A synchronous read error occurred. Report it */
1171 desc->error = error;
1172 page_cache_release(page);
1173 goto out;
1174
1175 no_cached_page:
1176 /*
1177 * Ok, it wasn't cached, so we need to create a new
1178 * page..
1179 */
1180 page = page_cache_alloc_cold(mapping);
1181 if (!page) {
1182 desc->error = -ENOMEM;
1183 goto out;
1184 }
1185 error = add_to_page_cache_lru(page, mapping,
1186 index, GFP_KERNEL);
1187 if (error) {
1188 page_cache_release(page);
1189 if (error == -EEXIST)
1190 goto find_page;
1191 desc->error = error;
1192 goto out;
1193 }
1194 goto readpage;
1195 }
1196
1197 out:
1198 ra->prev_pos = prev_index;
1199 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1200 ra->prev_pos |= prev_offset;
1201
1202 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1203 file_accessed(filp);
1204 }
1205
1206 int file_read_actor(read_descriptor_t *desc, struct page *page,
1207 unsigned long offset, unsigned long size)
1208 {
1209 char *kaddr;
1210 unsigned long left, count = desc->count;
1211
1212 if (size > count)
1213 size = count;
1214
1215 /*
1216 * Faults on the destination of a read are common, so do it before
1217 * taking the kmap.
1218 */
1219 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1220 kaddr = kmap_atomic(page, KM_USER0);
1221 left = __copy_to_user_inatomic(desc->arg.buf,
1222 kaddr + offset, size);
1223 kunmap_atomic(kaddr, KM_USER0);
1224 if (left == 0)
1225 goto success;
1226 }
1227
1228 /* Do it the slow way */
1229 kaddr = kmap(page);
1230 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1231 kunmap(page);
1232
1233 if (left) {
1234 size -= left;
1235 desc->error = -EFAULT;
1236 }
1237 success:
1238 desc->count = count - size;
1239 desc->written += size;
1240 desc->arg.buf += size;
1241 return size;
1242 }
1243
1244 /*
1245 * Performs necessary checks before doing a write
1246 * @iov: io vector request
1247 * @nr_segs: number of segments in the iovec
1248 * @count: number of bytes to write
1249 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1250 *
1251 * Adjust number of segments and amount of bytes to write (nr_segs should be
1252 * properly initialized first). Returns appropriate error code that caller
1253 * should return or zero in case that write should be allowed.
1254 */
1255 int generic_segment_checks(const struct iovec *iov,
1256 unsigned long *nr_segs, size_t *count, int access_flags)
1257 {
1258 unsigned long seg;
1259 size_t cnt = 0;
1260 for (seg = 0; seg < *nr_segs; seg++) {
1261 const struct iovec *iv = &iov[seg];
1262
1263 /*
1264 * If any segment has a negative length, or the cumulative
1265 * length ever wraps negative then return -EINVAL.
1266 */
1267 cnt += iv->iov_len;
1268 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1269 return -EINVAL;
1270 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1271 continue;
1272 if (seg == 0)
1273 return -EFAULT;
1274 *nr_segs = seg;
1275 cnt -= iv->iov_len; /* This segment is no good */
1276 break;
1277 }
1278 *count = cnt;
1279 return 0;
1280 }
1281 EXPORT_SYMBOL(generic_segment_checks);
1282
1283 /**
1284 * generic_file_aio_read - generic filesystem read routine
1285 * @iocb: kernel I/O control block
1286 * @iov: io vector request
1287 * @nr_segs: number of segments in the iovec
1288 * @pos: current file position
1289 *
1290 * This is the "read()" routine for all filesystems
1291 * that can use the page cache directly.
1292 */
1293 ssize_t
1294 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1295 unsigned long nr_segs, loff_t pos)
1296 {
1297 struct file *filp = iocb->ki_filp;
1298 ssize_t retval;
1299 unsigned long seg;
1300 size_t count;
1301 loff_t *ppos = &iocb->ki_pos;
1302
1303 count = 0;
1304 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1305 if (retval)
1306 return retval;
1307
1308 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1309 if (filp->f_flags & O_DIRECT) {
1310 loff_t size;
1311 struct address_space *mapping;
1312 struct inode *inode;
1313
1314 mapping = filp->f_mapping;
1315 inode = mapping->host;
1316 if (!count)
1317 goto out; /* skip atime */
1318 size = i_size_read(inode);
1319 if (pos < size) {
1320 retval = filemap_write_and_wait_range(mapping, pos,
1321 pos + iov_length(iov, nr_segs) - 1);
1322 if (!retval) {
1323 retval = mapping->a_ops->direct_IO(READ, iocb,
1324 iov, pos, nr_segs);
1325 }
1326 if (retval > 0)
1327 *ppos = pos + retval;
1328 if (retval) {
1329 file_accessed(filp);
1330 goto out;
1331 }
1332 }
1333 }
1334
1335 for (seg = 0; seg < nr_segs; seg++) {
1336 read_descriptor_t desc;
1337
1338 desc.written = 0;
1339 desc.arg.buf = iov[seg].iov_base;
1340 desc.count = iov[seg].iov_len;
1341 if (desc.count == 0)
1342 continue;
1343 desc.error = 0;
1344 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1345 retval += desc.written;
1346 if (desc.error) {
1347 retval = retval ?: desc.error;
1348 break;
1349 }
1350 if (desc.count > 0)
1351 break;
1352 }
1353 out:
1354 return retval;
1355 }
1356 EXPORT_SYMBOL(generic_file_aio_read);
1357
1358 static ssize_t
1359 do_readahead(struct address_space *mapping, struct file *filp,
1360 pgoff_t index, unsigned long nr)
1361 {
1362 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1363 return -EINVAL;
1364
1365 force_page_cache_readahead(mapping, filp, index,
1366 max_sane_readahead(nr));
1367 return 0;
1368 }
1369
1370 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1371 {
1372 ssize_t ret;
1373 struct file *file;
1374
1375 ret = -EBADF;
1376 file = fget(fd);
1377 if (file) {
1378 if (file->f_mode & FMODE_READ) {
1379 struct address_space *mapping = file->f_mapping;
1380 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1381 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1382 unsigned long len = end - start + 1;
1383 ret = do_readahead(mapping, file, start, len);
1384 }
1385 fput(file);
1386 }
1387 return ret;
1388 }
1389
1390 #ifdef CONFIG_MMU
1391 /**
1392 * page_cache_read - adds requested page to the page cache if not already there
1393 * @file: file to read
1394 * @offset: page index
1395 *
1396 * This adds the requested page to the page cache if it isn't already there,
1397 * and schedules an I/O to read in its contents from disk.
1398 */
1399 static int page_cache_read(struct file *file, pgoff_t offset)
1400 {
1401 struct address_space *mapping = file->f_mapping;
1402 struct page *page;
1403 int ret;
1404
1405 do {
1406 page = page_cache_alloc_cold(mapping);
1407 if (!page)
1408 return -ENOMEM;
1409
1410 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1411 if (ret == 0)
1412 ret = mapping->a_ops->readpage(file, page);
1413 else if (ret == -EEXIST)
1414 ret = 0; /* losing race to add is OK */
1415
1416 page_cache_release(page);
1417
1418 } while (ret == AOP_TRUNCATED_PAGE);
1419
1420 return ret;
1421 }
1422
1423 #define MMAP_LOTSAMISS (100)
1424
1425 /**
1426 * filemap_fault - read in file data for page fault handling
1427 * @vma: vma in which the fault was taken
1428 * @vmf: struct vm_fault containing details of the fault
1429 *
1430 * filemap_fault() is invoked via the vma operations vector for a
1431 * mapped memory region to read in file data during a page fault.
1432 *
1433 * The goto's are kind of ugly, but this streamlines the normal case of having
1434 * it in the page cache, and handles the special cases reasonably without
1435 * having a lot of duplicated code.
1436 */
1437 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1438 {
1439 int error;
1440 struct file *file = vma->vm_file;
1441 struct address_space *mapping = file->f_mapping;
1442 struct file_ra_state *ra = &file->f_ra;
1443 struct inode *inode = mapping->host;
1444 struct page *page;
1445 pgoff_t size;
1446 int did_readaround = 0;
1447 int ret = 0;
1448
1449 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1450 if (vmf->pgoff >= size)
1451 return VM_FAULT_SIGBUS;
1452
1453 /* If we don't want any read-ahead, don't bother */
1454 if (VM_RandomReadHint(vma))
1455 goto no_cached_page;
1456
1457 /*
1458 * Do we have something in the page cache already?
1459 */
1460 retry_find:
1461 page = find_lock_page(mapping, vmf->pgoff);
1462 /*
1463 * For sequential accesses, we use the generic readahead logic.
1464 */
1465 if (VM_SequentialReadHint(vma)) {
1466 if (!page) {
1467 page_cache_sync_readahead(mapping, ra, file,
1468 vmf->pgoff, 1);
1469 page = find_lock_page(mapping, vmf->pgoff);
1470 if (!page)
1471 goto no_cached_page;
1472 }
1473 if (PageReadahead(page)) {
1474 page_cache_async_readahead(mapping, ra, file, page,
1475 vmf->pgoff, 1);
1476 }
1477 }
1478
1479 if (!page) {
1480 unsigned long ra_pages;
1481
1482 ra->mmap_miss++;
1483
1484 /*
1485 * Do we miss much more than hit in this file? If so,
1486 * stop bothering with read-ahead. It will only hurt.
1487 */
1488 if (ra->mmap_miss > MMAP_LOTSAMISS)
1489 goto no_cached_page;
1490
1491 /*
1492 * To keep the pgmajfault counter straight, we need to
1493 * check did_readaround, as this is an inner loop.
1494 */
1495 if (!did_readaround) {
1496 ret = VM_FAULT_MAJOR;
1497 count_vm_event(PGMAJFAULT);
1498 }
1499 did_readaround = 1;
1500 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1501 if (ra_pages) {
1502 pgoff_t start = 0;
1503
1504 if (vmf->pgoff > ra_pages / 2)
1505 start = vmf->pgoff - ra_pages / 2;
1506 do_page_cache_readahead(mapping, file, start, ra_pages);
1507 }
1508 page = find_lock_page(mapping, vmf->pgoff);
1509 if (!page)
1510 goto no_cached_page;
1511 }
1512
1513 if (!did_readaround)
1514 ra->mmap_miss--;
1515
1516 /*
1517 * We have a locked page in the page cache, now we need to check
1518 * that it's up-to-date. If not, it is going to be due to an error.
1519 */
1520 if (unlikely(!PageUptodate(page)))
1521 goto page_not_uptodate;
1522
1523 /* Must recheck i_size under page lock */
1524 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1525 if (unlikely(vmf->pgoff >= size)) {
1526 unlock_page(page);
1527 page_cache_release(page);
1528 return VM_FAULT_SIGBUS;
1529 }
1530
1531 /*
1532 * Found the page and have a reference on it.
1533 */
1534 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1535 vmf->page = page;
1536 return ret | VM_FAULT_LOCKED;
1537
1538 no_cached_page:
1539 /*
1540 * We're only likely to ever get here if MADV_RANDOM is in
1541 * effect.
1542 */
1543 error = page_cache_read(file, vmf->pgoff);
1544
1545 /*
1546 * The page we want has now been added to the page cache.
1547 * In the unlikely event that someone removed it in the
1548 * meantime, we'll just come back here and read it again.
1549 */
1550 if (error >= 0)
1551 goto retry_find;
1552
1553 /*
1554 * An error return from page_cache_read can result if the
1555 * system is low on memory, or a problem occurs while trying
1556 * to schedule I/O.
1557 */
1558 if (error == -ENOMEM)
1559 return VM_FAULT_OOM;
1560 return VM_FAULT_SIGBUS;
1561
1562 page_not_uptodate:
1563 /* IO error path */
1564 if (!did_readaround) {
1565 ret = VM_FAULT_MAJOR;
1566 count_vm_event(PGMAJFAULT);
1567 }
1568
1569 /*
1570 * Umm, take care of errors if the page isn't up-to-date.
1571 * Try to re-read it _once_. We do this synchronously,
1572 * because there really aren't any performance issues here
1573 * and we need to check for errors.
1574 */
1575 ClearPageError(page);
1576 error = mapping->a_ops->readpage(file, page);
1577 if (!error) {
1578 wait_on_page_locked(page);
1579 if (!PageUptodate(page))
1580 error = -EIO;
1581 }
1582 page_cache_release(page);
1583
1584 if (!error || error == AOP_TRUNCATED_PAGE)
1585 goto retry_find;
1586
1587 /* Things didn't work out. Return zero to tell the mm layer so. */
1588 shrink_readahead_size_eio(file, ra);
1589 return VM_FAULT_SIGBUS;
1590 }
1591 EXPORT_SYMBOL(filemap_fault);
1592
1593 struct vm_operations_struct generic_file_vm_ops = {
1594 .fault = filemap_fault,
1595 };
1596
1597 /* This is used for a general mmap of a disk file */
1598
1599 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1600 {
1601 struct address_space *mapping = file->f_mapping;
1602
1603 if (!mapping->a_ops->readpage)
1604 return -ENOEXEC;
1605 file_accessed(file);
1606 vma->vm_ops = &generic_file_vm_ops;
1607 vma->vm_flags |= VM_CAN_NONLINEAR;
1608 return 0;
1609 }
1610
1611 /*
1612 * This is for filesystems which do not implement ->writepage.
1613 */
1614 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1615 {
1616 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1617 return -EINVAL;
1618 return generic_file_mmap(file, vma);
1619 }
1620 #else
1621 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1622 {
1623 return -ENOSYS;
1624 }
1625 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1626 {
1627 return -ENOSYS;
1628 }
1629 #endif /* CONFIG_MMU */
1630
1631 EXPORT_SYMBOL(generic_file_mmap);
1632 EXPORT_SYMBOL(generic_file_readonly_mmap);
1633
1634 static struct page *__read_cache_page(struct address_space *mapping,
1635 pgoff_t index,
1636 int (*filler)(void *,struct page*),
1637 void *data)
1638 {
1639 struct page *page;
1640 int err;
1641 repeat:
1642 page = find_get_page(mapping, index);
1643 if (!page) {
1644 page = page_cache_alloc_cold(mapping);
1645 if (!page)
1646 return ERR_PTR(-ENOMEM);
1647 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1648 if (unlikely(err)) {
1649 page_cache_release(page);
1650 if (err == -EEXIST)
1651 goto repeat;
1652 /* Presumably ENOMEM for radix tree node */
1653 return ERR_PTR(err);
1654 }
1655 err = filler(data, page);
1656 if (err < 0) {
1657 page_cache_release(page);
1658 page = ERR_PTR(err);
1659 }
1660 }
1661 return page;
1662 }
1663
1664 /**
1665 * read_cache_page_async - read into page cache, fill it if needed
1666 * @mapping: the page's address_space
1667 * @index: the page index
1668 * @filler: function to perform the read
1669 * @data: destination for read data
1670 *
1671 * Same as read_cache_page, but don't wait for page to become unlocked
1672 * after submitting it to the filler.
1673 *
1674 * Read into the page cache. If a page already exists, and PageUptodate() is
1675 * not set, try to fill the page but don't wait for it to become unlocked.
1676 *
1677 * If the page does not get brought uptodate, return -EIO.
1678 */
1679 struct page *read_cache_page_async(struct address_space *mapping,
1680 pgoff_t index,
1681 int (*filler)(void *,struct page*),
1682 void *data)
1683 {
1684 struct page *page;
1685 int err;
1686
1687 retry:
1688 page = __read_cache_page(mapping, index, filler, data);
1689 if (IS_ERR(page))
1690 return page;
1691 if (PageUptodate(page))
1692 goto out;
1693
1694 lock_page(page);
1695 if (!page->mapping) {
1696 unlock_page(page);
1697 page_cache_release(page);
1698 goto retry;
1699 }
1700 if (PageUptodate(page)) {
1701 unlock_page(page);
1702 goto out;
1703 }
1704 err = filler(data, page);
1705 if (err < 0) {
1706 page_cache_release(page);
1707 return ERR_PTR(err);
1708 }
1709 out:
1710 mark_page_accessed(page);
1711 return page;
1712 }
1713 EXPORT_SYMBOL(read_cache_page_async);
1714
1715 /**
1716 * read_cache_page - read into page cache, fill it if needed
1717 * @mapping: the page's address_space
1718 * @index: the page index
1719 * @filler: function to perform the read
1720 * @data: destination for read data
1721 *
1722 * Read into the page cache. If a page already exists, and PageUptodate() is
1723 * not set, try to fill the page then wait for it to become unlocked.
1724 *
1725 * If the page does not get brought uptodate, return -EIO.
1726 */
1727 struct page *read_cache_page(struct address_space *mapping,
1728 pgoff_t index,
1729 int (*filler)(void *,struct page*),
1730 void *data)
1731 {
1732 struct page *page;
1733
1734 page = read_cache_page_async(mapping, index, filler, data);
1735 if (IS_ERR(page))
1736 goto out;
1737 wait_on_page_locked(page);
1738 if (!PageUptodate(page)) {
1739 page_cache_release(page);
1740 page = ERR_PTR(-EIO);
1741 }
1742 out:
1743 return page;
1744 }
1745 EXPORT_SYMBOL(read_cache_page);
1746
1747 /*
1748 * The logic we want is
1749 *
1750 * if suid or (sgid and xgrp)
1751 * remove privs
1752 */
1753 int should_remove_suid(struct dentry *dentry)
1754 {
1755 mode_t mode = dentry->d_inode->i_mode;
1756 int kill = 0;
1757
1758 /* suid always must be killed */
1759 if (unlikely(mode & S_ISUID))
1760 kill = ATTR_KILL_SUID;
1761
1762 /*
1763 * sgid without any exec bits is just a mandatory locking mark; leave
1764 * it alone. If some exec bits are set, it's a real sgid; kill it.
1765 */
1766 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1767 kill |= ATTR_KILL_SGID;
1768
1769 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1770 return kill;
1771
1772 return 0;
1773 }
1774 EXPORT_SYMBOL(should_remove_suid);
1775
1776 static int __remove_suid(struct dentry *dentry, int kill)
1777 {
1778 struct iattr newattrs;
1779
1780 newattrs.ia_valid = ATTR_FORCE | kill;
1781 return notify_change(dentry, &newattrs);
1782 }
1783
1784 int file_remove_suid(struct file *file)
1785 {
1786 struct dentry *dentry = file->f_path.dentry;
1787 int killsuid = should_remove_suid(dentry);
1788 int killpriv = security_inode_need_killpriv(dentry);
1789 int error = 0;
1790
1791 if (killpriv < 0)
1792 return killpriv;
1793 if (killpriv)
1794 error = security_inode_killpriv(dentry);
1795 if (!error && killsuid)
1796 error = __remove_suid(dentry, killsuid);
1797
1798 return error;
1799 }
1800 EXPORT_SYMBOL(file_remove_suid);
1801
1802 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1803 const struct iovec *iov, size_t base, size_t bytes)
1804 {
1805 size_t copied = 0, left = 0;
1806
1807 while (bytes) {
1808 char __user *buf = iov->iov_base + base;
1809 int copy = min(bytes, iov->iov_len - base);
1810
1811 base = 0;
1812 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1813 copied += copy;
1814 bytes -= copy;
1815 vaddr += copy;
1816 iov++;
1817
1818 if (unlikely(left))
1819 break;
1820 }
1821 return copied - left;
1822 }
1823
1824 /*
1825 * Copy as much as we can into the page and return the number of bytes which
1826 * were sucessfully copied. If a fault is encountered then return the number of
1827 * bytes which were copied.
1828 */
1829 size_t iov_iter_copy_from_user_atomic(struct page *page,
1830 struct iov_iter *i, unsigned long offset, size_t bytes)
1831 {
1832 char *kaddr;
1833 size_t copied;
1834
1835 BUG_ON(!in_atomic());
1836 kaddr = kmap_atomic(page, KM_USER0);
1837 if (likely(i->nr_segs == 1)) {
1838 int left;
1839 char __user *buf = i->iov->iov_base + i->iov_offset;
1840 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1841 buf, bytes);
1842 copied = bytes - left;
1843 } else {
1844 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1845 i->iov, i->iov_offset, bytes);
1846 }
1847 kunmap_atomic(kaddr, KM_USER0);
1848
1849 return copied;
1850 }
1851 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1852
1853 /*
1854 * This has the same sideeffects and return value as
1855 * iov_iter_copy_from_user_atomic().
1856 * The difference is that it attempts to resolve faults.
1857 * Page must not be locked.
1858 */
1859 size_t iov_iter_copy_from_user(struct page *page,
1860 struct iov_iter *i, unsigned long offset, size_t bytes)
1861 {
1862 char *kaddr;
1863 size_t copied;
1864
1865 kaddr = kmap(page);
1866 if (likely(i->nr_segs == 1)) {
1867 int left;
1868 char __user *buf = i->iov->iov_base + i->iov_offset;
1869 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1870 copied = bytes - left;
1871 } else {
1872 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1873 i->iov, i->iov_offset, bytes);
1874 }
1875 kunmap(page);
1876 return copied;
1877 }
1878 EXPORT_SYMBOL(iov_iter_copy_from_user);
1879
1880 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1881 {
1882 BUG_ON(i->count < bytes);
1883
1884 if (likely(i->nr_segs == 1)) {
1885 i->iov_offset += bytes;
1886 i->count -= bytes;
1887 } else {
1888 const struct iovec *iov = i->iov;
1889 size_t base = i->iov_offset;
1890
1891 /*
1892 * The !iov->iov_len check ensures we skip over unlikely
1893 * zero-length segments (without overruning the iovec).
1894 */
1895 while (bytes || unlikely(i->count && !iov->iov_len)) {
1896 int copy;
1897
1898 copy = min(bytes, iov->iov_len - base);
1899 BUG_ON(!i->count || i->count < copy);
1900 i->count -= copy;
1901 bytes -= copy;
1902 base += copy;
1903 if (iov->iov_len == base) {
1904 iov++;
1905 base = 0;
1906 }
1907 }
1908 i->iov = iov;
1909 i->iov_offset = base;
1910 }
1911 }
1912 EXPORT_SYMBOL(iov_iter_advance);
1913
1914 /*
1915 * Fault in the first iovec of the given iov_iter, to a maximum length
1916 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1917 * accessed (ie. because it is an invalid address).
1918 *
1919 * writev-intensive code may want this to prefault several iovecs -- that
1920 * would be possible (callers must not rely on the fact that _only_ the
1921 * first iovec will be faulted with the current implementation).
1922 */
1923 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1924 {
1925 char __user *buf = i->iov->iov_base + i->iov_offset;
1926 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1927 return fault_in_pages_readable(buf, bytes);
1928 }
1929 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1930
1931 /*
1932 * Return the count of just the current iov_iter segment.
1933 */
1934 size_t iov_iter_single_seg_count(struct iov_iter *i)
1935 {
1936 const struct iovec *iov = i->iov;
1937 if (i->nr_segs == 1)
1938 return i->count;
1939 else
1940 return min(i->count, iov->iov_len - i->iov_offset);
1941 }
1942 EXPORT_SYMBOL(iov_iter_single_seg_count);
1943
1944 /*
1945 * Performs necessary checks before doing a write
1946 *
1947 * Can adjust writing position or amount of bytes to write.
1948 * Returns appropriate error code that caller should return or
1949 * zero in case that write should be allowed.
1950 */
1951 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1952 {
1953 struct inode *inode = file->f_mapping->host;
1954 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1955
1956 if (unlikely(*pos < 0))
1957 return -EINVAL;
1958
1959 if (!isblk) {
1960 /* FIXME: this is for backwards compatibility with 2.4 */
1961 if (file->f_flags & O_APPEND)
1962 *pos = i_size_read(inode);
1963
1964 if (limit != RLIM_INFINITY) {
1965 if (*pos >= limit) {
1966 send_sig(SIGXFSZ, current, 0);
1967 return -EFBIG;
1968 }
1969 if (*count > limit - (typeof(limit))*pos) {
1970 *count = limit - (typeof(limit))*pos;
1971 }
1972 }
1973 }
1974
1975 /*
1976 * LFS rule
1977 */
1978 if (unlikely(*pos + *count > MAX_NON_LFS &&
1979 !(file->f_flags & O_LARGEFILE))) {
1980 if (*pos >= MAX_NON_LFS) {
1981 return -EFBIG;
1982 }
1983 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1984 *count = MAX_NON_LFS - (unsigned long)*pos;
1985 }
1986 }
1987
1988 /*
1989 * Are we about to exceed the fs block limit ?
1990 *
1991 * If we have written data it becomes a short write. If we have
1992 * exceeded without writing data we send a signal and return EFBIG.
1993 * Linus frestrict idea will clean these up nicely..
1994 */
1995 if (likely(!isblk)) {
1996 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1997 if (*count || *pos > inode->i_sb->s_maxbytes) {
1998 return -EFBIG;
1999 }
2000 /* zero-length writes at ->s_maxbytes are OK */
2001 }
2002
2003 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2004 *count = inode->i_sb->s_maxbytes - *pos;
2005 } else {
2006 #ifdef CONFIG_BLOCK
2007 loff_t isize;
2008 if (bdev_read_only(I_BDEV(inode)))
2009 return -EPERM;
2010 isize = i_size_read(inode);
2011 if (*pos >= isize) {
2012 if (*count || *pos > isize)
2013 return -ENOSPC;
2014 }
2015
2016 if (*pos + *count > isize)
2017 *count = isize - *pos;
2018 #else
2019 return -EPERM;
2020 #endif
2021 }
2022 return 0;
2023 }
2024 EXPORT_SYMBOL(generic_write_checks);
2025
2026 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2027 loff_t pos, unsigned len, unsigned flags,
2028 struct page **pagep, void **fsdata)
2029 {
2030 const struct address_space_operations *aops = mapping->a_ops;
2031
2032 return aops->write_begin(file, mapping, pos, len, flags,
2033 pagep, fsdata);
2034 }
2035 EXPORT_SYMBOL(pagecache_write_begin);
2036
2037 int pagecache_write_end(struct file *file, struct address_space *mapping,
2038 loff_t pos, unsigned len, unsigned copied,
2039 struct page *page, void *fsdata)
2040 {
2041 const struct address_space_operations *aops = mapping->a_ops;
2042
2043 mark_page_accessed(page);
2044 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2045 }
2046 EXPORT_SYMBOL(pagecache_write_end);
2047
2048 ssize_t
2049 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2050 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2051 size_t count, size_t ocount)
2052 {
2053 struct file *file = iocb->ki_filp;
2054 struct address_space *mapping = file->f_mapping;
2055 struct inode *inode = mapping->host;
2056 ssize_t written;
2057 size_t write_len;
2058 pgoff_t end;
2059
2060 if (count != ocount)
2061 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2062
2063 write_len = iov_length(iov, *nr_segs);
2064 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2065
2066 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2067 if (written)
2068 goto out;
2069
2070 /*
2071 * After a write we want buffered reads to be sure to go to disk to get
2072 * the new data. We invalidate clean cached page from the region we're
2073 * about to write. We do this *before* the write so that we can return
2074 * without clobbering -EIOCBQUEUED from ->direct_IO().
2075 */
2076 if (mapping->nrpages) {
2077 written = invalidate_inode_pages2_range(mapping,
2078 pos >> PAGE_CACHE_SHIFT, end);
2079 /*
2080 * If a page can not be invalidated, return 0 to fall back
2081 * to buffered write.
2082 */
2083 if (written) {
2084 if (written == -EBUSY)
2085 return 0;
2086 goto out;
2087 }
2088 }
2089
2090 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2091
2092 /*
2093 * Finally, try again to invalidate clean pages which might have been
2094 * cached by non-direct readahead, or faulted in by get_user_pages()
2095 * if the source of the write was an mmap'ed region of the file
2096 * we're writing. Either one is a pretty crazy thing to do,
2097 * so we don't support it 100%. If this invalidation
2098 * fails, tough, the write still worked...
2099 */
2100 if (mapping->nrpages) {
2101 invalidate_inode_pages2_range(mapping,
2102 pos >> PAGE_CACHE_SHIFT, end);
2103 }
2104
2105 if (written > 0) {
2106 loff_t end = pos + written;
2107 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2108 i_size_write(inode, end);
2109 mark_inode_dirty(inode);
2110 }
2111 *ppos = end;
2112 }
2113
2114 /*
2115 * Sync the fs metadata but not the minor inode changes and
2116 * of course not the data as we did direct DMA for the IO.
2117 * i_mutex is held, which protects generic_osync_inode() from
2118 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2119 */
2120 out:
2121 if ((written >= 0 || written == -EIOCBQUEUED) &&
2122 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2123 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2124 if (err < 0)
2125 written = err;
2126 }
2127 return written;
2128 }
2129 EXPORT_SYMBOL(generic_file_direct_write);
2130
2131 /*
2132 * Find or create a page at the given pagecache position. Return the locked
2133 * page. This function is specifically for buffered writes.
2134 */
2135 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2136 pgoff_t index, unsigned flags)
2137 {
2138 int status;
2139 struct page *page;
2140 gfp_t gfp_notmask = 0;
2141 if (flags & AOP_FLAG_NOFS)
2142 gfp_notmask = __GFP_FS;
2143 repeat:
2144 page = find_lock_page(mapping, index);
2145 if (likely(page))
2146 return page;
2147
2148 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2149 if (!page)
2150 return NULL;
2151 status = add_to_page_cache_lru(page, mapping, index,
2152 GFP_KERNEL & ~gfp_notmask);
2153 if (unlikely(status)) {
2154 page_cache_release(page);
2155 if (status == -EEXIST)
2156 goto repeat;
2157 return NULL;
2158 }
2159 return page;
2160 }
2161 EXPORT_SYMBOL(grab_cache_page_write_begin);
2162
2163 static ssize_t generic_perform_write(struct file *file,
2164 struct iov_iter *i, loff_t pos)
2165 {
2166 struct address_space *mapping = file->f_mapping;
2167 const struct address_space_operations *a_ops = mapping->a_ops;
2168 long status = 0;
2169 ssize_t written = 0;
2170 unsigned int flags = 0;
2171
2172 /*
2173 * Copies from kernel address space cannot fail (NFSD is a big user).
2174 */
2175 if (segment_eq(get_fs(), KERNEL_DS))
2176 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2177
2178 do {
2179 struct page *page;
2180 pgoff_t index; /* Pagecache index for current page */
2181 unsigned long offset; /* Offset into pagecache page */
2182 unsigned long bytes; /* Bytes to write to page */
2183 size_t copied; /* Bytes copied from user */
2184 void *fsdata;
2185
2186 offset = (pos & (PAGE_CACHE_SIZE - 1));
2187 index = pos >> PAGE_CACHE_SHIFT;
2188 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2189 iov_iter_count(i));
2190
2191 again:
2192
2193 /*
2194 * Bring in the user page that we will copy from _first_.
2195 * Otherwise there's a nasty deadlock on copying from the
2196 * same page as we're writing to, without it being marked
2197 * up-to-date.
2198 *
2199 * Not only is this an optimisation, but it is also required
2200 * to check that the address is actually valid, when atomic
2201 * usercopies are used, below.
2202 */
2203 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2204 status = -EFAULT;
2205 break;
2206 }
2207
2208 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2209 &page, &fsdata);
2210 if (unlikely(status))
2211 break;
2212
2213 pagefault_disable();
2214 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2215 pagefault_enable();
2216 flush_dcache_page(page);
2217
2218 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2219 page, fsdata);
2220 if (unlikely(status < 0))
2221 break;
2222 copied = status;
2223
2224 cond_resched();
2225
2226 iov_iter_advance(i, copied);
2227 if (unlikely(copied == 0)) {
2228 /*
2229 * If we were unable to copy any data at all, we must
2230 * fall back to a single segment length write.
2231 *
2232 * If we didn't fallback here, we could livelock
2233 * because not all segments in the iov can be copied at
2234 * once without a pagefault.
2235 */
2236 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2237 iov_iter_single_seg_count(i));
2238 goto again;
2239 }
2240 pos += copied;
2241 written += copied;
2242
2243 balance_dirty_pages_ratelimited(mapping);
2244
2245 } while (iov_iter_count(i));
2246
2247 return written ? written : status;
2248 }
2249
2250 ssize_t
2251 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2252 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2253 size_t count, ssize_t written)
2254 {
2255 struct file *file = iocb->ki_filp;
2256 struct address_space *mapping = file->f_mapping;
2257 const struct address_space_operations *a_ops = mapping->a_ops;
2258 struct inode *inode = mapping->host;
2259 ssize_t status;
2260 struct iov_iter i;
2261
2262 iov_iter_init(&i, iov, nr_segs, count, written);
2263 status = generic_perform_write(file, &i, pos);
2264
2265 if (likely(status >= 0)) {
2266 written += status;
2267 *ppos = pos + status;
2268
2269 /*
2270 * For now, when the user asks for O_SYNC, we'll actually give
2271 * O_DSYNC
2272 */
2273 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2274 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2275 status = generic_osync_inode(inode, mapping,
2276 OSYNC_METADATA|OSYNC_DATA);
2277 }
2278 }
2279
2280 /*
2281 * If we get here for O_DIRECT writes then we must have fallen through
2282 * to buffered writes (block instantiation inside i_size). So we sync
2283 * the file data here, to try to honour O_DIRECT expectations.
2284 */
2285 if (unlikely(file->f_flags & O_DIRECT) && written)
2286 status = filemap_write_and_wait_range(mapping,
2287 pos, pos + written - 1);
2288
2289 return written ? written : status;
2290 }
2291 EXPORT_SYMBOL(generic_file_buffered_write);
2292
2293 static ssize_t
2294 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2295 unsigned long nr_segs, loff_t *ppos)
2296 {
2297 struct file *file = iocb->ki_filp;
2298 struct address_space * mapping = file->f_mapping;
2299 size_t ocount; /* original count */
2300 size_t count; /* after file limit checks */
2301 struct inode *inode = mapping->host;
2302 loff_t pos;
2303 ssize_t written;
2304 ssize_t err;
2305
2306 ocount = 0;
2307 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2308 if (err)
2309 return err;
2310
2311 count = ocount;
2312 pos = *ppos;
2313
2314 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2315
2316 /* We can write back this queue in page reclaim */
2317 current->backing_dev_info = mapping->backing_dev_info;
2318 written = 0;
2319
2320 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2321 if (err)
2322 goto out;
2323
2324 if (count == 0)
2325 goto out;
2326
2327 err = file_remove_suid(file);
2328 if (err)
2329 goto out;
2330
2331 file_update_time(file);
2332
2333 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2334 if (unlikely(file->f_flags & O_DIRECT)) {
2335 loff_t endbyte;
2336 ssize_t written_buffered;
2337
2338 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2339 ppos, count, ocount);
2340 if (written < 0 || written == count)
2341 goto out;
2342 /*
2343 * direct-io write to a hole: fall through to buffered I/O
2344 * for completing the rest of the request.
2345 */
2346 pos += written;
2347 count -= written;
2348 written_buffered = generic_file_buffered_write(iocb, iov,
2349 nr_segs, pos, ppos, count,
2350 written);
2351 /*
2352 * If generic_file_buffered_write() retuned a synchronous error
2353 * then we want to return the number of bytes which were
2354 * direct-written, or the error code if that was zero. Note
2355 * that this differs from normal direct-io semantics, which
2356 * will return -EFOO even if some bytes were written.
2357 */
2358 if (written_buffered < 0) {
2359 err = written_buffered;
2360 goto out;
2361 }
2362
2363 /*
2364 * We need to ensure that the page cache pages are written to
2365 * disk and invalidated to preserve the expected O_DIRECT
2366 * semantics.
2367 */
2368 endbyte = pos + written_buffered - written - 1;
2369 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2370 SYNC_FILE_RANGE_WAIT_BEFORE|
2371 SYNC_FILE_RANGE_WRITE|
2372 SYNC_FILE_RANGE_WAIT_AFTER);
2373 if (err == 0) {
2374 written = written_buffered;
2375 invalidate_mapping_pages(mapping,
2376 pos >> PAGE_CACHE_SHIFT,
2377 endbyte >> PAGE_CACHE_SHIFT);
2378 } else {
2379 /*
2380 * We don't know how much we wrote, so just return
2381 * the number of bytes which were direct-written
2382 */
2383 }
2384 } else {
2385 written = generic_file_buffered_write(iocb, iov, nr_segs,
2386 pos, ppos, count, written);
2387 }
2388 out:
2389 current->backing_dev_info = NULL;
2390 return written ? written : err;
2391 }
2392
2393 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2394 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2395 {
2396 struct file *file = iocb->ki_filp;
2397 struct address_space *mapping = file->f_mapping;
2398 struct inode *inode = mapping->host;
2399 ssize_t ret;
2400
2401 BUG_ON(iocb->ki_pos != pos);
2402
2403 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2404 &iocb->ki_pos);
2405
2406 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2407 ssize_t err;
2408
2409 err = sync_page_range_nolock(inode, mapping, pos, ret);
2410 if (err < 0)
2411 ret = err;
2412 }
2413 return ret;
2414 }
2415 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2416
2417 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2418 unsigned long nr_segs, loff_t pos)
2419 {
2420 struct file *file = iocb->ki_filp;
2421 struct address_space *mapping = file->f_mapping;
2422 struct inode *inode = mapping->host;
2423 ssize_t ret;
2424
2425 BUG_ON(iocb->ki_pos != pos);
2426
2427 mutex_lock(&inode->i_mutex);
2428 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2429 &iocb->ki_pos);
2430 mutex_unlock(&inode->i_mutex);
2431
2432 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2433 ssize_t err;
2434
2435 err = sync_page_range(inode, mapping, pos, ret);
2436 if (err < 0)
2437 ret = err;
2438 }
2439 return ret;
2440 }
2441 EXPORT_SYMBOL(generic_file_aio_write);
2442
2443 /**
2444 * try_to_release_page() - release old fs-specific metadata on a page
2445 *
2446 * @page: the page which the kernel is trying to free
2447 * @gfp_mask: memory allocation flags (and I/O mode)
2448 *
2449 * The address_space is to try to release any data against the page
2450 * (presumably at page->private). If the release was successful, return `1'.
2451 * Otherwise return zero.
2452 *
2453 * The @gfp_mask argument specifies whether I/O may be performed to release
2454 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2455 *
2456 */
2457 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2458 {
2459 struct address_space * const mapping = page->mapping;
2460
2461 BUG_ON(!PageLocked(page));
2462 if (PageWriteback(page))
2463 return 0;
2464
2465 if (mapping && mapping->a_ops->releasepage)
2466 return mapping->a_ops->releasepage(page, gfp_mask);
2467 return try_to_free_buffers(page);
2468 }
2469
2470 EXPORT_SYMBOL(try_to_release_page);