]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/filemap.c
Merge tag 'pwm/for-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63 /*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116 {
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (shadowp)
134 *shadowp = p;
135 }
136 __radix_tree_replace(&mapping->page_tree, node, slot, page,
137 workingset_update_node, mapping);
138 mapping->nrpages++;
139 return 0;
140 }
141
142 static void page_cache_tree_delete(struct address_space *mapping,
143 struct page *page, void *shadow)
144 {
145 int i, nr;
146
147 /* hugetlb pages are represented by one entry in the radix tree */
148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(PageTail(page), page);
152 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153
154 for (i = 0; i < nr; i++) {
155 struct radix_tree_node *node;
156 void **slot;
157
158 __radix_tree_lookup(&mapping->page_tree, page->index + i,
159 &node, &slot);
160
161 VM_BUG_ON_PAGE(!node && nr != 1, page);
162
163 radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 workingset_update_node, mapping);
166 }
167
168 if (shadow) {
169 mapping->nrexceptional += nr;
170 /*
171 * Make sure the nrexceptional update is committed before
172 * the nrpages update so that final truncate racing
173 * with reclaim does not see both counters 0 at the
174 * same time and miss a shadow entry.
175 */
176 smp_wmb();
177 }
178 mapping->nrpages -= nr;
179 }
180
181 /*
182 * Delete a page from the page cache and free it. Caller has to make
183 * sure the page is locked and that nobody else uses it - or that usage
184 * is safe. The caller must hold the mapping's tree_lock.
185 */
186 void __delete_from_page_cache(struct page *page, void *shadow)
187 {
188 struct address_space *mapping = page->mapping;
189 int nr = hpage_nr_pages(page);
190
191 trace_mm_filemap_delete_from_page_cache(page);
192 /*
193 * if we're uptodate, flush out into the cleancache, otherwise
194 * invalidate any existing cleancache entries. We can't leave
195 * stale data around in the cleancache once our page is gone
196 */
197 if (PageUptodate(page) && PageMappedToDisk(page))
198 cleancache_put_page(page);
199 else
200 cleancache_invalidate_page(mapping, page);
201
202 VM_BUG_ON_PAGE(PageTail(page), page);
203 VM_BUG_ON_PAGE(page_mapped(page), page);
204 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
205 int mapcount;
206
207 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
208 current->comm, page_to_pfn(page));
209 dump_page(page, "still mapped when deleted");
210 dump_stack();
211 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
212
213 mapcount = page_mapcount(page);
214 if (mapping_exiting(mapping) &&
215 page_count(page) >= mapcount + 2) {
216 /*
217 * All vmas have already been torn down, so it's
218 * a good bet that actually the page is unmapped,
219 * and we'd prefer not to leak it: if we're wrong,
220 * some other bad page check should catch it later.
221 */
222 page_mapcount_reset(page);
223 page_ref_sub(page, mapcount);
224 }
225 }
226
227 page_cache_tree_delete(mapping, page, shadow);
228
229 page->mapping = NULL;
230 /* Leave page->index set: truncation lookup relies upon it */
231
232 /* hugetlb pages do not participate in page cache accounting. */
233 if (PageHuge(page))
234 return;
235
236 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
237 if (PageSwapBacked(page)) {
238 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
239 if (PageTransHuge(page))
240 __dec_node_page_state(page, NR_SHMEM_THPS);
241 } else {
242 VM_BUG_ON_PAGE(PageTransHuge(page), page);
243 }
244
245 /*
246 * At this point page must be either written or cleaned by truncate.
247 * Dirty page here signals a bug and loss of unwritten data.
248 *
249 * This fixes dirty accounting after removing the page entirely but
250 * leaves PageDirty set: it has no effect for truncated page and
251 * anyway will be cleared before returning page into buddy allocator.
252 */
253 if (WARN_ON_ONCE(PageDirty(page)))
254 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
255 }
256
257 /**
258 * delete_from_page_cache - delete page from page cache
259 * @page: the page which the kernel is trying to remove from page cache
260 *
261 * This must be called only on pages that have been verified to be in the page
262 * cache and locked. It will never put the page into the free list, the caller
263 * has a reference on the page.
264 */
265 void delete_from_page_cache(struct page *page)
266 {
267 struct address_space *mapping = page_mapping(page);
268 unsigned long flags;
269 void (*freepage)(struct page *);
270
271 BUG_ON(!PageLocked(page));
272
273 freepage = mapping->a_ops->freepage;
274
275 spin_lock_irqsave(&mapping->tree_lock, flags);
276 __delete_from_page_cache(page, NULL);
277 spin_unlock_irqrestore(&mapping->tree_lock, flags);
278
279 if (freepage)
280 freepage(page);
281
282 if (PageTransHuge(page) && !PageHuge(page)) {
283 page_ref_sub(page, HPAGE_PMD_NR);
284 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
285 } else {
286 put_page(page);
287 }
288 }
289 EXPORT_SYMBOL(delete_from_page_cache);
290
291 int filemap_check_errors(struct address_space *mapping)
292 {
293 int ret = 0;
294 /* Check for outstanding write errors */
295 if (test_bit(AS_ENOSPC, &mapping->flags) &&
296 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 ret = -ENOSPC;
298 if (test_bit(AS_EIO, &mapping->flags) &&
299 test_and_clear_bit(AS_EIO, &mapping->flags))
300 ret = -EIO;
301 return ret;
302 }
303 EXPORT_SYMBOL(filemap_check_errors);
304
305 static int filemap_check_and_keep_errors(struct address_space *mapping)
306 {
307 /* Check for outstanding write errors */
308 if (test_bit(AS_EIO, &mapping->flags))
309 return -EIO;
310 if (test_bit(AS_ENOSPC, &mapping->flags))
311 return -ENOSPC;
312 return 0;
313 }
314
315 /**
316 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
317 * @mapping: address space structure to write
318 * @start: offset in bytes where the range starts
319 * @end: offset in bytes where the range ends (inclusive)
320 * @sync_mode: enable synchronous operation
321 *
322 * Start writeback against all of a mapping's dirty pages that lie
323 * within the byte offsets <start, end> inclusive.
324 *
325 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
326 * opposed to a regular memory cleansing writeback. The difference between
327 * these two operations is that if a dirty page/buffer is encountered, it must
328 * be waited upon, and not just skipped over.
329 */
330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
331 loff_t end, int sync_mode)
332 {
333 int ret;
334 struct writeback_control wbc = {
335 .sync_mode = sync_mode,
336 .nr_to_write = LONG_MAX,
337 .range_start = start,
338 .range_end = end,
339 };
340
341 if (!mapping_cap_writeback_dirty(mapping))
342 return 0;
343
344 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
345 ret = do_writepages(mapping, &wbc);
346 wbc_detach_inode(&wbc);
347 return ret;
348 }
349
350 static inline int __filemap_fdatawrite(struct address_space *mapping,
351 int sync_mode)
352 {
353 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
354 }
355
356 int filemap_fdatawrite(struct address_space *mapping)
357 {
358 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
359 }
360 EXPORT_SYMBOL(filemap_fdatawrite);
361
362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
363 loff_t end)
364 {
365 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite_range);
368
369 /**
370 * filemap_flush - mostly a non-blocking flush
371 * @mapping: target address_space
372 *
373 * This is a mostly non-blocking flush. Not suitable for data-integrity
374 * purposes - I/O may not be started against all dirty pages.
375 */
376 int filemap_flush(struct address_space *mapping)
377 {
378 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
379 }
380 EXPORT_SYMBOL(filemap_flush);
381
382 /**
383 * filemap_range_has_page - check if a page exists in range.
384 * @mapping: address space within which to check
385 * @start_byte: offset in bytes where the range starts
386 * @end_byte: offset in bytes where the range ends (inclusive)
387 *
388 * Find at least one page in the range supplied, usually used to check if
389 * direct writing in this range will trigger a writeback.
390 */
391 bool filemap_range_has_page(struct address_space *mapping,
392 loff_t start_byte, loff_t end_byte)
393 {
394 pgoff_t index = start_byte >> PAGE_SHIFT;
395 pgoff_t end = end_byte >> PAGE_SHIFT;
396 struct page *page;
397
398 if (end_byte < start_byte)
399 return false;
400
401 if (mapping->nrpages == 0)
402 return false;
403
404 if (!find_get_pages_range(mapping, &index, end, 1, &page))
405 return false;
406 put_page(page);
407 return true;
408 }
409 EXPORT_SYMBOL(filemap_range_has_page);
410
411 static void __filemap_fdatawait_range(struct address_space *mapping,
412 loff_t start_byte, loff_t end_byte)
413 {
414 pgoff_t index = start_byte >> PAGE_SHIFT;
415 pgoff_t end = end_byte >> PAGE_SHIFT;
416 struct pagevec pvec;
417 int nr_pages;
418
419 if (end_byte < start_byte)
420 return;
421
422 pagevec_init(&pvec, 0);
423 while ((index <= end) &&
424 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
425 PAGECACHE_TAG_WRITEBACK,
426 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
427 unsigned i;
428
429 for (i = 0; i < nr_pages; i++) {
430 struct page *page = pvec.pages[i];
431
432 /* until radix tree lookup accepts end_index */
433 if (page->index > end)
434 continue;
435
436 wait_on_page_writeback(page);
437 ClearPageError(page);
438 }
439 pagevec_release(&pvec);
440 cond_resched();
441 }
442 }
443
444 /**
445 * filemap_fdatawait_range - wait for writeback to complete
446 * @mapping: address space structure to wait for
447 * @start_byte: offset in bytes where the range starts
448 * @end_byte: offset in bytes where the range ends (inclusive)
449 *
450 * Walk the list of under-writeback pages of the given address space
451 * in the given range and wait for all of them. Check error status of
452 * the address space and return it.
453 *
454 * Since the error status of the address space is cleared by this function,
455 * callers are responsible for checking the return value and handling and/or
456 * reporting the error.
457 */
458 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
459 loff_t end_byte)
460 {
461 __filemap_fdatawait_range(mapping, start_byte, end_byte);
462 return filemap_check_errors(mapping);
463 }
464 EXPORT_SYMBOL(filemap_fdatawait_range);
465
466 /**
467 * file_fdatawait_range - wait for writeback to complete
468 * @file: file pointing to address space structure to wait for
469 * @start_byte: offset in bytes where the range starts
470 * @end_byte: offset in bytes where the range ends (inclusive)
471 *
472 * Walk the list of under-writeback pages of the address space that file
473 * refers to, in the given range and wait for all of them. Check error
474 * status of the address space vs. the file->f_wb_err cursor and return it.
475 *
476 * Since the error status of the file is advanced by this function,
477 * callers are responsible for checking the return value and handling and/or
478 * reporting the error.
479 */
480 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
481 {
482 struct address_space *mapping = file->f_mapping;
483
484 __filemap_fdatawait_range(mapping, start_byte, end_byte);
485 return file_check_and_advance_wb_err(file);
486 }
487 EXPORT_SYMBOL(file_fdatawait_range);
488
489 /**
490 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
491 * @mapping: address space structure to wait for
492 *
493 * Walk the list of under-writeback pages of the given address space
494 * and wait for all of them. Unlike filemap_fdatawait(), this function
495 * does not clear error status of the address space.
496 *
497 * Use this function if callers don't handle errors themselves. Expected
498 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
499 * fsfreeze(8)
500 */
501 int filemap_fdatawait_keep_errors(struct address_space *mapping)
502 {
503 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
504 return filemap_check_and_keep_errors(mapping);
505 }
506 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
507
508 static bool mapping_needs_writeback(struct address_space *mapping)
509 {
510 return (!dax_mapping(mapping) && mapping->nrpages) ||
511 (dax_mapping(mapping) && mapping->nrexceptional);
512 }
513
514 int filemap_write_and_wait(struct address_space *mapping)
515 {
516 int err = 0;
517
518 if (mapping_needs_writeback(mapping)) {
519 err = filemap_fdatawrite(mapping);
520 /*
521 * Even if the above returned error, the pages may be
522 * written partially (e.g. -ENOSPC), so we wait for it.
523 * But the -EIO is special case, it may indicate the worst
524 * thing (e.g. bug) happened, so we avoid waiting for it.
525 */
526 if (err != -EIO) {
527 int err2 = filemap_fdatawait(mapping);
528 if (!err)
529 err = err2;
530 } else {
531 /* Clear any previously stored errors */
532 filemap_check_errors(mapping);
533 }
534 } else {
535 err = filemap_check_errors(mapping);
536 }
537 return err;
538 }
539 EXPORT_SYMBOL(filemap_write_and_wait);
540
541 /**
542 * filemap_write_and_wait_range - write out & wait on a file range
543 * @mapping: the address_space for the pages
544 * @lstart: offset in bytes where the range starts
545 * @lend: offset in bytes where the range ends (inclusive)
546 *
547 * Write out and wait upon file offsets lstart->lend, inclusive.
548 *
549 * Note that @lend is inclusive (describes the last byte to be written) so
550 * that this function can be used to write to the very end-of-file (end = -1).
551 */
552 int filemap_write_and_wait_range(struct address_space *mapping,
553 loff_t lstart, loff_t lend)
554 {
555 int err = 0;
556
557 if (mapping_needs_writeback(mapping)) {
558 err = __filemap_fdatawrite_range(mapping, lstart, lend,
559 WB_SYNC_ALL);
560 /* See comment of filemap_write_and_wait() */
561 if (err != -EIO) {
562 int err2 = filemap_fdatawait_range(mapping,
563 lstart, lend);
564 if (!err)
565 err = err2;
566 } else {
567 /* Clear any previously stored errors */
568 filemap_check_errors(mapping);
569 }
570 } else {
571 err = filemap_check_errors(mapping);
572 }
573 return err;
574 }
575 EXPORT_SYMBOL(filemap_write_and_wait_range);
576
577 void __filemap_set_wb_err(struct address_space *mapping, int err)
578 {
579 errseq_t eseq = errseq_set(&mapping->wb_err, err);
580
581 trace_filemap_set_wb_err(mapping, eseq);
582 }
583 EXPORT_SYMBOL(__filemap_set_wb_err);
584
585 /**
586 * file_check_and_advance_wb_err - report wb error (if any) that was previously
587 * and advance wb_err to current one
588 * @file: struct file on which the error is being reported
589 *
590 * When userland calls fsync (or something like nfsd does the equivalent), we
591 * want to report any writeback errors that occurred since the last fsync (or
592 * since the file was opened if there haven't been any).
593 *
594 * Grab the wb_err from the mapping. If it matches what we have in the file,
595 * then just quickly return 0. The file is all caught up.
596 *
597 * If it doesn't match, then take the mapping value, set the "seen" flag in
598 * it and try to swap it into place. If it works, or another task beat us
599 * to it with the new value, then update the f_wb_err and return the error
600 * portion. The error at this point must be reported via proper channels
601 * (a'la fsync, or NFS COMMIT operation, etc.).
602 *
603 * While we handle mapping->wb_err with atomic operations, the f_wb_err
604 * value is protected by the f_lock since we must ensure that it reflects
605 * the latest value swapped in for this file descriptor.
606 */
607 int file_check_and_advance_wb_err(struct file *file)
608 {
609 int err = 0;
610 errseq_t old = READ_ONCE(file->f_wb_err);
611 struct address_space *mapping = file->f_mapping;
612
613 /* Locklessly handle the common case where nothing has changed */
614 if (errseq_check(&mapping->wb_err, old)) {
615 /* Something changed, must use slow path */
616 spin_lock(&file->f_lock);
617 old = file->f_wb_err;
618 err = errseq_check_and_advance(&mapping->wb_err,
619 &file->f_wb_err);
620 trace_file_check_and_advance_wb_err(file, old);
621 spin_unlock(&file->f_lock);
622 }
623 return err;
624 }
625 EXPORT_SYMBOL(file_check_and_advance_wb_err);
626
627 /**
628 * file_write_and_wait_range - write out & wait on a file range
629 * @file: file pointing to address_space with pages
630 * @lstart: offset in bytes where the range starts
631 * @lend: offset in bytes where the range ends (inclusive)
632 *
633 * Write out and wait upon file offsets lstart->lend, inclusive.
634 *
635 * Note that @lend is inclusive (describes the last byte to be written) so
636 * that this function can be used to write to the very end-of-file (end = -1).
637 *
638 * After writing out and waiting on the data, we check and advance the
639 * f_wb_err cursor to the latest value, and return any errors detected there.
640 */
641 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
642 {
643 int err = 0, err2;
644 struct address_space *mapping = file->f_mapping;
645
646 if (mapping_needs_writeback(mapping)) {
647 err = __filemap_fdatawrite_range(mapping, lstart, lend,
648 WB_SYNC_ALL);
649 /* See comment of filemap_write_and_wait() */
650 if (err != -EIO)
651 __filemap_fdatawait_range(mapping, lstart, lend);
652 }
653 err2 = file_check_and_advance_wb_err(file);
654 if (!err)
655 err = err2;
656 return err;
657 }
658 EXPORT_SYMBOL(file_write_and_wait_range);
659
660 /**
661 * replace_page_cache_page - replace a pagecache page with a new one
662 * @old: page to be replaced
663 * @new: page to replace with
664 * @gfp_mask: allocation mode
665 *
666 * This function replaces a page in the pagecache with a new one. On
667 * success it acquires the pagecache reference for the new page and
668 * drops it for the old page. Both the old and new pages must be
669 * locked. This function does not add the new page to the LRU, the
670 * caller must do that.
671 *
672 * The remove + add is atomic. The only way this function can fail is
673 * memory allocation failure.
674 */
675 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
676 {
677 int error;
678
679 VM_BUG_ON_PAGE(!PageLocked(old), old);
680 VM_BUG_ON_PAGE(!PageLocked(new), new);
681 VM_BUG_ON_PAGE(new->mapping, new);
682
683 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
684 if (!error) {
685 struct address_space *mapping = old->mapping;
686 void (*freepage)(struct page *);
687 unsigned long flags;
688
689 pgoff_t offset = old->index;
690 freepage = mapping->a_ops->freepage;
691
692 get_page(new);
693 new->mapping = mapping;
694 new->index = offset;
695
696 spin_lock_irqsave(&mapping->tree_lock, flags);
697 __delete_from_page_cache(old, NULL);
698 error = page_cache_tree_insert(mapping, new, NULL);
699 BUG_ON(error);
700
701 /*
702 * hugetlb pages do not participate in page cache accounting.
703 */
704 if (!PageHuge(new))
705 __inc_node_page_state(new, NR_FILE_PAGES);
706 if (PageSwapBacked(new))
707 __inc_node_page_state(new, NR_SHMEM);
708 spin_unlock_irqrestore(&mapping->tree_lock, flags);
709 mem_cgroup_migrate(old, new);
710 radix_tree_preload_end();
711 if (freepage)
712 freepage(old);
713 put_page(old);
714 }
715
716 return error;
717 }
718 EXPORT_SYMBOL_GPL(replace_page_cache_page);
719
720 static int __add_to_page_cache_locked(struct page *page,
721 struct address_space *mapping,
722 pgoff_t offset, gfp_t gfp_mask,
723 void **shadowp)
724 {
725 int huge = PageHuge(page);
726 struct mem_cgroup *memcg;
727 int error;
728
729 VM_BUG_ON_PAGE(!PageLocked(page), page);
730 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
731
732 if (!huge) {
733 error = mem_cgroup_try_charge(page, current->mm,
734 gfp_mask, &memcg, false);
735 if (error)
736 return error;
737 }
738
739 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
740 if (error) {
741 if (!huge)
742 mem_cgroup_cancel_charge(page, memcg, false);
743 return error;
744 }
745
746 get_page(page);
747 page->mapping = mapping;
748 page->index = offset;
749
750 spin_lock_irq(&mapping->tree_lock);
751 error = page_cache_tree_insert(mapping, page, shadowp);
752 radix_tree_preload_end();
753 if (unlikely(error))
754 goto err_insert;
755
756 /* hugetlb pages do not participate in page cache accounting. */
757 if (!huge)
758 __inc_node_page_state(page, NR_FILE_PAGES);
759 spin_unlock_irq(&mapping->tree_lock);
760 if (!huge)
761 mem_cgroup_commit_charge(page, memcg, false, false);
762 trace_mm_filemap_add_to_page_cache(page);
763 return 0;
764 err_insert:
765 page->mapping = NULL;
766 /* Leave page->index set: truncation relies upon it */
767 spin_unlock_irq(&mapping->tree_lock);
768 if (!huge)
769 mem_cgroup_cancel_charge(page, memcg, false);
770 put_page(page);
771 return error;
772 }
773
774 /**
775 * add_to_page_cache_locked - add a locked page to the pagecache
776 * @page: page to add
777 * @mapping: the page's address_space
778 * @offset: page index
779 * @gfp_mask: page allocation mode
780 *
781 * This function is used to add a page to the pagecache. It must be locked.
782 * This function does not add the page to the LRU. The caller must do that.
783 */
784 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
785 pgoff_t offset, gfp_t gfp_mask)
786 {
787 return __add_to_page_cache_locked(page, mapping, offset,
788 gfp_mask, NULL);
789 }
790 EXPORT_SYMBOL(add_to_page_cache_locked);
791
792 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
793 pgoff_t offset, gfp_t gfp_mask)
794 {
795 void *shadow = NULL;
796 int ret;
797
798 __SetPageLocked(page);
799 ret = __add_to_page_cache_locked(page, mapping, offset,
800 gfp_mask, &shadow);
801 if (unlikely(ret))
802 __ClearPageLocked(page);
803 else {
804 /*
805 * The page might have been evicted from cache only
806 * recently, in which case it should be activated like
807 * any other repeatedly accessed page.
808 * The exception is pages getting rewritten; evicting other
809 * data from the working set, only to cache data that will
810 * get overwritten with something else, is a waste of memory.
811 */
812 if (!(gfp_mask & __GFP_WRITE) &&
813 shadow && workingset_refault(shadow)) {
814 SetPageActive(page);
815 workingset_activation(page);
816 } else
817 ClearPageActive(page);
818 lru_cache_add(page);
819 }
820 return ret;
821 }
822 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
823
824 #ifdef CONFIG_NUMA
825 struct page *__page_cache_alloc(gfp_t gfp)
826 {
827 int n;
828 struct page *page;
829
830 if (cpuset_do_page_mem_spread()) {
831 unsigned int cpuset_mems_cookie;
832 do {
833 cpuset_mems_cookie = read_mems_allowed_begin();
834 n = cpuset_mem_spread_node();
835 page = __alloc_pages_node(n, gfp, 0);
836 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
837
838 return page;
839 }
840 return alloc_pages(gfp, 0);
841 }
842 EXPORT_SYMBOL(__page_cache_alloc);
843 #endif
844
845 /*
846 * In order to wait for pages to become available there must be
847 * waitqueues associated with pages. By using a hash table of
848 * waitqueues where the bucket discipline is to maintain all
849 * waiters on the same queue and wake all when any of the pages
850 * become available, and for the woken contexts to check to be
851 * sure the appropriate page became available, this saves space
852 * at a cost of "thundering herd" phenomena during rare hash
853 * collisions.
854 */
855 #define PAGE_WAIT_TABLE_BITS 8
856 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
857 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
858
859 static wait_queue_head_t *page_waitqueue(struct page *page)
860 {
861 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
862 }
863
864 void __init pagecache_init(void)
865 {
866 int i;
867
868 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
869 init_waitqueue_head(&page_wait_table[i]);
870
871 page_writeback_init();
872 }
873
874 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
875 struct wait_page_key {
876 struct page *page;
877 int bit_nr;
878 int page_match;
879 };
880
881 struct wait_page_queue {
882 struct page *page;
883 int bit_nr;
884 wait_queue_entry_t wait;
885 };
886
887 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
888 {
889 struct wait_page_key *key = arg;
890 struct wait_page_queue *wait_page
891 = container_of(wait, struct wait_page_queue, wait);
892
893 if (wait_page->page != key->page)
894 return 0;
895 key->page_match = 1;
896
897 if (wait_page->bit_nr != key->bit_nr)
898 return 0;
899
900 /* Stop walking if it's locked */
901 if (test_bit(key->bit_nr, &key->page->flags))
902 return -1;
903
904 return autoremove_wake_function(wait, mode, sync, key);
905 }
906
907 static void wake_up_page_bit(struct page *page, int bit_nr)
908 {
909 wait_queue_head_t *q = page_waitqueue(page);
910 struct wait_page_key key;
911 unsigned long flags;
912
913 key.page = page;
914 key.bit_nr = bit_nr;
915 key.page_match = 0;
916
917 spin_lock_irqsave(&q->lock, flags);
918 __wake_up_locked_key(q, TASK_NORMAL, &key);
919 /*
920 * It is possible for other pages to have collided on the waitqueue
921 * hash, so in that case check for a page match. That prevents a long-
922 * term waiter
923 *
924 * It is still possible to miss a case here, when we woke page waiters
925 * and removed them from the waitqueue, but there are still other
926 * page waiters.
927 */
928 if (!waitqueue_active(q) || !key.page_match) {
929 ClearPageWaiters(page);
930 /*
931 * It's possible to miss clearing Waiters here, when we woke
932 * our page waiters, but the hashed waitqueue has waiters for
933 * other pages on it.
934 *
935 * That's okay, it's a rare case. The next waker will clear it.
936 */
937 }
938 spin_unlock_irqrestore(&q->lock, flags);
939 }
940
941 static void wake_up_page(struct page *page, int bit)
942 {
943 if (!PageWaiters(page))
944 return;
945 wake_up_page_bit(page, bit);
946 }
947
948 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
949 struct page *page, int bit_nr, int state, bool lock)
950 {
951 struct wait_page_queue wait_page;
952 wait_queue_entry_t *wait = &wait_page.wait;
953 int ret = 0;
954
955 init_wait(wait);
956 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
957 wait->func = wake_page_function;
958 wait_page.page = page;
959 wait_page.bit_nr = bit_nr;
960
961 for (;;) {
962 spin_lock_irq(&q->lock);
963
964 if (likely(list_empty(&wait->entry))) {
965 __add_wait_queue_entry_tail(q, wait);
966 SetPageWaiters(page);
967 }
968
969 set_current_state(state);
970
971 spin_unlock_irq(&q->lock);
972
973 if (likely(test_bit(bit_nr, &page->flags))) {
974 io_schedule();
975 }
976
977 if (lock) {
978 if (!test_and_set_bit_lock(bit_nr, &page->flags))
979 break;
980 } else {
981 if (!test_bit(bit_nr, &page->flags))
982 break;
983 }
984
985 if (unlikely(signal_pending_state(state, current))) {
986 ret = -EINTR;
987 break;
988 }
989 }
990
991 finish_wait(q, wait);
992
993 /*
994 * A signal could leave PageWaiters set. Clearing it here if
995 * !waitqueue_active would be possible (by open-coding finish_wait),
996 * but still fail to catch it in the case of wait hash collision. We
997 * already can fail to clear wait hash collision cases, so don't
998 * bother with signals either.
999 */
1000
1001 return ret;
1002 }
1003
1004 void wait_on_page_bit(struct page *page, int bit_nr)
1005 {
1006 wait_queue_head_t *q = page_waitqueue(page);
1007 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1008 }
1009 EXPORT_SYMBOL(wait_on_page_bit);
1010
1011 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1012 {
1013 wait_queue_head_t *q = page_waitqueue(page);
1014 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1015 }
1016
1017 /**
1018 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1019 * @page: Page defining the wait queue of interest
1020 * @waiter: Waiter to add to the queue
1021 *
1022 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1023 */
1024 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1025 {
1026 wait_queue_head_t *q = page_waitqueue(page);
1027 unsigned long flags;
1028
1029 spin_lock_irqsave(&q->lock, flags);
1030 __add_wait_queue_entry_tail(q, waiter);
1031 SetPageWaiters(page);
1032 spin_unlock_irqrestore(&q->lock, flags);
1033 }
1034 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1035
1036 #ifndef clear_bit_unlock_is_negative_byte
1037
1038 /*
1039 * PG_waiters is the high bit in the same byte as PG_lock.
1040 *
1041 * On x86 (and on many other architectures), we can clear PG_lock and
1042 * test the sign bit at the same time. But if the architecture does
1043 * not support that special operation, we just do this all by hand
1044 * instead.
1045 *
1046 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1047 * being cleared, but a memory barrier should be unneccssary since it is
1048 * in the same byte as PG_locked.
1049 */
1050 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1051 {
1052 clear_bit_unlock(nr, mem);
1053 /* smp_mb__after_atomic(); */
1054 return test_bit(PG_waiters, mem);
1055 }
1056
1057 #endif
1058
1059 /**
1060 * unlock_page - unlock a locked page
1061 * @page: the page
1062 *
1063 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1064 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1065 * mechanism between PageLocked pages and PageWriteback pages is shared.
1066 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1067 *
1068 * Note that this depends on PG_waiters being the sign bit in the byte
1069 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1070 * clear the PG_locked bit and test PG_waiters at the same time fairly
1071 * portably (architectures that do LL/SC can test any bit, while x86 can
1072 * test the sign bit).
1073 */
1074 void unlock_page(struct page *page)
1075 {
1076 BUILD_BUG_ON(PG_waiters != 7);
1077 page = compound_head(page);
1078 VM_BUG_ON_PAGE(!PageLocked(page), page);
1079 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1080 wake_up_page_bit(page, PG_locked);
1081 }
1082 EXPORT_SYMBOL(unlock_page);
1083
1084 /**
1085 * end_page_writeback - end writeback against a page
1086 * @page: the page
1087 */
1088 void end_page_writeback(struct page *page)
1089 {
1090 /*
1091 * TestClearPageReclaim could be used here but it is an atomic
1092 * operation and overkill in this particular case. Failing to
1093 * shuffle a page marked for immediate reclaim is too mild to
1094 * justify taking an atomic operation penalty at the end of
1095 * ever page writeback.
1096 */
1097 if (PageReclaim(page)) {
1098 ClearPageReclaim(page);
1099 rotate_reclaimable_page(page);
1100 }
1101
1102 if (!test_clear_page_writeback(page))
1103 BUG();
1104
1105 smp_mb__after_atomic();
1106 wake_up_page(page, PG_writeback);
1107 }
1108 EXPORT_SYMBOL(end_page_writeback);
1109
1110 /*
1111 * After completing I/O on a page, call this routine to update the page
1112 * flags appropriately
1113 */
1114 void page_endio(struct page *page, bool is_write, int err)
1115 {
1116 if (!is_write) {
1117 if (!err) {
1118 SetPageUptodate(page);
1119 } else {
1120 ClearPageUptodate(page);
1121 SetPageError(page);
1122 }
1123 unlock_page(page);
1124 } else {
1125 if (err) {
1126 struct address_space *mapping;
1127
1128 SetPageError(page);
1129 mapping = page_mapping(page);
1130 if (mapping)
1131 mapping_set_error(mapping, err);
1132 }
1133 end_page_writeback(page);
1134 }
1135 }
1136 EXPORT_SYMBOL_GPL(page_endio);
1137
1138 /**
1139 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1140 * @__page: the page to lock
1141 */
1142 void __lock_page(struct page *__page)
1143 {
1144 struct page *page = compound_head(__page);
1145 wait_queue_head_t *q = page_waitqueue(page);
1146 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1147 }
1148 EXPORT_SYMBOL(__lock_page);
1149
1150 int __lock_page_killable(struct page *__page)
1151 {
1152 struct page *page = compound_head(__page);
1153 wait_queue_head_t *q = page_waitqueue(page);
1154 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1155 }
1156 EXPORT_SYMBOL_GPL(__lock_page_killable);
1157
1158 /*
1159 * Return values:
1160 * 1 - page is locked; mmap_sem is still held.
1161 * 0 - page is not locked.
1162 * mmap_sem has been released (up_read()), unless flags had both
1163 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1164 * which case mmap_sem is still held.
1165 *
1166 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1167 * with the page locked and the mmap_sem unperturbed.
1168 */
1169 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1170 unsigned int flags)
1171 {
1172 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1173 /*
1174 * CAUTION! In this case, mmap_sem is not released
1175 * even though return 0.
1176 */
1177 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1178 return 0;
1179
1180 up_read(&mm->mmap_sem);
1181 if (flags & FAULT_FLAG_KILLABLE)
1182 wait_on_page_locked_killable(page);
1183 else
1184 wait_on_page_locked(page);
1185 return 0;
1186 } else {
1187 if (flags & FAULT_FLAG_KILLABLE) {
1188 int ret;
1189
1190 ret = __lock_page_killable(page);
1191 if (ret) {
1192 up_read(&mm->mmap_sem);
1193 return 0;
1194 }
1195 } else
1196 __lock_page(page);
1197 return 1;
1198 }
1199 }
1200
1201 /**
1202 * page_cache_next_hole - find the next hole (not-present entry)
1203 * @mapping: mapping
1204 * @index: index
1205 * @max_scan: maximum range to search
1206 *
1207 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1208 * lowest indexed hole.
1209 *
1210 * Returns: the index of the hole if found, otherwise returns an index
1211 * outside of the set specified (in which case 'return - index >=
1212 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1213 * be returned.
1214 *
1215 * page_cache_next_hole may be called under rcu_read_lock. However,
1216 * like radix_tree_gang_lookup, this will not atomically search a
1217 * snapshot of the tree at a single point in time. For example, if a
1218 * hole is created at index 5, then subsequently a hole is created at
1219 * index 10, page_cache_next_hole covering both indexes may return 10
1220 * if called under rcu_read_lock.
1221 */
1222 pgoff_t page_cache_next_hole(struct address_space *mapping,
1223 pgoff_t index, unsigned long max_scan)
1224 {
1225 unsigned long i;
1226
1227 for (i = 0; i < max_scan; i++) {
1228 struct page *page;
1229
1230 page = radix_tree_lookup(&mapping->page_tree, index);
1231 if (!page || radix_tree_exceptional_entry(page))
1232 break;
1233 index++;
1234 if (index == 0)
1235 break;
1236 }
1237
1238 return index;
1239 }
1240 EXPORT_SYMBOL(page_cache_next_hole);
1241
1242 /**
1243 * page_cache_prev_hole - find the prev hole (not-present entry)
1244 * @mapping: mapping
1245 * @index: index
1246 * @max_scan: maximum range to search
1247 *
1248 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1249 * the first hole.
1250 *
1251 * Returns: the index of the hole if found, otherwise returns an index
1252 * outside of the set specified (in which case 'index - return >=
1253 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1254 * will be returned.
1255 *
1256 * page_cache_prev_hole may be called under rcu_read_lock. However,
1257 * like radix_tree_gang_lookup, this will not atomically search a
1258 * snapshot of the tree at a single point in time. For example, if a
1259 * hole is created at index 10, then subsequently a hole is created at
1260 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1261 * called under rcu_read_lock.
1262 */
1263 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1264 pgoff_t index, unsigned long max_scan)
1265 {
1266 unsigned long i;
1267
1268 for (i = 0; i < max_scan; i++) {
1269 struct page *page;
1270
1271 page = radix_tree_lookup(&mapping->page_tree, index);
1272 if (!page || radix_tree_exceptional_entry(page))
1273 break;
1274 index--;
1275 if (index == ULONG_MAX)
1276 break;
1277 }
1278
1279 return index;
1280 }
1281 EXPORT_SYMBOL(page_cache_prev_hole);
1282
1283 /**
1284 * find_get_entry - find and get a page cache entry
1285 * @mapping: the address_space to search
1286 * @offset: the page cache index
1287 *
1288 * Looks up the page cache slot at @mapping & @offset. If there is a
1289 * page cache page, it is returned with an increased refcount.
1290 *
1291 * If the slot holds a shadow entry of a previously evicted page, or a
1292 * swap entry from shmem/tmpfs, it is returned.
1293 *
1294 * Otherwise, %NULL is returned.
1295 */
1296 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1297 {
1298 void **pagep;
1299 struct page *head, *page;
1300
1301 rcu_read_lock();
1302 repeat:
1303 page = NULL;
1304 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1305 if (pagep) {
1306 page = radix_tree_deref_slot(pagep);
1307 if (unlikely(!page))
1308 goto out;
1309 if (radix_tree_exception(page)) {
1310 if (radix_tree_deref_retry(page))
1311 goto repeat;
1312 /*
1313 * A shadow entry of a recently evicted page,
1314 * or a swap entry from shmem/tmpfs. Return
1315 * it without attempting to raise page count.
1316 */
1317 goto out;
1318 }
1319
1320 head = compound_head(page);
1321 if (!page_cache_get_speculative(head))
1322 goto repeat;
1323
1324 /* The page was split under us? */
1325 if (compound_head(page) != head) {
1326 put_page(head);
1327 goto repeat;
1328 }
1329
1330 /*
1331 * Has the page moved?
1332 * This is part of the lockless pagecache protocol. See
1333 * include/linux/pagemap.h for details.
1334 */
1335 if (unlikely(page != *pagep)) {
1336 put_page(head);
1337 goto repeat;
1338 }
1339 }
1340 out:
1341 rcu_read_unlock();
1342
1343 return page;
1344 }
1345 EXPORT_SYMBOL(find_get_entry);
1346
1347 /**
1348 * find_lock_entry - locate, pin and lock a page cache entry
1349 * @mapping: the address_space to search
1350 * @offset: the page cache index
1351 *
1352 * Looks up the page cache slot at @mapping & @offset. If there is a
1353 * page cache page, it is returned locked and with an increased
1354 * refcount.
1355 *
1356 * If the slot holds a shadow entry of a previously evicted page, or a
1357 * swap entry from shmem/tmpfs, it is returned.
1358 *
1359 * Otherwise, %NULL is returned.
1360 *
1361 * find_lock_entry() may sleep.
1362 */
1363 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1364 {
1365 struct page *page;
1366
1367 repeat:
1368 page = find_get_entry(mapping, offset);
1369 if (page && !radix_tree_exception(page)) {
1370 lock_page(page);
1371 /* Has the page been truncated? */
1372 if (unlikely(page_mapping(page) != mapping)) {
1373 unlock_page(page);
1374 put_page(page);
1375 goto repeat;
1376 }
1377 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1378 }
1379 return page;
1380 }
1381 EXPORT_SYMBOL(find_lock_entry);
1382
1383 /**
1384 * pagecache_get_page - find and get a page reference
1385 * @mapping: the address_space to search
1386 * @offset: the page index
1387 * @fgp_flags: PCG flags
1388 * @gfp_mask: gfp mask to use for the page cache data page allocation
1389 *
1390 * Looks up the page cache slot at @mapping & @offset.
1391 *
1392 * PCG flags modify how the page is returned.
1393 *
1394 * @fgp_flags can be:
1395 *
1396 * - FGP_ACCESSED: the page will be marked accessed
1397 * - FGP_LOCK: Page is return locked
1398 * - FGP_CREAT: If page is not present then a new page is allocated using
1399 * @gfp_mask and added to the page cache and the VM's LRU
1400 * list. The page is returned locked and with an increased
1401 * refcount. Otherwise, NULL is returned.
1402 *
1403 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1404 * if the GFP flags specified for FGP_CREAT are atomic.
1405 *
1406 * If there is a page cache page, it is returned with an increased refcount.
1407 */
1408 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1409 int fgp_flags, gfp_t gfp_mask)
1410 {
1411 struct page *page;
1412
1413 repeat:
1414 page = find_get_entry(mapping, offset);
1415 if (radix_tree_exceptional_entry(page))
1416 page = NULL;
1417 if (!page)
1418 goto no_page;
1419
1420 if (fgp_flags & FGP_LOCK) {
1421 if (fgp_flags & FGP_NOWAIT) {
1422 if (!trylock_page(page)) {
1423 put_page(page);
1424 return NULL;
1425 }
1426 } else {
1427 lock_page(page);
1428 }
1429
1430 /* Has the page been truncated? */
1431 if (unlikely(page->mapping != mapping)) {
1432 unlock_page(page);
1433 put_page(page);
1434 goto repeat;
1435 }
1436 VM_BUG_ON_PAGE(page->index != offset, page);
1437 }
1438
1439 if (page && (fgp_flags & FGP_ACCESSED))
1440 mark_page_accessed(page);
1441
1442 no_page:
1443 if (!page && (fgp_flags & FGP_CREAT)) {
1444 int err;
1445 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1446 gfp_mask |= __GFP_WRITE;
1447 if (fgp_flags & FGP_NOFS)
1448 gfp_mask &= ~__GFP_FS;
1449
1450 page = __page_cache_alloc(gfp_mask);
1451 if (!page)
1452 return NULL;
1453
1454 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1455 fgp_flags |= FGP_LOCK;
1456
1457 /* Init accessed so avoid atomic mark_page_accessed later */
1458 if (fgp_flags & FGP_ACCESSED)
1459 __SetPageReferenced(page);
1460
1461 err = add_to_page_cache_lru(page, mapping, offset,
1462 gfp_mask & GFP_RECLAIM_MASK);
1463 if (unlikely(err)) {
1464 put_page(page);
1465 page = NULL;
1466 if (err == -EEXIST)
1467 goto repeat;
1468 }
1469 }
1470
1471 return page;
1472 }
1473 EXPORT_SYMBOL(pagecache_get_page);
1474
1475 /**
1476 * find_get_entries - gang pagecache lookup
1477 * @mapping: The address_space to search
1478 * @start: The starting page cache index
1479 * @nr_entries: The maximum number of entries
1480 * @entries: Where the resulting entries are placed
1481 * @indices: The cache indices corresponding to the entries in @entries
1482 *
1483 * find_get_entries() will search for and return a group of up to
1484 * @nr_entries entries in the mapping. The entries are placed at
1485 * @entries. find_get_entries() takes a reference against any actual
1486 * pages it returns.
1487 *
1488 * The search returns a group of mapping-contiguous page cache entries
1489 * with ascending indexes. There may be holes in the indices due to
1490 * not-present pages.
1491 *
1492 * Any shadow entries of evicted pages, or swap entries from
1493 * shmem/tmpfs, are included in the returned array.
1494 *
1495 * find_get_entries() returns the number of pages and shadow entries
1496 * which were found.
1497 */
1498 unsigned find_get_entries(struct address_space *mapping,
1499 pgoff_t start, unsigned int nr_entries,
1500 struct page **entries, pgoff_t *indices)
1501 {
1502 void **slot;
1503 unsigned int ret = 0;
1504 struct radix_tree_iter iter;
1505
1506 if (!nr_entries)
1507 return 0;
1508
1509 rcu_read_lock();
1510 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1511 struct page *head, *page;
1512 repeat:
1513 page = radix_tree_deref_slot(slot);
1514 if (unlikely(!page))
1515 continue;
1516 if (radix_tree_exception(page)) {
1517 if (radix_tree_deref_retry(page)) {
1518 slot = radix_tree_iter_retry(&iter);
1519 continue;
1520 }
1521 /*
1522 * A shadow entry of a recently evicted page, a swap
1523 * entry from shmem/tmpfs or a DAX entry. Return it
1524 * without attempting to raise page count.
1525 */
1526 goto export;
1527 }
1528
1529 head = compound_head(page);
1530 if (!page_cache_get_speculative(head))
1531 goto repeat;
1532
1533 /* The page was split under us? */
1534 if (compound_head(page) != head) {
1535 put_page(head);
1536 goto repeat;
1537 }
1538
1539 /* Has the page moved? */
1540 if (unlikely(page != *slot)) {
1541 put_page(head);
1542 goto repeat;
1543 }
1544 export:
1545 indices[ret] = iter.index;
1546 entries[ret] = page;
1547 if (++ret == nr_entries)
1548 break;
1549 }
1550 rcu_read_unlock();
1551 return ret;
1552 }
1553
1554 /**
1555 * find_get_pages_range - gang pagecache lookup
1556 * @mapping: The address_space to search
1557 * @start: The starting page index
1558 * @end: The final page index (inclusive)
1559 * @nr_pages: The maximum number of pages
1560 * @pages: Where the resulting pages are placed
1561 *
1562 * find_get_pages_range() will search for and return a group of up to @nr_pages
1563 * pages in the mapping starting at index @start and up to index @end
1564 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1565 * a reference against the returned pages.
1566 *
1567 * The search returns a group of mapping-contiguous pages with ascending
1568 * indexes. There may be holes in the indices due to not-present pages.
1569 * We also update @start to index the next page for the traversal.
1570 *
1571 * find_get_pages_range() returns the number of pages which were found. If this
1572 * number is smaller than @nr_pages, the end of specified range has been
1573 * reached.
1574 */
1575 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1576 pgoff_t end, unsigned int nr_pages,
1577 struct page **pages)
1578 {
1579 struct radix_tree_iter iter;
1580 void **slot;
1581 unsigned ret = 0;
1582
1583 if (unlikely(!nr_pages))
1584 return 0;
1585
1586 rcu_read_lock();
1587 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1588 struct page *head, *page;
1589
1590 if (iter.index > end)
1591 break;
1592 repeat:
1593 page = radix_tree_deref_slot(slot);
1594 if (unlikely(!page))
1595 continue;
1596
1597 if (radix_tree_exception(page)) {
1598 if (radix_tree_deref_retry(page)) {
1599 slot = radix_tree_iter_retry(&iter);
1600 continue;
1601 }
1602 /*
1603 * A shadow entry of a recently evicted page,
1604 * or a swap entry from shmem/tmpfs. Skip
1605 * over it.
1606 */
1607 continue;
1608 }
1609
1610 head = compound_head(page);
1611 if (!page_cache_get_speculative(head))
1612 goto repeat;
1613
1614 /* The page was split under us? */
1615 if (compound_head(page) != head) {
1616 put_page(head);
1617 goto repeat;
1618 }
1619
1620 /* Has the page moved? */
1621 if (unlikely(page != *slot)) {
1622 put_page(head);
1623 goto repeat;
1624 }
1625
1626 pages[ret] = page;
1627 if (++ret == nr_pages) {
1628 *start = pages[ret - 1]->index + 1;
1629 goto out;
1630 }
1631 }
1632
1633 /*
1634 * We come here when there is no page beyond @end. We take care to not
1635 * overflow the index @start as it confuses some of the callers. This
1636 * breaks the iteration when there is page at index -1 but that is
1637 * already broken anyway.
1638 */
1639 if (end == (pgoff_t)-1)
1640 *start = (pgoff_t)-1;
1641 else
1642 *start = end + 1;
1643 out:
1644 rcu_read_unlock();
1645
1646 return ret;
1647 }
1648
1649 /**
1650 * find_get_pages_contig - gang contiguous pagecache lookup
1651 * @mapping: The address_space to search
1652 * @index: The starting page index
1653 * @nr_pages: The maximum number of pages
1654 * @pages: Where the resulting pages are placed
1655 *
1656 * find_get_pages_contig() works exactly like find_get_pages(), except
1657 * that the returned number of pages are guaranteed to be contiguous.
1658 *
1659 * find_get_pages_contig() returns the number of pages which were found.
1660 */
1661 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1662 unsigned int nr_pages, struct page **pages)
1663 {
1664 struct radix_tree_iter iter;
1665 void **slot;
1666 unsigned int ret = 0;
1667
1668 if (unlikely(!nr_pages))
1669 return 0;
1670
1671 rcu_read_lock();
1672 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1673 struct page *head, *page;
1674 repeat:
1675 page = radix_tree_deref_slot(slot);
1676 /* The hole, there no reason to continue */
1677 if (unlikely(!page))
1678 break;
1679
1680 if (radix_tree_exception(page)) {
1681 if (radix_tree_deref_retry(page)) {
1682 slot = radix_tree_iter_retry(&iter);
1683 continue;
1684 }
1685 /*
1686 * A shadow entry of a recently evicted page,
1687 * or a swap entry from shmem/tmpfs. Stop
1688 * looking for contiguous pages.
1689 */
1690 break;
1691 }
1692
1693 head = compound_head(page);
1694 if (!page_cache_get_speculative(head))
1695 goto repeat;
1696
1697 /* The page was split under us? */
1698 if (compound_head(page) != head) {
1699 put_page(head);
1700 goto repeat;
1701 }
1702
1703 /* Has the page moved? */
1704 if (unlikely(page != *slot)) {
1705 put_page(head);
1706 goto repeat;
1707 }
1708
1709 /*
1710 * must check mapping and index after taking the ref.
1711 * otherwise we can get both false positives and false
1712 * negatives, which is just confusing to the caller.
1713 */
1714 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1715 put_page(page);
1716 break;
1717 }
1718
1719 pages[ret] = page;
1720 if (++ret == nr_pages)
1721 break;
1722 }
1723 rcu_read_unlock();
1724 return ret;
1725 }
1726 EXPORT_SYMBOL(find_get_pages_contig);
1727
1728 /**
1729 * find_get_pages_tag - find and return pages that match @tag
1730 * @mapping: the address_space to search
1731 * @index: the starting page index
1732 * @tag: the tag index
1733 * @nr_pages: the maximum number of pages
1734 * @pages: where the resulting pages are placed
1735 *
1736 * Like find_get_pages, except we only return pages which are tagged with
1737 * @tag. We update @index to index the next page for the traversal.
1738 */
1739 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1740 int tag, unsigned int nr_pages, struct page **pages)
1741 {
1742 struct radix_tree_iter iter;
1743 void **slot;
1744 unsigned ret = 0;
1745
1746 if (unlikely(!nr_pages))
1747 return 0;
1748
1749 rcu_read_lock();
1750 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1751 &iter, *index, tag) {
1752 struct page *head, *page;
1753 repeat:
1754 page = radix_tree_deref_slot(slot);
1755 if (unlikely(!page))
1756 continue;
1757
1758 if (radix_tree_exception(page)) {
1759 if (radix_tree_deref_retry(page)) {
1760 slot = radix_tree_iter_retry(&iter);
1761 continue;
1762 }
1763 /*
1764 * A shadow entry of a recently evicted page.
1765 *
1766 * Those entries should never be tagged, but
1767 * this tree walk is lockless and the tags are
1768 * looked up in bulk, one radix tree node at a
1769 * time, so there is a sizable window for page
1770 * reclaim to evict a page we saw tagged.
1771 *
1772 * Skip over it.
1773 */
1774 continue;
1775 }
1776
1777 head = compound_head(page);
1778 if (!page_cache_get_speculative(head))
1779 goto repeat;
1780
1781 /* The page was split under us? */
1782 if (compound_head(page) != head) {
1783 put_page(head);
1784 goto repeat;
1785 }
1786
1787 /* Has the page moved? */
1788 if (unlikely(page != *slot)) {
1789 put_page(head);
1790 goto repeat;
1791 }
1792
1793 pages[ret] = page;
1794 if (++ret == nr_pages)
1795 break;
1796 }
1797
1798 rcu_read_unlock();
1799
1800 if (ret)
1801 *index = pages[ret - 1]->index + 1;
1802
1803 return ret;
1804 }
1805 EXPORT_SYMBOL(find_get_pages_tag);
1806
1807 /**
1808 * find_get_entries_tag - find and return entries that match @tag
1809 * @mapping: the address_space to search
1810 * @start: the starting page cache index
1811 * @tag: the tag index
1812 * @nr_entries: the maximum number of entries
1813 * @entries: where the resulting entries are placed
1814 * @indices: the cache indices corresponding to the entries in @entries
1815 *
1816 * Like find_get_entries, except we only return entries which are tagged with
1817 * @tag.
1818 */
1819 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1820 int tag, unsigned int nr_entries,
1821 struct page **entries, pgoff_t *indices)
1822 {
1823 void **slot;
1824 unsigned int ret = 0;
1825 struct radix_tree_iter iter;
1826
1827 if (!nr_entries)
1828 return 0;
1829
1830 rcu_read_lock();
1831 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1832 &iter, start, tag) {
1833 struct page *head, *page;
1834 repeat:
1835 page = radix_tree_deref_slot(slot);
1836 if (unlikely(!page))
1837 continue;
1838 if (radix_tree_exception(page)) {
1839 if (radix_tree_deref_retry(page)) {
1840 slot = radix_tree_iter_retry(&iter);
1841 continue;
1842 }
1843
1844 /*
1845 * A shadow entry of a recently evicted page, a swap
1846 * entry from shmem/tmpfs or a DAX entry. Return it
1847 * without attempting to raise page count.
1848 */
1849 goto export;
1850 }
1851
1852 head = compound_head(page);
1853 if (!page_cache_get_speculative(head))
1854 goto repeat;
1855
1856 /* The page was split under us? */
1857 if (compound_head(page) != head) {
1858 put_page(head);
1859 goto repeat;
1860 }
1861
1862 /* Has the page moved? */
1863 if (unlikely(page != *slot)) {
1864 put_page(head);
1865 goto repeat;
1866 }
1867 export:
1868 indices[ret] = iter.index;
1869 entries[ret] = page;
1870 if (++ret == nr_entries)
1871 break;
1872 }
1873 rcu_read_unlock();
1874 return ret;
1875 }
1876 EXPORT_SYMBOL(find_get_entries_tag);
1877
1878 /*
1879 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1880 * a _large_ part of the i/o request. Imagine the worst scenario:
1881 *
1882 * ---R__________________________________________B__________
1883 * ^ reading here ^ bad block(assume 4k)
1884 *
1885 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1886 * => failing the whole request => read(R) => read(R+1) =>
1887 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1888 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1889 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1890 *
1891 * It is going insane. Fix it by quickly scaling down the readahead size.
1892 */
1893 static void shrink_readahead_size_eio(struct file *filp,
1894 struct file_ra_state *ra)
1895 {
1896 ra->ra_pages /= 4;
1897 }
1898
1899 /**
1900 * do_generic_file_read - generic file read routine
1901 * @filp: the file to read
1902 * @ppos: current file position
1903 * @iter: data destination
1904 * @written: already copied
1905 *
1906 * This is a generic file read routine, and uses the
1907 * mapping->a_ops->readpage() function for the actual low-level stuff.
1908 *
1909 * This is really ugly. But the goto's actually try to clarify some
1910 * of the logic when it comes to error handling etc.
1911 */
1912 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1913 struct iov_iter *iter, ssize_t written)
1914 {
1915 struct address_space *mapping = filp->f_mapping;
1916 struct inode *inode = mapping->host;
1917 struct file_ra_state *ra = &filp->f_ra;
1918 pgoff_t index;
1919 pgoff_t last_index;
1920 pgoff_t prev_index;
1921 unsigned long offset; /* offset into pagecache page */
1922 unsigned int prev_offset;
1923 int error = 0;
1924
1925 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1926 return 0;
1927 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1928
1929 index = *ppos >> PAGE_SHIFT;
1930 prev_index = ra->prev_pos >> PAGE_SHIFT;
1931 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1932 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1933 offset = *ppos & ~PAGE_MASK;
1934
1935 for (;;) {
1936 struct page *page;
1937 pgoff_t end_index;
1938 loff_t isize;
1939 unsigned long nr, ret;
1940
1941 cond_resched();
1942 find_page:
1943 if (fatal_signal_pending(current)) {
1944 error = -EINTR;
1945 goto out;
1946 }
1947
1948 page = find_get_page(mapping, index);
1949 if (!page) {
1950 page_cache_sync_readahead(mapping,
1951 ra, filp,
1952 index, last_index - index);
1953 page = find_get_page(mapping, index);
1954 if (unlikely(page == NULL))
1955 goto no_cached_page;
1956 }
1957 if (PageReadahead(page)) {
1958 page_cache_async_readahead(mapping,
1959 ra, filp, page,
1960 index, last_index - index);
1961 }
1962 if (!PageUptodate(page)) {
1963 /*
1964 * See comment in do_read_cache_page on why
1965 * wait_on_page_locked is used to avoid unnecessarily
1966 * serialisations and why it's safe.
1967 */
1968 error = wait_on_page_locked_killable(page);
1969 if (unlikely(error))
1970 goto readpage_error;
1971 if (PageUptodate(page))
1972 goto page_ok;
1973
1974 if (inode->i_blkbits == PAGE_SHIFT ||
1975 !mapping->a_ops->is_partially_uptodate)
1976 goto page_not_up_to_date;
1977 /* pipes can't handle partially uptodate pages */
1978 if (unlikely(iter->type & ITER_PIPE))
1979 goto page_not_up_to_date;
1980 if (!trylock_page(page))
1981 goto page_not_up_to_date;
1982 /* Did it get truncated before we got the lock? */
1983 if (!page->mapping)
1984 goto page_not_up_to_date_locked;
1985 if (!mapping->a_ops->is_partially_uptodate(page,
1986 offset, iter->count))
1987 goto page_not_up_to_date_locked;
1988 unlock_page(page);
1989 }
1990 page_ok:
1991 /*
1992 * i_size must be checked after we know the page is Uptodate.
1993 *
1994 * Checking i_size after the check allows us to calculate
1995 * the correct value for "nr", which means the zero-filled
1996 * part of the page is not copied back to userspace (unless
1997 * another truncate extends the file - this is desired though).
1998 */
1999
2000 isize = i_size_read(inode);
2001 end_index = (isize - 1) >> PAGE_SHIFT;
2002 if (unlikely(!isize || index > end_index)) {
2003 put_page(page);
2004 goto out;
2005 }
2006
2007 /* nr is the maximum number of bytes to copy from this page */
2008 nr = PAGE_SIZE;
2009 if (index == end_index) {
2010 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2011 if (nr <= offset) {
2012 put_page(page);
2013 goto out;
2014 }
2015 }
2016 nr = nr - offset;
2017
2018 /* If users can be writing to this page using arbitrary
2019 * virtual addresses, take care about potential aliasing
2020 * before reading the page on the kernel side.
2021 */
2022 if (mapping_writably_mapped(mapping))
2023 flush_dcache_page(page);
2024
2025 /*
2026 * When a sequential read accesses a page several times,
2027 * only mark it as accessed the first time.
2028 */
2029 if (prev_index != index || offset != prev_offset)
2030 mark_page_accessed(page);
2031 prev_index = index;
2032
2033 /*
2034 * Ok, we have the page, and it's up-to-date, so
2035 * now we can copy it to user space...
2036 */
2037
2038 ret = copy_page_to_iter(page, offset, nr, iter);
2039 offset += ret;
2040 index += offset >> PAGE_SHIFT;
2041 offset &= ~PAGE_MASK;
2042 prev_offset = offset;
2043
2044 put_page(page);
2045 written += ret;
2046 if (!iov_iter_count(iter))
2047 goto out;
2048 if (ret < nr) {
2049 error = -EFAULT;
2050 goto out;
2051 }
2052 continue;
2053
2054 page_not_up_to_date:
2055 /* Get exclusive access to the page ... */
2056 error = lock_page_killable(page);
2057 if (unlikely(error))
2058 goto readpage_error;
2059
2060 page_not_up_to_date_locked:
2061 /* Did it get truncated before we got the lock? */
2062 if (!page->mapping) {
2063 unlock_page(page);
2064 put_page(page);
2065 continue;
2066 }
2067
2068 /* Did somebody else fill it already? */
2069 if (PageUptodate(page)) {
2070 unlock_page(page);
2071 goto page_ok;
2072 }
2073
2074 readpage:
2075 /*
2076 * A previous I/O error may have been due to temporary
2077 * failures, eg. multipath errors.
2078 * PG_error will be set again if readpage fails.
2079 */
2080 ClearPageError(page);
2081 /* Start the actual read. The read will unlock the page. */
2082 error = mapping->a_ops->readpage(filp, page);
2083
2084 if (unlikely(error)) {
2085 if (error == AOP_TRUNCATED_PAGE) {
2086 put_page(page);
2087 error = 0;
2088 goto find_page;
2089 }
2090 goto readpage_error;
2091 }
2092
2093 if (!PageUptodate(page)) {
2094 error = lock_page_killable(page);
2095 if (unlikely(error))
2096 goto readpage_error;
2097 if (!PageUptodate(page)) {
2098 if (page->mapping == NULL) {
2099 /*
2100 * invalidate_mapping_pages got it
2101 */
2102 unlock_page(page);
2103 put_page(page);
2104 goto find_page;
2105 }
2106 unlock_page(page);
2107 shrink_readahead_size_eio(filp, ra);
2108 error = -EIO;
2109 goto readpage_error;
2110 }
2111 unlock_page(page);
2112 }
2113
2114 goto page_ok;
2115
2116 readpage_error:
2117 /* UHHUH! A synchronous read error occurred. Report it */
2118 put_page(page);
2119 goto out;
2120
2121 no_cached_page:
2122 /*
2123 * Ok, it wasn't cached, so we need to create a new
2124 * page..
2125 */
2126 page = page_cache_alloc_cold(mapping);
2127 if (!page) {
2128 error = -ENOMEM;
2129 goto out;
2130 }
2131 error = add_to_page_cache_lru(page, mapping, index,
2132 mapping_gfp_constraint(mapping, GFP_KERNEL));
2133 if (error) {
2134 put_page(page);
2135 if (error == -EEXIST) {
2136 error = 0;
2137 goto find_page;
2138 }
2139 goto out;
2140 }
2141 goto readpage;
2142 }
2143
2144 out:
2145 ra->prev_pos = prev_index;
2146 ra->prev_pos <<= PAGE_SHIFT;
2147 ra->prev_pos |= prev_offset;
2148
2149 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2150 file_accessed(filp);
2151 return written ? written : error;
2152 }
2153
2154 /**
2155 * generic_file_read_iter - generic filesystem read routine
2156 * @iocb: kernel I/O control block
2157 * @iter: destination for the data read
2158 *
2159 * This is the "read_iter()" routine for all filesystems
2160 * that can use the page cache directly.
2161 */
2162 ssize_t
2163 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2164 {
2165 struct file *file = iocb->ki_filp;
2166 ssize_t retval = 0;
2167 size_t count = iov_iter_count(iter);
2168
2169 if (!count)
2170 goto out; /* skip atime */
2171
2172 if (iocb->ki_flags & IOCB_DIRECT) {
2173 struct address_space *mapping = file->f_mapping;
2174 struct inode *inode = mapping->host;
2175 loff_t size;
2176
2177 size = i_size_read(inode);
2178 if (iocb->ki_flags & IOCB_NOWAIT) {
2179 if (filemap_range_has_page(mapping, iocb->ki_pos,
2180 iocb->ki_pos + count - 1))
2181 return -EAGAIN;
2182 } else {
2183 retval = filemap_write_and_wait_range(mapping,
2184 iocb->ki_pos,
2185 iocb->ki_pos + count - 1);
2186 if (retval < 0)
2187 goto out;
2188 }
2189
2190 file_accessed(file);
2191
2192 retval = mapping->a_ops->direct_IO(iocb, iter);
2193 if (retval >= 0) {
2194 iocb->ki_pos += retval;
2195 count -= retval;
2196 }
2197 iov_iter_revert(iter, count - iov_iter_count(iter));
2198
2199 /*
2200 * Btrfs can have a short DIO read if we encounter
2201 * compressed extents, so if there was an error, or if
2202 * we've already read everything we wanted to, or if
2203 * there was a short read because we hit EOF, go ahead
2204 * and return. Otherwise fallthrough to buffered io for
2205 * the rest of the read. Buffered reads will not work for
2206 * DAX files, so don't bother trying.
2207 */
2208 if (retval < 0 || !count || iocb->ki_pos >= size ||
2209 IS_DAX(inode))
2210 goto out;
2211 }
2212
2213 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2214 out:
2215 return retval;
2216 }
2217 EXPORT_SYMBOL(generic_file_read_iter);
2218
2219 #ifdef CONFIG_MMU
2220 /**
2221 * page_cache_read - adds requested page to the page cache if not already there
2222 * @file: file to read
2223 * @offset: page index
2224 * @gfp_mask: memory allocation flags
2225 *
2226 * This adds the requested page to the page cache if it isn't already there,
2227 * and schedules an I/O to read in its contents from disk.
2228 */
2229 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2230 {
2231 struct address_space *mapping = file->f_mapping;
2232 struct page *page;
2233 int ret;
2234
2235 do {
2236 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2237 if (!page)
2238 return -ENOMEM;
2239
2240 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2241 if (ret == 0)
2242 ret = mapping->a_ops->readpage(file, page);
2243 else if (ret == -EEXIST)
2244 ret = 0; /* losing race to add is OK */
2245
2246 put_page(page);
2247
2248 } while (ret == AOP_TRUNCATED_PAGE);
2249
2250 return ret;
2251 }
2252
2253 #define MMAP_LOTSAMISS (100)
2254
2255 /*
2256 * Synchronous readahead happens when we don't even find
2257 * a page in the page cache at all.
2258 */
2259 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2260 struct file_ra_state *ra,
2261 struct file *file,
2262 pgoff_t offset)
2263 {
2264 struct address_space *mapping = file->f_mapping;
2265
2266 /* If we don't want any read-ahead, don't bother */
2267 if (vma->vm_flags & VM_RAND_READ)
2268 return;
2269 if (!ra->ra_pages)
2270 return;
2271
2272 if (vma->vm_flags & VM_SEQ_READ) {
2273 page_cache_sync_readahead(mapping, ra, file, offset,
2274 ra->ra_pages);
2275 return;
2276 }
2277
2278 /* Avoid banging the cache line if not needed */
2279 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2280 ra->mmap_miss++;
2281
2282 /*
2283 * Do we miss much more than hit in this file? If so,
2284 * stop bothering with read-ahead. It will only hurt.
2285 */
2286 if (ra->mmap_miss > MMAP_LOTSAMISS)
2287 return;
2288
2289 /*
2290 * mmap read-around
2291 */
2292 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2293 ra->size = ra->ra_pages;
2294 ra->async_size = ra->ra_pages / 4;
2295 ra_submit(ra, mapping, file);
2296 }
2297
2298 /*
2299 * Asynchronous readahead happens when we find the page and PG_readahead,
2300 * so we want to possibly extend the readahead further..
2301 */
2302 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2303 struct file_ra_state *ra,
2304 struct file *file,
2305 struct page *page,
2306 pgoff_t offset)
2307 {
2308 struct address_space *mapping = file->f_mapping;
2309
2310 /* If we don't want any read-ahead, don't bother */
2311 if (vma->vm_flags & VM_RAND_READ)
2312 return;
2313 if (ra->mmap_miss > 0)
2314 ra->mmap_miss--;
2315 if (PageReadahead(page))
2316 page_cache_async_readahead(mapping, ra, file,
2317 page, offset, ra->ra_pages);
2318 }
2319
2320 /**
2321 * filemap_fault - read in file data for page fault handling
2322 * @vmf: struct vm_fault containing details of the fault
2323 *
2324 * filemap_fault() is invoked via the vma operations vector for a
2325 * mapped memory region to read in file data during a page fault.
2326 *
2327 * The goto's are kind of ugly, but this streamlines the normal case of having
2328 * it in the page cache, and handles the special cases reasonably without
2329 * having a lot of duplicated code.
2330 *
2331 * vma->vm_mm->mmap_sem must be held on entry.
2332 *
2333 * If our return value has VM_FAULT_RETRY set, it's because
2334 * lock_page_or_retry() returned 0.
2335 * The mmap_sem has usually been released in this case.
2336 * See __lock_page_or_retry() for the exception.
2337 *
2338 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2339 * has not been released.
2340 *
2341 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2342 */
2343 int filemap_fault(struct vm_fault *vmf)
2344 {
2345 int error;
2346 struct file *file = vmf->vma->vm_file;
2347 struct address_space *mapping = file->f_mapping;
2348 struct file_ra_state *ra = &file->f_ra;
2349 struct inode *inode = mapping->host;
2350 pgoff_t offset = vmf->pgoff;
2351 pgoff_t max_off;
2352 struct page *page;
2353 int ret = 0;
2354
2355 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2356 if (unlikely(offset >= max_off))
2357 return VM_FAULT_SIGBUS;
2358
2359 /*
2360 * Do we have something in the page cache already?
2361 */
2362 page = find_get_page(mapping, offset);
2363 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2364 /*
2365 * We found the page, so try async readahead before
2366 * waiting for the lock.
2367 */
2368 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2369 } else if (!page) {
2370 /* No page in the page cache at all */
2371 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2372 count_vm_event(PGMAJFAULT);
2373 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2374 ret = VM_FAULT_MAJOR;
2375 retry_find:
2376 page = find_get_page(mapping, offset);
2377 if (!page)
2378 goto no_cached_page;
2379 }
2380
2381 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2382 put_page(page);
2383 return ret | VM_FAULT_RETRY;
2384 }
2385
2386 /* Did it get truncated? */
2387 if (unlikely(page->mapping != mapping)) {
2388 unlock_page(page);
2389 put_page(page);
2390 goto retry_find;
2391 }
2392 VM_BUG_ON_PAGE(page->index != offset, page);
2393
2394 /*
2395 * We have a locked page in the page cache, now we need to check
2396 * that it's up-to-date. If not, it is going to be due to an error.
2397 */
2398 if (unlikely(!PageUptodate(page)))
2399 goto page_not_uptodate;
2400
2401 /*
2402 * Found the page and have a reference on it.
2403 * We must recheck i_size under page lock.
2404 */
2405 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2406 if (unlikely(offset >= max_off)) {
2407 unlock_page(page);
2408 put_page(page);
2409 return VM_FAULT_SIGBUS;
2410 }
2411
2412 vmf->page = page;
2413 return ret | VM_FAULT_LOCKED;
2414
2415 no_cached_page:
2416 /*
2417 * We're only likely to ever get here if MADV_RANDOM is in
2418 * effect.
2419 */
2420 error = page_cache_read(file, offset, vmf->gfp_mask);
2421
2422 /*
2423 * The page we want has now been added to the page cache.
2424 * In the unlikely event that someone removed it in the
2425 * meantime, we'll just come back here and read it again.
2426 */
2427 if (error >= 0)
2428 goto retry_find;
2429
2430 /*
2431 * An error return from page_cache_read can result if the
2432 * system is low on memory, or a problem occurs while trying
2433 * to schedule I/O.
2434 */
2435 if (error == -ENOMEM)
2436 return VM_FAULT_OOM;
2437 return VM_FAULT_SIGBUS;
2438
2439 page_not_uptodate:
2440 /*
2441 * Umm, take care of errors if the page isn't up-to-date.
2442 * Try to re-read it _once_. We do this synchronously,
2443 * because there really aren't any performance issues here
2444 * and we need to check for errors.
2445 */
2446 ClearPageError(page);
2447 error = mapping->a_ops->readpage(file, page);
2448 if (!error) {
2449 wait_on_page_locked(page);
2450 if (!PageUptodate(page))
2451 error = -EIO;
2452 }
2453 put_page(page);
2454
2455 if (!error || error == AOP_TRUNCATED_PAGE)
2456 goto retry_find;
2457
2458 /* Things didn't work out. Return zero to tell the mm layer so. */
2459 shrink_readahead_size_eio(file, ra);
2460 return VM_FAULT_SIGBUS;
2461 }
2462 EXPORT_SYMBOL(filemap_fault);
2463
2464 void filemap_map_pages(struct vm_fault *vmf,
2465 pgoff_t start_pgoff, pgoff_t end_pgoff)
2466 {
2467 struct radix_tree_iter iter;
2468 void **slot;
2469 struct file *file = vmf->vma->vm_file;
2470 struct address_space *mapping = file->f_mapping;
2471 pgoff_t last_pgoff = start_pgoff;
2472 unsigned long max_idx;
2473 struct page *head, *page;
2474
2475 rcu_read_lock();
2476 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2477 start_pgoff) {
2478 if (iter.index > end_pgoff)
2479 break;
2480 repeat:
2481 page = radix_tree_deref_slot(slot);
2482 if (unlikely(!page))
2483 goto next;
2484 if (radix_tree_exception(page)) {
2485 if (radix_tree_deref_retry(page)) {
2486 slot = radix_tree_iter_retry(&iter);
2487 continue;
2488 }
2489 goto next;
2490 }
2491
2492 head = compound_head(page);
2493 if (!page_cache_get_speculative(head))
2494 goto repeat;
2495
2496 /* The page was split under us? */
2497 if (compound_head(page) != head) {
2498 put_page(head);
2499 goto repeat;
2500 }
2501
2502 /* Has the page moved? */
2503 if (unlikely(page != *slot)) {
2504 put_page(head);
2505 goto repeat;
2506 }
2507
2508 if (!PageUptodate(page) ||
2509 PageReadahead(page) ||
2510 PageHWPoison(page))
2511 goto skip;
2512 if (!trylock_page(page))
2513 goto skip;
2514
2515 if (page->mapping != mapping || !PageUptodate(page))
2516 goto unlock;
2517
2518 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2519 if (page->index >= max_idx)
2520 goto unlock;
2521
2522 if (file->f_ra.mmap_miss > 0)
2523 file->f_ra.mmap_miss--;
2524
2525 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2526 if (vmf->pte)
2527 vmf->pte += iter.index - last_pgoff;
2528 last_pgoff = iter.index;
2529 if (alloc_set_pte(vmf, NULL, page))
2530 goto unlock;
2531 unlock_page(page);
2532 goto next;
2533 unlock:
2534 unlock_page(page);
2535 skip:
2536 put_page(page);
2537 next:
2538 /* Huge page is mapped? No need to proceed. */
2539 if (pmd_trans_huge(*vmf->pmd))
2540 break;
2541 if (iter.index == end_pgoff)
2542 break;
2543 }
2544 rcu_read_unlock();
2545 }
2546 EXPORT_SYMBOL(filemap_map_pages);
2547
2548 int filemap_page_mkwrite(struct vm_fault *vmf)
2549 {
2550 struct page *page = vmf->page;
2551 struct inode *inode = file_inode(vmf->vma->vm_file);
2552 int ret = VM_FAULT_LOCKED;
2553
2554 sb_start_pagefault(inode->i_sb);
2555 file_update_time(vmf->vma->vm_file);
2556 lock_page(page);
2557 if (page->mapping != inode->i_mapping) {
2558 unlock_page(page);
2559 ret = VM_FAULT_NOPAGE;
2560 goto out;
2561 }
2562 /*
2563 * We mark the page dirty already here so that when freeze is in
2564 * progress, we are guaranteed that writeback during freezing will
2565 * see the dirty page and writeprotect it again.
2566 */
2567 set_page_dirty(page);
2568 wait_for_stable_page(page);
2569 out:
2570 sb_end_pagefault(inode->i_sb);
2571 return ret;
2572 }
2573 EXPORT_SYMBOL(filemap_page_mkwrite);
2574
2575 const struct vm_operations_struct generic_file_vm_ops = {
2576 .fault = filemap_fault,
2577 .map_pages = filemap_map_pages,
2578 .page_mkwrite = filemap_page_mkwrite,
2579 };
2580
2581 /* This is used for a general mmap of a disk file */
2582
2583 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2584 {
2585 struct address_space *mapping = file->f_mapping;
2586
2587 if (!mapping->a_ops->readpage)
2588 return -ENOEXEC;
2589 file_accessed(file);
2590 vma->vm_ops = &generic_file_vm_ops;
2591 return 0;
2592 }
2593
2594 /*
2595 * This is for filesystems which do not implement ->writepage.
2596 */
2597 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2598 {
2599 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2600 return -EINVAL;
2601 return generic_file_mmap(file, vma);
2602 }
2603 #else
2604 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2605 {
2606 return -ENOSYS;
2607 }
2608 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2609 {
2610 return -ENOSYS;
2611 }
2612 #endif /* CONFIG_MMU */
2613
2614 EXPORT_SYMBOL(generic_file_mmap);
2615 EXPORT_SYMBOL(generic_file_readonly_mmap);
2616
2617 static struct page *wait_on_page_read(struct page *page)
2618 {
2619 if (!IS_ERR(page)) {
2620 wait_on_page_locked(page);
2621 if (!PageUptodate(page)) {
2622 put_page(page);
2623 page = ERR_PTR(-EIO);
2624 }
2625 }
2626 return page;
2627 }
2628
2629 static struct page *do_read_cache_page(struct address_space *mapping,
2630 pgoff_t index,
2631 int (*filler)(void *, struct page *),
2632 void *data,
2633 gfp_t gfp)
2634 {
2635 struct page *page;
2636 int err;
2637 repeat:
2638 page = find_get_page(mapping, index);
2639 if (!page) {
2640 page = __page_cache_alloc(gfp | __GFP_COLD);
2641 if (!page)
2642 return ERR_PTR(-ENOMEM);
2643 err = add_to_page_cache_lru(page, mapping, index, gfp);
2644 if (unlikely(err)) {
2645 put_page(page);
2646 if (err == -EEXIST)
2647 goto repeat;
2648 /* Presumably ENOMEM for radix tree node */
2649 return ERR_PTR(err);
2650 }
2651
2652 filler:
2653 err = filler(data, page);
2654 if (err < 0) {
2655 put_page(page);
2656 return ERR_PTR(err);
2657 }
2658
2659 page = wait_on_page_read(page);
2660 if (IS_ERR(page))
2661 return page;
2662 goto out;
2663 }
2664 if (PageUptodate(page))
2665 goto out;
2666
2667 /*
2668 * Page is not up to date and may be locked due one of the following
2669 * case a: Page is being filled and the page lock is held
2670 * case b: Read/write error clearing the page uptodate status
2671 * case c: Truncation in progress (page locked)
2672 * case d: Reclaim in progress
2673 *
2674 * Case a, the page will be up to date when the page is unlocked.
2675 * There is no need to serialise on the page lock here as the page
2676 * is pinned so the lock gives no additional protection. Even if the
2677 * the page is truncated, the data is still valid if PageUptodate as
2678 * it's a race vs truncate race.
2679 * Case b, the page will not be up to date
2680 * Case c, the page may be truncated but in itself, the data may still
2681 * be valid after IO completes as it's a read vs truncate race. The
2682 * operation must restart if the page is not uptodate on unlock but
2683 * otherwise serialising on page lock to stabilise the mapping gives
2684 * no additional guarantees to the caller as the page lock is
2685 * released before return.
2686 * Case d, similar to truncation. If reclaim holds the page lock, it
2687 * will be a race with remove_mapping that determines if the mapping
2688 * is valid on unlock but otherwise the data is valid and there is
2689 * no need to serialise with page lock.
2690 *
2691 * As the page lock gives no additional guarantee, we optimistically
2692 * wait on the page to be unlocked and check if it's up to date and
2693 * use the page if it is. Otherwise, the page lock is required to
2694 * distinguish between the different cases. The motivation is that we
2695 * avoid spurious serialisations and wakeups when multiple processes
2696 * wait on the same page for IO to complete.
2697 */
2698 wait_on_page_locked(page);
2699 if (PageUptodate(page))
2700 goto out;
2701
2702 /* Distinguish between all the cases under the safety of the lock */
2703 lock_page(page);
2704
2705 /* Case c or d, restart the operation */
2706 if (!page->mapping) {
2707 unlock_page(page);
2708 put_page(page);
2709 goto repeat;
2710 }
2711
2712 /* Someone else locked and filled the page in a very small window */
2713 if (PageUptodate(page)) {
2714 unlock_page(page);
2715 goto out;
2716 }
2717 goto filler;
2718
2719 out:
2720 mark_page_accessed(page);
2721 return page;
2722 }
2723
2724 /**
2725 * read_cache_page - read into page cache, fill it if needed
2726 * @mapping: the page's address_space
2727 * @index: the page index
2728 * @filler: function to perform the read
2729 * @data: first arg to filler(data, page) function, often left as NULL
2730 *
2731 * Read into the page cache. If a page already exists, and PageUptodate() is
2732 * not set, try to fill the page and wait for it to become unlocked.
2733 *
2734 * If the page does not get brought uptodate, return -EIO.
2735 */
2736 struct page *read_cache_page(struct address_space *mapping,
2737 pgoff_t index,
2738 int (*filler)(void *, struct page *),
2739 void *data)
2740 {
2741 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2742 }
2743 EXPORT_SYMBOL(read_cache_page);
2744
2745 /**
2746 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2747 * @mapping: the page's address_space
2748 * @index: the page index
2749 * @gfp: the page allocator flags to use if allocating
2750 *
2751 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2752 * any new page allocations done using the specified allocation flags.
2753 *
2754 * If the page does not get brought uptodate, return -EIO.
2755 */
2756 struct page *read_cache_page_gfp(struct address_space *mapping,
2757 pgoff_t index,
2758 gfp_t gfp)
2759 {
2760 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2761
2762 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2763 }
2764 EXPORT_SYMBOL(read_cache_page_gfp);
2765
2766 /*
2767 * Performs necessary checks before doing a write
2768 *
2769 * Can adjust writing position or amount of bytes to write.
2770 * Returns appropriate error code that caller should return or
2771 * zero in case that write should be allowed.
2772 */
2773 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2774 {
2775 struct file *file = iocb->ki_filp;
2776 struct inode *inode = file->f_mapping->host;
2777 unsigned long limit = rlimit(RLIMIT_FSIZE);
2778 loff_t pos;
2779
2780 if (!iov_iter_count(from))
2781 return 0;
2782
2783 /* FIXME: this is for backwards compatibility with 2.4 */
2784 if (iocb->ki_flags & IOCB_APPEND)
2785 iocb->ki_pos = i_size_read(inode);
2786
2787 pos = iocb->ki_pos;
2788
2789 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2790 return -EINVAL;
2791
2792 if (limit != RLIM_INFINITY) {
2793 if (iocb->ki_pos >= limit) {
2794 send_sig(SIGXFSZ, current, 0);
2795 return -EFBIG;
2796 }
2797 iov_iter_truncate(from, limit - (unsigned long)pos);
2798 }
2799
2800 /*
2801 * LFS rule
2802 */
2803 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2804 !(file->f_flags & O_LARGEFILE))) {
2805 if (pos >= MAX_NON_LFS)
2806 return -EFBIG;
2807 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2808 }
2809
2810 /*
2811 * Are we about to exceed the fs block limit ?
2812 *
2813 * If we have written data it becomes a short write. If we have
2814 * exceeded without writing data we send a signal and return EFBIG.
2815 * Linus frestrict idea will clean these up nicely..
2816 */
2817 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2818 return -EFBIG;
2819
2820 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2821 return iov_iter_count(from);
2822 }
2823 EXPORT_SYMBOL(generic_write_checks);
2824
2825 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2826 loff_t pos, unsigned len, unsigned flags,
2827 struct page **pagep, void **fsdata)
2828 {
2829 const struct address_space_operations *aops = mapping->a_ops;
2830
2831 return aops->write_begin(file, mapping, pos, len, flags,
2832 pagep, fsdata);
2833 }
2834 EXPORT_SYMBOL(pagecache_write_begin);
2835
2836 int pagecache_write_end(struct file *file, struct address_space *mapping,
2837 loff_t pos, unsigned len, unsigned copied,
2838 struct page *page, void *fsdata)
2839 {
2840 const struct address_space_operations *aops = mapping->a_ops;
2841
2842 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2843 }
2844 EXPORT_SYMBOL(pagecache_write_end);
2845
2846 ssize_t
2847 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2848 {
2849 struct file *file = iocb->ki_filp;
2850 struct address_space *mapping = file->f_mapping;
2851 struct inode *inode = mapping->host;
2852 loff_t pos = iocb->ki_pos;
2853 ssize_t written;
2854 size_t write_len;
2855 pgoff_t end;
2856
2857 write_len = iov_iter_count(from);
2858 end = (pos + write_len - 1) >> PAGE_SHIFT;
2859
2860 if (iocb->ki_flags & IOCB_NOWAIT) {
2861 /* If there are pages to writeback, return */
2862 if (filemap_range_has_page(inode->i_mapping, pos,
2863 pos + iov_iter_count(from)))
2864 return -EAGAIN;
2865 } else {
2866 written = filemap_write_and_wait_range(mapping, pos,
2867 pos + write_len - 1);
2868 if (written)
2869 goto out;
2870 }
2871
2872 /*
2873 * After a write we want buffered reads to be sure to go to disk to get
2874 * the new data. We invalidate clean cached page from the region we're
2875 * about to write. We do this *before* the write so that we can return
2876 * without clobbering -EIOCBQUEUED from ->direct_IO().
2877 */
2878 written = invalidate_inode_pages2_range(mapping,
2879 pos >> PAGE_SHIFT, end);
2880 /*
2881 * If a page can not be invalidated, return 0 to fall back
2882 * to buffered write.
2883 */
2884 if (written) {
2885 if (written == -EBUSY)
2886 return 0;
2887 goto out;
2888 }
2889
2890 written = mapping->a_ops->direct_IO(iocb, from);
2891
2892 /*
2893 * Finally, try again to invalidate clean pages which might have been
2894 * cached by non-direct readahead, or faulted in by get_user_pages()
2895 * if the source of the write was an mmap'ed region of the file
2896 * we're writing. Either one is a pretty crazy thing to do,
2897 * so we don't support it 100%. If this invalidation
2898 * fails, tough, the write still worked...
2899 */
2900 invalidate_inode_pages2_range(mapping,
2901 pos >> PAGE_SHIFT, end);
2902
2903 if (written > 0) {
2904 pos += written;
2905 write_len -= written;
2906 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2907 i_size_write(inode, pos);
2908 mark_inode_dirty(inode);
2909 }
2910 iocb->ki_pos = pos;
2911 }
2912 iov_iter_revert(from, write_len - iov_iter_count(from));
2913 out:
2914 return written;
2915 }
2916 EXPORT_SYMBOL(generic_file_direct_write);
2917
2918 /*
2919 * Find or create a page at the given pagecache position. Return the locked
2920 * page. This function is specifically for buffered writes.
2921 */
2922 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2923 pgoff_t index, unsigned flags)
2924 {
2925 struct page *page;
2926 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2927
2928 if (flags & AOP_FLAG_NOFS)
2929 fgp_flags |= FGP_NOFS;
2930
2931 page = pagecache_get_page(mapping, index, fgp_flags,
2932 mapping_gfp_mask(mapping));
2933 if (page)
2934 wait_for_stable_page(page);
2935
2936 return page;
2937 }
2938 EXPORT_SYMBOL(grab_cache_page_write_begin);
2939
2940 ssize_t generic_perform_write(struct file *file,
2941 struct iov_iter *i, loff_t pos)
2942 {
2943 struct address_space *mapping = file->f_mapping;
2944 const struct address_space_operations *a_ops = mapping->a_ops;
2945 long status = 0;
2946 ssize_t written = 0;
2947 unsigned int flags = 0;
2948
2949 do {
2950 struct page *page;
2951 unsigned long offset; /* Offset into pagecache page */
2952 unsigned long bytes; /* Bytes to write to page */
2953 size_t copied; /* Bytes copied from user */
2954 void *fsdata;
2955
2956 offset = (pos & (PAGE_SIZE - 1));
2957 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2958 iov_iter_count(i));
2959
2960 again:
2961 /*
2962 * Bring in the user page that we will copy from _first_.
2963 * Otherwise there's a nasty deadlock on copying from the
2964 * same page as we're writing to, without it being marked
2965 * up-to-date.
2966 *
2967 * Not only is this an optimisation, but it is also required
2968 * to check that the address is actually valid, when atomic
2969 * usercopies are used, below.
2970 */
2971 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2972 status = -EFAULT;
2973 break;
2974 }
2975
2976 if (fatal_signal_pending(current)) {
2977 status = -EINTR;
2978 break;
2979 }
2980
2981 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2982 &page, &fsdata);
2983 if (unlikely(status < 0))
2984 break;
2985
2986 if (mapping_writably_mapped(mapping))
2987 flush_dcache_page(page);
2988
2989 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2990 flush_dcache_page(page);
2991
2992 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2993 page, fsdata);
2994 if (unlikely(status < 0))
2995 break;
2996 copied = status;
2997
2998 cond_resched();
2999
3000 iov_iter_advance(i, copied);
3001 if (unlikely(copied == 0)) {
3002 /*
3003 * If we were unable to copy any data at all, we must
3004 * fall back to a single segment length write.
3005 *
3006 * If we didn't fallback here, we could livelock
3007 * because not all segments in the iov can be copied at
3008 * once without a pagefault.
3009 */
3010 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3011 iov_iter_single_seg_count(i));
3012 goto again;
3013 }
3014 pos += copied;
3015 written += copied;
3016
3017 balance_dirty_pages_ratelimited(mapping);
3018 } while (iov_iter_count(i));
3019
3020 return written ? written : status;
3021 }
3022 EXPORT_SYMBOL(generic_perform_write);
3023
3024 /**
3025 * __generic_file_write_iter - write data to a file
3026 * @iocb: IO state structure (file, offset, etc.)
3027 * @from: iov_iter with data to write
3028 *
3029 * This function does all the work needed for actually writing data to a
3030 * file. It does all basic checks, removes SUID from the file, updates
3031 * modification times and calls proper subroutines depending on whether we
3032 * do direct IO or a standard buffered write.
3033 *
3034 * It expects i_mutex to be grabbed unless we work on a block device or similar
3035 * object which does not need locking at all.
3036 *
3037 * This function does *not* take care of syncing data in case of O_SYNC write.
3038 * A caller has to handle it. This is mainly due to the fact that we want to
3039 * avoid syncing under i_mutex.
3040 */
3041 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3042 {
3043 struct file *file = iocb->ki_filp;
3044 struct address_space * mapping = file->f_mapping;
3045 struct inode *inode = mapping->host;
3046 ssize_t written = 0;
3047 ssize_t err;
3048 ssize_t status;
3049
3050 /* We can write back this queue in page reclaim */
3051 current->backing_dev_info = inode_to_bdi(inode);
3052 err = file_remove_privs(file);
3053 if (err)
3054 goto out;
3055
3056 err = file_update_time(file);
3057 if (err)
3058 goto out;
3059
3060 if (iocb->ki_flags & IOCB_DIRECT) {
3061 loff_t pos, endbyte;
3062
3063 written = generic_file_direct_write(iocb, from);
3064 /*
3065 * If the write stopped short of completing, fall back to
3066 * buffered writes. Some filesystems do this for writes to
3067 * holes, for example. For DAX files, a buffered write will
3068 * not succeed (even if it did, DAX does not handle dirty
3069 * page-cache pages correctly).
3070 */
3071 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3072 goto out;
3073
3074 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3075 /*
3076 * If generic_perform_write() returned a synchronous error
3077 * then we want to return the number of bytes which were
3078 * direct-written, or the error code if that was zero. Note
3079 * that this differs from normal direct-io semantics, which
3080 * will return -EFOO even if some bytes were written.
3081 */
3082 if (unlikely(status < 0)) {
3083 err = status;
3084 goto out;
3085 }
3086 /*
3087 * We need to ensure that the page cache pages are written to
3088 * disk and invalidated to preserve the expected O_DIRECT
3089 * semantics.
3090 */
3091 endbyte = pos + status - 1;
3092 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3093 if (err == 0) {
3094 iocb->ki_pos = endbyte + 1;
3095 written += status;
3096 invalidate_mapping_pages(mapping,
3097 pos >> PAGE_SHIFT,
3098 endbyte >> PAGE_SHIFT);
3099 } else {
3100 /*
3101 * We don't know how much we wrote, so just return
3102 * the number of bytes which were direct-written
3103 */
3104 }
3105 } else {
3106 written = generic_perform_write(file, from, iocb->ki_pos);
3107 if (likely(written > 0))
3108 iocb->ki_pos += written;
3109 }
3110 out:
3111 current->backing_dev_info = NULL;
3112 return written ? written : err;
3113 }
3114 EXPORT_SYMBOL(__generic_file_write_iter);
3115
3116 /**
3117 * generic_file_write_iter - write data to a file
3118 * @iocb: IO state structure
3119 * @from: iov_iter with data to write
3120 *
3121 * This is a wrapper around __generic_file_write_iter() to be used by most
3122 * filesystems. It takes care of syncing the file in case of O_SYNC file
3123 * and acquires i_mutex as needed.
3124 */
3125 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3126 {
3127 struct file *file = iocb->ki_filp;
3128 struct inode *inode = file->f_mapping->host;
3129 ssize_t ret;
3130
3131 inode_lock(inode);
3132 ret = generic_write_checks(iocb, from);
3133 if (ret > 0)
3134 ret = __generic_file_write_iter(iocb, from);
3135 inode_unlock(inode);
3136
3137 if (ret > 0)
3138 ret = generic_write_sync(iocb, ret);
3139 return ret;
3140 }
3141 EXPORT_SYMBOL(generic_file_write_iter);
3142
3143 /**
3144 * try_to_release_page() - release old fs-specific metadata on a page
3145 *
3146 * @page: the page which the kernel is trying to free
3147 * @gfp_mask: memory allocation flags (and I/O mode)
3148 *
3149 * The address_space is to try to release any data against the page
3150 * (presumably at page->private). If the release was successful, return '1'.
3151 * Otherwise return zero.
3152 *
3153 * This may also be called if PG_fscache is set on a page, indicating that the
3154 * page is known to the local caching routines.
3155 *
3156 * The @gfp_mask argument specifies whether I/O may be performed to release
3157 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3158 *
3159 */
3160 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3161 {
3162 struct address_space * const mapping = page->mapping;
3163
3164 BUG_ON(!PageLocked(page));
3165 if (PageWriteback(page))
3166 return 0;
3167
3168 if (mapping && mapping->a_ops->releasepage)
3169 return mapping->a_ops->releasepage(page, gfp_mask);
3170 return try_to_free_buffers(page);
3171 }
3172
3173 EXPORT_SYMBOL(try_to_release_page);