]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/filemap.c
Minor page waitqueue cleanups
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63 /*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116 {
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140 /* Wakeup waiters for exceptional entry lock */
141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
142 true);
143 }
144 }
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
147 mapping->nrpages++;
148 return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153 {
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163 for (i = 0; i < nr; i++) {
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
170 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
175 }
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
188 }
189
190 /*
191 * Delete a page from the page cache and free it. Caller has to make
192 * sure the page is locked and that nobody else uses it - or that usage
193 * is safe. The caller must hold the mapping's tree_lock.
194 */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197 struct address_space *mapping = page->mapping;
198 int nr = hpage_nr_pages(page);
199
200 trace_mm_filemap_delete_from_page_cache(page);
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
209 cleancache_invalidate_page(mapping, page);
210
211 VM_BUG_ON_PAGE(PageTail(page), page);
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
232 page_ref_sub(page, mapcount);
233 }
234 }
235
236 page_cache_tree_delete(mapping, page, shadow);
237
238 page->mapping = NULL;
239 /* Leave page->index set: truncation lookup relies upon it */
240
241 /* hugetlb pages do not participate in page cache accounting. */
242 if (PageHuge(page))
243 return;
244
245 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
246 if (PageSwapBacked(page)) {
247 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
248 if (PageTransHuge(page))
249 __dec_node_page_state(page, NR_SHMEM_THPS);
250 } else {
251 VM_BUG_ON_PAGE(PageTransHuge(page), page);
252 }
253
254 /*
255 * At this point page must be either written or cleaned by truncate.
256 * Dirty page here signals a bug and loss of unwritten data.
257 *
258 * This fixes dirty accounting after removing the page entirely but
259 * leaves PageDirty set: it has no effect for truncated page and
260 * anyway will be cleared before returning page into buddy allocator.
261 */
262 if (WARN_ON_ONCE(PageDirty(page)))
263 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
264 }
265
266 /**
267 * delete_from_page_cache - delete page from page cache
268 * @page: the page which the kernel is trying to remove from page cache
269 *
270 * This must be called only on pages that have been verified to be in the page
271 * cache and locked. It will never put the page into the free list, the caller
272 * has a reference on the page.
273 */
274 void delete_from_page_cache(struct page *page)
275 {
276 struct address_space *mapping = page_mapping(page);
277 unsigned long flags;
278 void (*freepage)(struct page *);
279
280 BUG_ON(!PageLocked(page));
281
282 freepage = mapping->a_ops->freepage;
283
284 spin_lock_irqsave(&mapping->tree_lock, flags);
285 __delete_from_page_cache(page, NULL);
286 spin_unlock_irqrestore(&mapping->tree_lock, flags);
287
288 if (freepage)
289 freepage(page);
290
291 if (PageTransHuge(page) && !PageHuge(page)) {
292 page_ref_sub(page, HPAGE_PMD_NR);
293 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294 } else {
295 put_page(page);
296 }
297 }
298 EXPORT_SYMBOL(delete_from_page_cache);
299
300 int filemap_check_errors(struct address_space *mapping)
301 {
302 int ret = 0;
303 /* Check for outstanding write errors */
304 if (test_bit(AS_ENOSPC, &mapping->flags) &&
305 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
306 ret = -ENOSPC;
307 if (test_bit(AS_EIO, &mapping->flags) &&
308 test_and_clear_bit(AS_EIO, &mapping->flags))
309 ret = -EIO;
310 return ret;
311 }
312 EXPORT_SYMBOL(filemap_check_errors);
313
314 static int filemap_check_and_keep_errors(struct address_space *mapping)
315 {
316 /* Check for outstanding write errors */
317 if (test_bit(AS_EIO, &mapping->flags))
318 return -EIO;
319 if (test_bit(AS_ENOSPC, &mapping->flags))
320 return -ENOSPC;
321 return 0;
322 }
323
324 /**
325 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
326 * @mapping: address space structure to write
327 * @start: offset in bytes where the range starts
328 * @end: offset in bytes where the range ends (inclusive)
329 * @sync_mode: enable synchronous operation
330 *
331 * Start writeback against all of a mapping's dirty pages that lie
332 * within the byte offsets <start, end> inclusive.
333 *
334 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
335 * opposed to a regular memory cleansing writeback. The difference between
336 * these two operations is that if a dirty page/buffer is encountered, it must
337 * be waited upon, and not just skipped over.
338 */
339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340 loff_t end, int sync_mode)
341 {
342 int ret;
343 struct writeback_control wbc = {
344 .sync_mode = sync_mode,
345 .nr_to_write = LONG_MAX,
346 .range_start = start,
347 .range_end = end,
348 };
349
350 if (!mapping_cap_writeback_dirty(mapping))
351 return 0;
352
353 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
354 ret = do_writepages(mapping, &wbc);
355 wbc_detach_inode(&wbc);
356 return ret;
357 }
358
359 static inline int __filemap_fdatawrite(struct address_space *mapping,
360 int sync_mode)
361 {
362 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
363 }
364
365 int filemap_fdatawrite(struct address_space *mapping)
366 {
367 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite);
370
371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
372 loff_t end)
373 {
374 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375 }
376 EXPORT_SYMBOL(filemap_fdatawrite_range);
377
378 /**
379 * filemap_flush - mostly a non-blocking flush
380 * @mapping: target address_space
381 *
382 * This is a mostly non-blocking flush. Not suitable for data-integrity
383 * purposes - I/O may not be started against all dirty pages.
384 */
385 int filemap_flush(struct address_space *mapping)
386 {
387 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388 }
389 EXPORT_SYMBOL(filemap_flush);
390
391 /**
392 * filemap_range_has_page - check if a page exists in range.
393 * @mapping: address space within which to check
394 * @start_byte: offset in bytes where the range starts
395 * @end_byte: offset in bytes where the range ends (inclusive)
396 *
397 * Find at least one page in the range supplied, usually used to check if
398 * direct writing in this range will trigger a writeback.
399 */
400 bool filemap_range_has_page(struct address_space *mapping,
401 loff_t start_byte, loff_t end_byte)
402 {
403 pgoff_t index = start_byte >> PAGE_SHIFT;
404 pgoff_t end = end_byte >> PAGE_SHIFT;
405 struct pagevec pvec;
406 bool ret;
407
408 if (end_byte < start_byte)
409 return false;
410
411 if (mapping->nrpages == 0)
412 return false;
413
414 pagevec_init(&pvec, 0);
415 if (!pagevec_lookup(&pvec, mapping, index, 1))
416 return false;
417 ret = (pvec.pages[0]->index <= end);
418 pagevec_release(&pvec);
419 return ret;
420 }
421 EXPORT_SYMBOL(filemap_range_has_page);
422
423 static void __filemap_fdatawait_range(struct address_space *mapping,
424 loff_t start_byte, loff_t end_byte)
425 {
426 pgoff_t index = start_byte >> PAGE_SHIFT;
427 pgoff_t end = end_byte >> PAGE_SHIFT;
428 struct pagevec pvec;
429 int nr_pages;
430
431 if (end_byte < start_byte)
432 return;
433
434 pagevec_init(&pvec, 0);
435 while ((index <= end) &&
436 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 PAGECACHE_TAG_WRITEBACK,
438 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439 unsigned i;
440
441 for (i = 0; i < nr_pages; i++) {
442 struct page *page = pvec.pages[i];
443
444 /* until radix tree lookup accepts end_index */
445 if (page->index > end)
446 continue;
447
448 wait_on_page_writeback(page);
449 ClearPageError(page);
450 }
451 pagevec_release(&pvec);
452 cond_resched();
453 }
454 }
455
456 /**
457 * filemap_fdatawait_range - wait for writeback to complete
458 * @mapping: address space structure to wait for
459 * @start_byte: offset in bytes where the range starts
460 * @end_byte: offset in bytes where the range ends (inclusive)
461 *
462 * Walk the list of under-writeback pages of the given address space
463 * in the given range and wait for all of them. Check error status of
464 * the address space and return it.
465 *
466 * Since the error status of the address space is cleared by this function,
467 * callers are responsible for checking the return value and handling and/or
468 * reporting the error.
469 */
470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471 loff_t end_byte)
472 {
473 __filemap_fdatawait_range(mapping, start_byte, end_byte);
474 return filemap_check_errors(mapping);
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477
478 /**
479 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480 * @mapping: address space structure to wait for
481 *
482 * Walk the list of under-writeback pages of the given address space
483 * and wait for all of them. Unlike filemap_fdatawait(), this function
484 * does not clear error status of the address space.
485 *
486 * Use this function if callers don't handle errors themselves. Expected
487 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488 * fsfreeze(8)
489 */
490 int filemap_fdatawait_keep_errors(struct address_space *mapping)
491 {
492 loff_t i_size = i_size_read(mapping->host);
493
494 if (i_size == 0)
495 return 0;
496
497 __filemap_fdatawait_range(mapping, 0, i_size - 1);
498 return filemap_check_and_keep_errors(mapping);
499 }
500 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
501
502 /**
503 * filemap_fdatawait - wait for all under-writeback pages to complete
504 * @mapping: address space structure to wait for
505 *
506 * Walk the list of under-writeback pages of the given address space
507 * and wait for all of them. Check error status of the address space
508 * and return it.
509 *
510 * Since the error status of the address space is cleared by this function,
511 * callers are responsible for checking the return value and handling and/or
512 * reporting the error.
513 */
514 int filemap_fdatawait(struct address_space *mapping)
515 {
516 loff_t i_size = i_size_read(mapping->host);
517
518 if (i_size == 0)
519 return 0;
520
521 return filemap_fdatawait_range(mapping, 0, i_size - 1);
522 }
523 EXPORT_SYMBOL(filemap_fdatawait);
524
525 int filemap_write_and_wait(struct address_space *mapping)
526 {
527 int err = 0;
528
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
531 err = filemap_fdatawrite(mapping);
532 /*
533 * Even if the above returned error, the pages may be
534 * written partially (e.g. -ENOSPC), so we wait for it.
535 * But the -EIO is special case, it may indicate the worst
536 * thing (e.g. bug) happened, so we avoid waiting for it.
537 */
538 if (err != -EIO) {
539 int err2 = filemap_fdatawait(mapping);
540 if (!err)
541 err = err2;
542 } else {
543 /* Clear any previously stored errors */
544 filemap_check_errors(mapping);
545 }
546 } else {
547 err = filemap_check_errors(mapping);
548 }
549 return err;
550 }
551 EXPORT_SYMBOL(filemap_write_and_wait);
552
553 /**
554 * filemap_write_and_wait_range - write out & wait on a file range
555 * @mapping: the address_space for the pages
556 * @lstart: offset in bytes where the range starts
557 * @lend: offset in bytes where the range ends (inclusive)
558 *
559 * Write out and wait upon file offsets lstart->lend, inclusive.
560 *
561 * Note that @lend is inclusive (describes the last byte to be written) so
562 * that this function can be used to write to the very end-of-file (end = -1).
563 */
564 int filemap_write_and_wait_range(struct address_space *mapping,
565 loff_t lstart, loff_t lend)
566 {
567 int err = 0;
568
569 if ((!dax_mapping(mapping) && mapping->nrpages) ||
570 (dax_mapping(mapping) && mapping->nrexceptional)) {
571 err = __filemap_fdatawrite_range(mapping, lstart, lend,
572 WB_SYNC_ALL);
573 /* See comment of filemap_write_and_wait() */
574 if (err != -EIO) {
575 int err2 = filemap_fdatawait_range(mapping,
576 lstart, lend);
577 if (!err)
578 err = err2;
579 } else {
580 /* Clear any previously stored errors */
581 filemap_check_errors(mapping);
582 }
583 } else {
584 err = filemap_check_errors(mapping);
585 }
586 return err;
587 }
588 EXPORT_SYMBOL(filemap_write_and_wait_range);
589
590 void __filemap_set_wb_err(struct address_space *mapping, int err)
591 {
592 errseq_t eseq = __errseq_set(&mapping->wb_err, err);
593
594 trace_filemap_set_wb_err(mapping, eseq);
595 }
596 EXPORT_SYMBOL(__filemap_set_wb_err);
597
598 /**
599 * file_check_and_advance_wb_err - report wb error (if any) that was previously
600 * and advance wb_err to current one
601 * @file: struct file on which the error is being reported
602 *
603 * When userland calls fsync (or something like nfsd does the equivalent), we
604 * want to report any writeback errors that occurred since the last fsync (or
605 * since the file was opened if there haven't been any).
606 *
607 * Grab the wb_err from the mapping. If it matches what we have in the file,
608 * then just quickly return 0. The file is all caught up.
609 *
610 * If it doesn't match, then take the mapping value, set the "seen" flag in
611 * it and try to swap it into place. If it works, or another task beat us
612 * to it with the new value, then update the f_wb_err and return the error
613 * portion. The error at this point must be reported via proper channels
614 * (a'la fsync, or NFS COMMIT operation, etc.).
615 *
616 * While we handle mapping->wb_err with atomic operations, the f_wb_err
617 * value is protected by the f_lock since we must ensure that it reflects
618 * the latest value swapped in for this file descriptor.
619 */
620 int file_check_and_advance_wb_err(struct file *file)
621 {
622 int err = 0;
623 errseq_t old = READ_ONCE(file->f_wb_err);
624 struct address_space *mapping = file->f_mapping;
625
626 /* Locklessly handle the common case where nothing has changed */
627 if (errseq_check(&mapping->wb_err, old)) {
628 /* Something changed, must use slow path */
629 spin_lock(&file->f_lock);
630 old = file->f_wb_err;
631 err = errseq_check_and_advance(&mapping->wb_err,
632 &file->f_wb_err);
633 trace_file_check_and_advance_wb_err(file, old);
634 spin_unlock(&file->f_lock);
635 }
636 return err;
637 }
638 EXPORT_SYMBOL(file_check_and_advance_wb_err);
639
640 /**
641 * file_write_and_wait_range - write out & wait on a file range
642 * @file: file pointing to address_space with pages
643 * @lstart: offset in bytes where the range starts
644 * @lend: offset in bytes where the range ends (inclusive)
645 *
646 * Write out and wait upon file offsets lstart->lend, inclusive.
647 *
648 * Note that @lend is inclusive (describes the last byte to be written) so
649 * that this function can be used to write to the very end-of-file (end = -1).
650 *
651 * After writing out and waiting on the data, we check and advance the
652 * f_wb_err cursor to the latest value, and return any errors detected there.
653 */
654 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
655 {
656 int err = 0, err2;
657 struct address_space *mapping = file->f_mapping;
658
659 if ((!dax_mapping(mapping) && mapping->nrpages) ||
660 (dax_mapping(mapping) && mapping->nrexceptional)) {
661 err = __filemap_fdatawrite_range(mapping, lstart, lend,
662 WB_SYNC_ALL);
663 /* See comment of filemap_write_and_wait() */
664 if (err != -EIO)
665 __filemap_fdatawait_range(mapping, lstart, lend);
666 }
667 err2 = file_check_and_advance_wb_err(file);
668 if (!err)
669 err = err2;
670 return err;
671 }
672 EXPORT_SYMBOL(file_write_and_wait_range);
673
674 /**
675 * replace_page_cache_page - replace a pagecache page with a new one
676 * @old: page to be replaced
677 * @new: page to replace with
678 * @gfp_mask: allocation mode
679 *
680 * This function replaces a page in the pagecache with a new one. On
681 * success it acquires the pagecache reference for the new page and
682 * drops it for the old page. Both the old and new pages must be
683 * locked. This function does not add the new page to the LRU, the
684 * caller must do that.
685 *
686 * The remove + add is atomic. The only way this function can fail is
687 * memory allocation failure.
688 */
689 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
690 {
691 int error;
692
693 VM_BUG_ON_PAGE(!PageLocked(old), old);
694 VM_BUG_ON_PAGE(!PageLocked(new), new);
695 VM_BUG_ON_PAGE(new->mapping, new);
696
697 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
698 if (!error) {
699 struct address_space *mapping = old->mapping;
700 void (*freepage)(struct page *);
701 unsigned long flags;
702
703 pgoff_t offset = old->index;
704 freepage = mapping->a_ops->freepage;
705
706 get_page(new);
707 new->mapping = mapping;
708 new->index = offset;
709
710 spin_lock_irqsave(&mapping->tree_lock, flags);
711 __delete_from_page_cache(old, NULL);
712 error = page_cache_tree_insert(mapping, new, NULL);
713 BUG_ON(error);
714
715 /*
716 * hugetlb pages do not participate in page cache accounting.
717 */
718 if (!PageHuge(new))
719 __inc_node_page_state(new, NR_FILE_PAGES);
720 if (PageSwapBacked(new))
721 __inc_node_page_state(new, NR_SHMEM);
722 spin_unlock_irqrestore(&mapping->tree_lock, flags);
723 mem_cgroup_migrate(old, new);
724 radix_tree_preload_end();
725 if (freepage)
726 freepage(old);
727 put_page(old);
728 }
729
730 return error;
731 }
732 EXPORT_SYMBOL_GPL(replace_page_cache_page);
733
734 static int __add_to_page_cache_locked(struct page *page,
735 struct address_space *mapping,
736 pgoff_t offset, gfp_t gfp_mask,
737 void **shadowp)
738 {
739 int huge = PageHuge(page);
740 struct mem_cgroup *memcg;
741 int error;
742
743 VM_BUG_ON_PAGE(!PageLocked(page), page);
744 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
745
746 if (!huge) {
747 error = mem_cgroup_try_charge(page, current->mm,
748 gfp_mask, &memcg, false);
749 if (error)
750 return error;
751 }
752
753 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
754 if (error) {
755 if (!huge)
756 mem_cgroup_cancel_charge(page, memcg, false);
757 return error;
758 }
759
760 get_page(page);
761 page->mapping = mapping;
762 page->index = offset;
763
764 spin_lock_irq(&mapping->tree_lock);
765 error = page_cache_tree_insert(mapping, page, shadowp);
766 radix_tree_preload_end();
767 if (unlikely(error))
768 goto err_insert;
769
770 /* hugetlb pages do not participate in page cache accounting. */
771 if (!huge)
772 __inc_node_page_state(page, NR_FILE_PAGES);
773 spin_unlock_irq(&mapping->tree_lock);
774 if (!huge)
775 mem_cgroup_commit_charge(page, memcg, false, false);
776 trace_mm_filemap_add_to_page_cache(page);
777 return 0;
778 err_insert:
779 page->mapping = NULL;
780 /* Leave page->index set: truncation relies upon it */
781 spin_unlock_irq(&mapping->tree_lock);
782 if (!huge)
783 mem_cgroup_cancel_charge(page, memcg, false);
784 put_page(page);
785 return error;
786 }
787
788 /**
789 * add_to_page_cache_locked - add a locked page to the pagecache
790 * @page: page to add
791 * @mapping: the page's address_space
792 * @offset: page index
793 * @gfp_mask: page allocation mode
794 *
795 * This function is used to add a page to the pagecache. It must be locked.
796 * This function does not add the page to the LRU. The caller must do that.
797 */
798 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
799 pgoff_t offset, gfp_t gfp_mask)
800 {
801 return __add_to_page_cache_locked(page, mapping, offset,
802 gfp_mask, NULL);
803 }
804 EXPORT_SYMBOL(add_to_page_cache_locked);
805
806 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
807 pgoff_t offset, gfp_t gfp_mask)
808 {
809 void *shadow = NULL;
810 int ret;
811
812 __SetPageLocked(page);
813 ret = __add_to_page_cache_locked(page, mapping, offset,
814 gfp_mask, &shadow);
815 if (unlikely(ret))
816 __ClearPageLocked(page);
817 else {
818 /*
819 * The page might have been evicted from cache only
820 * recently, in which case it should be activated like
821 * any other repeatedly accessed page.
822 * The exception is pages getting rewritten; evicting other
823 * data from the working set, only to cache data that will
824 * get overwritten with something else, is a waste of memory.
825 */
826 if (!(gfp_mask & __GFP_WRITE) &&
827 shadow && workingset_refault(shadow)) {
828 SetPageActive(page);
829 workingset_activation(page);
830 } else
831 ClearPageActive(page);
832 lru_cache_add(page);
833 }
834 return ret;
835 }
836 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
837
838 #ifdef CONFIG_NUMA
839 struct page *__page_cache_alloc(gfp_t gfp)
840 {
841 int n;
842 struct page *page;
843
844 if (cpuset_do_page_mem_spread()) {
845 unsigned int cpuset_mems_cookie;
846 do {
847 cpuset_mems_cookie = read_mems_allowed_begin();
848 n = cpuset_mem_spread_node();
849 page = __alloc_pages_node(n, gfp, 0);
850 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
851
852 return page;
853 }
854 return alloc_pages(gfp, 0);
855 }
856 EXPORT_SYMBOL(__page_cache_alloc);
857 #endif
858
859 /*
860 * In order to wait for pages to become available there must be
861 * waitqueues associated with pages. By using a hash table of
862 * waitqueues where the bucket discipline is to maintain all
863 * waiters on the same queue and wake all when any of the pages
864 * become available, and for the woken contexts to check to be
865 * sure the appropriate page became available, this saves space
866 * at a cost of "thundering herd" phenomena during rare hash
867 * collisions.
868 */
869 #define PAGE_WAIT_TABLE_BITS 8
870 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
871 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
872
873 static wait_queue_head_t *page_waitqueue(struct page *page)
874 {
875 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
876 }
877
878 void __init pagecache_init(void)
879 {
880 int i;
881
882 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
883 init_waitqueue_head(&page_wait_table[i]);
884
885 page_writeback_init();
886 }
887
888 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
889 struct wait_page_key {
890 struct page *page;
891 int bit_nr;
892 int page_match;
893 };
894
895 struct wait_page_queue {
896 struct page *page;
897 int bit_nr;
898 wait_queue_entry_t wait;
899 };
900
901 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
902 {
903 struct wait_page_key *key = arg;
904 struct wait_page_queue *wait_page
905 = container_of(wait, struct wait_page_queue, wait);
906
907 if (wait_page->page != key->page)
908 return 0;
909 key->page_match = 1;
910
911 if (wait_page->bit_nr != key->bit_nr)
912 return 0;
913
914 /* Stop walking if it's locked */
915 if (test_bit(key->bit_nr, &key->page->flags))
916 return -1;
917
918 return autoremove_wake_function(wait, mode, sync, key);
919 }
920
921 static void wake_up_page_bit(struct page *page, int bit_nr)
922 {
923 wait_queue_head_t *q = page_waitqueue(page);
924 struct wait_page_key key;
925 unsigned long flags;
926
927 key.page = page;
928 key.bit_nr = bit_nr;
929 key.page_match = 0;
930
931 spin_lock_irqsave(&q->lock, flags);
932 __wake_up_locked_key(q, TASK_NORMAL, &key);
933 /*
934 * It is possible for other pages to have collided on the waitqueue
935 * hash, so in that case check for a page match. That prevents a long-
936 * term waiter
937 *
938 * It is still possible to miss a case here, when we woke page waiters
939 * and removed them from the waitqueue, but there are still other
940 * page waiters.
941 */
942 if (!waitqueue_active(q) || !key.page_match) {
943 ClearPageWaiters(page);
944 /*
945 * It's possible to miss clearing Waiters here, when we woke
946 * our page waiters, but the hashed waitqueue has waiters for
947 * other pages on it.
948 *
949 * That's okay, it's a rare case. The next waker will clear it.
950 */
951 }
952 spin_unlock_irqrestore(&q->lock, flags);
953 }
954
955 static void wake_up_page(struct page *page, int bit)
956 {
957 if (!PageWaiters(page))
958 return;
959 wake_up_page_bit(page, bit);
960 }
961
962 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
963 struct page *page, int bit_nr, int state, bool lock)
964 {
965 struct wait_page_queue wait_page;
966 wait_queue_entry_t *wait = &wait_page.wait;
967 int ret = 0;
968
969 init_wait(wait);
970 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
971 wait->func = wake_page_function;
972 wait_page.page = page;
973 wait_page.bit_nr = bit_nr;
974
975 for (;;) {
976 spin_lock_irq(&q->lock);
977
978 if (likely(list_empty(&wait->entry))) {
979 __add_wait_queue_entry_tail(q, wait);
980 SetPageWaiters(page);
981 }
982
983 set_current_state(state);
984
985 spin_unlock_irq(&q->lock);
986
987 if (likely(test_bit(bit_nr, &page->flags))) {
988 io_schedule();
989 if (unlikely(signal_pending_state(state, current))) {
990 ret = -EINTR;
991 break;
992 }
993 }
994
995 if (lock) {
996 if (!test_and_set_bit_lock(bit_nr, &page->flags))
997 break;
998 } else {
999 if (!test_bit(bit_nr, &page->flags))
1000 break;
1001 }
1002 }
1003
1004 finish_wait(q, wait);
1005
1006 /*
1007 * A signal could leave PageWaiters set. Clearing it here if
1008 * !waitqueue_active would be possible (by open-coding finish_wait),
1009 * but still fail to catch it in the case of wait hash collision. We
1010 * already can fail to clear wait hash collision cases, so don't
1011 * bother with signals either.
1012 */
1013
1014 return ret;
1015 }
1016
1017 void wait_on_page_bit(struct page *page, int bit_nr)
1018 {
1019 wait_queue_head_t *q = page_waitqueue(page);
1020 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1021 }
1022 EXPORT_SYMBOL(wait_on_page_bit);
1023
1024 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1025 {
1026 wait_queue_head_t *q = page_waitqueue(page);
1027 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1028 }
1029
1030 /**
1031 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1032 * @page: Page defining the wait queue of interest
1033 * @waiter: Waiter to add to the queue
1034 *
1035 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1036 */
1037 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1038 {
1039 wait_queue_head_t *q = page_waitqueue(page);
1040 unsigned long flags;
1041
1042 spin_lock_irqsave(&q->lock, flags);
1043 __add_wait_queue(q, waiter);
1044 SetPageWaiters(page);
1045 spin_unlock_irqrestore(&q->lock, flags);
1046 }
1047 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1048
1049 #ifndef clear_bit_unlock_is_negative_byte
1050
1051 /*
1052 * PG_waiters is the high bit in the same byte as PG_lock.
1053 *
1054 * On x86 (and on many other architectures), we can clear PG_lock and
1055 * test the sign bit at the same time. But if the architecture does
1056 * not support that special operation, we just do this all by hand
1057 * instead.
1058 *
1059 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1060 * being cleared, but a memory barrier should be unneccssary since it is
1061 * in the same byte as PG_locked.
1062 */
1063 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1064 {
1065 clear_bit_unlock(nr, mem);
1066 /* smp_mb__after_atomic(); */
1067 return test_bit(PG_waiters, mem);
1068 }
1069
1070 #endif
1071
1072 /**
1073 * unlock_page - unlock a locked page
1074 * @page: the page
1075 *
1076 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1077 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1078 * mechanism between PageLocked pages and PageWriteback pages is shared.
1079 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1080 *
1081 * Note that this depends on PG_waiters being the sign bit in the byte
1082 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1083 * clear the PG_locked bit and test PG_waiters at the same time fairly
1084 * portably (architectures that do LL/SC can test any bit, while x86 can
1085 * test the sign bit).
1086 */
1087 void unlock_page(struct page *page)
1088 {
1089 BUILD_BUG_ON(PG_waiters != 7);
1090 page = compound_head(page);
1091 VM_BUG_ON_PAGE(!PageLocked(page), page);
1092 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1093 wake_up_page_bit(page, PG_locked);
1094 }
1095 EXPORT_SYMBOL(unlock_page);
1096
1097 /**
1098 * end_page_writeback - end writeback against a page
1099 * @page: the page
1100 */
1101 void end_page_writeback(struct page *page)
1102 {
1103 /*
1104 * TestClearPageReclaim could be used here but it is an atomic
1105 * operation and overkill in this particular case. Failing to
1106 * shuffle a page marked for immediate reclaim is too mild to
1107 * justify taking an atomic operation penalty at the end of
1108 * ever page writeback.
1109 */
1110 if (PageReclaim(page)) {
1111 ClearPageReclaim(page);
1112 rotate_reclaimable_page(page);
1113 }
1114
1115 if (!test_clear_page_writeback(page))
1116 BUG();
1117
1118 smp_mb__after_atomic();
1119 wake_up_page(page, PG_writeback);
1120 }
1121 EXPORT_SYMBOL(end_page_writeback);
1122
1123 /*
1124 * After completing I/O on a page, call this routine to update the page
1125 * flags appropriately
1126 */
1127 void page_endio(struct page *page, bool is_write, int err)
1128 {
1129 if (!is_write) {
1130 if (!err) {
1131 SetPageUptodate(page);
1132 } else {
1133 ClearPageUptodate(page);
1134 SetPageError(page);
1135 }
1136 unlock_page(page);
1137 } else {
1138 if (err) {
1139 struct address_space *mapping;
1140
1141 SetPageError(page);
1142 mapping = page_mapping(page);
1143 if (mapping)
1144 mapping_set_error(mapping, err);
1145 }
1146 end_page_writeback(page);
1147 }
1148 }
1149 EXPORT_SYMBOL_GPL(page_endio);
1150
1151 /**
1152 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1153 * @__page: the page to lock
1154 */
1155 void __lock_page(struct page *__page)
1156 {
1157 struct page *page = compound_head(__page);
1158 wait_queue_head_t *q = page_waitqueue(page);
1159 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1160 }
1161 EXPORT_SYMBOL(__lock_page);
1162
1163 int __lock_page_killable(struct page *__page)
1164 {
1165 struct page *page = compound_head(__page);
1166 wait_queue_head_t *q = page_waitqueue(page);
1167 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1168 }
1169 EXPORT_SYMBOL_GPL(__lock_page_killable);
1170
1171 /*
1172 * Return values:
1173 * 1 - page is locked; mmap_sem is still held.
1174 * 0 - page is not locked.
1175 * mmap_sem has been released (up_read()), unless flags had both
1176 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1177 * which case mmap_sem is still held.
1178 *
1179 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1180 * with the page locked and the mmap_sem unperturbed.
1181 */
1182 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1183 unsigned int flags)
1184 {
1185 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1186 /*
1187 * CAUTION! In this case, mmap_sem is not released
1188 * even though return 0.
1189 */
1190 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1191 return 0;
1192
1193 up_read(&mm->mmap_sem);
1194 if (flags & FAULT_FLAG_KILLABLE)
1195 wait_on_page_locked_killable(page);
1196 else
1197 wait_on_page_locked(page);
1198 return 0;
1199 } else {
1200 if (flags & FAULT_FLAG_KILLABLE) {
1201 int ret;
1202
1203 ret = __lock_page_killable(page);
1204 if (ret) {
1205 up_read(&mm->mmap_sem);
1206 return 0;
1207 }
1208 } else
1209 __lock_page(page);
1210 return 1;
1211 }
1212 }
1213
1214 /**
1215 * page_cache_next_hole - find the next hole (not-present entry)
1216 * @mapping: mapping
1217 * @index: index
1218 * @max_scan: maximum range to search
1219 *
1220 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1221 * lowest indexed hole.
1222 *
1223 * Returns: the index of the hole if found, otherwise returns an index
1224 * outside of the set specified (in which case 'return - index >=
1225 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1226 * be returned.
1227 *
1228 * page_cache_next_hole may be called under rcu_read_lock. However,
1229 * like radix_tree_gang_lookup, this will not atomically search a
1230 * snapshot of the tree at a single point in time. For example, if a
1231 * hole is created at index 5, then subsequently a hole is created at
1232 * index 10, page_cache_next_hole covering both indexes may return 10
1233 * if called under rcu_read_lock.
1234 */
1235 pgoff_t page_cache_next_hole(struct address_space *mapping,
1236 pgoff_t index, unsigned long max_scan)
1237 {
1238 unsigned long i;
1239
1240 for (i = 0; i < max_scan; i++) {
1241 struct page *page;
1242
1243 page = radix_tree_lookup(&mapping->page_tree, index);
1244 if (!page || radix_tree_exceptional_entry(page))
1245 break;
1246 index++;
1247 if (index == 0)
1248 break;
1249 }
1250
1251 return index;
1252 }
1253 EXPORT_SYMBOL(page_cache_next_hole);
1254
1255 /**
1256 * page_cache_prev_hole - find the prev hole (not-present entry)
1257 * @mapping: mapping
1258 * @index: index
1259 * @max_scan: maximum range to search
1260 *
1261 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1262 * the first hole.
1263 *
1264 * Returns: the index of the hole if found, otherwise returns an index
1265 * outside of the set specified (in which case 'index - return >=
1266 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1267 * will be returned.
1268 *
1269 * page_cache_prev_hole may be called under rcu_read_lock. However,
1270 * like radix_tree_gang_lookup, this will not atomically search a
1271 * snapshot of the tree at a single point in time. For example, if a
1272 * hole is created at index 10, then subsequently a hole is created at
1273 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1274 * called under rcu_read_lock.
1275 */
1276 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1277 pgoff_t index, unsigned long max_scan)
1278 {
1279 unsigned long i;
1280
1281 for (i = 0; i < max_scan; i++) {
1282 struct page *page;
1283
1284 page = radix_tree_lookup(&mapping->page_tree, index);
1285 if (!page || radix_tree_exceptional_entry(page))
1286 break;
1287 index--;
1288 if (index == ULONG_MAX)
1289 break;
1290 }
1291
1292 return index;
1293 }
1294 EXPORT_SYMBOL(page_cache_prev_hole);
1295
1296 /**
1297 * find_get_entry - find and get a page cache entry
1298 * @mapping: the address_space to search
1299 * @offset: the page cache index
1300 *
1301 * Looks up the page cache slot at @mapping & @offset. If there is a
1302 * page cache page, it is returned with an increased refcount.
1303 *
1304 * If the slot holds a shadow entry of a previously evicted page, or a
1305 * swap entry from shmem/tmpfs, it is returned.
1306 *
1307 * Otherwise, %NULL is returned.
1308 */
1309 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1310 {
1311 void **pagep;
1312 struct page *head, *page;
1313
1314 rcu_read_lock();
1315 repeat:
1316 page = NULL;
1317 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1318 if (pagep) {
1319 page = radix_tree_deref_slot(pagep);
1320 if (unlikely(!page))
1321 goto out;
1322 if (radix_tree_exception(page)) {
1323 if (radix_tree_deref_retry(page))
1324 goto repeat;
1325 /*
1326 * A shadow entry of a recently evicted page,
1327 * or a swap entry from shmem/tmpfs. Return
1328 * it without attempting to raise page count.
1329 */
1330 goto out;
1331 }
1332
1333 head = compound_head(page);
1334 if (!page_cache_get_speculative(head))
1335 goto repeat;
1336
1337 /* The page was split under us? */
1338 if (compound_head(page) != head) {
1339 put_page(head);
1340 goto repeat;
1341 }
1342
1343 /*
1344 * Has the page moved?
1345 * This is part of the lockless pagecache protocol. See
1346 * include/linux/pagemap.h for details.
1347 */
1348 if (unlikely(page != *pagep)) {
1349 put_page(head);
1350 goto repeat;
1351 }
1352 }
1353 out:
1354 rcu_read_unlock();
1355
1356 return page;
1357 }
1358 EXPORT_SYMBOL(find_get_entry);
1359
1360 /**
1361 * find_lock_entry - locate, pin and lock a page cache entry
1362 * @mapping: the address_space to search
1363 * @offset: the page cache index
1364 *
1365 * Looks up the page cache slot at @mapping & @offset. If there is a
1366 * page cache page, it is returned locked and with an increased
1367 * refcount.
1368 *
1369 * If the slot holds a shadow entry of a previously evicted page, or a
1370 * swap entry from shmem/tmpfs, it is returned.
1371 *
1372 * Otherwise, %NULL is returned.
1373 *
1374 * find_lock_entry() may sleep.
1375 */
1376 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1377 {
1378 struct page *page;
1379
1380 repeat:
1381 page = find_get_entry(mapping, offset);
1382 if (page && !radix_tree_exception(page)) {
1383 lock_page(page);
1384 /* Has the page been truncated? */
1385 if (unlikely(page_mapping(page) != mapping)) {
1386 unlock_page(page);
1387 put_page(page);
1388 goto repeat;
1389 }
1390 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1391 }
1392 return page;
1393 }
1394 EXPORT_SYMBOL(find_lock_entry);
1395
1396 /**
1397 * pagecache_get_page - find and get a page reference
1398 * @mapping: the address_space to search
1399 * @offset: the page index
1400 * @fgp_flags: PCG flags
1401 * @gfp_mask: gfp mask to use for the page cache data page allocation
1402 *
1403 * Looks up the page cache slot at @mapping & @offset.
1404 *
1405 * PCG flags modify how the page is returned.
1406 *
1407 * @fgp_flags can be:
1408 *
1409 * - FGP_ACCESSED: the page will be marked accessed
1410 * - FGP_LOCK: Page is return locked
1411 * - FGP_CREAT: If page is not present then a new page is allocated using
1412 * @gfp_mask and added to the page cache and the VM's LRU
1413 * list. The page is returned locked and with an increased
1414 * refcount. Otherwise, NULL is returned.
1415 *
1416 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1417 * if the GFP flags specified for FGP_CREAT are atomic.
1418 *
1419 * If there is a page cache page, it is returned with an increased refcount.
1420 */
1421 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1422 int fgp_flags, gfp_t gfp_mask)
1423 {
1424 struct page *page;
1425
1426 repeat:
1427 page = find_get_entry(mapping, offset);
1428 if (radix_tree_exceptional_entry(page))
1429 page = NULL;
1430 if (!page)
1431 goto no_page;
1432
1433 if (fgp_flags & FGP_LOCK) {
1434 if (fgp_flags & FGP_NOWAIT) {
1435 if (!trylock_page(page)) {
1436 put_page(page);
1437 return NULL;
1438 }
1439 } else {
1440 lock_page(page);
1441 }
1442
1443 /* Has the page been truncated? */
1444 if (unlikely(page->mapping != mapping)) {
1445 unlock_page(page);
1446 put_page(page);
1447 goto repeat;
1448 }
1449 VM_BUG_ON_PAGE(page->index != offset, page);
1450 }
1451
1452 if (page && (fgp_flags & FGP_ACCESSED))
1453 mark_page_accessed(page);
1454
1455 no_page:
1456 if (!page && (fgp_flags & FGP_CREAT)) {
1457 int err;
1458 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1459 gfp_mask |= __GFP_WRITE;
1460 if (fgp_flags & FGP_NOFS)
1461 gfp_mask &= ~__GFP_FS;
1462
1463 page = __page_cache_alloc(gfp_mask);
1464 if (!page)
1465 return NULL;
1466
1467 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1468 fgp_flags |= FGP_LOCK;
1469
1470 /* Init accessed so avoid atomic mark_page_accessed later */
1471 if (fgp_flags & FGP_ACCESSED)
1472 __SetPageReferenced(page);
1473
1474 err = add_to_page_cache_lru(page, mapping, offset,
1475 gfp_mask & GFP_RECLAIM_MASK);
1476 if (unlikely(err)) {
1477 put_page(page);
1478 page = NULL;
1479 if (err == -EEXIST)
1480 goto repeat;
1481 }
1482 }
1483
1484 return page;
1485 }
1486 EXPORT_SYMBOL(pagecache_get_page);
1487
1488 /**
1489 * find_get_entries - gang pagecache lookup
1490 * @mapping: The address_space to search
1491 * @start: The starting page cache index
1492 * @nr_entries: The maximum number of entries
1493 * @entries: Where the resulting entries are placed
1494 * @indices: The cache indices corresponding to the entries in @entries
1495 *
1496 * find_get_entries() will search for and return a group of up to
1497 * @nr_entries entries in the mapping. The entries are placed at
1498 * @entries. find_get_entries() takes a reference against any actual
1499 * pages it returns.
1500 *
1501 * The search returns a group of mapping-contiguous page cache entries
1502 * with ascending indexes. There may be holes in the indices due to
1503 * not-present pages.
1504 *
1505 * Any shadow entries of evicted pages, or swap entries from
1506 * shmem/tmpfs, are included in the returned array.
1507 *
1508 * find_get_entries() returns the number of pages and shadow entries
1509 * which were found.
1510 */
1511 unsigned find_get_entries(struct address_space *mapping,
1512 pgoff_t start, unsigned int nr_entries,
1513 struct page **entries, pgoff_t *indices)
1514 {
1515 void **slot;
1516 unsigned int ret = 0;
1517 struct radix_tree_iter iter;
1518
1519 if (!nr_entries)
1520 return 0;
1521
1522 rcu_read_lock();
1523 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1524 struct page *head, *page;
1525 repeat:
1526 page = radix_tree_deref_slot(slot);
1527 if (unlikely(!page))
1528 continue;
1529 if (radix_tree_exception(page)) {
1530 if (radix_tree_deref_retry(page)) {
1531 slot = radix_tree_iter_retry(&iter);
1532 continue;
1533 }
1534 /*
1535 * A shadow entry of a recently evicted page, a swap
1536 * entry from shmem/tmpfs or a DAX entry. Return it
1537 * without attempting to raise page count.
1538 */
1539 goto export;
1540 }
1541
1542 head = compound_head(page);
1543 if (!page_cache_get_speculative(head))
1544 goto repeat;
1545
1546 /* The page was split under us? */
1547 if (compound_head(page) != head) {
1548 put_page(head);
1549 goto repeat;
1550 }
1551
1552 /* Has the page moved? */
1553 if (unlikely(page != *slot)) {
1554 put_page(head);
1555 goto repeat;
1556 }
1557 export:
1558 indices[ret] = iter.index;
1559 entries[ret] = page;
1560 if (++ret == nr_entries)
1561 break;
1562 }
1563 rcu_read_unlock();
1564 return ret;
1565 }
1566
1567 /**
1568 * find_get_pages - gang pagecache lookup
1569 * @mapping: The address_space to search
1570 * @start: The starting page index
1571 * @nr_pages: The maximum number of pages
1572 * @pages: Where the resulting pages are placed
1573 *
1574 * find_get_pages() will search for and return a group of up to
1575 * @nr_pages pages in the mapping. The pages are placed at @pages.
1576 * find_get_pages() takes a reference against the returned pages.
1577 *
1578 * The search returns a group of mapping-contiguous pages with ascending
1579 * indexes. There may be holes in the indices due to not-present pages.
1580 *
1581 * find_get_pages() returns the number of pages which were found.
1582 */
1583 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1584 unsigned int nr_pages, struct page **pages)
1585 {
1586 struct radix_tree_iter iter;
1587 void **slot;
1588 unsigned ret = 0;
1589
1590 if (unlikely(!nr_pages))
1591 return 0;
1592
1593 rcu_read_lock();
1594 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1595 struct page *head, *page;
1596 repeat:
1597 page = radix_tree_deref_slot(slot);
1598 if (unlikely(!page))
1599 continue;
1600
1601 if (radix_tree_exception(page)) {
1602 if (radix_tree_deref_retry(page)) {
1603 slot = radix_tree_iter_retry(&iter);
1604 continue;
1605 }
1606 /*
1607 * A shadow entry of a recently evicted page,
1608 * or a swap entry from shmem/tmpfs. Skip
1609 * over it.
1610 */
1611 continue;
1612 }
1613
1614 head = compound_head(page);
1615 if (!page_cache_get_speculative(head))
1616 goto repeat;
1617
1618 /* The page was split under us? */
1619 if (compound_head(page) != head) {
1620 put_page(head);
1621 goto repeat;
1622 }
1623
1624 /* Has the page moved? */
1625 if (unlikely(page != *slot)) {
1626 put_page(head);
1627 goto repeat;
1628 }
1629
1630 pages[ret] = page;
1631 if (++ret == nr_pages)
1632 break;
1633 }
1634
1635 rcu_read_unlock();
1636 return ret;
1637 }
1638
1639 /**
1640 * find_get_pages_contig - gang contiguous pagecache lookup
1641 * @mapping: The address_space to search
1642 * @index: The starting page index
1643 * @nr_pages: The maximum number of pages
1644 * @pages: Where the resulting pages are placed
1645 *
1646 * find_get_pages_contig() works exactly like find_get_pages(), except
1647 * that the returned number of pages are guaranteed to be contiguous.
1648 *
1649 * find_get_pages_contig() returns the number of pages which were found.
1650 */
1651 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1652 unsigned int nr_pages, struct page **pages)
1653 {
1654 struct radix_tree_iter iter;
1655 void **slot;
1656 unsigned int ret = 0;
1657
1658 if (unlikely(!nr_pages))
1659 return 0;
1660
1661 rcu_read_lock();
1662 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1663 struct page *head, *page;
1664 repeat:
1665 page = radix_tree_deref_slot(slot);
1666 /* The hole, there no reason to continue */
1667 if (unlikely(!page))
1668 break;
1669
1670 if (radix_tree_exception(page)) {
1671 if (radix_tree_deref_retry(page)) {
1672 slot = radix_tree_iter_retry(&iter);
1673 continue;
1674 }
1675 /*
1676 * A shadow entry of a recently evicted page,
1677 * or a swap entry from shmem/tmpfs. Stop
1678 * looking for contiguous pages.
1679 */
1680 break;
1681 }
1682
1683 head = compound_head(page);
1684 if (!page_cache_get_speculative(head))
1685 goto repeat;
1686
1687 /* The page was split under us? */
1688 if (compound_head(page) != head) {
1689 put_page(head);
1690 goto repeat;
1691 }
1692
1693 /* Has the page moved? */
1694 if (unlikely(page != *slot)) {
1695 put_page(head);
1696 goto repeat;
1697 }
1698
1699 /*
1700 * must check mapping and index after taking the ref.
1701 * otherwise we can get both false positives and false
1702 * negatives, which is just confusing to the caller.
1703 */
1704 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1705 put_page(page);
1706 break;
1707 }
1708
1709 pages[ret] = page;
1710 if (++ret == nr_pages)
1711 break;
1712 }
1713 rcu_read_unlock();
1714 return ret;
1715 }
1716 EXPORT_SYMBOL(find_get_pages_contig);
1717
1718 /**
1719 * find_get_pages_tag - find and return pages that match @tag
1720 * @mapping: the address_space to search
1721 * @index: the starting page index
1722 * @tag: the tag index
1723 * @nr_pages: the maximum number of pages
1724 * @pages: where the resulting pages are placed
1725 *
1726 * Like find_get_pages, except we only return pages which are tagged with
1727 * @tag. We update @index to index the next page for the traversal.
1728 */
1729 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1730 int tag, unsigned int nr_pages, struct page **pages)
1731 {
1732 struct radix_tree_iter iter;
1733 void **slot;
1734 unsigned ret = 0;
1735
1736 if (unlikely(!nr_pages))
1737 return 0;
1738
1739 rcu_read_lock();
1740 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1741 &iter, *index, tag) {
1742 struct page *head, *page;
1743 repeat:
1744 page = radix_tree_deref_slot(slot);
1745 if (unlikely(!page))
1746 continue;
1747
1748 if (radix_tree_exception(page)) {
1749 if (radix_tree_deref_retry(page)) {
1750 slot = radix_tree_iter_retry(&iter);
1751 continue;
1752 }
1753 /*
1754 * A shadow entry of a recently evicted page.
1755 *
1756 * Those entries should never be tagged, but
1757 * this tree walk is lockless and the tags are
1758 * looked up in bulk, one radix tree node at a
1759 * time, so there is a sizable window for page
1760 * reclaim to evict a page we saw tagged.
1761 *
1762 * Skip over it.
1763 */
1764 continue;
1765 }
1766
1767 head = compound_head(page);
1768 if (!page_cache_get_speculative(head))
1769 goto repeat;
1770
1771 /* The page was split under us? */
1772 if (compound_head(page) != head) {
1773 put_page(head);
1774 goto repeat;
1775 }
1776
1777 /* Has the page moved? */
1778 if (unlikely(page != *slot)) {
1779 put_page(head);
1780 goto repeat;
1781 }
1782
1783 pages[ret] = page;
1784 if (++ret == nr_pages)
1785 break;
1786 }
1787
1788 rcu_read_unlock();
1789
1790 if (ret)
1791 *index = pages[ret - 1]->index + 1;
1792
1793 return ret;
1794 }
1795 EXPORT_SYMBOL(find_get_pages_tag);
1796
1797 /**
1798 * find_get_entries_tag - find and return entries that match @tag
1799 * @mapping: the address_space to search
1800 * @start: the starting page cache index
1801 * @tag: the tag index
1802 * @nr_entries: the maximum number of entries
1803 * @entries: where the resulting entries are placed
1804 * @indices: the cache indices corresponding to the entries in @entries
1805 *
1806 * Like find_get_entries, except we only return entries which are tagged with
1807 * @tag.
1808 */
1809 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1810 int tag, unsigned int nr_entries,
1811 struct page **entries, pgoff_t *indices)
1812 {
1813 void **slot;
1814 unsigned int ret = 0;
1815 struct radix_tree_iter iter;
1816
1817 if (!nr_entries)
1818 return 0;
1819
1820 rcu_read_lock();
1821 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1822 &iter, start, tag) {
1823 struct page *head, *page;
1824 repeat:
1825 page = radix_tree_deref_slot(slot);
1826 if (unlikely(!page))
1827 continue;
1828 if (radix_tree_exception(page)) {
1829 if (radix_tree_deref_retry(page)) {
1830 slot = radix_tree_iter_retry(&iter);
1831 continue;
1832 }
1833
1834 /*
1835 * A shadow entry of a recently evicted page, a swap
1836 * entry from shmem/tmpfs or a DAX entry. Return it
1837 * without attempting to raise page count.
1838 */
1839 goto export;
1840 }
1841
1842 head = compound_head(page);
1843 if (!page_cache_get_speculative(head))
1844 goto repeat;
1845
1846 /* The page was split under us? */
1847 if (compound_head(page) != head) {
1848 put_page(head);
1849 goto repeat;
1850 }
1851
1852 /* Has the page moved? */
1853 if (unlikely(page != *slot)) {
1854 put_page(head);
1855 goto repeat;
1856 }
1857 export:
1858 indices[ret] = iter.index;
1859 entries[ret] = page;
1860 if (++ret == nr_entries)
1861 break;
1862 }
1863 rcu_read_unlock();
1864 return ret;
1865 }
1866 EXPORT_SYMBOL(find_get_entries_tag);
1867
1868 /*
1869 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1870 * a _large_ part of the i/o request. Imagine the worst scenario:
1871 *
1872 * ---R__________________________________________B__________
1873 * ^ reading here ^ bad block(assume 4k)
1874 *
1875 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1876 * => failing the whole request => read(R) => read(R+1) =>
1877 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1878 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1879 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1880 *
1881 * It is going insane. Fix it by quickly scaling down the readahead size.
1882 */
1883 static void shrink_readahead_size_eio(struct file *filp,
1884 struct file_ra_state *ra)
1885 {
1886 ra->ra_pages /= 4;
1887 }
1888
1889 /**
1890 * do_generic_file_read - generic file read routine
1891 * @filp: the file to read
1892 * @ppos: current file position
1893 * @iter: data destination
1894 * @written: already copied
1895 *
1896 * This is a generic file read routine, and uses the
1897 * mapping->a_ops->readpage() function for the actual low-level stuff.
1898 *
1899 * This is really ugly. But the goto's actually try to clarify some
1900 * of the logic when it comes to error handling etc.
1901 */
1902 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1903 struct iov_iter *iter, ssize_t written)
1904 {
1905 struct address_space *mapping = filp->f_mapping;
1906 struct inode *inode = mapping->host;
1907 struct file_ra_state *ra = &filp->f_ra;
1908 pgoff_t index;
1909 pgoff_t last_index;
1910 pgoff_t prev_index;
1911 unsigned long offset; /* offset into pagecache page */
1912 unsigned int prev_offset;
1913 int error = 0;
1914
1915 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1916 return 0;
1917 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1918
1919 index = *ppos >> PAGE_SHIFT;
1920 prev_index = ra->prev_pos >> PAGE_SHIFT;
1921 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1922 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1923 offset = *ppos & ~PAGE_MASK;
1924
1925 for (;;) {
1926 struct page *page;
1927 pgoff_t end_index;
1928 loff_t isize;
1929 unsigned long nr, ret;
1930
1931 cond_resched();
1932 find_page:
1933 if (fatal_signal_pending(current)) {
1934 error = -EINTR;
1935 goto out;
1936 }
1937
1938 page = find_get_page(mapping, index);
1939 if (!page) {
1940 page_cache_sync_readahead(mapping,
1941 ra, filp,
1942 index, last_index - index);
1943 page = find_get_page(mapping, index);
1944 if (unlikely(page == NULL))
1945 goto no_cached_page;
1946 }
1947 if (PageReadahead(page)) {
1948 page_cache_async_readahead(mapping,
1949 ra, filp, page,
1950 index, last_index - index);
1951 }
1952 if (!PageUptodate(page)) {
1953 /*
1954 * See comment in do_read_cache_page on why
1955 * wait_on_page_locked is used to avoid unnecessarily
1956 * serialisations and why it's safe.
1957 */
1958 error = wait_on_page_locked_killable(page);
1959 if (unlikely(error))
1960 goto readpage_error;
1961 if (PageUptodate(page))
1962 goto page_ok;
1963
1964 if (inode->i_blkbits == PAGE_SHIFT ||
1965 !mapping->a_ops->is_partially_uptodate)
1966 goto page_not_up_to_date;
1967 /* pipes can't handle partially uptodate pages */
1968 if (unlikely(iter->type & ITER_PIPE))
1969 goto page_not_up_to_date;
1970 if (!trylock_page(page))
1971 goto page_not_up_to_date;
1972 /* Did it get truncated before we got the lock? */
1973 if (!page->mapping)
1974 goto page_not_up_to_date_locked;
1975 if (!mapping->a_ops->is_partially_uptodate(page,
1976 offset, iter->count))
1977 goto page_not_up_to_date_locked;
1978 unlock_page(page);
1979 }
1980 page_ok:
1981 /*
1982 * i_size must be checked after we know the page is Uptodate.
1983 *
1984 * Checking i_size after the check allows us to calculate
1985 * the correct value for "nr", which means the zero-filled
1986 * part of the page is not copied back to userspace (unless
1987 * another truncate extends the file - this is desired though).
1988 */
1989
1990 isize = i_size_read(inode);
1991 end_index = (isize - 1) >> PAGE_SHIFT;
1992 if (unlikely(!isize || index > end_index)) {
1993 put_page(page);
1994 goto out;
1995 }
1996
1997 /* nr is the maximum number of bytes to copy from this page */
1998 nr = PAGE_SIZE;
1999 if (index == end_index) {
2000 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2001 if (nr <= offset) {
2002 put_page(page);
2003 goto out;
2004 }
2005 }
2006 nr = nr - offset;
2007
2008 /* If users can be writing to this page using arbitrary
2009 * virtual addresses, take care about potential aliasing
2010 * before reading the page on the kernel side.
2011 */
2012 if (mapping_writably_mapped(mapping))
2013 flush_dcache_page(page);
2014
2015 /*
2016 * When a sequential read accesses a page several times,
2017 * only mark it as accessed the first time.
2018 */
2019 if (prev_index != index || offset != prev_offset)
2020 mark_page_accessed(page);
2021 prev_index = index;
2022
2023 /*
2024 * Ok, we have the page, and it's up-to-date, so
2025 * now we can copy it to user space...
2026 */
2027
2028 ret = copy_page_to_iter(page, offset, nr, iter);
2029 offset += ret;
2030 index += offset >> PAGE_SHIFT;
2031 offset &= ~PAGE_MASK;
2032 prev_offset = offset;
2033
2034 put_page(page);
2035 written += ret;
2036 if (!iov_iter_count(iter))
2037 goto out;
2038 if (ret < nr) {
2039 error = -EFAULT;
2040 goto out;
2041 }
2042 continue;
2043
2044 page_not_up_to_date:
2045 /* Get exclusive access to the page ... */
2046 error = lock_page_killable(page);
2047 if (unlikely(error))
2048 goto readpage_error;
2049
2050 page_not_up_to_date_locked:
2051 /* Did it get truncated before we got the lock? */
2052 if (!page->mapping) {
2053 unlock_page(page);
2054 put_page(page);
2055 continue;
2056 }
2057
2058 /* Did somebody else fill it already? */
2059 if (PageUptodate(page)) {
2060 unlock_page(page);
2061 goto page_ok;
2062 }
2063
2064 readpage:
2065 /*
2066 * A previous I/O error may have been due to temporary
2067 * failures, eg. multipath errors.
2068 * PG_error will be set again if readpage fails.
2069 */
2070 ClearPageError(page);
2071 /* Start the actual read. The read will unlock the page. */
2072 error = mapping->a_ops->readpage(filp, page);
2073
2074 if (unlikely(error)) {
2075 if (error == AOP_TRUNCATED_PAGE) {
2076 put_page(page);
2077 error = 0;
2078 goto find_page;
2079 }
2080 goto readpage_error;
2081 }
2082
2083 if (!PageUptodate(page)) {
2084 error = lock_page_killable(page);
2085 if (unlikely(error))
2086 goto readpage_error;
2087 if (!PageUptodate(page)) {
2088 if (page->mapping == NULL) {
2089 /*
2090 * invalidate_mapping_pages got it
2091 */
2092 unlock_page(page);
2093 put_page(page);
2094 goto find_page;
2095 }
2096 unlock_page(page);
2097 shrink_readahead_size_eio(filp, ra);
2098 error = -EIO;
2099 goto readpage_error;
2100 }
2101 unlock_page(page);
2102 }
2103
2104 goto page_ok;
2105
2106 readpage_error:
2107 /* UHHUH! A synchronous read error occurred. Report it */
2108 put_page(page);
2109 goto out;
2110
2111 no_cached_page:
2112 /*
2113 * Ok, it wasn't cached, so we need to create a new
2114 * page..
2115 */
2116 page = page_cache_alloc_cold(mapping);
2117 if (!page) {
2118 error = -ENOMEM;
2119 goto out;
2120 }
2121 error = add_to_page_cache_lru(page, mapping, index,
2122 mapping_gfp_constraint(mapping, GFP_KERNEL));
2123 if (error) {
2124 put_page(page);
2125 if (error == -EEXIST) {
2126 error = 0;
2127 goto find_page;
2128 }
2129 goto out;
2130 }
2131 goto readpage;
2132 }
2133
2134 out:
2135 ra->prev_pos = prev_index;
2136 ra->prev_pos <<= PAGE_SHIFT;
2137 ra->prev_pos |= prev_offset;
2138
2139 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2140 file_accessed(filp);
2141 return written ? written : error;
2142 }
2143
2144 /**
2145 * generic_file_read_iter - generic filesystem read routine
2146 * @iocb: kernel I/O control block
2147 * @iter: destination for the data read
2148 *
2149 * This is the "read_iter()" routine for all filesystems
2150 * that can use the page cache directly.
2151 */
2152 ssize_t
2153 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2154 {
2155 struct file *file = iocb->ki_filp;
2156 ssize_t retval = 0;
2157 size_t count = iov_iter_count(iter);
2158
2159 if (!count)
2160 goto out; /* skip atime */
2161
2162 if (iocb->ki_flags & IOCB_DIRECT) {
2163 struct address_space *mapping = file->f_mapping;
2164 struct inode *inode = mapping->host;
2165 loff_t size;
2166
2167 size = i_size_read(inode);
2168 if (iocb->ki_flags & IOCB_NOWAIT) {
2169 if (filemap_range_has_page(mapping, iocb->ki_pos,
2170 iocb->ki_pos + count - 1))
2171 return -EAGAIN;
2172 } else {
2173 retval = filemap_write_and_wait_range(mapping,
2174 iocb->ki_pos,
2175 iocb->ki_pos + count - 1);
2176 if (retval < 0)
2177 goto out;
2178 }
2179
2180 file_accessed(file);
2181
2182 retval = mapping->a_ops->direct_IO(iocb, iter);
2183 if (retval >= 0) {
2184 iocb->ki_pos += retval;
2185 count -= retval;
2186 }
2187 iov_iter_revert(iter, count - iov_iter_count(iter));
2188
2189 /*
2190 * Btrfs can have a short DIO read if we encounter
2191 * compressed extents, so if there was an error, or if
2192 * we've already read everything we wanted to, or if
2193 * there was a short read because we hit EOF, go ahead
2194 * and return. Otherwise fallthrough to buffered io for
2195 * the rest of the read. Buffered reads will not work for
2196 * DAX files, so don't bother trying.
2197 */
2198 if (retval < 0 || !count || iocb->ki_pos >= size ||
2199 IS_DAX(inode))
2200 goto out;
2201 }
2202
2203 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2204 out:
2205 return retval;
2206 }
2207 EXPORT_SYMBOL(generic_file_read_iter);
2208
2209 #ifdef CONFIG_MMU
2210 /**
2211 * page_cache_read - adds requested page to the page cache if not already there
2212 * @file: file to read
2213 * @offset: page index
2214 * @gfp_mask: memory allocation flags
2215 *
2216 * This adds the requested page to the page cache if it isn't already there,
2217 * and schedules an I/O to read in its contents from disk.
2218 */
2219 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2220 {
2221 struct address_space *mapping = file->f_mapping;
2222 struct page *page;
2223 int ret;
2224
2225 do {
2226 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2227 if (!page)
2228 return -ENOMEM;
2229
2230 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2231 if (ret == 0)
2232 ret = mapping->a_ops->readpage(file, page);
2233 else if (ret == -EEXIST)
2234 ret = 0; /* losing race to add is OK */
2235
2236 put_page(page);
2237
2238 } while (ret == AOP_TRUNCATED_PAGE);
2239
2240 return ret;
2241 }
2242
2243 #define MMAP_LOTSAMISS (100)
2244
2245 /*
2246 * Synchronous readahead happens when we don't even find
2247 * a page in the page cache at all.
2248 */
2249 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2250 struct file_ra_state *ra,
2251 struct file *file,
2252 pgoff_t offset)
2253 {
2254 struct address_space *mapping = file->f_mapping;
2255
2256 /* If we don't want any read-ahead, don't bother */
2257 if (vma->vm_flags & VM_RAND_READ)
2258 return;
2259 if (!ra->ra_pages)
2260 return;
2261
2262 if (vma->vm_flags & VM_SEQ_READ) {
2263 page_cache_sync_readahead(mapping, ra, file, offset,
2264 ra->ra_pages);
2265 return;
2266 }
2267
2268 /* Avoid banging the cache line if not needed */
2269 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2270 ra->mmap_miss++;
2271
2272 /*
2273 * Do we miss much more than hit in this file? If so,
2274 * stop bothering with read-ahead. It will only hurt.
2275 */
2276 if (ra->mmap_miss > MMAP_LOTSAMISS)
2277 return;
2278
2279 /*
2280 * mmap read-around
2281 */
2282 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2283 ra->size = ra->ra_pages;
2284 ra->async_size = ra->ra_pages / 4;
2285 ra_submit(ra, mapping, file);
2286 }
2287
2288 /*
2289 * Asynchronous readahead happens when we find the page and PG_readahead,
2290 * so we want to possibly extend the readahead further..
2291 */
2292 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2293 struct file_ra_state *ra,
2294 struct file *file,
2295 struct page *page,
2296 pgoff_t offset)
2297 {
2298 struct address_space *mapping = file->f_mapping;
2299
2300 /* If we don't want any read-ahead, don't bother */
2301 if (vma->vm_flags & VM_RAND_READ)
2302 return;
2303 if (ra->mmap_miss > 0)
2304 ra->mmap_miss--;
2305 if (PageReadahead(page))
2306 page_cache_async_readahead(mapping, ra, file,
2307 page, offset, ra->ra_pages);
2308 }
2309
2310 /**
2311 * filemap_fault - read in file data for page fault handling
2312 * @vmf: struct vm_fault containing details of the fault
2313 *
2314 * filemap_fault() is invoked via the vma operations vector for a
2315 * mapped memory region to read in file data during a page fault.
2316 *
2317 * The goto's are kind of ugly, but this streamlines the normal case of having
2318 * it in the page cache, and handles the special cases reasonably without
2319 * having a lot of duplicated code.
2320 *
2321 * vma->vm_mm->mmap_sem must be held on entry.
2322 *
2323 * If our return value has VM_FAULT_RETRY set, it's because
2324 * lock_page_or_retry() returned 0.
2325 * The mmap_sem has usually been released in this case.
2326 * See __lock_page_or_retry() for the exception.
2327 *
2328 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2329 * has not been released.
2330 *
2331 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2332 */
2333 int filemap_fault(struct vm_fault *vmf)
2334 {
2335 int error;
2336 struct file *file = vmf->vma->vm_file;
2337 struct address_space *mapping = file->f_mapping;
2338 struct file_ra_state *ra = &file->f_ra;
2339 struct inode *inode = mapping->host;
2340 pgoff_t offset = vmf->pgoff;
2341 pgoff_t max_off;
2342 struct page *page;
2343 int ret = 0;
2344
2345 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2346 if (unlikely(offset >= max_off))
2347 return VM_FAULT_SIGBUS;
2348
2349 /*
2350 * Do we have something in the page cache already?
2351 */
2352 page = find_get_page(mapping, offset);
2353 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2354 /*
2355 * We found the page, so try async readahead before
2356 * waiting for the lock.
2357 */
2358 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2359 } else if (!page) {
2360 /* No page in the page cache at all */
2361 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2362 count_vm_event(PGMAJFAULT);
2363 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2364 ret = VM_FAULT_MAJOR;
2365 retry_find:
2366 page = find_get_page(mapping, offset);
2367 if (!page)
2368 goto no_cached_page;
2369 }
2370
2371 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2372 put_page(page);
2373 return ret | VM_FAULT_RETRY;
2374 }
2375
2376 /* Did it get truncated? */
2377 if (unlikely(page->mapping != mapping)) {
2378 unlock_page(page);
2379 put_page(page);
2380 goto retry_find;
2381 }
2382 VM_BUG_ON_PAGE(page->index != offset, page);
2383
2384 /*
2385 * We have a locked page in the page cache, now we need to check
2386 * that it's up-to-date. If not, it is going to be due to an error.
2387 */
2388 if (unlikely(!PageUptodate(page)))
2389 goto page_not_uptodate;
2390
2391 /*
2392 * Found the page and have a reference on it.
2393 * We must recheck i_size under page lock.
2394 */
2395 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2396 if (unlikely(offset >= max_off)) {
2397 unlock_page(page);
2398 put_page(page);
2399 return VM_FAULT_SIGBUS;
2400 }
2401
2402 vmf->page = page;
2403 return ret | VM_FAULT_LOCKED;
2404
2405 no_cached_page:
2406 /*
2407 * We're only likely to ever get here if MADV_RANDOM is in
2408 * effect.
2409 */
2410 error = page_cache_read(file, offset, vmf->gfp_mask);
2411
2412 /*
2413 * The page we want has now been added to the page cache.
2414 * In the unlikely event that someone removed it in the
2415 * meantime, we'll just come back here and read it again.
2416 */
2417 if (error >= 0)
2418 goto retry_find;
2419
2420 /*
2421 * An error return from page_cache_read can result if the
2422 * system is low on memory, or a problem occurs while trying
2423 * to schedule I/O.
2424 */
2425 if (error == -ENOMEM)
2426 return VM_FAULT_OOM;
2427 return VM_FAULT_SIGBUS;
2428
2429 page_not_uptodate:
2430 /*
2431 * Umm, take care of errors if the page isn't up-to-date.
2432 * Try to re-read it _once_. We do this synchronously,
2433 * because there really aren't any performance issues here
2434 * and we need to check for errors.
2435 */
2436 ClearPageError(page);
2437 error = mapping->a_ops->readpage(file, page);
2438 if (!error) {
2439 wait_on_page_locked(page);
2440 if (!PageUptodate(page))
2441 error = -EIO;
2442 }
2443 put_page(page);
2444
2445 if (!error || error == AOP_TRUNCATED_PAGE)
2446 goto retry_find;
2447
2448 /* Things didn't work out. Return zero to tell the mm layer so. */
2449 shrink_readahead_size_eio(file, ra);
2450 return VM_FAULT_SIGBUS;
2451 }
2452 EXPORT_SYMBOL(filemap_fault);
2453
2454 void filemap_map_pages(struct vm_fault *vmf,
2455 pgoff_t start_pgoff, pgoff_t end_pgoff)
2456 {
2457 struct radix_tree_iter iter;
2458 void **slot;
2459 struct file *file = vmf->vma->vm_file;
2460 struct address_space *mapping = file->f_mapping;
2461 pgoff_t last_pgoff = start_pgoff;
2462 unsigned long max_idx;
2463 struct page *head, *page;
2464
2465 rcu_read_lock();
2466 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2467 start_pgoff) {
2468 if (iter.index > end_pgoff)
2469 break;
2470 repeat:
2471 page = radix_tree_deref_slot(slot);
2472 if (unlikely(!page))
2473 goto next;
2474 if (radix_tree_exception(page)) {
2475 if (radix_tree_deref_retry(page)) {
2476 slot = radix_tree_iter_retry(&iter);
2477 continue;
2478 }
2479 goto next;
2480 }
2481
2482 head = compound_head(page);
2483 if (!page_cache_get_speculative(head))
2484 goto repeat;
2485
2486 /* The page was split under us? */
2487 if (compound_head(page) != head) {
2488 put_page(head);
2489 goto repeat;
2490 }
2491
2492 /* Has the page moved? */
2493 if (unlikely(page != *slot)) {
2494 put_page(head);
2495 goto repeat;
2496 }
2497
2498 if (!PageUptodate(page) ||
2499 PageReadahead(page) ||
2500 PageHWPoison(page))
2501 goto skip;
2502 if (!trylock_page(page))
2503 goto skip;
2504
2505 if (page->mapping != mapping || !PageUptodate(page))
2506 goto unlock;
2507
2508 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2509 if (page->index >= max_idx)
2510 goto unlock;
2511
2512 if (file->f_ra.mmap_miss > 0)
2513 file->f_ra.mmap_miss--;
2514
2515 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2516 if (vmf->pte)
2517 vmf->pte += iter.index - last_pgoff;
2518 last_pgoff = iter.index;
2519 if (alloc_set_pte(vmf, NULL, page))
2520 goto unlock;
2521 unlock_page(page);
2522 goto next;
2523 unlock:
2524 unlock_page(page);
2525 skip:
2526 put_page(page);
2527 next:
2528 /* Huge page is mapped? No need to proceed. */
2529 if (pmd_trans_huge(*vmf->pmd))
2530 break;
2531 if (iter.index == end_pgoff)
2532 break;
2533 }
2534 rcu_read_unlock();
2535 }
2536 EXPORT_SYMBOL(filemap_map_pages);
2537
2538 int filemap_page_mkwrite(struct vm_fault *vmf)
2539 {
2540 struct page *page = vmf->page;
2541 struct inode *inode = file_inode(vmf->vma->vm_file);
2542 int ret = VM_FAULT_LOCKED;
2543
2544 sb_start_pagefault(inode->i_sb);
2545 file_update_time(vmf->vma->vm_file);
2546 lock_page(page);
2547 if (page->mapping != inode->i_mapping) {
2548 unlock_page(page);
2549 ret = VM_FAULT_NOPAGE;
2550 goto out;
2551 }
2552 /*
2553 * We mark the page dirty already here so that when freeze is in
2554 * progress, we are guaranteed that writeback during freezing will
2555 * see the dirty page and writeprotect it again.
2556 */
2557 set_page_dirty(page);
2558 wait_for_stable_page(page);
2559 out:
2560 sb_end_pagefault(inode->i_sb);
2561 return ret;
2562 }
2563 EXPORT_SYMBOL(filemap_page_mkwrite);
2564
2565 const struct vm_operations_struct generic_file_vm_ops = {
2566 .fault = filemap_fault,
2567 .map_pages = filemap_map_pages,
2568 .page_mkwrite = filemap_page_mkwrite,
2569 };
2570
2571 /* This is used for a general mmap of a disk file */
2572
2573 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2574 {
2575 struct address_space *mapping = file->f_mapping;
2576
2577 if (!mapping->a_ops->readpage)
2578 return -ENOEXEC;
2579 file_accessed(file);
2580 vma->vm_ops = &generic_file_vm_ops;
2581 return 0;
2582 }
2583
2584 /*
2585 * This is for filesystems which do not implement ->writepage.
2586 */
2587 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2588 {
2589 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2590 return -EINVAL;
2591 return generic_file_mmap(file, vma);
2592 }
2593 #else
2594 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2595 {
2596 return -ENOSYS;
2597 }
2598 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2599 {
2600 return -ENOSYS;
2601 }
2602 #endif /* CONFIG_MMU */
2603
2604 EXPORT_SYMBOL(generic_file_mmap);
2605 EXPORT_SYMBOL(generic_file_readonly_mmap);
2606
2607 static struct page *wait_on_page_read(struct page *page)
2608 {
2609 if (!IS_ERR(page)) {
2610 wait_on_page_locked(page);
2611 if (!PageUptodate(page)) {
2612 put_page(page);
2613 page = ERR_PTR(-EIO);
2614 }
2615 }
2616 return page;
2617 }
2618
2619 static struct page *do_read_cache_page(struct address_space *mapping,
2620 pgoff_t index,
2621 int (*filler)(void *, struct page *),
2622 void *data,
2623 gfp_t gfp)
2624 {
2625 struct page *page;
2626 int err;
2627 repeat:
2628 page = find_get_page(mapping, index);
2629 if (!page) {
2630 page = __page_cache_alloc(gfp | __GFP_COLD);
2631 if (!page)
2632 return ERR_PTR(-ENOMEM);
2633 err = add_to_page_cache_lru(page, mapping, index, gfp);
2634 if (unlikely(err)) {
2635 put_page(page);
2636 if (err == -EEXIST)
2637 goto repeat;
2638 /* Presumably ENOMEM for radix tree node */
2639 return ERR_PTR(err);
2640 }
2641
2642 filler:
2643 err = filler(data, page);
2644 if (err < 0) {
2645 put_page(page);
2646 return ERR_PTR(err);
2647 }
2648
2649 page = wait_on_page_read(page);
2650 if (IS_ERR(page))
2651 return page;
2652 goto out;
2653 }
2654 if (PageUptodate(page))
2655 goto out;
2656
2657 /*
2658 * Page is not up to date and may be locked due one of the following
2659 * case a: Page is being filled and the page lock is held
2660 * case b: Read/write error clearing the page uptodate status
2661 * case c: Truncation in progress (page locked)
2662 * case d: Reclaim in progress
2663 *
2664 * Case a, the page will be up to date when the page is unlocked.
2665 * There is no need to serialise on the page lock here as the page
2666 * is pinned so the lock gives no additional protection. Even if the
2667 * the page is truncated, the data is still valid if PageUptodate as
2668 * it's a race vs truncate race.
2669 * Case b, the page will not be up to date
2670 * Case c, the page may be truncated but in itself, the data may still
2671 * be valid after IO completes as it's a read vs truncate race. The
2672 * operation must restart if the page is not uptodate on unlock but
2673 * otherwise serialising on page lock to stabilise the mapping gives
2674 * no additional guarantees to the caller as the page lock is
2675 * released before return.
2676 * Case d, similar to truncation. If reclaim holds the page lock, it
2677 * will be a race with remove_mapping that determines if the mapping
2678 * is valid on unlock but otherwise the data is valid and there is
2679 * no need to serialise with page lock.
2680 *
2681 * As the page lock gives no additional guarantee, we optimistically
2682 * wait on the page to be unlocked and check if it's up to date and
2683 * use the page if it is. Otherwise, the page lock is required to
2684 * distinguish between the different cases. The motivation is that we
2685 * avoid spurious serialisations and wakeups when multiple processes
2686 * wait on the same page for IO to complete.
2687 */
2688 wait_on_page_locked(page);
2689 if (PageUptodate(page))
2690 goto out;
2691
2692 /* Distinguish between all the cases under the safety of the lock */
2693 lock_page(page);
2694
2695 /* Case c or d, restart the operation */
2696 if (!page->mapping) {
2697 unlock_page(page);
2698 put_page(page);
2699 goto repeat;
2700 }
2701
2702 /* Someone else locked and filled the page in a very small window */
2703 if (PageUptodate(page)) {
2704 unlock_page(page);
2705 goto out;
2706 }
2707 goto filler;
2708
2709 out:
2710 mark_page_accessed(page);
2711 return page;
2712 }
2713
2714 /**
2715 * read_cache_page - read into page cache, fill it if needed
2716 * @mapping: the page's address_space
2717 * @index: the page index
2718 * @filler: function to perform the read
2719 * @data: first arg to filler(data, page) function, often left as NULL
2720 *
2721 * Read into the page cache. If a page already exists, and PageUptodate() is
2722 * not set, try to fill the page and wait for it to become unlocked.
2723 *
2724 * If the page does not get brought uptodate, return -EIO.
2725 */
2726 struct page *read_cache_page(struct address_space *mapping,
2727 pgoff_t index,
2728 int (*filler)(void *, struct page *),
2729 void *data)
2730 {
2731 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2732 }
2733 EXPORT_SYMBOL(read_cache_page);
2734
2735 /**
2736 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2737 * @mapping: the page's address_space
2738 * @index: the page index
2739 * @gfp: the page allocator flags to use if allocating
2740 *
2741 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2742 * any new page allocations done using the specified allocation flags.
2743 *
2744 * If the page does not get brought uptodate, return -EIO.
2745 */
2746 struct page *read_cache_page_gfp(struct address_space *mapping,
2747 pgoff_t index,
2748 gfp_t gfp)
2749 {
2750 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2751
2752 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2753 }
2754 EXPORT_SYMBOL(read_cache_page_gfp);
2755
2756 /*
2757 * Performs necessary checks before doing a write
2758 *
2759 * Can adjust writing position or amount of bytes to write.
2760 * Returns appropriate error code that caller should return or
2761 * zero in case that write should be allowed.
2762 */
2763 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2764 {
2765 struct file *file = iocb->ki_filp;
2766 struct inode *inode = file->f_mapping->host;
2767 unsigned long limit = rlimit(RLIMIT_FSIZE);
2768 loff_t pos;
2769
2770 if (!iov_iter_count(from))
2771 return 0;
2772
2773 /* FIXME: this is for backwards compatibility with 2.4 */
2774 if (iocb->ki_flags & IOCB_APPEND)
2775 iocb->ki_pos = i_size_read(inode);
2776
2777 pos = iocb->ki_pos;
2778
2779 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2780 return -EINVAL;
2781
2782 if (limit != RLIM_INFINITY) {
2783 if (iocb->ki_pos >= limit) {
2784 send_sig(SIGXFSZ, current, 0);
2785 return -EFBIG;
2786 }
2787 iov_iter_truncate(from, limit - (unsigned long)pos);
2788 }
2789
2790 /*
2791 * LFS rule
2792 */
2793 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2794 !(file->f_flags & O_LARGEFILE))) {
2795 if (pos >= MAX_NON_LFS)
2796 return -EFBIG;
2797 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2798 }
2799
2800 /*
2801 * Are we about to exceed the fs block limit ?
2802 *
2803 * If we have written data it becomes a short write. If we have
2804 * exceeded without writing data we send a signal and return EFBIG.
2805 * Linus frestrict idea will clean these up nicely..
2806 */
2807 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2808 return -EFBIG;
2809
2810 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2811 return iov_iter_count(from);
2812 }
2813 EXPORT_SYMBOL(generic_write_checks);
2814
2815 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2816 loff_t pos, unsigned len, unsigned flags,
2817 struct page **pagep, void **fsdata)
2818 {
2819 const struct address_space_operations *aops = mapping->a_ops;
2820
2821 return aops->write_begin(file, mapping, pos, len, flags,
2822 pagep, fsdata);
2823 }
2824 EXPORT_SYMBOL(pagecache_write_begin);
2825
2826 int pagecache_write_end(struct file *file, struct address_space *mapping,
2827 loff_t pos, unsigned len, unsigned copied,
2828 struct page *page, void *fsdata)
2829 {
2830 const struct address_space_operations *aops = mapping->a_ops;
2831
2832 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2833 }
2834 EXPORT_SYMBOL(pagecache_write_end);
2835
2836 ssize_t
2837 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2838 {
2839 struct file *file = iocb->ki_filp;
2840 struct address_space *mapping = file->f_mapping;
2841 struct inode *inode = mapping->host;
2842 loff_t pos = iocb->ki_pos;
2843 ssize_t written;
2844 size_t write_len;
2845 pgoff_t end;
2846
2847 write_len = iov_iter_count(from);
2848 end = (pos + write_len - 1) >> PAGE_SHIFT;
2849
2850 if (iocb->ki_flags & IOCB_NOWAIT) {
2851 /* If there are pages to writeback, return */
2852 if (filemap_range_has_page(inode->i_mapping, pos,
2853 pos + iov_iter_count(from)))
2854 return -EAGAIN;
2855 } else {
2856 written = filemap_write_and_wait_range(mapping, pos,
2857 pos + write_len - 1);
2858 if (written)
2859 goto out;
2860 }
2861
2862 /*
2863 * After a write we want buffered reads to be sure to go to disk to get
2864 * the new data. We invalidate clean cached page from the region we're
2865 * about to write. We do this *before* the write so that we can return
2866 * without clobbering -EIOCBQUEUED from ->direct_IO().
2867 */
2868 written = invalidate_inode_pages2_range(mapping,
2869 pos >> PAGE_SHIFT, end);
2870 /*
2871 * If a page can not be invalidated, return 0 to fall back
2872 * to buffered write.
2873 */
2874 if (written) {
2875 if (written == -EBUSY)
2876 return 0;
2877 goto out;
2878 }
2879
2880 written = mapping->a_ops->direct_IO(iocb, from);
2881
2882 /*
2883 * Finally, try again to invalidate clean pages which might have been
2884 * cached by non-direct readahead, or faulted in by get_user_pages()
2885 * if the source of the write was an mmap'ed region of the file
2886 * we're writing. Either one is a pretty crazy thing to do,
2887 * so we don't support it 100%. If this invalidation
2888 * fails, tough, the write still worked...
2889 */
2890 invalidate_inode_pages2_range(mapping,
2891 pos >> PAGE_SHIFT, end);
2892
2893 if (written > 0) {
2894 pos += written;
2895 write_len -= written;
2896 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2897 i_size_write(inode, pos);
2898 mark_inode_dirty(inode);
2899 }
2900 iocb->ki_pos = pos;
2901 }
2902 iov_iter_revert(from, write_len - iov_iter_count(from));
2903 out:
2904 return written;
2905 }
2906 EXPORT_SYMBOL(generic_file_direct_write);
2907
2908 /*
2909 * Find or create a page at the given pagecache position. Return the locked
2910 * page. This function is specifically for buffered writes.
2911 */
2912 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2913 pgoff_t index, unsigned flags)
2914 {
2915 struct page *page;
2916 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2917
2918 if (flags & AOP_FLAG_NOFS)
2919 fgp_flags |= FGP_NOFS;
2920
2921 page = pagecache_get_page(mapping, index, fgp_flags,
2922 mapping_gfp_mask(mapping));
2923 if (page)
2924 wait_for_stable_page(page);
2925
2926 return page;
2927 }
2928 EXPORT_SYMBOL(grab_cache_page_write_begin);
2929
2930 ssize_t generic_perform_write(struct file *file,
2931 struct iov_iter *i, loff_t pos)
2932 {
2933 struct address_space *mapping = file->f_mapping;
2934 const struct address_space_operations *a_ops = mapping->a_ops;
2935 long status = 0;
2936 ssize_t written = 0;
2937 unsigned int flags = 0;
2938
2939 do {
2940 struct page *page;
2941 unsigned long offset; /* Offset into pagecache page */
2942 unsigned long bytes; /* Bytes to write to page */
2943 size_t copied; /* Bytes copied from user */
2944 void *fsdata;
2945
2946 offset = (pos & (PAGE_SIZE - 1));
2947 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2948 iov_iter_count(i));
2949
2950 again:
2951 /*
2952 * Bring in the user page that we will copy from _first_.
2953 * Otherwise there's a nasty deadlock on copying from the
2954 * same page as we're writing to, without it being marked
2955 * up-to-date.
2956 *
2957 * Not only is this an optimisation, but it is also required
2958 * to check that the address is actually valid, when atomic
2959 * usercopies are used, below.
2960 */
2961 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2962 status = -EFAULT;
2963 break;
2964 }
2965
2966 if (fatal_signal_pending(current)) {
2967 status = -EINTR;
2968 break;
2969 }
2970
2971 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2972 &page, &fsdata);
2973 if (unlikely(status < 0))
2974 break;
2975
2976 if (mapping_writably_mapped(mapping))
2977 flush_dcache_page(page);
2978
2979 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2980 flush_dcache_page(page);
2981
2982 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2983 page, fsdata);
2984 if (unlikely(status < 0))
2985 break;
2986 copied = status;
2987
2988 cond_resched();
2989
2990 iov_iter_advance(i, copied);
2991 if (unlikely(copied == 0)) {
2992 /*
2993 * If we were unable to copy any data at all, we must
2994 * fall back to a single segment length write.
2995 *
2996 * If we didn't fallback here, we could livelock
2997 * because not all segments in the iov can be copied at
2998 * once without a pagefault.
2999 */
3000 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3001 iov_iter_single_seg_count(i));
3002 goto again;
3003 }
3004 pos += copied;
3005 written += copied;
3006
3007 balance_dirty_pages_ratelimited(mapping);
3008 } while (iov_iter_count(i));
3009
3010 return written ? written : status;
3011 }
3012 EXPORT_SYMBOL(generic_perform_write);
3013
3014 /**
3015 * __generic_file_write_iter - write data to a file
3016 * @iocb: IO state structure (file, offset, etc.)
3017 * @from: iov_iter with data to write
3018 *
3019 * This function does all the work needed for actually writing data to a
3020 * file. It does all basic checks, removes SUID from the file, updates
3021 * modification times and calls proper subroutines depending on whether we
3022 * do direct IO or a standard buffered write.
3023 *
3024 * It expects i_mutex to be grabbed unless we work on a block device or similar
3025 * object which does not need locking at all.
3026 *
3027 * This function does *not* take care of syncing data in case of O_SYNC write.
3028 * A caller has to handle it. This is mainly due to the fact that we want to
3029 * avoid syncing under i_mutex.
3030 */
3031 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3032 {
3033 struct file *file = iocb->ki_filp;
3034 struct address_space * mapping = file->f_mapping;
3035 struct inode *inode = mapping->host;
3036 ssize_t written = 0;
3037 ssize_t err;
3038 ssize_t status;
3039
3040 /* We can write back this queue in page reclaim */
3041 current->backing_dev_info = inode_to_bdi(inode);
3042 err = file_remove_privs(file);
3043 if (err)
3044 goto out;
3045
3046 err = file_update_time(file);
3047 if (err)
3048 goto out;
3049
3050 if (iocb->ki_flags & IOCB_DIRECT) {
3051 loff_t pos, endbyte;
3052
3053 written = generic_file_direct_write(iocb, from);
3054 /*
3055 * If the write stopped short of completing, fall back to
3056 * buffered writes. Some filesystems do this for writes to
3057 * holes, for example. For DAX files, a buffered write will
3058 * not succeed (even if it did, DAX does not handle dirty
3059 * page-cache pages correctly).
3060 */
3061 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3062 goto out;
3063
3064 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3065 /*
3066 * If generic_perform_write() returned a synchronous error
3067 * then we want to return the number of bytes which were
3068 * direct-written, or the error code if that was zero. Note
3069 * that this differs from normal direct-io semantics, which
3070 * will return -EFOO even if some bytes were written.
3071 */
3072 if (unlikely(status < 0)) {
3073 err = status;
3074 goto out;
3075 }
3076 /*
3077 * We need to ensure that the page cache pages are written to
3078 * disk and invalidated to preserve the expected O_DIRECT
3079 * semantics.
3080 */
3081 endbyte = pos + status - 1;
3082 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3083 if (err == 0) {
3084 iocb->ki_pos = endbyte + 1;
3085 written += status;
3086 invalidate_mapping_pages(mapping,
3087 pos >> PAGE_SHIFT,
3088 endbyte >> PAGE_SHIFT);
3089 } else {
3090 /*
3091 * We don't know how much we wrote, so just return
3092 * the number of bytes which were direct-written
3093 */
3094 }
3095 } else {
3096 written = generic_perform_write(file, from, iocb->ki_pos);
3097 if (likely(written > 0))
3098 iocb->ki_pos += written;
3099 }
3100 out:
3101 current->backing_dev_info = NULL;
3102 return written ? written : err;
3103 }
3104 EXPORT_SYMBOL(__generic_file_write_iter);
3105
3106 /**
3107 * generic_file_write_iter - write data to a file
3108 * @iocb: IO state structure
3109 * @from: iov_iter with data to write
3110 *
3111 * This is a wrapper around __generic_file_write_iter() to be used by most
3112 * filesystems. It takes care of syncing the file in case of O_SYNC file
3113 * and acquires i_mutex as needed.
3114 */
3115 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3116 {
3117 struct file *file = iocb->ki_filp;
3118 struct inode *inode = file->f_mapping->host;
3119 ssize_t ret;
3120
3121 inode_lock(inode);
3122 ret = generic_write_checks(iocb, from);
3123 if (ret > 0)
3124 ret = __generic_file_write_iter(iocb, from);
3125 inode_unlock(inode);
3126
3127 if (ret > 0)
3128 ret = generic_write_sync(iocb, ret);
3129 return ret;
3130 }
3131 EXPORT_SYMBOL(generic_file_write_iter);
3132
3133 /**
3134 * try_to_release_page() - release old fs-specific metadata on a page
3135 *
3136 * @page: the page which the kernel is trying to free
3137 * @gfp_mask: memory allocation flags (and I/O mode)
3138 *
3139 * The address_space is to try to release any data against the page
3140 * (presumably at page->private). If the release was successful, return '1'.
3141 * Otherwise return zero.
3142 *
3143 * This may also be called if PG_fscache is set on a page, indicating that the
3144 * page is known to the local caching routines.
3145 *
3146 * The @gfp_mask argument specifies whether I/O may be performed to release
3147 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3148 *
3149 */
3150 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3151 {
3152 struct address_space * const mapping = page->mapping;
3153
3154 BUG_ON(!PageLocked(page));
3155 if (PageWriteback(page))
3156 return 0;
3157
3158 if (mapping && mapping->a_ops->releasepage)
3159 return mapping->a_ops->releasepage(page, gfp_mask);
3160 return try_to_free_buffers(page);
3161 }
3162
3163 EXPORT_SYMBOL(try_to_release_page);