]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/filemap.c
userns: add a user namespace owner of ipc ns
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58 /*
59 * Lock ordering:
60 *
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
65 *
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
79 *
80 * ->i_mutex
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
107 * ->i_mmap_lock
108 */
109
110 /*
111 * Delete a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __delete_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 if (PageSwapBacked(page))
124 __dec_zone_page_state(page, NR_SHMEM);
125 BUG_ON(page_mapped(page));
126
127 /*
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
130 *
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
133 */
134 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 dec_zone_page_state(page, NR_FILE_DIRTY);
136 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137 }
138 }
139
140 /**
141 * delete_from_page_cache - delete page from page cache
142 * @page: the page which the kernel is trying to remove from page cache
143 *
144 * This must be called only on pages that have been verified to be in the page
145 * cache and locked. It will never put the page into the free list, the caller
146 * has a reference on the page.
147 */
148 void delete_from_page_cache(struct page *page)
149 {
150 struct address_space *mapping = page->mapping;
151 void (*freepage)(struct page *);
152
153 BUG_ON(!PageLocked(page));
154
155 freepage = mapping->a_ops->freepage;
156 spin_lock_irq(&mapping->tree_lock);
157 __delete_from_page_cache(page);
158 spin_unlock_irq(&mapping->tree_lock);
159 mem_cgroup_uncharge_cache_page(page);
160
161 if (freepage)
162 freepage(page);
163 page_cache_release(page);
164 }
165 EXPORT_SYMBOL(delete_from_page_cache);
166
167 static int sync_page(void *word)
168 {
169 struct address_space *mapping;
170 struct page *page;
171
172 page = container_of((unsigned long *)word, struct page, flags);
173
174 /*
175 * page_mapping() is being called without PG_locked held.
176 * Some knowledge of the state and use of the page is used to
177 * reduce the requirements down to a memory barrier.
178 * The danger here is of a stale page_mapping() return value
179 * indicating a struct address_space different from the one it's
180 * associated with when it is associated with one.
181 * After smp_mb(), it's either the correct page_mapping() for
182 * the page, or an old page_mapping() and the page's own
183 * page_mapping() has gone NULL.
184 * The ->sync_page() address_space operation must tolerate
185 * page_mapping() going NULL. By an amazing coincidence,
186 * this comes about because none of the users of the page
187 * in the ->sync_page() methods make essential use of the
188 * page_mapping(), merely passing the page down to the backing
189 * device's unplug functions when it's non-NULL, which in turn
190 * ignore it for all cases but swap, where only page_private(page) is
191 * of interest. When page_mapping() does go NULL, the entire
192 * call stack gracefully ignores the page and returns.
193 * -- wli
194 */
195 smp_mb();
196 mapping = page_mapping(page);
197 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
198 mapping->a_ops->sync_page(page);
199 io_schedule();
200 return 0;
201 }
202
203 static int sync_page_killable(void *word)
204 {
205 sync_page(word);
206 return fatal_signal_pending(current) ? -EINTR : 0;
207 }
208
209 /**
210 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
211 * @mapping: address space structure to write
212 * @start: offset in bytes where the range starts
213 * @end: offset in bytes where the range ends (inclusive)
214 * @sync_mode: enable synchronous operation
215 *
216 * Start writeback against all of a mapping's dirty pages that lie
217 * within the byte offsets <start, end> inclusive.
218 *
219 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
220 * opposed to a regular memory cleansing writeback. The difference between
221 * these two operations is that if a dirty page/buffer is encountered, it must
222 * be waited upon, and not just skipped over.
223 */
224 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
225 loff_t end, int sync_mode)
226 {
227 int ret;
228 struct writeback_control wbc = {
229 .sync_mode = sync_mode,
230 .nr_to_write = LONG_MAX,
231 .range_start = start,
232 .range_end = end,
233 };
234
235 if (!mapping_cap_writeback_dirty(mapping))
236 return 0;
237
238 ret = do_writepages(mapping, &wbc);
239 return ret;
240 }
241
242 static inline int __filemap_fdatawrite(struct address_space *mapping,
243 int sync_mode)
244 {
245 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
246 }
247
248 int filemap_fdatawrite(struct address_space *mapping)
249 {
250 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite);
253
254 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
255 loff_t end)
256 {
257 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
258 }
259 EXPORT_SYMBOL(filemap_fdatawrite_range);
260
261 /**
262 * filemap_flush - mostly a non-blocking flush
263 * @mapping: target address_space
264 *
265 * This is a mostly non-blocking flush. Not suitable for data-integrity
266 * purposes - I/O may not be started against all dirty pages.
267 */
268 int filemap_flush(struct address_space *mapping)
269 {
270 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
271 }
272 EXPORT_SYMBOL(filemap_flush);
273
274 /**
275 * filemap_fdatawait_range - wait for writeback to complete
276 * @mapping: address space structure to wait for
277 * @start_byte: offset in bytes where the range starts
278 * @end_byte: offset in bytes where the range ends (inclusive)
279 *
280 * Walk the list of under-writeback pages of the given address space
281 * in the given range and wait for all of them.
282 */
283 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
284 loff_t end_byte)
285 {
286 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
287 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
288 struct pagevec pvec;
289 int nr_pages;
290 int ret = 0;
291
292 if (end_byte < start_byte)
293 return 0;
294
295 pagevec_init(&pvec, 0);
296 while ((index <= end) &&
297 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
298 PAGECACHE_TAG_WRITEBACK,
299 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
300 unsigned i;
301
302 for (i = 0; i < nr_pages; i++) {
303 struct page *page = pvec.pages[i];
304
305 /* until radix tree lookup accepts end_index */
306 if (page->index > end)
307 continue;
308
309 wait_on_page_writeback(page);
310 if (TestClearPageError(page))
311 ret = -EIO;
312 }
313 pagevec_release(&pvec);
314 cond_resched();
315 }
316
317 /* Check for outstanding write errors */
318 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
319 ret = -ENOSPC;
320 if (test_and_clear_bit(AS_EIO, &mapping->flags))
321 ret = -EIO;
322
323 return ret;
324 }
325 EXPORT_SYMBOL(filemap_fdatawait_range);
326
327 /**
328 * filemap_fdatawait - wait for all under-writeback pages to complete
329 * @mapping: address space structure to wait for
330 *
331 * Walk the list of under-writeback pages of the given address space
332 * and wait for all of them.
333 */
334 int filemap_fdatawait(struct address_space *mapping)
335 {
336 loff_t i_size = i_size_read(mapping->host);
337
338 if (i_size == 0)
339 return 0;
340
341 return filemap_fdatawait_range(mapping, 0, i_size - 1);
342 }
343 EXPORT_SYMBOL(filemap_fdatawait);
344
345 int filemap_write_and_wait(struct address_space *mapping)
346 {
347 int err = 0;
348
349 if (mapping->nrpages) {
350 err = filemap_fdatawrite(mapping);
351 /*
352 * Even if the above returned error, the pages may be
353 * written partially (e.g. -ENOSPC), so we wait for it.
354 * But the -EIO is special case, it may indicate the worst
355 * thing (e.g. bug) happened, so we avoid waiting for it.
356 */
357 if (err != -EIO) {
358 int err2 = filemap_fdatawait(mapping);
359 if (!err)
360 err = err2;
361 }
362 }
363 return err;
364 }
365 EXPORT_SYMBOL(filemap_write_and_wait);
366
367 /**
368 * filemap_write_and_wait_range - write out & wait on a file range
369 * @mapping: the address_space for the pages
370 * @lstart: offset in bytes where the range starts
371 * @lend: offset in bytes where the range ends (inclusive)
372 *
373 * Write out and wait upon file offsets lstart->lend, inclusive.
374 *
375 * Note that `lend' is inclusive (describes the last byte to be written) so
376 * that this function can be used to write to the very end-of-file (end = -1).
377 */
378 int filemap_write_and_wait_range(struct address_space *mapping,
379 loff_t lstart, loff_t lend)
380 {
381 int err = 0;
382
383 if (mapping->nrpages) {
384 err = __filemap_fdatawrite_range(mapping, lstart, lend,
385 WB_SYNC_ALL);
386 /* See comment of filemap_write_and_wait() */
387 if (err != -EIO) {
388 int err2 = filemap_fdatawait_range(mapping,
389 lstart, lend);
390 if (!err)
391 err = err2;
392 }
393 }
394 return err;
395 }
396 EXPORT_SYMBOL(filemap_write_and_wait_range);
397
398 /**
399 * replace_page_cache_page - replace a pagecache page with a new one
400 * @old: page to be replaced
401 * @new: page to replace with
402 * @gfp_mask: allocation mode
403 *
404 * This function replaces a page in the pagecache with a new one. On
405 * success it acquires the pagecache reference for the new page and
406 * drops it for the old page. Both the old and new pages must be
407 * locked. This function does not add the new page to the LRU, the
408 * caller must do that.
409 *
410 * The remove + add is atomic. The only way this function can fail is
411 * memory allocation failure.
412 */
413 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
414 {
415 int error;
416 struct mem_cgroup *memcg = NULL;
417
418 VM_BUG_ON(!PageLocked(old));
419 VM_BUG_ON(!PageLocked(new));
420 VM_BUG_ON(new->mapping);
421
422 /*
423 * This is not page migration, but prepare_migration and
424 * end_migration does enough work for charge replacement.
425 *
426 * In the longer term we probably want a specialized function
427 * for moving the charge from old to new in a more efficient
428 * manner.
429 */
430 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
431 if (error)
432 return error;
433
434 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
435 if (!error) {
436 struct address_space *mapping = old->mapping;
437 void (*freepage)(struct page *);
438
439 pgoff_t offset = old->index;
440 freepage = mapping->a_ops->freepage;
441
442 page_cache_get(new);
443 new->mapping = mapping;
444 new->index = offset;
445
446 spin_lock_irq(&mapping->tree_lock);
447 __delete_from_page_cache(old);
448 error = radix_tree_insert(&mapping->page_tree, offset, new);
449 BUG_ON(error);
450 mapping->nrpages++;
451 __inc_zone_page_state(new, NR_FILE_PAGES);
452 if (PageSwapBacked(new))
453 __inc_zone_page_state(new, NR_SHMEM);
454 spin_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
456 if (freepage)
457 freepage(old);
458 page_cache_release(old);
459 mem_cgroup_end_migration(memcg, old, new, true);
460 } else {
461 mem_cgroup_end_migration(memcg, old, new, false);
462 }
463
464 return error;
465 }
466 EXPORT_SYMBOL_GPL(replace_page_cache_page);
467
468 /**
469 * add_to_page_cache_locked - add a locked page to the pagecache
470 * @page: page to add
471 * @mapping: the page's address_space
472 * @offset: page index
473 * @gfp_mask: page allocation mode
474 *
475 * This function is used to add a page to the pagecache. It must be locked.
476 * This function does not add the page to the LRU. The caller must do that.
477 */
478 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
479 pgoff_t offset, gfp_t gfp_mask)
480 {
481 int error;
482
483 VM_BUG_ON(!PageLocked(page));
484
485 error = mem_cgroup_cache_charge(page, current->mm,
486 gfp_mask & GFP_RECLAIM_MASK);
487 if (error)
488 goto out;
489
490 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
491 if (error == 0) {
492 page_cache_get(page);
493 page->mapping = mapping;
494 page->index = offset;
495
496 spin_lock_irq(&mapping->tree_lock);
497 error = radix_tree_insert(&mapping->page_tree, offset, page);
498 if (likely(!error)) {
499 mapping->nrpages++;
500 __inc_zone_page_state(page, NR_FILE_PAGES);
501 if (PageSwapBacked(page))
502 __inc_zone_page_state(page, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
504 } else {
505 page->mapping = NULL;
506 spin_unlock_irq(&mapping->tree_lock);
507 mem_cgroup_uncharge_cache_page(page);
508 page_cache_release(page);
509 }
510 radix_tree_preload_end();
511 } else
512 mem_cgroup_uncharge_cache_page(page);
513 out:
514 return error;
515 }
516 EXPORT_SYMBOL(add_to_page_cache_locked);
517
518 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
519 pgoff_t offset, gfp_t gfp_mask)
520 {
521 int ret;
522
523 /*
524 * Splice_read and readahead add shmem/tmpfs pages into the page cache
525 * before shmem_readpage has a chance to mark them as SwapBacked: they
526 * need to go on the anon lru below, and mem_cgroup_cache_charge
527 * (called in add_to_page_cache) needs to know where they're going too.
528 */
529 if (mapping_cap_swap_backed(mapping))
530 SetPageSwapBacked(page);
531
532 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
533 if (ret == 0) {
534 if (page_is_file_cache(page))
535 lru_cache_add_file(page);
536 else
537 lru_cache_add_anon(page);
538 }
539 return ret;
540 }
541 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
542
543 #ifdef CONFIG_NUMA
544 struct page *__page_cache_alloc(gfp_t gfp)
545 {
546 int n;
547 struct page *page;
548
549 if (cpuset_do_page_mem_spread()) {
550 get_mems_allowed();
551 n = cpuset_mem_spread_node();
552 page = alloc_pages_exact_node(n, gfp, 0);
553 put_mems_allowed();
554 return page;
555 }
556 return alloc_pages(gfp, 0);
557 }
558 EXPORT_SYMBOL(__page_cache_alloc);
559 #endif
560
561 static int __sleep_on_page_lock(void *word)
562 {
563 io_schedule();
564 return 0;
565 }
566
567 /*
568 * In order to wait for pages to become available there must be
569 * waitqueues associated with pages. By using a hash table of
570 * waitqueues where the bucket discipline is to maintain all
571 * waiters on the same queue and wake all when any of the pages
572 * become available, and for the woken contexts to check to be
573 * sure the appropriate page became available, this saves space
574 * at a cost of "thundering herd" phenomena during rare hash
575 * collisions.
576 */
577 static wait_queue_head_t *page_waitqueue(struct page *page)
578 {
579 const struct zone *zone = page_zone(page);
580
581 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
582 }
583
584 static inline void wake_up_page(struct page *page, int bit)
585 {
586 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
587 }
588
589 void wait_on_page_bit(struct page *page, int bit_nr)
590 {
591 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
592
593 if (test_bit(bit_nr, &page->flags))
594 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
595 TASK_UNINTERRUPTIBLE);
596 }
597 EXPORT_SYMBOL(wait_on_page_bit);
598
599 /**
600 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
601 * @page: Page defining the wait queue of interest
602 * @waiter: Waiter to add to the queue
603 *
604 * Add an arbitrary @waiter to the wait queue for the nominated @page.
605 */
606 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
607 {
608 wait_queue_head_t *q = page_waitqueue(page);
609 unsigned long flags;
610
611 spin_lock_irqsave(&q->lock, flags);
612 __add_wait_queue(q, waiter);
613 spin_unlock_irqrestore(&q->lock, flags);
614 }
615 EXPORT_SYMBOL_GPL(add_page_wait_queue);
616
617 /**
618 * unlock_page - unlock a locked page
619 * @page: the page
620 *
621 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
622 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
623 * mechananism between PageLocked pages and PageWriteback pages is shared.
624 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
625 *
626 * The mb is necessary to enforce ordering between the clear_bit and the read
627 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
628 */
629 void unlock_page(struct page *page)
630 {
631 VM_BUG_ON(!PageLocked(page));
632 clear_bit_unlock(PG_locked, &page->flags);
633 smp_mb__after_clear_bit();
634 wake_up_page(page, PG_locked);
635 }
636 EXPORT_SYMBOL(unlock_page);
637
638 /**
639 * end_page_writeback - end writeback against a page
640 * @page: the page
641 */
642 void end_page_writeback(struct page *page)
643 {
644 if (TestClearPageReclaim(page))
645 rotate_reclaimable_page(page);
646
647 if (!test_clear_page_writeback(page))
648 BUG();
649
650 smp_mb__after_clear_bit();
651 wake_up_page(page, PG_writeback);
652 }
653 EXPORT_SYMBOL(end_page_writeback);
654
655 /**
656 * __lock_page - get a lock on the page, assuming we need to sleep to get it
657 * @page: the page to lock
658 *
659 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
660 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
661 * chances are that on the second loop, the block layer's plug list is empty,
662 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
663 */
664 void __lock_page(struct page *page)
665 {
666 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
667
668 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
669 TASK_UNINTERRUPTIBLE);
670 }
671 EXPORT_SYMBOL(__lock_page);
672
673 int __lock_page_killable(struct page *page)
674 {
675 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
676
677 return __wait_on_bit_lock(page_waitqueue(page), &wait,
678 sync_page_killable, TASK_KILLABLE);
679 }
680 EXPORT_SYMBOL_GPL(__lock_page_killable);
681
682 /**
683 * __lock_page_nosync - get a lock on the page, without calling sync_page()
684 * @page: the page to lock
685 *
686 * Variant of lock_page that does not require the caller to hold a reference
687 * on the page's mapping.
688 */
689 void __lock_page_nosync(struct page *page)
690 {
691 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
692 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
693 TASK_UNINTERRUPTIBLE);
694 }
695
696 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
697 unsigned int flags)
698 {
699 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
700 __lock_page(page);
701 return 1;
702 } else {
703 if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
704 up_read(&mm->mmap_sem);
705 wait_on_page_locked(page);
706 }
707 return 0;
708 }
709 }
710
711 /**
712 * find_get_page - find and get a page reference
713 * @mapping: the address_space to search
714 * @offset: the page index
715 *
716 * Is there a pagecache struct page at the given (mapping, offset) tuple?
717 * If yes, increment its refcount and return it; if no, return NULL.
718 */
719 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
720 {
721 void **pagep;
722 struct page *page;
723
724 rcu_read_lock();
725 repeat:
726 page = NULL;
727 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
728 if (pagep) {
729 page = radix_tree_deref_slot(pagep);
730 if (unlikely(!page))
731 goto out;
732 if (radix_tree_deref_retry(page))
733 goto repeat;
734
735 if (!page_cache_get_speculative(page))
736 goto repeat;
737
738 /*
739 * Has the page moved?
740 * This is part of the lockless pagecache protocol. See
741 * include/linux/pagemap.h for details.
742 */
743 if (unlikely(page != *pagep)) {
744 page_cache_release(page);
745 goto repeat;
746 }
747 }
748 out:
749 rcu_read_unlock();
750
751 return page;
752 }
753 EXPORT_SYMBOL(find_get_page);
754
755 /**
756 * find_lock_page - locate, pin and lock a pagecache page
757 * @mapping: the address_space to search
758 * @offset: the page index
759 *
760 * Locates the desired pagecache page, locks it, increments its reference
761 * count and returns its address.
762 *
763 * Returns zero if the page was not present. find_lock_page() may sleep.
764 */
765 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
766 {
767 struct page *page;
768
769 repeat:
770 page = find_get_page(mapping, offset);
771 if (page) {
772 lock_page(page);
773 /* Has the page been truncated? */
774 if (unlikely(page->mapping != mapping)) {
775 unlock_page(page);
776 page_cache_release(page);
777 goto repeat;
778 }
779 VM_BUG_ON(page->index != offset);
780 }
781 return page;
782 }
783 EXPORT_SYMBOL(find_lock_page);
784
785 /**
786 * find_or_create_page - locate or add a pagecache page
787 * @mapping: the page's address_space
788 * @index: the page's index into the mapping
789 * @gfp_mask: page allocation mode
790 *
791 * Locates a page in the pagecache. If the page is not present, a new page
792 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
793 * LRU list. The returned page is locked and has its reference count
794 * incremented.
795 *
796 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
797 * allocation!
798 *
799 * find_or_create_page() returns the desired page's address, or zero on
800 * memory exhaustion.
801 */
802 struct page *find_or_create_page(struct address_space *mapping,
803 pgoff_t index, gfp_t gfp_mask)
804 {
805 struct page *page;
806 int err;
807 repeat:
808 page = find_lock_page(mapping, index);
809 if (!page) {
810 page = __page_cache_alloc(gfp_mask);
811 if (!page)
812 return NULL;
813 /*
814 * We want a regular kernel memory (not highmem or DMA etc)
815 * allocation for the radix tree nodes, but we need to honour
816 * the context-specific requirements the caller has asked for.
817 * GFP_RECLAIM_MASK collects those requirements.
818 */
819 err = add_to_page_cache_lru(page, mapping, index,
820 (gfp_mask & GFP_RECLAIM_MASK));
821 if (unlikely(err)) {
822 page_cache_release(page);
823 page = NULL;
824 if (err == -EEXIST)
825 goto repeat;
826 }
827 }
828 return page;
829 }
830 EXPORT_SYMBOL(find_or_create_page);
831
832 /**
833 * find_get_pages - gang pagecache lookup
834 * @mapping: The address_space to search
835 * @start: The starting page index
836 * @nr_pages: The maximum number of pages
837 * @pages: Where the resulting pages are placed
838 *
839 * find_get_pages() will search for and return a group of up to
840 * @nr_pages pages in the mapping. The pages are placed at @pages.
841 * find_get_pages() takes a reference against the returned pages.
842 *
843 * The search returns a group of mapping-contiguous pages with ascending
844 * indexes. There may be holes in the indices due to not-present pages.
845 *
846 * find_get_pages() returns the number of pages which were found.
847 */
848 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
849 unsigned int nr_pages, struct page **pages)
850 {
851 unsigned int i;
852 unsigned int ret;
853 unsigned int nr_found;
854
855 rcu_read_lock();
856 restart:
857 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
858 (void ***)pages, start, nr_pages);
859 ret = 0;
860 for (i = 0; i < nr_found; i++) {
861 struct page *page;
862 repeat:
863 page = radix_tree_deref_slot((void **)pages[i]);
864 if (unlikely(!page))
865 continue;
866
867 /*
868 * This can only trigger when the entry at index 0 moves out
869 * of or back to the root: none yet gotten, safe to restart.
870 */
871 if (radix_tree_deref_retry(page)) {
872 WARN_ON(start | i);
873 goto restart;
874 }
875
876 if (!page_cache_get_speculative(page))
877 goto repeat;
878
879 /* Has the page moved? */
880 if (unlikely(page != *((void **)pages[i]))) {
881 page_cache_release(page);
882 goto repeat;
883 }
884
885 pages[ret] = page;
886 ret++;
887 }
888
889 /*
890 * If all entries were removed before we could secure them,
891 * try again, because callers stop trying once 0 is returned.
892 */
893 if (unlikely(!ret && nr_found))
894 goto restart;
895 rcu_read_unlock();
896 return ret;
897 }
898
899 /**
900 * find_get_pages_contig - gang contiguous pagecache lookup
901 * @mapping: The address_space to search
902 * @index: The starting page index
903 * @nr_pages: The maximum number of pages
904 * @pages: Where the resulting pages are placed
905 *
906 * find_get_pages_contig() works exactly like find_get_pages(), except
907 * that the returned number of pages are guaranteed to be contiguous.
908 *
909 * find_get_pages_contig() returns the number of pages which were found.
910 */
911 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
912 unsigned int nr_pages, struct page **pages)
913 {
914 unsigned int i;
915 unsigned int ret;
916 unsigned int nr_found;
917
918 rcu_read_lock();
919 restart:
920 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
921 (void ***)pages, index, nr_pages);
922 ret = 0;
923 for (i = 0; i < nr_found; i++) {
924 struct page *page;
925 repeat:
926 page = radix_tree_deref_slot((void **)pages[i]);
927 if (unlikely(!page))
928 continue;
929
930 /*
931 * This can only trigger when the entry at index 0 moves out
932 * of or back to the root: none yet gotten, safe to restart.
933 */
934 if (radix_tree_deref_retry(page))
935 goto restart;
936
937 if (!page_cache_get_speculative(page))
938 goto repeat;
939
940 /* Has the page moved? */
941 if (unlikely(page != *((void **)pages[i]))) {
942 page_cache_release(page);
943 goto repeat;
944 }
945
946 /*
947 * must check mapping and index after taking the ref.
948 * otherwise we can get both false positives and false
949 * negatives, which is just confusing to the caller.
950 */
951 if (page->mapping == NULL || page->index != index) {
952 page_cache_release(page);
953 break;
954 }
955
956 pages[ret] = page;
957 ret++;
958 index++;
959 }
960 rcu_read_unlock();
961 return ret;
962 }
963 EXPORT_SYMBOL(find_get_pages_contig);
964
965 /**
966 * find_get_pages_tag - find and return pages that match @tag
967 * @mapping: the address_space to search
968 * @index: the starting page index
969 * @tag: the tag index
970 * @nr_pages: the maximum number of pages
971 * @pages: where the resulting pages are placed
972 *
973 * Like find_get_pages, except we only return pages which are tagged with
974 * @tag. We update @index to index the next page for the traversal.
975 */
976 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
977 int tag, unsigned int nr_pages, struct page **pages)
978 {
979 unsigned int i;
980 unsigned int ret;
981 unsigned int nr_found;
982
983 rcu_read_lock();
984 restart:
985 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
986 (void ***)pages, *index, nr_pages, tag);
987 ret = 0;
988 for (i = 0; i < nr_found; i++) {
989 struct page *page;
990 repeat:
991 page = radix_tree_deref_slot((void **)pages[i]);
992 if (unlikely(!page))
993 continue;
994
995 /*
996 * This can only trigger when the entry at index 0 moves out
997 * of or back to the root: none yet gotten, safe to restart.
998 */
999 if (radix_tree_deref_retry(page))
1000 goto restart;
1001
1002 if (!page_cache_get_speculative(page))
1003 goto repeat;
1004
1005 /* Has the page moved? */
1006 if (unlikely(page != *((void **)pages[i]))) {
1007 page_cache_release(page);
1008 goto repeat;
1009 }
1010
1011 pages[ret] = page;
1012 ret++;
1013 }
1014
1015 /*
1016 * If all entries were removed before we could secure them,
1017 * try again, because callers stop trying once 0 is returned.
1018 */
1019 if (unlikely(!ret && nr_found))
1020 goto restart;
1021 rcu_read_unlock();
1022
1023 if (ret)
1024 *index = pages[ret - 1]->index + 1;
1025
1026 return ret;
1027 }
1028 EXPORT_SYMBOL(find_get_pages_tag);
1029
1030 /**
1031 * grab_cache_page_nowait - returns locked page at given index in given cache
1032 * @mapping: target address_space
1033 * @index: the page index
1034 *
1035 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1036 * This is intended for speculative data generators, where the data can
1037 * be regenerated if the page couldn't be grabbed. This routine should
1038 * be safe to call while holding the lock for another page.
1039 *
1040 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1041 * and deadlock against the caller's locked page.
1042 */
1043 struct page *
1044 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1045 {
1046 struct page *page = find_get_page(mapping, index);
1047
1048 if (page) {
1049 if (trylock_page(page))
1050 return page;
1051 page_cache_release(page);
1052 return NULL;
1053 }
1054 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1055 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1056 page_cache_release(page);
1057 page = NULL;
1058 }
1059 return page;
1060 }
1061 EXPORT_SYMBOL(grab_cache_page_nowait);
1062
1063 /*
1064 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1065 * a _large_ part of the i/o request. Imagine the worst scenario:
1066 *
1067 * ---R__________________________________________B__________
1068 * ^ reading here ^ bad block(assume 4k)
1069 *
1070 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1071 * => failing the whole request => read(R) => read(R+1) =>
1072 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1073 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1074 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1075 *
1076 * It is going insane. Fix it by quickly scaling down the readahead size.
1077 */
1078 static void shrink_readahead_size_eio(struct file *filp,
1079 struct file_ra_state *ra)
1080 {
1081 ra->ra_pages /= 4;
1082 }
1083
1084 /**
1085 * do_generic_file_read - generic file read routine
1086 * @filp: the file to read
1087 * @ppos: current file position
1088 * @desc: read_descriptor
1089 * @actor: read method
1090 *
1091 * This is a generic file read routine, and uses the
1092 * mapping->a_ops->readpage() function for the actual low-level stuff.
1093 *
1094 * This is really ugly. But the goto's actually try to clarify some
1095 * of the logic when it comes to error handling etc.
1096 */
1097 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1098 read_descriptor_t *desc, read_actor_t actor)
1099 {
1100 struct address_space *mapping = filp->f_mapping;
1101 struct inode *inode = mapping->host;
1102 struct file_ra_state *ra = &filp->f_ra;
1103 pgoff_t index;
1104 pgoff_t last_index;
1105 pgoff_t prev_index;
1106 unsigned long offset; /* offset into pagecache page */
1107 unsigned int prev_offset;
1108 int error;
1109
1110 index = *ppos >> PAGE_CACHE_SHIFT;
1111 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1112 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1113 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1114 offset = *ppos & ~PAGE_CACHE_MASK;
1115
1116 for (;;) {
1117 struct page *page;
1118 pgoff_t end_index;
1119 loff_t isize;
1120 unsigned long nr, ret;
1121
1122 cond_resched();
1123 find_page:
1124 page = find_get_page(mapping, index);
1125 if (!page) {
1126 page_cache_sync_readahead(mapping,
1127 ra, filp,
1128 index, last_index - index);
1129 page = find_get_page(mapping, index);
1130 if (unlikely(page == NULL))
1131 goto no_cached_page;
1132 }
1133 if (PageReadahead(page)) {
1134 page_cache_async_readahead(mapping,
1135 ra, filp, page,
1136 index, last_index - index);
1137 }
1138 if (!PageUptodate(page)) {
1139 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1140 !mapping->a_ops->is_partially_uptodate)
1141 goto page_not_up_to_date;
1142 if (!trylock_page(page))
1143 goto page_not_up_to_date;
1144 /* Did it get truncated before we got the lock? */
1145 if (!page->mapping)
1146 goto page_not_up_to_date_locked;
1147 if (!mapping->a_ops->is_partially_uptodate(page,
1148 desc, offset))
1149 goto page_not_up_to_date_locked;
1150 unlock_page(page);
1151 }
1152 page_ok:
1153 /*
1154 * i_size must be checked after we know the page is Uptodate.
1155 *
1156 * Checking i_size after the check allows us to calculate
1157 * the correct value for "nr", which means the zero-filled
1158 * part of the page is not copied back to userspace (unless
1159 * another truncate extends the file - this is desired though).
1160 */
1161
1162 isize = i_size_read(inode);
1163 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1164 if (unlikely(!isize || index > end_index)) {
1165 page_cache_release(page);
1166 goto out;
1167 }
1168
1169 /* nr is the maximum number of bytes to copy from this page */
1170 nr = PAGE_CACHE_SIZE;
1171 if (index == end_index) {
1172 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1173 if (nr <= offset) {
1174 page_cache_release(page);
1175 goto out;
1176 }
1177 }
1178 nr = nr - offset;
1179
1180 /* If users can be writing to this page using arbitrary
1181 * virtual addresses, take care about potential aliasing
1182 * before reading the page on the kernel side.
1183 */
1184 if (mapping_writably_mapped(mapping))
1185 flush_dcache_page(page);
1186
1187 /*
1188 * When a sequential read accesses a page several times,
1189 * only mark it as accessed the first time.
1190 */
1191 if (prev_index != index || offset != prev_offset)
1192 mark_page_accessed(page);
1193 prev_index = index;
1194
1195 /*
1196 * Ok, we have the page, and it's up-to-date, so
1197 * now we can copy it to user space...
1198 *
1199 * The actor routine returns how many bytes were actually used..
1200 * NOTE! This may not be the same as how much of a user buffer
1201 * we filled up (we may be padding etc), so we can only update
1202 * "pos" here (the actor routine has to update the user buffer
1203 * pointers and the remaining count).
1204 */
1205 ret = actor(desc, page, offset, nr);
1206 offset += ret;
1207 index += offset >> PAGE_CACHE_SHIFT;
1208 offset &= ~PAGE_CACHE_MASK;
1209 prev_offset = offset;
1210
1211 page_cache_release(page);
1212 if (ret == nr && desc->count)
1213 continue;
1214 goto out;
1215
1216 page_not_up_to_date:
1217 /* Get exclusive access to the page ... */
1218 error = lock_page_killable(page);
1219 if (unlikely(error))
1220 goto readpage_error;
1221
1222 page_not_up_to_date_locked:
1223 /* Did it get truncated before we got the lock? */
1224 if (!page->mapping) {
1225 unlock_page(page);
1226 page_cache_release(page);
1227 continue;
1228 }
1229
1230 /* Did somebody else fill it already? */
1231 if (PageUptodate(page)) {
1232 unlock_page(page);
1233 goto page_ok;
1234 }
1235
1236 readpage:
1237 /*
1238 * A previous I/O error may have been due to temporary
1239 * failures, eg. multipath errors.
1240 * PG_error will be set again if readpage fails.
1241 */
1242 ClearPageError(page);
1243 /* Start the actual read. The read will unlock the page. */
1244 error = mapping->a_ops->readpage(filp, page);
1245
1246 if (unlikely(error)) {
1247 if (error == AOP_TRUNCATED_PAGE) {
1248 page_cache_release(page);
1249 goto find_page;
1250 }
1251 goto readpage_error;
1252 }
1253
1254 if (!PageUptodate(page)) {
1255 error = lock_page_killable(page);
1256 if (unlikely(error))
1257 goto readpage_error;
1258 if (!PageUptodate(page)) {
1259 if (page->mapping == NULL) {
1260 /*
1261 * invalidate_mapping_pages got it
1262 */
1263 unlock_page(page);
1264 page_cache_release(page);
1265 goto find_page;
1266 }
1267 unlock_page(page);
1268 shrink_readahead_size_eio(filp, ra);
1269 error = -EIO;
1270 goto readpage_error;
1271 }
1272 unlock_page(page);
1273 }
1274
1275 goto page_ok;
1276
1277 readpage_error:
1278 /* UHHUH! A synchronous read error occurred. Report it */
1279 desc->error = error;
1280 page_cache_release(page);
1281 goto out;
1282
1283 no_cached_page:
1284 /*
1285 * Ok, it wasn't cached, so we need to create a new
1286 * page..
1287 */
1288 page = page_cache_alloc_cold(mapping);
1289 if (!page) {
1290 desc->error = -ENOMEM;
1291 goto out;
1292 }
1293 error = add_to_page_cache_lru(page, mapping,
1294 index, GFP_KERNEL);
1295 if (error) {
1296 page_cache_release(page);
1297 if (error == -EEXIST)
1298 goto find_page;
1299 desc->error = error;
1300 goto out;
1301 }
1302 goto readpage;
1303 }
1304
1305 out:
1306 ra->prev_pos = prev_index;
1307 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1308 ra->prev_pos |= prev_offset;
1309
1310 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1311 file_accessed(filp);
1312 }
1313
1314 int file_read_actor(read_descriptor_t *desc, struct page *page,
1315 unsigned long offset, unsigned long size)
1316 {
1317 char *kaddr;
1318 unsigned long left, count = desc->count;
1319
1320 if (size > count)
1321 size = count;
1322
1323 /*
1324 * Faults on the destination of a read are common, so do it before
1325 * taking the kmap.
1326 */
1327 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1328 kaddr = kmap_atomic(page, KM_USER0);
1329 left = __copy_to_user_inatomic(desc->arg.buf,
1330 kaddr + offset, size);
1331 kunmap_atomic(kaddr, KM_USER0);
1332 if (left == 0)
1333 goto success;
1334 }
1335
1336 /* Do it the slow way */
1337 kaddr = kmap(page);
1338 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1339 kunmap(page);
1340
1341 if (left) {
1342 size -= left;
1343 desc->error = -EFAULT;
1344 }
1345 success:
1346 desc->count = count - size;
1347 desc->written += size;
1348 desc->arg.buf += size;
1349 return size;
1350 }
1351
1352 /*
1353 * Performs necessary checks before doing a write
1354 * @iov: io vector request
1355 * @nr_segs: number of segments in the iovec
1356 * @count: number of bytes to write
1357 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1358 *
1359 * Adjust number of segments and amount of bytes to write (nr_segs should be
1360 * properly initialized first). Returns appropriate error code that caller
1361 * should return or zero in case that write should be allowed.
1362 */
1363 int generic_segment_checks(const struct iovec *iov,
1364 unsigned long *nr_segs, size_t *count, int access_flags)
1365 {
1366 unsigned long seg;
1367 size_t cnt = 0;
1368 for (seg = 0; seg < *nr_segs; seg++) {
1369 const struct iovec *iv = &iov[seg];
1370
1371 /*
1372 * If any segment has a negative length, or the cumulative
1373 * length ever wraps negative then return -EINVAL.
1374 */
1375 cnt += iv->iov_len;
1376 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1377 return -EINVAL;
1378 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1379 continue;
1380 if (seg == 0)
1381 return -EFAULT;
1382 *nr_segs = seg;
1383 cnt -= iv->iov_len; /* This segment is no good */
1384 break;
1385 }
1386 *count = cnt;
1387 return 0;
1388 }
1389 EXPORT_SYMBOL(generic_segment_checks);
1390
1391 /**
1392 * generic_file_aio_read - generic filesystem read routine
1393 * @iocb: kernel I/O control block
1394 * @iov: io vector request
1395 * @nr_segs: number of segments in the iovec
1396 * @pos: current file position
1397 *
1398 * This is the "read()" routine for all filesystems
1399 * that can use the page cache directly.
1400 */
1401 ssize_t
1402 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1403 unsigned long nr_segs, loff_t pos)
1404 {
1405 struct file *filp = iocb->ki_filp;
1406 ssize_t retval;
1407 unsigned long seg = 0;
1408 size_t count;
1409 loff_t *ppos = &iocb->ki_pos;
1410
1411 count = 0;
1412 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1413 if (retval)
1414 return retval;
1415
1416 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1417 if (filp->f_flags & O_DIRECT) {
1418 loff_t size;
1419 struct address_space *mapping;
1420 struct inode *inode;
1421
1422 mapping = filp->f_mapping;
1423 inode = mapping->host;
1424 if (!count)
1425 goto out; /* skip atime */
1426 size = i_size_read(inode);
1427 if (pos < size) {
1428 retval = filemap_write_and_wait_range(mapping, pos,
1429 pos + iov_length(iov, nr_segs) - 1);
1430 if (!retval) {
1431 retval = mapping->a_ops->direct_IO(READ, iocb,
1432 iov, pos, nr_segs);
1433 }
1434 if (retval > 0) {
1435 *ppos = pos + retval;
1436 count -= retval;
1437 }
1438
1439 /*
1440 * Btrfs can have a short DIO read if we encounter
1441 * compressed extents, so if there was an error, or if
1442 * we've already read everything we wanted to, or if
1443 * there was a short read because we hit EOF, go ahead
1444 * and return. Otherwise fallthrough to buffered io for
1445 * the rest of the read.
1446 */
1447 if (retval < 0 || !count || *ppos >= size) {
1448 file_accessed(filp);
1449 goto out;
1450 }
1451 }
1452 }
1453
1454 count = retval;
1455 for (seg = 0; seg < nr_segs; seg++) {
1456 read_descriptor_t desc;
1457 loff_t offset = 0;
1458
1459 /*
1460 * If we did a short DIO read we need to skip the section of the
1461 * iov that we've already read data into.
1462 */
1463 if (count) {
1464 if (count > iov[seg].iov_len) {
1465 count -= iov[seg].iov_len;
1466 continue;
1467 }
1468 offset = count;
1469 count = 0;
1470 }
1471
1472 desc.written = 0;
1473 desc.arg.buf = iov[seg].iov_base + offset;
1474 desc.count = iov[seg].iov_len - offset;
1475 if (desc.count == 0)
1476 continue;
1477 desc.error = 0;
1478 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1479 retval += desc.written;
1480 if (desc.error) {
1481 retval = retval ?: desc.error;
1482 break;
1483 }
1484 if (desc.count > 0)
1485 break;
1486 }
1487 out:
1488 return retval;
1489 }
1490 EXPORT_SYMBOL(generic_file_aio_read);
1491
1492 static ssize_t
1493 do_readahead(struct address_space *mapping, struct file *filp,
1494 pgoff_t index, unsigned long nr)
1495 {
1496 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1497 return -EINVAL;
1498
1499 force_page_cache_readahead(mapping, filp, index, nr);
1500 return 0;
1501 }
1502
1503 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1504 {
1505 ssize_t ret;
1506 struct file *file;
1507
1508 ret = -EBADF;
1509 file = fget(fd);
1510 if (file) {
1511 if (file->f_mode & FMODE_READ) {
1512 struct address_space *mapping = file->f_mapping;
1513 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1514 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1515 unsigned long len = end - start + 1;
1516 ret = do_readahead(mapping, file, start, len);
1517 }
1518 fput(file);
1519 }
1520 return ret;
1521 }
1522 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1523 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1524 {
1525 return SYSC_readahead((int) fd, offset, (size_t) count);
1526 }
1527 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1528 #endif
1529
1530 #ifdef CONFIG_MMU
1531 /**
1532 * page_cache_read - adds requested page to the page cache if not already there
1533 * @file: file to read
1534 * @offset: page index
1535 *
1536 * This adds the requested page to the page cache if it isn't already there,
1537 * and schedules an I/O to read in its contents from disk.
1538 */
1539 static int page_cache_read(struct file *file, pgoff_t offset)
1540 {
1541 struct address_space *mapping = file->f_mapping;
1542 struct page *page;
1543 int ret;
1544
1545 do {
1546 page = page_cache_alloc_cold(mapping);
1547 if (!page)
1548 return -ENOMEM;
1549
1550 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1551 if (ret == 0)
1552 ret = mapping->a_ops->readpage(file, page);
1553 else if (ret == -EEXIST)
1554 ret = 0; /* losing race to add is OK */
1555
1556 page_cache_release(page);
1557
1558 } while (ret == AOP_TRUNCATED_PAGE);
1559
1560 return ret;
1561 }
1562
1563 #define MMAP_LOTSAMISS (100)
1564
1565 /*
1566 * Synchronous readahead happens when we don't even find
1567 * a page in the page cache at all.
1568 */
1569 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1570 struct file_ra_state *ra,
1571 struct file *file,
1572 pgoff_t offset)
1573 {
1574 unsigned long ra_pages;
1575 struct address_space *mapping = file->f_mapping;
1576
1577 /* If we don't want any read-ahead, don't bother */
1578 if (VM_RandomReadHint(vma))
1579 return;
1580
1581 if (VM_SequentialReadHint(vma) ||
1582 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1583 page_cache_sync_readahead(mapping, ra, file, offset,
1584 ra->ra_pages);
1585 return;
1586 }
1587
1588 if (ra->mmap_miss < INT_MAX)
1589 ra->mmap_miss++;
1590
1591 /*
1592 * Do we miss much more than hit in this file? If so,
1593 * stop bothering with read-ahead. It will only hurt.
1594 */
1595 if (ra->mmap_miss > MMAP_LOTSAMISS)
1596 return;
1597
1598 /*
1599 * mmap read-around
1600 */
1601 ra_pages = max_sane_readahead(ra->ra_pages);
1602 if (ra_pages) {
1603 ra->start = max_t(long, 0, offset - ra_pages/2);
1604 ra->size = ra_pages;
1605 ra->async_size = 0;
1606 ra_submit(ra, mapping, file);
1607 }
1608 }
1609
1610 /*
1611 * Asynchronous readahead happens when we find the page and PG_readahead,
1612 * so we want to possibly extend the readahead further..
1613 */
1614 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1615 struct file_ra_state *ra,
1616 struct file *file,
1617 struct page *page,
1618 pgoff_t offset)
1619 {
1620 struct address_space *mapping = file->f_mapping;
1621
1622 /* If we don't want any read-ahead, don't bother */
1623 if (VM_RandomReadHint(vma))
1624 return;
1625 if (ra->mmap_miss > 0)
1626 ra->mmap_miss--;
1627 if (PageReadahead(page))
1628 page_cache_async_readahead(mapping, ra, file,
1629 page, offset, ra->ra_pages);
1630 }
1631
1632 /**
1633 * filemap_fault - read in file data for page fault handling
1634 * @vma: vma in which the fault was taken
1635 * @vmf: struct vm_fault containing details of the fault
1636 *
1637 * filemap_fault() is invoked via the vma operations vector for a
1638 * mapped memory region to read in file data during a page fault.
1639 *
1640 * The goto's are kind of ugly, but this streamlines the normal case of having
1641 * it in the page cache, and handles the special cases reasonably without
1642 * having a lot of duplicated code.
1643 */
1644 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1645 {
1646 int error;
1647 struct file *file = vma->vm_file;
1648 struct address_space *mapping = file->f_mapping;
1649 struct file_ra_state *ra = &file->f_ra;
1650 struct inode *inode = mapping->host;
1651 pgoff_t offset = vmf->pgoff;
1652 struct page *page;
1653 pgoff_t size;
1654 int ret = 0;
1655
1656 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657 if (offset >= size)
1658 return VM_FAULT_SIGBUS;
1659
1660 /*
1661 * Do we have something in the page cache already?
1662 */
1663 page = find_get_page(mapping, offset);
1664 if (likely(page)) {
1665 /*
1666 * We found the page, so try async readahead before
1667 * waiting for the lock.
1668 */
1669 do_async_mmap_readahead(vma, ra, file, page, offset);
1670 } else {
1671 /* No page in the page cache at all */
1672 do_sync_mmap_readahead(vma, ra, file, offset);
1673 count_vm_event(PGMAJFAULT);
1674 ret = VM_FAULT_MAJOR;
1675 retry_find:
1676 page = find_get_page(mapping, offset);
1677 if (!page)
1678 goto no_cached_page;
1679 }
1680
1681 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1682 page_cache_release(page);
1683 return ret | VM_FAULT_RETRY;
1684 }
1685
1686 /* Did it get truncated? */
1687 if (unlikely(page->mapping != mapping)) {
1688 unlock_page(page);
1689 put_page(page);
1690 goto retry_find;
1691 }
1692 VM_BUG_ON(page->index != offset);
1693
1694 /*
1695 * We have a locked page in the page cache, now we need to check
1696 * that it's up-to-date. If not, it is going to be due to an error.
1697 */
1698 if (unlikely(!PageUptodate(page)))
1699 goto page_not_uptodate;
1700
1701 /*
1702 * Found the page and have a reference on it.
1703 * We must recheck i_size under page lock.
1704 */
1705 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1706 if (unlikely(offset >= size)) {
1707 unlock_page(page);
1708 page_cache_release(page);
1709 return VM_FAULT_SIGBUS;
1710 }
1711
1712 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1713 vmf->page = page;
1714 return ret | VM_FAULT_LOCKED;
1715
1716 no_cached_page:
1717 /*
1718 * We're only likely to ever get here if MADV_RANDOM is in
1719 * effect.
1720 */
1721 error = page_cache_read(file, offset);
1722
1723 /*
1724 * The page we want has now been added to the page cache.
1725 * In the unlikely event that someone removed it in the
1726 * meantime, we'll just come back here and read it again.
1727 */
1728 if (error >= 0)
1729 goto retry_find;
1730
1731 /*
1732 * An error return from page_cache_read can result if the
1733 * system is low on memory, or a problem occurs while trying
1734 * to schedule I/O.
1735 */
1736 if (error == -ENOMEM)
1737 return VM_FAULT_OOM;
1738 return VM_FAULT_SIGBUS;
1739
1740 page_not_uptodate:
1741 /*
1742 * Umm, take care of errors if the page isn't up-to-date.
1743 * Try to re-read it _once_. We do this synchronously,
1744 * because there really aren't any performance issues here
1745 * and we need to check for errors.
1746 */
1747 ClearPageError(page);
1748 error = mapping->a_ops->readpage(file, page);
1749 if (!error) {
1750 wait_on_page_locked(page);
1751 if (!PageUptodate(page))
1752 error = -EIO;
1753 }
1754 page_cache_release(page);
1755
1756 if (!error || error == AOP_TRUNCATED_PAGE)
1757 goto retry_find;
1758
1759 /* Things didn't work out. Return zero to tell the mm layer so. */
1760 shrink_readahead_size_eio(file, ra);
1761 return VM_FAULT_SIGBUS;
1762 }
1763 EXPORT_SYMBOL(filemap_fault);
1764
1765 const struct vm_operations_struct generic_file_vm_ops = {
1766 .fault = filemap_fault,
1767 };
1768
1769 /* This is used for a general mmap of a disk file */
1770
1771 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1772 {
1773 struct address_space *mapping = file->f_mapping;
1774
1775 if (!mapping->a_ops->readpage)
1776 return -ENOEXEC;
1777 file_accessed(file);
1778 vma->vm_ops = &generic_file_vm_ops;
1779 vma->vm_flags |= VM_CAN_NONLINEAR;
1780 return 0;
1781 }
1782
1783 /*
1784 * This is for filesystems which do not implement ->writepage.
1785 */
1786 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1787 {
1788 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1789 return -EINVAL;
1790 return generic_file_mmap(file, vma);
1791 }
1792 #else
1793 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1794 {
1795 return -ENOSYS;
1796 }
1797 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1798 {
1799 return -ENOSYS;
1800 }
1801 #endif /* CONFIG_MMU */
1802
1803 EXPORT_SYMBOL(generic_file_mmap);
1804 EXPORT_SYMBOL(generic_file_readonly_mmap);
1805
1806 static struct page *__read_cache_page(struct address_space *mapping,
1807 pgoff_t index,
1808 int (*filler)(void *,struct page*),
1809 void *data,
1810 gfp_t gfp)
1811 {
1812 struct page *page;
1813 int err;
1814 repeat:
1815 page = find_get_page(mapping, index);
1816 if (!page) {
1817 page = __page_cache_alloc(gfp | __GFP_COLD);
1818 if (!page)
1819 return ERR_PTR(-ENOMEM);
1820 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1821 if (unlikely(err)) {
1822 page_cache_release(page);
1823 if (err == -EEXIST)
1824 goto repeat;
1825 /* Presumably ENOMEM for radix tree node */
1826 return ERR_PTR(err);
1827 }
1828 err = filler(data, page);
1829 if (err < 0) {
1830 page_cache_release(page);
1831 page = ERR_PTR(err);
1832 }
1833 }
1834 return page;
1835 }
1836
1837 static struct page *do_read_cache_page(struct address_space *mapping,
1838 pgoff_t index,
1839 int (*filler)(void *,struct page*),
1840 void *data,
1841 gfp_t gfp)
1842
1843 {
1844 struct page *page;
1845 int err;
1846
1847 retry:
1848 page = __read_cache_page(mapping, index, filler, data, gfp);
1849 if (IS_ERR(page))
1850 return page;
1851 if (PageUptodate(page))
1852 goto out;
1853
1854 lock_page(page);
1855 if (!page->mapping) {
1856 unlock_page(page);
1857 page_cache_release(page);
1858 goto retry;
1859 }
1860 if (PageUptodate(page)) {
1861 unlock_page(page);
1862 goto out;
1863 }
1864 err = filler(data, page);
1865 if (err < 0) {
1866 page_cache_release(page);
1867 return ERR_PTR(err);
1868 }
1869 out:
1870 mark_page_accessed(page);
1871 return page;
1872 }
1873
1874 /**
1875 * read_cache_page_async - read into page cache, fill it if needed
1876 * @mapping: the page's address_space
1877 * @index: the page index
1878 * @filler: function to perform the read
1879 * @data: destination for read data
1880 *
1881 * Same as read_cache_page, but don't wait for page to become unlocked
1882 * after submitting it to the filler.
1883 *
1884 * Read into the page cache. If a page already exists, and PageUptodate() is
1885 * not set, try to fill the page but don't wait for it to become unlocked.
1886 *
1887 * If the page does not get brought uptodate, return -EIO.
1888 */
1889 struct page *read_cache_page_async(struct address_space *mapping,
1890 pgoff_t index,
1891 int (*filler)(void *,struct page*),
1892 void *data)
1893 {
1894 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1895 }
1896 EXPORT_SYMBOL(read_cache_page_async);
1897
1898 static struct page *wait_on_page_read(struct page *page)
1899 {
1900 if (!IS_ERR(page)) {
1901 wait_on_page_locked(page);
1902 if (!PageUptodate(page)) {
1903 page_cache_release(page);
1904 page = ERR_PTR(-EIO);
1905 }
1906 }
1907 return page;
1908 }
1909
1910 /**
1911 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1912 * @mapping: the page's address_space
1913 * @index: the page index
1914 * @gfp: the page allocator flags to use if allocating
1915 *
1916 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1917 * any new page allocations done using the specified allocation flags. Note
1918 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1919 * expect to do this atomically or anything like that - but you can pass in
1920 * other page requirements.
1921 *
1922 * If the page does not get brought uptodate, return -EIO.
1923 */
1924 struct page *read_cache_page_gfp(struct address_space *mapping,
1925 pgoff_t index,
1926 gfp_t gfp)
1927 {
1928 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1929
1930 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1931 }
1932 EXPORT_SYMBOL(read_cache_page_gfp);
1933
1934 /**
1935 * read_cache_page - read into page cache, fill it if needed
1936 * @mapping: the page's address_space
1937 * @index: the page index
1938 * @filler: function to perform the read
1939 * @data: destination for read data
1940 *
1941 * Read into the page cache. If a page already exists, and PageUptodate() is
1942 * not set, try to fill the page then wait for it to become unlocked.
1943 *
1944 * If the page does not get brought uptodate, return -EIO.
1945 */
1946 struct page *read_cache_page(struct address_space *mapping,
1947 pgoff_t index,
1948 int (*filler)(void *,struct page*),
1949 void *data)
1950 {
1951 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1952 }
1953 EXPORT_SYMBOL(read_cache_page);
1954
1955 /*
1956 * The logic we want is
1957 *
1958 * if suid or (sgid and xgrp)
1959 * remove privs
1960 */
1961 int should_remove_suid(struct dentry *dentry)
1962 {
1963 mode_t mode = dentry->d_inode->i_mode;
1964 int kill = 0;
1965
1966 /* suid always must be killed */
1967 if (unlikely(mode & S_ISUID))
1968 kill = ATTR_KILL_SUID;
1969
1970 /*
1971 * sgid without any exec bits is just a mandatory locking mark; leave
1972 * it alone. If some exec bits are set, it's a real sgid; kill it.
1973 */
1974 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1975 kill |= ATTR_KILL_SGID;
1976
1977 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1978 return kill;
1979
1980 return 0;
1981 }
1982 EXPORT_SYMBOL(should_remove_suid);
1983
1984 static int __remove_suid(struct dentry *dentry, int kill)
1985 {
1986 struct iattr newattrs;
1987
1988 newattrs.ia_valid = ATTR_FORCE | kill;
1989 return notify_change(dentry, &newattrs);
1990 }
1991
1992 int file_remove_suid(struct file *file)
1993 {
1994 struct dentry *dentry = file->f_path.dentry;
1995 int killsuid = should_remove_suid(dentry);
1996 int killpriv = security_inode_need_killpriv(dentry);
1997 int error = 0;
1998
1999 if (killpriv < 0)
2000 return killpriv;
2001 if (killpriv)
2002 error = security_inode_killpriv(dentry);
2003 if (!error && killsuid)
2004 error = __remove_suid(dentry, killsuid);
2005
2006 return error;
2007 }
2008 EXPORT_SYMBOL(file_remove_suid);
2009
2010 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2011 const struct iovec *iov, size_t base, size_t bytes)
2012 {
2013 size_t copied = 0, left = 0;
2014
2015 while (bytes) {
2016 char __user *buf = iov->iov_base + base;
2017 int copy = min(bytes, iov->iov_len - base);
2018
2019 base = 0;
2020 left = __copy_from_user_inatomic(vaddr, buf, copy);
2021 copied += copy;
2022 bytes -= copy;
2023 vaddr += copy;
2024 iov++;
2025
2026 if (unlikely(left))
2027 break;
2028 }
2029 return copied - left;
2030 }
2031
2032 /*
2033 * Copy as much as we can into the page and return the number of bytes which
2034 * were successfully copied. If a fault is encountered then return the number of
2035 * bytes which were copied.
2036 */
2037 size_t iov_iter_copy_from_user_atomic(struct page *page,
2038 struct iov_iter *i, unsigned long offset, size_t bytes)
2039 {
2040 char *kaddr;
2041 size_t copied;
2042
2043 BUG_ON(!in_atomic());
2044 kaddr = kmap_atomic(page, KM_USER0);
2045 if (likely(i->nr_segs == 1)) {
2046 int left;
2047 char __user *buf = i->iov->iov_base + i->iov_offset;
2048 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2049 copied = bytes - left;
2050 } else {
2051 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2052 i->iov, i->iov_offset, bytes);
2053 }
2054 kunmap_atomic(kaddr, KM_USER0);
2055
2056 return copied;
2057 }
2058 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2059
2060 /*
2061 * This has the same sideeffects and return value as
2062 * iov_iter_copy_from_user_atomic().
2063 * The difference is that it attempts to resolve faults.
2064 * Page must not be locked.
2065 */
2066 size_t iov_iter_copy_from_user(struct page *page,
2067 struct iov_iter *i, unsigned long offset, size_t bytes)
2068 {
2069 char *kaddr;
2070 size_t copied;
2071
2072 kaddr = kmap(page);
2073 if (likely(i->nr_segs == 1)) {
2074 int left;
2075 char __user *buf = i->iov->iov_base + i->iov_offset;
2076 left = __copy_from_user(kaddr + offset, buf, bytes);
2077 copied = bytes - left;
2078 } else {
2079 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2080 i->iov, i->iov_offset, bytes);
2081 }
2082 kunmap(page);
2083 return copied;
2084 }
2085 EXPORT_SYMBOL(iov_iter_copy_from_user);
2086
2087 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2088 {
2089 BUG_ON(i->count < bytes);
2090
2091 if (likely(i->nr_segs == 1)) {
2092 i->iov_offset += bytes;
2093 i->count -= bytes;
2094 } else {
2095 const struct iovec *iov = i->iov;
2096 size_t base = i->iov_offset;
2097
2098 /*
2099 * The !iov->iov_len check ensures we skip over unlikely
2100 * zero-length segments (without overruning the iovec).
2101 */
2102 while (bytes || unlikely(i->count && !iov->iov_len)) {
2103 int copy;
2104
2105 copy = min(bytes, iov->iov_len - base);
2106 BUG_ON(!i->count || i->count < copy);
2107 i->count -= copy;
2108 bytes -= copy;
2109 base += copy;
2110 if (iov->iov_len == base) {
2111 iov++;
2112 base = 0;
2113 }
2114 }
2115 i->iov = iov;
2116 i->iov_offset = base;
2117 }
2118 }
2119 EXPORT_SYMBOL(iov_iter_advance);
2120
2121 /*
2122 * Fault in the first iovec of the given iov_iter, to a maximum length
2123 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2124 * accessed (ie. because it is an invalid address).
2125 *
2126 * writev-intensive code may want this to prefault several iovecs -- that
2127 * would be possible (callers must not rely on the fact that _only_ the
2128 * first iovec will be faulted with the current implementation).
2129 */
2130 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2131 {
2132 char __user *buf = i->iov->iov_base + i->iov_offset;
2133 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2134 return fault_in_pages_readable(buf, bytes);
2135 }
2136 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2137
2138 /*
2139 * Return the count of just the current iov_iter segment.
2140 */
2141 size_t iov_iter_single_seg_count(struct iov_iter *i)
2142 {
2143 const struct iovec *iov = i->iov;
2144 if (i->nr_segs == 1)
2145 return i->count;
2146 else
2147 return min(i->count, iov->iov_len - i->iov_offset);
2148 }
2149 EXPORT_SYMBOL(iov_iter_single_seg_count);
2150
2151 /*
2152 * Performs necessary checks before doing a write
2153 *
2154 * Can adjust writing position or amount of bytes to write.
2155 * Returns appropriate error code that caller should return or
2156 * zero in case that write should be allowed.
2157 */
2158 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2159 {
2160 struct inode *inode = file->f_mapping->host;
2161 unsigned long limit = rlimit(RLIMIT_FSIZE);
2162
2163 if (unlikely(*pos < 0))
2164 return -EINVAL;
2165
2166 if (!isblk) {
2167 /* FIXME: this is for backwards compatibility with 2.4 */
2168 if (file->f_flags & O_APPEND)
2169 *pos = i_size_read(inode);
2170
2171 if (limit != RLIM_INFINITY) {
2172 if (*pos >= limit) {
2173 send_sig(SIGXFSZ, current, 0);
2174 return -EFBIG;
2175 }
2176 if (*count > limit - (typeof(limit))*pos) {
2177 *count = limit - (typeof(limit))*pos;
2178 }
2179 }
2180 }
2181
2182 /*
2183 * LFS rule
2184 */
2185 if (unlikely(*pos + *count > MAX_NON_LFS &&
2186 !(file->f_flags & O_LARGEFILE))) {
2187 if (*pos >= MAX_NON_LFS) {
2188 return -EFBIG;
2189 }
2190 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2191 *count = MAX_NON_LFS - (unsigned long)*pos;
2192 }
2193 }
2194
2195 /*
2196 * Are we about to exceed the fs block limit ?
2197 *
2198 * If we have written data it becomes a short write. If we have
2199 * exceeded without writing data we send a signal and return EFBIG.
2200 * Linus frestrict idea will clean these up nicely..
2201 */
2202 if (likely(!isblk)) {
2203 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2204 if (*count || *pos > inode->i_sb->s_maxbytes) {
2205 return -EFBIG;
2206 }
2207 /* zero-length writes at ->s_maxbytes are OK */
2208 }
2209
2210 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2211 *count = inode->i_sb->s_maxbytes - *pos;
2212 } else {
2213 #ifdef CONFIG_BLOCK
2214 loff_t isize;
2215 if (bdev_read_only(I_BDEV(inode)))
2216 return -EPERM;
2217 isize = i_size_read(inode);
2218 if (*pos >= isize) {
2219 if (*count || *pos > isize)
2220 return -ENOSPC;
2221 }
2222
2223 if (*pos + *count > isize)
2224 *count = isize - *pos;
2225 #else
2226 return -EPERM;
2227 #endif
2228 }
2229 return 0;
2230 }
2231 EXPORT_SYMBOL(generic_write_checks);
2232
2233 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2234 loff_t pos, unsigned len, unsigned flags,
2235 struct page **pagep, void **fsdata)
2236 {
2237 const struct address_space_operations *aops = mapping->a_ops;
2238
2239 return aops->write_begin(file, mapping, pos, len, flags,
2240 pagep, fsdata);
2241 }
2242 EXPORT_SYMBOL(pagecache_write_begin);
2243
2244 int pagecache_write_end(struct file *file, struct address_space *mapping,
2245 loff_t pos, unsigned len, unsigned copied,
2246 struct page *page, void *fsdata)
2247 {
2248 const struct address_space_operations *aops = mapping->a_ops;
2249
2250 mark_page_accessed(page);
2251 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2252 }
2253 EXPORT_SYMBOL(pagecache_write_end);
2254
2255 ssize_t
2256 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2257 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2258 size_t count, size_t ocount)
2259 {
2260 struct file *file = iocb->ki_filp;
2261 struct address_space *mapping = file->f_mapping;
2262 struct inode *inode = mapping->host;
2263 ssize_t written;
2264 size_t write_len;
2265 pgoff_t end;
2266
2267 if (count != ocount)
2268 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2269
2270 write_len = iov_length(iov, *nr_segs);
2271 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2272
2273 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2274 if (written)
2275 goto out;
2276
2277 /*
2278 * After a write we want buffered reads to be sure to go to disk to get
2279 * the new data. We invalidate clean cached page from the region we're
2280 * about to write. We do this *before* the write so that we can return
2281 * without clobbering -EIOCBQUEUED from ->direct_IO().
2282 */
2283 if (mapping->nrpages) {
2284 written = invalidate_inode_pages2_range(mapping,
2285 pos >> PAGE_CACHE_SHIFT, end);
2286 /*
2287 * If a page can not be invalidated, return 0 to fall back
2288 * to buffered write.
2289 */
2290 if (written) {
2291 if (written == -EBUSY)
2292 return 0;
2293 goto out;
2294 }
2295 }
2296
2297 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2298
2299 /*
2300 * Finally, try again to invalidate clean pages which might have been
2301 * cached by non-direct readahead, or faulted in by get_user_pages()
2302 * if the source of the write was an mmap'ed region of the file
2303 * we're writing. Either one is a pretty crazy thing to do,
2304 * so we don't support it 100%. If this invalidation
2305 * fails, tough, the write still worked...
2306 */
2307 if (mapping->nrpages) {
2308 invalidate_inode_pages2_range(mapping,
2309 pos >> PAGE_CACHE_SHIFT, end);
2310 }
2311
2312 if (written > 0) {
2313 pos += written;
2314 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2315 i_size_write(inode, pos);
2316 mark_inode_dirty(inode);
2317 }
2318 *ppos = pos;
2319 }
2320 out:
2321 return written;
2322 }
2323 EXPORT_SYMBOL(generic_file_direct_write);
2324
2325 /*
2326 * Find or create a page at the given pagecache position. Return the locked
2327 * page. This function is specifically for buffered writes.
2328 */
2329 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2330 pgoff_t index, unsigned flags)
2331 {
2332 int status;
2333 struct page *page;
2334 gfp_t gfp_notmask = 0;
2335 if (flags & AOP_FLAG_NOFS)
2336 gfp_notmask = __GFP_FS;
2337 repeat:
2338 page = find_lock_page(mapping, index);
2339 if (page)
2340 return page;
2341
2342 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2343 if (!page)
2344 return NULL;
2345 status = add_to_page_cache_lru(page, mapping, index,
2346 GFP_KERNEL & ~gfp_notmask);
2347 if (unlikely(status)) {
2348 page_cache_release(page);
2349 if (status == -EEXIST)
2350 goto repeat;
2351 return NULL;
2352 }
2353 return page;
2354 }
2355 EXPORT_SYMBOL(grab_cache_page_write_begin);
2356
2357 static ssize_t generic_perform_write(struct file *file,
2358 struct iov_iter *i, loff_t pos)
2359 {
2360 struct address_space *mapping = file->f_mapping;
2361 const struct address_space_operations *a_ops = mapping->a_ops;
2362 long status = 0;
2363 ssize_t written = 0;
2364 unsigned int flags = 0;
2365
2366 /*
2367 * Copies from kernel address space cannot fail (NFSD is a big user).
2368 */
2369 if (segment_eq(get_fs(), KERNEL_DS))
2370 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2371
2372 do {
2373 struct page *page;
2374 unsigned long offset; /* Offset into pagecache page */
2375 unsigned long bytes; /* Bytes to write to page */
2376 size_t copied; /* Bytes copied from user */
2377 void *fsdata;
2378
2379 offset = (pos & (PAGE_CACHE_SIZE - 1));
2380 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2381 iov_iter_count(i));
2382
2383 again:
2384
2385 /*
2386 * Bring in the user page that we will copy from _first_.
2387 * Otherwise there's a nasty deadlock on copying from the
2388 * same page as we're writing to, without it being marked
2389 * up-to-date.
2390 *
2391 * Not only is this an optimisation, but it is also required
2392 * to check that the address is actually valid, when atomic
2393 * usercopies are used, below.
2394 */
2395 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2396 status = -EFAULT;
2397 break;
2398 }
2399
2400 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2401 &page, &fsdata);
2402 if (unlikely(status))
2403 break;
2404
2405 if (mapping_writably_mapped(mapping))
2406 flush_dcache_page(page);
2407
2408 pagefault_disable();
2409 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2410 pagefault_enable();
2411 flush_dcache_page(page);
2412
2413 mark_page_accessed(page);
2414 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2415 page, fsdata);
2416 if (unlikely(status < 0))
2417 break;
2418 copied = status;
2419
2420 cond_resched();
2421
2422 iov_iter_advance(i, copied);
2423 if (unlikely(copied == 0)) {
2424 /*
2425 * If we were unable to copy any data at all, we must
2426 * fall back to a single segment length write.
2427 *
2428 * If we didn't fallback here, we could livelock
2429 * because not all segments in the iov can be copied at
2430 * once without a pagefault.
2431 */
2432 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2433 iov_iter_single_seg_count(i));
2434 goto again;
2435 }
2436 pos += copied;
2437 written += copied;
2438
2439 balance_dirty_pages_ratelimited(mapping);
2440
2441 } while (iov_iter_count(i));
2442
2443 return written ? written : status;
2444 }
2445
2446 ssize_t
2447 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2448 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2449 size_t count, ssize_t written)
2450 {
2451 struct file *file = iocb->ki_filp;
2452 ssize_t status;
2453 struct iov_iter i;
2454
2455 iov_iter_init(&i, iov, nr_segs, count, written);
2456 status = generic_perform_write(file, &i, pos);
2457
2458 if (likely(status >= 0)) {
2459 written += status;
2460 *ppos = pos + status;
2461 }
2462
2463 return written ? written : status;
2464 }
2465 EXPORT_SYMBOL(generic_file_buffered_write);
2466
2467 /**
2468 * __generic_file_aio_write - write data to a file
2469 * @iocb: IO state structure (file, offset, etc.)
2470 * @iov: vector with data to write
2471 * @nr_segs: number of segments in the vector
2472 * @ppos: position where to write
2473 *
2474 * This function does all the work needed for actually writing data to a
2475 * file. It does all basic checks, removes SUID from the file, updates
2476 * modification times and calls proper subroutines depending on whether we
2477 * do direct IO or a standard buffered write.
2478 *
2479 * It expects i_mutex to be grabbed unless we work on a block device or similar
2480 * object which does not need locking at all.
2481 *
2482 * This function does *not* take care of syncing data in case of O_SYNC write.
2483 * A caller has to handle it. This is mainly due to the fact that we want to
2484 * avoid syncing under i_mutex.
2485 */
2486 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2487 unsigned long nr_segs, loff_t *ppos)
2488 {
2489 struct file *file = iocb->ki_filp;
2490 struct address_space * mapping = file->f_mapping;
2491 size_t ocount; /* original count */
2492 size_t count; /* after file limit checks */
2493 struct inode *inode = mapping->host;
2494 loff_t pos;
2495 ssize_t written;
2496 ssize_t err;
2497
2498 ocount = 0;
2499 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2500 if (err)
2501 return err;
2502
2503 count = ocount;
2504 pos = *ppos;
2505
2506 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2507
2508 /* We can write back this queue in page reclaim */
2509 current->backing_dev_info = mapping->backing_dev_info;
2510 written = 0;
2511
2512 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2513 if (err)
2514 goto out;
2515
2516 if (count == 0)
2517 goto out;
2518
2519 err = file_remove_suid(file);
2520 if (err)
2521 goto out;
2522
2523 file_update_time(file);
2524
2525 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2526 if (unlikely(file->f_flags & O_DIRECT)) {
2527 loff_t endbyte;
2528 ssize_t written_buffered;
2529
2530 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2531 ppos, count, ocount);
2532 if (written < 0 || written == count)
2533 goto out;
2534 /*
2535 * direct-io write to a hole: fall through to buffered I/O
2536 * for completing the rest of the request.
2537 */
2538 pos += written;
2539 count -= written;
2540 written_buffered = generic_file_buffered_write(iocb, iov,
2541 nr_segs, pos, ppos, count,
2542 written);
2543 /*
2544 * If generic_file_buffered_write() retuned a synchronous error
2545 * then we want to return the number of bytes which were
2546 * direct-written, or the error code if that was zero. Note
2547 * that this differs from normal direct-io semantics, which
2548 * will return -EFOO even if some bytes were written.
2549 */
2550 if (written_buffered < 0) {
2551 err = written_buffered;
2552 goto out;
2553 }
2554
2555 /*
2556 * We need to ensure that the page cache pages are written to
2557 * disk and invalidated to preserve the expected O_DIRECT
2558 * semantics.
2559 */
2560 endbyte = pos + written_buffered - written - 1;
2561 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2562 if (err == 0) {
2563 written = written_buffered;
2564 invalidate_mapping_pages(mapping,
2565 pos >> PAGE_CACHE_SHIFT,
2566 endbyte >> PAGE_CACHE_SHIFT);
2567 } else {
2568 /*
2569 * We don't know how much we wrote, so just return
2570 * the number of bytes which were direct-written
2571 */
2572 }
2573 } else {
2574 written = generic_file_buffered_write(iocb, iov, nr_segs,
2575 pos, ppos, count, written);
2576 }
2577 out:
2578 current->backing_dev_info = NULL;
2579 return written ? written : err;
2580 }
2581 EXPORT_SYMBOL(__generic_file_aio_write);
2582
2583 /**
2584 * generic_file_aio_write - write data to a file
2585 * @iocb: IO state structure
2586 * @iov: vector with data to write
2587 * @nr_segs: number of segments in the vector
2588 * @pos: position in file where to write
2589 *
2590 * This is a wrapper around __generic_file_aio_write() to be used by most
2591 * filesystems. It takes care of syncing the file in case of O_SYNC file
2592 * and acquires i_mutex as needed.
2593 */
2594 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2595 unsigned long nr_segs, loff_t pos)
2596 {
2597 struct file *file = iocb->ki_filp;
2598 struct inode *inode = file->f_mapping->host;
2599 ssize_t ret;
2600
2601 BUG_ON(iocb->ki_pos != pos);
2602
2603 mutex_lock(&inode->i_mutex);
2604 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2605 mutex_unlock(&inode->i_mutex);
2606
2607 if (ret > 0 || ret == -EIOCBQUEUED) {
2608 ssize_t err;
2609
2610 err = generic_write_sync(file, pos, ret);
2611 if (err < 0 && ret > 0)
2612 ret = err;
2613 }
2614 return ret;
2615 }
2616 EXPORT_SYMBOL(generic_file_aio_write);
2617
2618 /**
2619 * try_to_release_page() - release old fs-specific metadata on a page
2620 *
2621 * @page: the page which the kernel is trying to free
2622 * @gfp_mask: memory allocation flags (and I/O mode)
2623 *
2624 * The address_space is to try to release any data against the page
2625 * (presumably at page->private). If the release was successful, return `1'.
2626 * Otherwise return zero.
2627 *
2628 * This may also be called if PG_fscache is set on a page, indicating that the
2629 * page is known to the local caching routines.
2630 *
2631 * The @gfp_mask argument specifies whether I/O may be performed to release
2632 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2633 *
2634 */
2635 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2636 {
2637 struct address_space * const mapping = page->mapping;
2638
2639 BUG_ON(!PageLocked(page));
2640 if (PageWriteback(page))
2641 return 0;
2642
2643 if (mapping && mapping->a_ops->releasepage)
2644 return mapping->a_ops->releasepage(page, gfp_mask);
2645 return try_to_free_buffers(page);
2646 }
2647
2648 EXPORT_SYMBOL(try_to_release_page);