]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/filemap.c
Merge tag 'for-5.11-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include "internal.h"
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/filemap.h>
49
50 /*
51 * FIXME: remove all knowledge of the buffer layer from the core VM
52 */
53 #include <linux/buffer_head.h> /* for try_to_free_buffers */
54
55 #include <asm/mman.h>
56
57 /*
58 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * though.
60 *
61 * Shared mappings now work. 15.8.1995 Bruno.
62 *
63 * finished 'unifying' the page and buffer cache and SMP-threaded the
64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65 *
66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
67 */
68
69 /*
70 * Lock ordering:
71 *
72 * ->i_mmap_rwsem (truncate_pagecache)
73 * ->private_lock (__free_pte->__set_page_dirty_buffers)
74 * ->swap_lock (exclusive_swap_page, others)
75 * ->i_pages lock
76 *
77 * ->i_mutex
78 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
79 *
80 * ->mmap_lock
81 * ->i_mmap_rwsem
82 * ->page_table_lock or pte_lock (various, mainly in memory.c)
83 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
84 *
85 * ->mmap_lock
86 * ->lock_page (access_process_vm)
87 *
88 * ->i_mutex (generic_perform_write)
89 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
90 *
91 * bdi->wb.list_lock
92 * sb_lock (fs/fs-writeback.c)
93 * ->i_pages lock (__sync_single_inode)
94 *
95 * ->i_mmap_rwsem
96 * ->anon_vma.lock (vma_adjust)
97 *
98 * ->anon_vma.lock
99 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
100 *
101 * ->page_table_lock or pte_lock
102 * ->swap_lock (try_to_unmap_one)
103 * ->private_lock (try_to_unmap_one)
104 * ->i_pages lock (try_to_unmap_one)
105 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
106 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
107 * ->private_lock (page_remove_rmap->set_page_dirty)
108 * ->i_pages lock (page_remove_rmap->set_page_dirty)
109 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
110 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
111 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
112 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
113 * ->inode->i_lock (zap_pte_range->set_page_dirty)
114 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 *
116 * ->i_mmap_rwsem
117 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 */
119
120 static void page_cache_delete(struct address_space *mapping,
121 struct page *page, void *shadow)
122 {
123 XA_STATE(xas, &mapping->i_pages, page->index);
124 unsigned int nr = 1;
125
126 mapping_set_update(&xas, mapping);
127
128 /* hugetlb pages are represented by a single entry in the xarray */
129 if (!PageHuge(page)) {
130 xas_set_order(&xas, page->index, compound_order(page));
131 nr = compound_nr(page);
132 }
133
134 VM_BUG_ON_PAGE(!PageLocked(page), page);
135 VM_BUG_ON_PAGE(PageTail(page), page);
136 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
137
138 xas_store(&xas, shadow);
139 xas_init_marks(&xas);
140
141 page->mapping = NULL;
142 /* Leave page->index set: truncation lookup relies upon it */
143
144 if (shadow) {
145 mapping->nrexceptional += nr;
146 /*
147 * Make sure the nrexceptional update is committed before
148 * the nrpages update so that final truncate racing
149 * with reclaim does not see both counters 0 at the
150 * same time and miss a shadow entry.
151 */
152 smp_wmb();
153 }
154 mapping->nrpages -= nr;
155 }
156
157 static void unaccount_page_cache_page(struct address_space *mapping,
158 struct page *page)
159 {
160 int nr;
161
162 /*
163 * if we're uptodate, flush out into the cleancache, otherwise
164 * invalidate any existing cleancache entries. We can't leave
165 * stale data around in the cleancache once our page is gone
166 */
167 if (PageUptodate(page) && PageMappedToDisk(page))
168 cleancache_put_page(page);
169 else
170 cleancache_invalidate_page(mapping, page);
171
172 VM_BUG_ON_PAGE(PageTail(page), page);
173 VM_BUG_ON_PAGE(page_mapped(page), page);
174 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 int mapcount;
176
177 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
178 current->comm, page_to_pfn(page));
179 dump_page(page, "still mapped when deleted");
180 dump_stack();
181 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
182
183 mapcount = page_mapcount(page);
184 if (mapping_exiting(mapping) &&
185 page_count(page) >= mapcount + 2) {
186 /*
187 * All vmas have already been torn down, so it's
188 * a good bet that actually the page is unmapped,
189 * and we'd prefer not to leak it: if we're wrong,
190 * some other bad page check should catch it later.
191 */
192 page_mapcount_reset(page);
193 page_ref_sub(page, mapcount);
194 }
195 }
196
197 /* hugetlb pages do not participate in page cache accounting. */
198 if (PageHuge(page))
199 return;
200
201 nr = thp_nr_pages(page);
202
203 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204 if (PageSwapBacked(page)) {
205 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 if (PageTransHuge(page))
207 __dec_lruvec_page_state(page, NR_SHMEM_THPS);
208 } else if (PageTransHuge(page)) {
209 __dec_lruvec_page_state(page, NR_FILE_THPS);
210 filemap_nr_thps_dec(mapping);
211 }
212
213 /*
214 * At this point page must be either written or cleaned by
215 * truncate. Dirty page here signals a bug and loss of
216 * unwritten data.
217 *
218 * This fixes dirty accounting after removing the page entirely
219 * but leaves PageDirty set: it has no effect for truncated
220 * page and anyway will be cleared before returning page into
221 * buddy allocator.
222 */
223 if (WARN_ON_ONCE(PageDirty(page)))
224 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 }
226
227 /*
228 * Delete a page from the page cache and free it. Caller has to make
229 * sure the page is locked and that nobody else uses it - or that usage
230 * is safe. The caller must hold the i_pages lock.
231 */
232 void __delete_from_page_cache(struct page *page, void *shadow)
233 {
234 struct address_space *mapping = page->mapping;
235
236 trace_mm_filemap_delete_from_page_cache(page);
237
238 unaccount_page_cache_page(mapping, page);
239 page_cache_delete(mapping, page, shadow);
240 }
241
242 static void page_cache_free_page(struct address_space *mapping,
243 struct page *page)
244 {
245 void (*freepage)(struct page *);
246
247 freepage = mapping->a_ops->freepage;
248 if (freepage)
249 freepage(page);
250
251 if (PageTransHuge(page) && !PageHuge(page)) {
252 page_ref_sub(page, thp_nr_pages(page));
253 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
254 } else {
255 put_page(page);
256 }
257 }
258
259 /**
260 * delete_from_page_cache - delete page from page cache
261 * @page: the page which the kernel is trying to remove from page cache
262 *
263 * This must be called only on pages that have been verified to be in the page
264 * cache and locked. It will never put the page into the free list, the caller
265 * has a reference on the page.
266 */
267 void delete_from_page_cache(struct page *page)
268 {
269 struct address_space *mapping = page_mapping(page);
270 unsigned long flags;
271
272 BUG_ON(!PageLocked(page));
273 xa_lock_irqsave(&mapping->i_pages, flags);
274 __delete_from_page_cache(page, NULL);
275 xa_unlock_irqrestore(&mapping->i_pages, flags);
276
277 page_cache_free_page(mapping, page);
278 }
279 EXPORT_SYMBOL(delete_from_page_cache);
280
281 /*
282 * page_cache_delete_batch - delete several pages from page cache
283 * @mapping: the mapping to which pages belong
284 * @pvec: pagevec with pages to delete
285 *
286 * The function walks over mapping->i_pages and removes pages passed in @pvec
287 * from the mapping. The function expects @pvec to be sorted by page index
288 * and is optimised for it to be dense.
289 * It tolerates holes in @pvec (mapping entries at those indices are not
290 * modified). The function expects only THP head pages to be present in the
291 * @pvec.
292 *
293 * The function expects the i_pages lock to be held.
294 */
295 static void page_cache_delete_batch(struct address_space *mapping,
296 struct pagevec *pvec)
297 {
298 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
299 int total_pages = 0;
300 int i = 0;
301 struct page *page;
302
303 mapping_set_update(&xas, mapping);
304 xas_for_each(&xas, page, ULONG_MAX) {
305 if (i >= pagevec_count(pvec))
306 break;
307
308 /* A swap/dax/shadow entry got inserted? Skip it. */
309 if (xa_is_value(page))
310 continue;
311 /*
312 * A page got inserted in our range? Skip it. We have our
313 * pages locked so they are protected from being removed.
314 * If we see a page whose index is higher than ours, it
315 * means our page has been removed, which shouldn't be
316 * possible because we're holding the PageLock.
317 */
318 if (page != pvec->pages[i]) {
319 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
320 page);
321 continue;
322 }
323
324 WARN_ON_ONCE(!PageLocked(page));
325
326 if (page->index == xas.xa_index)
327 page->mapping = NULL;
328 /* Leave page->index set: truncation lookup relies on it */
329
330 /*
331 * Move to the next page in the vector if this is a regular
332 * page or the index is of the last sub-page of this compound
333 * page.
334 */
335 if (page->index + compound_nr(page) - 1 == xas.xa_index)
336 i++;
337 xas_store(&xas, NULL);
338 total_pages++;
339 }
340 mapping->nrpages -= total_pages;
341 }
342
343 void delete_from_page_cache_batch(struct address_space *mapping,
344 struct pagevec *pvec)
345 {
346 int i;
347 unsigned long flags;
348
349 if (!pagevec_count(pvec))
350 return;
351
352 xa_lock_irqsave(&mapping->i_pages, flags);
353 for (i = 0; i < pagevec_count(pvec); i++) {
354 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
355
356 unaccount_page_cache_page(mapping, pvec->pages[i]);
357 }
358 page_cache_delete_batch(mapping, pvec);
359 xa_unlock_irqrestore(&mapping->i_pages, flags);
360
361 for (i = 0; i < pagevec_count(pvec); i++)
362 page_cache_free_page(mapping, pvec->pages[i]);
363 }
364
365 int filemap_check_errors(struct address_space *mapping)
366 {
367 int ret = 0;
368 /* Check for outstanding write errors */
369 if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371 ret = -ENOSPC;
372 if (test_bit(AS_EIO, &mapping->flags) &&
373 test_and_clear_bit(AS_EIO, &mapping->flags))
374 ret = -EIO;
375 return ret;
376 }
377 EXPORT_SYMBOL(filemap_check_errors);
378
379 static int filemap_check_and_keep_errors(struct address_space *mapping)
380 {
381 /* Check for outstanding write errors */
382 if (test_bit(AS_EIO, &mapping->flags))
383 return -EIO;
384 if (test_bit(AS_ENOSPC, &mapping->flags))
385 return -ENOSPC;
386 return 0;
387 }
388
389 /**
390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391 * @mapping: address space structure to write
392 * @start: offset in bytes where the range starts
393 * @end: offset in bytes where the range ends (inclusive)
394 * @sync_mode: enable synchronous operation
395 *
396 * Start writeback against all of a mapping's dirty pages that lie
397 * within the byte offsets <start, end> inclusive.
398 *
399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400 * opposed to a regular memory cleansing writeback. The difference between
401 * these two operations is that if a dirty page/buffer is encountered, it must
402 * be waited upon, and not just skipped over.
403 *
404 * Return: %0 on success, negative error code otherwise.
405 */
406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 loff_t end, int sync_mode)
408 {
409 int ret;
410 struct writeback_control wbc = {
411 .sync_mode = sync_mode,
412 .nr_to_write = LONG_MAX,
413 .range_start = start,
414 .range_end = end,
415 };
416
417 if (!mapping_can_writeback(mapping) ||
418 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
419 return 0;
420
421 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
422 ret = do_writepages(mapping, &wbc);
423 wbc_detach_inode(&wbc);
424 return ret;
425 }
426
427 static inline int __filemap_fdatawrite(struct address_space *mapping,
428 int sync_mode)
429 {
430 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
431 }
432
433 int filemap_fdatawrite(struct address_space *mapping)
434 {
435 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite);
438
439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
440 loff_t end)
441 {
442 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
443 }
444 EXPORT_SYMBOL(filemap_fdatawrite_range);
445
446 /**
447 * filemap_flush - mostly a non-blocking flush
448 * @mapping: target address_space
449 *
450 * This is a mostly non-blocking flush. Not suitable for data-integrity
451 * purposes - I/O may not be started against all dirty pages.
452 *
453 * Return: %0 on success, negative error code otherwise.
454 */
455 int filemap_flush(struct address_space *mapping)
456 {
457 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
458 }
459 EXPORT_SYMBOL(filemap_flush);
460
461 /**
462 * filemap_range_has_page - check if a page exists in range.
463 * @mapping: address space within which to check
464 * @start_byte: offset in bytes where the range starts
465 * @end_byte: offset in bytes where the range ends (inclusive)
466 *
467 * Find at least one page in the range supplied, usually used to check if
468 * direct writing in this range will trigger a writeback.
469 *
470 * Return: %true if at least one page exists in the specified range,
471 * %false otherwise.
472 */
473 bool filemap_range_has_page(struct address_space *mapping,
474 loff_t start_byte, loff_t end_byte)
475 {
476 struct page *page;
477 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 pgoff_t max = end_byte >> PAGE_SHIFT;
479
480 if (end_byte < start_byte)
481 return false;
482
483 rcu_read_lock();
484 for (;;) {
485 page = xas_find(&xas, max);
486 if (xas_retry(&xas, page))
487 continue;
488 /* Shadow entries don't count */
489 if (xa_is_value(page))
490 continue;
491 /*
492 * We don't need to try to pin this page; we're about to
493 * release the RCU lock anyway. It is enough to know that
494 * there was a page here recently.
495 */
496 break;
497 }
498 rcu_read_unlock();
499
500 return page != NULL;
501 }
502 EXPORT_SYMBOL(filemap_range_has_page);
503
504 static void __filemap_fdatawait_range(struct address_space *mapping,
505 loff_t start_byte, loff_t end_byte)
506 {
507 pgoff_t index = start_byte >> PAGE_SHIFT;
508 pgoff_t end = end_byte >> PAGE_SHIFT;
509 struct pagevec pvec;
510 int nr_pages;
511
512 if (end_byte < start_byte)
513 return;
514
515 pagevec_init(&pvec);
516 while (index <= end) {
517 unsigned i;
518
519 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520 end, PAGECACHE_TAG_WRITEBACK);
521 if (!nr_pages)
522 break;
523
524 for (i = 0; i < nr_pages; i++) {
525 struct page *page = pvec.pages[i];
526
527 wait_on_page_writeback(page);
528 ClearPageError(page);
529 }
530 pagevec_release(&pvec);
531 cond_resched();
532 }
533 }
534
535 /**
536 * filemap_fdatawait_range - wait for writeback to complete
537 * @mapping: address space structure to wait for
538 * @start_byte: offset in bytes where the range starts
539 * @end_byte: offset in bytes where the range ends (inclusive)
540 *
541 * Walk the list of under-writeback pages of the given address space
542 * in the given range and wait for all of them. Check error status of
543 * the address space and return it.
544 *
545 * Since the error status of the address space is cleared by this function,
546 * callers are responsible for checking the return value and handling and/or
547 * reporting the error.
548 *
549 * Return: error status of the address space.
550 */
551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
552 loff_t end_byte)
553 {
554 __filemap_fdatawait_range(mapping, start_byte, end_byte);
555 return filemap_check_errors(mapping);
556 }
557 EXPORT_SYMBOL(filemap_fdatawait_range);
558
559 /**
560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561 * @mapping: address space structure to wait for
562 * @start_byte: offset in bytes where the range starts
563 * @end_byte: offset in bytes where the range ends (inclusive)
564 *
565 * Walk the list of under-writeback pages of the given address space in the
566 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
567 * this function does not clear error status of the address space.
568 *
569 * Use this function if callers don't handle errors themselves. Expected
570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571 * fsfreeze(8)
572 */
573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 loff_t start_byte, loff_t end_byte)
575 {
576 __filemap_fdatawait_range(mapping, start_byte, end_byte);
577 return filemap_check_and_keep_errors(mapping);
578 }
579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
580
581 /**
582 * file_fdatawait_range - wait for writeback to complete
583 * @file: file pointing to address space structure to wait for
584 * @start_byte: offset in bytes where the range starts
585 * @end_byte: offset in bytes where the range ends (inclusive)
586 *
587 * Walk the list of under-writeback pages of the address space that file
588 * refers to, in the given range and wait for all of them. Check error
589 * status of the address space vs. the file->f_wb_err cursor and return it.
590 *
591 * Since the error status of the file is advanced by this function,
592 * callers are responsible for checking the return value and handling and/or
593 * reporting the error.
594 *
595 * Return: error status of the address space vs. the file->f_wb_err cursor.
596 */
597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
598 {
599 struct address_space *mapping = file->f_mapping;
600
601 __filemap_fdatawait_range(mapping, start_byte, end_byte);
602 return file_check_and_advance_wb_err(file);
603 }
604 EXPORT_SYMBOL(file_fdatawait_range);
605
606 /**
607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608 * @mapping: address space structure to wait for
609 *
610 * Walk the list of under-writeback pages of the given address space
611 * and wait for all of them. Unlike filemap_fdatawait(), this function
612 * does not clear error status of the address space.
613 *
614 * Use this function if callers don't handle errors themselves. Expected
615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616 * fsfreeze(8)
617 *
618 * Return: error status of the address space.
619 */
620 int filemap_fdatawait_keep_errors(struct address_space *mapping)
621 {
622 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623 return filemap_check_and_keep_errors(mapping);
624 }
625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
626
627 /* Returns true if writeback might be needed or already in progress. */
628 static bool mapping_needs_writeback(struct address_space *mapping)
629 {
630 if (dax_mapping(mapping))
631 return mapping->nrexceptional;
632
633 return mapping->nrpages;
634 }
635
636 /**
637 * filemap_write_and_wait_range - write out & wait on a file range
638 * @mapping: the address_space for the pages
639 * @lstart: offset in bytes where the range starts
640 * @lend: offset in bytes where the range ends (inclusive)
641 *
642 * Write out and wait upon file offsets lstart->lend, inclusive.
643 *
644 * Note that @lend is inclusive (describes the last byte to be written) so
645 * that this function can be used to write to the very end-of-file (end = -1).
646 *
647 * Return: error status of the address space.
648 */
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 loff_t lstart, loff_t lend)
651 {
652 int err = 0;
653
654 if (mapping_needs_writeback(mapping)) {
655 err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 WB_SYNC_ALL);
657 /*
658 * Even if the above returned error, the pages may be
659 * written partially (e.g. -ENOSPC), so we wait for it.
660 * But the -EIO is special case, it may indicate the worst
661 * thing (e.g. bug) happened, so we avoid waiting for it.
662 */
663 if (err != -EIO) {
664 int err2 = filemap_fdatawait_range(mapping,
665 lstart, lend);
666 if (!err)
667 err = err2;
668 } else {
669 /* Clear any previously stored errors */
670 filemap_check_errors(mapping);
671 }
672 } else {
673 err = filemap_check_errors(mapping);
674 }
675 return err;
676 }
677 EXPORT_SYMBOL(filemap_write_and_wait_range);
678
679 void __filemap_set_wb_err(struct address_space *mapping, int err)
680 {
681 errseq_t eseq = errseq_set(&mapping->wb_err, err);
682
683 trace_filemap_set_wb_err(mapping, eseq);
684 }
685 EXPORT_SYMBOL(__filemap_set_wb_err);
686
687 /**
688 * file_check_and_advance_wb_err - report wb error (if any) that was previously
689 * and advance wb_err to current one
690 * @file: struct file on which the error is being reported
691 *
692 * When userland calls fsync (or something like nfsd does the equivalent), we
693 * want to report any writeback errors that occurred since the last fsync (or
694 * since the file was opened if there haven't been any).
695 *
696 * Grab the wb_err from the mapping. If it matches what we have in the file,
697 * then just quickly return 0. The file is all caught up.
698 *
699 * If it doesn't match, then take the mapping value, set the "seen" flag in
700 * it and try to swap it into place. If it works, or another task beat us
701 * to it with the new value, then update the f_wb_err and return the error
702 * portion. The error at this point must be reported via proper channels
703 * (a'la fsync, or NFS COMMIT operation, etc.).
704 *
705 * While we handle mapping->wb_err with atomic operations, the f_wb_err
706 * value is protected by the f_lock since we must ensure that it reflects
707 * the latest value swapped in for this file descriptor.
708 *
709 * Return: %0 on success, negative error code otherwise.
710 */
711 int file_check_and_advance_wb_err(struct file *file)
712 {
713 int err = 0;
714 errseq_t old = READ_ONCE(file->f_wb_err);
715 struct address_space *mapping = file->f_mapping;
716
717 /* Locklessly handle the common case where nothing has changed */
718 if (errseq_check(&mapping->wb_err, old)) {
719 /* Something changed, must use slow path */
720 spin_lock(&file->f_lock);
721 old = file->f_wb_err;
722 err = errseq_check_and_advance(&mapping->wb_err,
723 &file->f_wb_err);
724 trace_file_check_and_advance_wb_err(file, old);
725 spin_unlock(&file->f_lock);
726 }
727
728 /*
729 * We're mostly using this function as a drop in replacement for
730 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 * that the legacy code would have had on these flags.
732 */
733 clear_bit(AS_EIO, &mapping->flags);
734 clear_bit(AS_ENOSPC, &mapping->flags);
735 return err;
736 }
737 EXPORT_SYMBOL(file_check_and_advance_wb_err);
738
739 /**
740 * file_write_and_wait_range - write out & wait on a file range
741 * @file: file pointing to address_space with pages
742 * @lstart: offset in bytes where the range starts
743 * @lend: offset in bytes where the range ends (inclusive)
744 *
745 * Write out and wait upon file offsets lstart->lend, inclusive.
746 *
747 * Note that @lend is inclusive (describes the last byte to be written) so
748 * that this function can be used to write to the very end-of-file (end = -1).
749 *
750 * After writing out and waiting on the data, we check and advance the
751 * f_wb_err cursor to the latest value, and return any errors detected there.
752 *
753 * Return: %0 on success, negative error code otherwise.
754 */
755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
756 {
757 int err = 0, err2;
758 struct address_space *mapping = file->f_mapping;
759
760 if (mapping_needs_writeback(mapping)) {
761 err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 WB_SYNC_ALL);
763 /* See comment of filemap_write_and_wait() */
764 if (err != -EIO)
765 __filemap_fdatawait_range(mapping, lstart, lend);
766 }
767 err2 = file_check_and_advance_wb_err(file);
768 if (!err)
769 err = err2;
770 return err;
771 }
772 EXPORT_SYMBOL(file_write_and_wait_range);
773
774 /**
775 * replace_page_cache_page - replace a pagecache page with a new one
776 * @old: page to be replaced
777 * @new: page to replace with
778 * @gfp_mask: allocation mode
779 *
780 * This function replaces a page in the pagecache with a new one. On
781 * success it acquires the pagecache reference for the new page and
782 * drops it for the old page. Both the old and new pages must be
783 * locked. This function does not add the new page to the LRU, the
784 * caller must do that.
785 *
786 * The remove + add is atomic. This function cannot fail.
787 *
788 * Return: %0
789 */
790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
791 {
792 struct address_space *mapping = old->mapping;
793 void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 pgoff_t offset = old->index;
795 XA_STATE(xas, &mapping->i_pages, offset);
796 unsigned long flags;
797
798 VM_BUG_ON_PAGE(!PageLocked(old), old);
799 VM_BUG_ON_PAGE(!PageLocked(new), new);
800 VM_BUG_ON_PAGE(new->mapping, new);
801
802 get_page(new);
803 new->mapping = mapping;
804 new->index = offset;
805
806 mem_cgroup_migrate(old, new);
807
808 xas_lock_irqsave(&xas, flags);
809 xas_store(&xas, new);
810
811 old->mapping = NULL;
812 /* hugetlb pages do not participate in page cache accounting. */
813 if (!PageHuge(old))
814 __dec_lruvec_page_state(old, NR_FILE_PAGES);
815 if (!PageHuge(new))
816 __inc_lruvec_page_state(new, NR_FILE_PAGES);
817 if (PageSwapBacked(old))
818 __dec_lruvec_page_state(old, NR_SHMEM);
819 if (PageSwapBacked(new))
820 __inc_lruvec_page_state(new, NR_SHMEM);
821 xas_unlock_irqrestore(&xas, flags);
822 if (freepage)
823 freepage(old);
824 put_page(old);
825
826 return 0;
827 }
828 EXPORT_SYMBOL_GPL(replace_page_cache_page);
829
830 noinline int __add_to_page_cache_locked(struct page *page,
831 struct address_space *mapping,
832 pgoff_t offset, gfp_t gfp,
833 void **shadowp)
834 {
835 XA_STATE(xas, &mapping->i_pages, offset);
836 int huge = PageHuge(page);
837 int error;
838
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841 mapping_set_update(&xas, mapping);
842
843 get_page(page);
844 page->mapping = mapping;
845 page->index = offset;
846
847 if (!huge) {
848 error = mem_cgroup_charge(page, current->mm, gfp);
849 if (error)
850 goto error;
851 }
852
853 gfp &= GFP_RECLAIM_MASK;
854
855 do {
856 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
857 void *entry, *old = NULL;
858
859 if (order > thp_order(page))
860 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
861 order, gfp);
862 xas_lock_irq(&xas);
863 xas_for_each_conflict(&xas, entry) {
864 old = entry;
865 if (!xa_is_value(entry)) {
866 xas_set_err(&xas, -EEXIST);
867 goto unlock;
868 }
869 }
870
871 if (old) {
872 if (shadowp)
873 *shadowp = old;
874 /* entry may have been split before we acquired lock */
875 order = xa_get_order(xas.xa, xas.xa_index);
876 if (order > thp_order(page)) {
877 xas_split(&xas, old, order);
878 xas_reset(&xas);
879 }
880 }
881
882 xas_store(&xas, page);
883 if (xas_error(&xas))
884 goto unlock;
885
886 if (old)
887 mapping->nrexceptional--;
888 mapping->nrpages++;
889
890 /* hugetlb pages do not participate in page cache accounting */
891 if (!huge)
892 __inc_lruvec_page_state(page, NR_FILE_PAGES);
893 unlock:
894 xas_unlock_irq(&xas);
895 } while (xas_nomem(&xas, gfp));
896
897 if (xas_error(&xas)) {
898 error = xas_error(&xas);
899 goto error;
900 }
901
902 trace_mm_filemap_add_to_page_cache(page);
903 return 0;
904 error:
905 page->mapping = NULL;
906 /* Leave page->index set: truncation relies upon it */
907 put_page(page);
908 return error;
909 }
910 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
911
912 /**
913 * add_to_page_cache_locked - add a locked page to the pagecache
914 * @page: page to add
915 * @mapping: the page's address_space
916 * @offset: page index
917 * @gfp_mask: page allocation mode
918 *
919 * This function is used to add a page to the pagecache. It must be locked.
920 * This function does not add the page to the LRU. The caller must do that.
921 *
922 * Return: %0 on success, negative error code otherwise.
923 */
924 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
925 pgoff_t offset, gfp_t gfp_mask)
926 {
927 return __add_to_page_cache_locked(page, mapping, offset,
928 gfp_mask, NULL);
929 }
930 EXPORT_SYMBOL(add_to_page_cache_locked);
931
932 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
933 pgoff_t offset, gfp_t gfp_mask)
934 {
935 void *shadow = NULL;
936 int ret;
937
938 __SetPageLocked(page);
939 ret = __add_to_page_cache_locked(page, mapping, offset,
940 gfp_mask, &shadow);
941 if (unlikely(ret))
942 __ClearPageLocked(page);
943 else {
944 /*
945 * The page might have been evicted from cache only
946 * recently, in which case it should be activated like
947 * any other repeatedly accessed page.
948 * The exception is pages getting rewritten; evicting other
949 * data from the working set, only to cache data that will
950 * get overwritten with something else, is a waste of memory.
951 */
952 WARN_ON_ONCE(PageActive(page));
953 if (!(gfp_mask & __GFP_WRITE) && shadow)
954 workingset_refault(page, shadow);
955 lru_cache_add(page);
956 }
957 return ret;
958 }
959 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
960
961 #ifdef CONFIG_NUMA
962 struct page *__page_cache_alloc(gfp_t gfp)
963 {
964 int n;
965 struct page *page;
966
967 if (cpuset_do_page_mem_spread()) {
968 unsigned int cpuset_mems_cookie;
969 do {
970 cpuset_mems_cookie = read_mems_allowed_begin();
971 n = cpuset_mem_spread_node();
972 page = __alloc_pages_node(n, gfp, 0);
973 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
974
975 return page;
976 }
977 return alloc_pages(gfp, 0);
978 }
979 EXPORT_SYMBOL(__page_cache_alloc);
980 #endif
981
982 /*
983 * In order to wait for pages to become available there must be
984 * waitqueues associated with pages. By using a hash table of
985 * waitqueues where the bucket discipline is to maintain all
986 * waiters on the same queue and wake all when any of the pages
987 * become available, and for the woken contexts to check to be
988 * sure the appropriate page became available, this saves space
989 * at a cost of "thundering herd" phenomena during rare hash
990 * collisions.
991 */
992 #define PAGE_WAIT_TABLE_BITS 8
993 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
994 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
995
996 static wait_queue_head_t *page_waitqueue(struct page *page)
997 {
998 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
999 }
1000
1001 void __init pagecache_init(void)
1002 {
1003 int i;
1004
1005 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1006 init_waitqueue_head(&page_wait_table[i]);
1007
1008 page_writeback_init();
1009 }
1010
1011 /*
1012 * The page wait code treats the "wait->flags" somewhat unusually, because
1013 * we have multiple different kinds of waits, not just the usual "exclusive"
1014 * one.
1015 *
1016 * We have:
1017 *
1018 * (a) no special bits set:
1019 *
1020 * We're just waiting for the bit to be released, and when a waker
1021 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1022 * and remove it from the wait queue.
1023 *
1024 * Simple and straightforward.
1025 *
1026 * (b) WQ_FLAG_EXCLUSIVE:
1027 *
1028 * The waiter is waiting to get the lock, and only one waiter should
1029 * be woken up to avoid any thundering herd behavior. We'll set the
1030 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1031 *
1032 * This is the traditional exclusive wait.
1033 *
1034 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1035 *
1036 * The waiter is waiting to get the bit, and additionally wants the
1037 * lock to be transferred to it for fair lock behavior. If the lock
1038 * cannot be taken, we stop walking the wait queue without waking
1039 * the waiter.
1040 *
1041 * This is the "fair lock handoff" case, and in addition to setting
1042 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1043 * that it now has the lock.
1044 */
1045 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1046 {
1047 unsigned int flags;
1048 struct wait_page_key *key = arg;
1049 struct wait_page_queue *wait_page
1050 = container_of(wait, struct wait_page_queue, wait);
1051
1052 if (!wake_page_match(wait_page, key))
1053 return 0;
1054
1055 /*
1056 * If it's a lock handoff wait, we get the bit for it, and
1057 * stop walking (and do not wake it up) if we can't.
1058 */
1059 flags = wait->flags;
1060 if (flags & WQ_FLAG_EXCLUSIVE) {
1061 if (test_bit(key->bit_nr, &key->page->flags))
1062 return -1;
1063 if (flags & WQ_FLAG_CUSTOM) {
1064 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1065 return -1;
1066 flags |= WQ_FLAG_DONE;
1067 }
1068 }
1069
1070 /*
1071 * We are holding the wait-queue lock, but the waiter that
1072 * is waiting for this will be checking the flags without
1073 * any locking.
1074 *
1075 * So update the flags atomically, and wake up the waiter
1076 * afterwards to avoid any races. This store-release pairs
1077 * with the load-acquire in wait_on_page_bit_common().
1078 */
1079 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1080 wake_up_state(wait->private, mode);
1081
1082 /*
1083 * Ok, we have successfully done what we're waiting for,
1084 * and we can unconditionally remove the wait entry.
1085 *
1086 * Note that this pairs with the "finish_wait()" in the
1087 * waiter, and has to be the absolute last thing we do.
1088 * After this list_del_init(&wait->entry) the wait entry
1089 * might be de-allocated and the process might even have
1090 * exited.
1091 */
1092 list_del_init_careful(&wait->entry);
1093 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1094 }
1095
1096 static void wake_up_page_bit(struct page *page, int bit_nr)
1097 {
1098 wait_queue_head_t *q = page_waitqueue(page);
1099 struct wait_page_key key;
1100 unsigned long flags;
1101 wait_queue_entry_t bookmark;
1102
1103 key.page = page;
1104 key.bit_nr = bit_nr;
1105 key.page_match = 0;
1106
1107 bookmark.flags = 0;
1108 bookmark.private = NULL;
1109 bookmark.func = NULL;
1110 INIT_LIST_HEAD(&bookmark.entry);
1111
1112 spin_lock_irqsave(&q->lock, flags);
1113 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1114
1115 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1116 /*
1117 * Take a breather from holding the lock,
1118 * allow pages that finish wake up asynchronously
1119 * to acquire the lock and remove themselves
1120 * from wait queue
1121 */
1122 spin_unlock_irqrestore(&q->lock, flags);
1123 cpu_relax();
1124 spin_lock_irqsave(&q->lock, flags);
1125 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1126 }
1127
1128 /*
1129 * It is possible for other pages to have collided on the waitqueue
1130 * hash, so in that case check for a page match. That prevents a long-
1131 * term waiter
1132 *
1133 * It is still possible to miss a case here, when we woke page waiters
1134 * and removed them from the waitqueue, but there are still other
1135 * page waiters.
1136 */
1137 if (!waitqueue_active(q) || !key.page_match) {
1138 ClearPageWaiters(page);
1139 /*
1140 * It's possible to miss clearing Waiters here, when we woke
1141 * our page waiters, but the hashed waitqueue has waiters for
1142 * other pages on it.
1143 *
1144 * That's okay, it's a rare case. The next waker will clear it.
1145 */
1146 }
1147 spin_unlock_irqrestore(&q->lock, flags);
1148 }
1149
1150 static void wake_up_page(struct page *page, int bit)
1151 {
1152 if (!PageWaiters(page))
1153 return;
1154 wake_up_page_bit(page, bit);
1155 }
1156
1157 /*
1158 * A choice of three behaviors for wait_on_page_bit_common():
1159 */
1160 enum behavior {
1161 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1162 * __lock_page() waiting on then setting PG_locked.
1163 */
1164 SHARED, /* Hold ref to page and check the bit when woken, like
1165 * wait_on_page_writeback() waiting on PG_writeback.
1166 */
1167 DROP, /* Drop ref to page before wait, no check when woken,
1168 * like put_and_wait_on_page_locked() on PG_locked.
1169 */
1170 };
1171
1172 /*
1173 * Attempt to check (or get) the page bit, and mark us done
1174 * if successful.
1175 */
1176 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1177 struct wait_queue_entry *wait)
1178 {
1179 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1180 if (test_and_set_bit(bit_nr, &page->flags))
1181 return false;
1182 } else if (test_bit(bit_nr, &page->flags))
1183 return false;
1184
1185 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1186 return true;
1187 }
1188
1189 /* How many times do we accept lock stealing from under a waiter? */
1190 int sysctl_page_lock_unfairness = 5;
1191
1192 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1193 struct page *page, int bit_nr, int state, enum behavior behavior)
1194 {
1195 int unfairness = sysctl_page_lock_unfairness;
1196 struct wait_page_queue wait_page;
1197 wait_queue_entry_t *wait = &wait_page.wait;
1198 bool thrashing = false;
1199 bool delayacct = false;
1200 unsigned long pflags;
1201
1202 if (bit_nr == PG_locked &&
1203 !PageUptodate(page) && PageWorkingset(page)) {
1204 if (!PageSwapBacked(page)) {
1205 delayacct_thrashing_start();
1206 delayacct = true;
1207 }
1208 psi_memstall_enter(&pflags);
1209 thrashing = true;
1210 }
1211
1212 init_wait(wait);
1213 wait->func = wake_page_function;
1214 wait_page.page = page;
1215 wait_page.bit_nr = bit_nr;
1216
1217 repeat:
1218 wait->flags = 0;
1219 if (behavior == EXCLUSIVE) {
1220 wait->flags = WQ_FLAG_EXCLUSIVE;
1221 if (--unfairness < 0)
1222 wait->flags |= WQ_FLAG_CUSTOM;
1223 }
1224
1225 /*
1226 * Do one last check whether we can get the
1227 * page bit synchronously.
1228 *
1229 * Do the SetPageWaiters() marking before that
1230 * to let any waker we _just_ missed know they
1231 * need to wake us up (otherwise they'll never
1232 * even go to the slow case that looks at the
1233 * page queue), and add ourselves to the wait
1234 * queue if we need to sleep.
1235 *
1236 * This part needs to be done under the queue
1237 * lock to avoid races.
1238 */
1239 spin_lock_irq(&q->lock);
1240 SetPageWaiters(page);
1241 if (!trylock_page_bit_common(page, bit_nr, wait))
1242 __add_wait_queue_entry_tail(q, wait);
1243 spin_unlock_irq(&q->lock);
1244
1245 /*
1246 * From now on, all the logic will be based on
1247 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1248 * see whether the page bit testing has already
1249 * been done by the wake function.
1250 *
1251 * We can drop our reference to the page.
1252 */
1253 if (behavior == DROP)
1254 put_page(page);
1255
1256 /*
1257 * Note that until the "finish_wait()", or until
1258 * we see the WQ_FLAG_WOKEN flag, we need to
1259 * be very careful with the 'wait->flags', because
1260 * we may race with a waker that sets them.
1261 */
1262 for (;;) {
1263 unsigned int flags;
1264
1265 set_current_state(state);
1266
1267 /* Loop until we've been woken or interrupted */
1268 flags = smp_load_acquire(&wait->flags);
1269 if (!(flags & WQ_FLAG_WOKEN)) {
1270 if (signal_pending_state(state, current))
1271 break;
1272
1273 io_schedule();
1274 continue;
1275 }
1276
1277 /* If we were non-exclusive, we're done */
1278 if (behavior != EXCLUSIVE)
1279 break;
1280
1281 /* If the waker got the lock for us, we're done */
1282 if (flags & WQ_FLAG_DONE)
1283 break;
1284
1285 /*
1286 * Otherwise, if we're getting the lock, we need to
1287 * try to get it ourselves.
1288 *
1289 * And if that fails, we'll have to retry this all.
1290 */
1291 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1292 goto repeat;
1293
1294 wait->flags |= WQ_FLAG_DONE;
1295 break;
1296 }
1297
1298 /*
1299 * If a signal happened, this 'finish_wait()' may remove the last
1300 * waiter from the wait-queues, but the PageWaiters bit will remain
1301 * set. That's ok. The next wakeup will take care of it, and trying
1302 * to do it here would be difficult and prone to races.
1303 */
1304 finish_wait(q, wait);
1305
1306 if (thrashing) {
1307 if (delayacct)
1308 delayacct_thrashing_end();
1309 psi_memstall_leave(&pflags);
1310 }
1311
1312 /*
1313 * NOTE! The wait->flags weren't stable until we've done the
1314 * 'finish_wait()', and we could have exited the loop above due
1315 * to a signal, and had a wakeup event happen after the signal
1316 * test but before the 'finish_wait()'.
1317 *
1318 * So only after the finish_wait() can we reliably determine
1319 * if we got woken up or not, so we can now figure out the final
1320 * return value based on that state without races.
1321 *
1322 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1323 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1324 */
1325 if (behavior == EXCLUSIVE)
1326 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1327
1328 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1329 }
1330
1331 void wait_on_page_bit(struct page *page, int bit_nr)
1332 {
1333 wait_queue_head_t *q = page_waitqueue(page);
1334 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1335 }
1336 EXPORT_SYMBOL(wait_on_page_bit);
1337
1338 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1339 {
1340 wait_queue_head_t *q = page_waitqueue(page);
1341 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1342 }
1343 EXPORT_SYMBOL(wait_on_page_bit_killable);
1344
1345 static int __wait_on_page_locked_async(struct page *page,
1346 struct wait_page_queue *wait, bool set)
1347 {
1348 struct wait_queue_head *q = page_waitqueue(page);
1349 int ret = 0;
1350
1351 wait->page = page;
1352 wait->bit_nr = PG_locked;
1353
1354 spin_lock_irq(&q->lock);
1355 __add_wait_queue_entry_tail(q, &wait->wait);
1356 SetPageWaiters(page);
1357 if (set)
1358 ret = !trylock_page(page);
1359 else
1360 ret = PageLocked(page);
1361 /*
1362 * If we were successful now, we know we're still on the
1363 * waitqueue as we're still under the lock. This means it's
1364 * safe to remove and return success, we know the callback
1365 * isn't going to trigger.
1366 */
1367 if (!ret)
1368 __remove_wait_queue(q, &wait->wait);
1369 else
1370 ret = -EIOCBQUEUED;
1371 spin_unlock_irq(&q->lock);
1372 return ret;
1373 }
1374
1375 static int wait_on_page_locked_async(struct page *page,
1376 struct wait_page_queue *wait)
1377 {
1378 if (!PageLocked(page))
1379 return 0;
1380 return __wait_on_page_locked_async(compound_head(page), wait, false);
1381 }
1382
1383 /**
1384 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1385 * @page: The page to wait for.
1386 *
1387 * The caller should hold a reference on @page. They expect the page to
1388 * become unlocked relatively soon, but do not wish to hold up migration
1389 * (for example) by holding the reference while waiting for the page to
1390 * come unlocked. After this function returns, the caller should not
1391 * dereference @page.
1392 */
1393 void put_and_wait_on_page_locked(struct page *page)
1394 {
1395 wait_queue_head_t *q;
1396
1397 page = compound_head(page);
1398 q = page_waitqueue(page);
1399 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1400 }
1401
1402 /**
1403 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1404 * @page: Page defining the wait queue of interest
1405 * @waiter: Waiter to add to the queue
1406 *
1407 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1408 */
1409 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1410 {
1411 wait_queue_head_t *q = page_waitqueue(page);
1412 unsigned long flags;
1413
1414 spin_lock_irqsave(&q->lock, flags);
1415 __add_wait_queue_entry_tail(q, waiter);
1416 SetPageWaiters(page);
1417 spin_unlock_irqrestore(&q->lock, flags);
1418 }
1419 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1420
1421 #ifndef clear_bit_unlock_is_negative_byte
1422
1423 /*
1424 * PG_waiters is the high bit in the same byte as PG_lock.
1425 *
1426 * On x86 (and on many other architectures), we can clear PG_lock and
1427 * test the sign bit at the same time. But if the architecture does
1428 * not support that special operation, we just do this all by hand
1429 * instead.
1430 *
1431 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1432 * being cleared, but a memory barrier should be unnecessary since it is
1433 * in the same byte as PG_locked.
1434 */
1435 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1436 {
1437 clear_bit_unlock(nr, mem);
1438 /* smp_mb__after_atomic(); */
1439 return test_bit(PG_waiters, mem);
1440 }
1441
1442 #endif
1443
1444 /**
1445 * unlock_page - unlock a locked page
1446 * @page: the page
1447 *
1448 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1449 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1450 * mechanism between PageLocked pages and PageWriteback pages is shared.
1451 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1452 *
1453 * Note that this depends on PG_waiters being the sign bit in the byte
1454 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1455 * clear the PG_locked bit and test PG_waiters at the same time fairly
1456 * portably (architectures that do LL/SC can test any bit, while x86 can
1457 * test the sign bit).
1458 */
1459 void unlock_page(struct page *page)
1460 {
1461 BUILD_BUG_ON(PG_waiters != 7);
1462 page = compound_head(page);
1463 VM_BUG_ON_PAGE(!PageLocked(page), page);
1464 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1465 wake_up_page_bit(page, PG_locked);
1466 }
1467 EXPORT_SYMBOL(unlock_page);
1468
1469 /**
1470 * end_page_writeback - end writeback against a page
1471 * @page: the page
1472 */
1473 void end_page_writeback(struct page *page)
1474 {
1475 /*
1476 * TestClearPageReclaim could be used here but it is an atomic
1477 * operation and overkill in this particular case. Failing to
1478 * shuffle a page marked for immediate reclaim is too mild to
1479 * justify taking an atomic operation penalty at the end of
1480 * ever page writeback.
1481 */
1482 if (PageReclaim(page)) {
1483 ClearPageReclaim(page);
1484 rotate_reclaimable_page(page);
1485 }
1486
1487 /*
1488 * Writeback does not hold a page reference of its own, relying
1489 * on truncation to wait for the clearing of PG_writeback.
1490 * But here we must make sure that the page is not freed and
1491 * reused before the wake_up_page().
1492 */
1493 get_page(page);
1494 if (!test_clear_page_writeback(page))
1495 BUG();
1496
1497 smp_mb__after_atomic();
1498 wake_up_page(page, PG_writeback);
1499 put_page(page);
1500 }
1501 EXPORT_SYMBOL(end_page_writeback);
1502
1503 /*
1504 * After completing I/O on a page, call this routine to update the page
1505 * flags appropriately
1506 */
1507 void page_endio(struct page *page, bool is_write, int err)
1508 {
1509 if (!is_write) {
1510 if (!err) {
1511 SetPageUptodate(page);
1512 } else {
1513 ClearPageUptodate(page);
1514 SetPageError(page);
1515 }
1516 unlock_page(page);
1517 } else {
1518 if (err) {
1519 struct address_space *mapping;
1520
1521 SetPageError(page);
1522 mapping = page_mapping(page);
1523 if (mapping)
1524 mapping_set_error(mapping, err);
1525 }
1526 end_page_writeback(page);
1527 }
1528 }
1529 EXPORT_SYMBOL_GPL(page_endio);
1530
1531 /**
1532 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1533 * @__page: the page to lock
1534 */
1535 void __lock_page(struct page *__page)
1536 {
1537 struct page *page = compound_head(__page);
1538 wait_queue_head_t *q = page_waitqueue(page);
1539 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1540 EXCLUSIVE);
1541 }
1542 EXPORT_SYMBOL(__lock_page);
1543
1544 int __lock_page_killable(struct page *__page)
1545 {
1546 struct page *page = compound_head(__page);
1547 wait_queue_head_t *q = page_waitqueue(page);
1548 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1549 EXCLUSIVE);
1550 }
1551 EXPORT_SYMBOL_GPL(__lock_page_killable);
1552
1553 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1554 {
1555 return __wait_on_page_locked_async(page, wait, true);
1556 }
1557
1558 /*
1559 * Return values:
1560 * 1 - page is locked; mmap_lock is still held.
1561 * 0 - page is not locked.
1562 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1563 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1564 * which case mmap_lock is still held.
1565 *
1566 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1567 * with the page locked and the mmap_lock unperturbed.
1568 */
1569 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1570 unsigned int flags)
1571 {
1572 if (fault_flag_allow_retry_first(flags)) {
1573 /*
1574 * CAUTION! In this case, mmap_lock is not released
1575 * even though return 0.
1576 */
1577 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1578 return 0;
1579
1580 mmap_read_unlock(mm);
1581 if (flags & FAULT_FLAG_KILLABLE)
1582 wait_on_page_locked_killable(page);
1583 else
1584 wait_on_page_locked(page);
1585 return 0;
1586 }
1587 if (flags & FAULT_FLAG_KILLABLE) {
1588 int ret;
1589
1590 ret = __lock_page_killable(page);
1591 if (ret) {
1592 mmap_read_unlock(mm);
1593 return 0;
1594 }
1595 } else {
1596 __lock_page(page);
1597 }
1598 return 1;
1599
1600 }
1601
1602 /**
1603 * page_cache_next_miss() - Find the next gap in the page cache.
1604 * @mapping: Mapping.
1605 * @index: Index.
1606 * @max_scan: Maximum range to search.
1607 *
1608 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1609 * gap with the lowest index.
1610 *
1611 * This function may be called under the rcu_read_lock. However, this will
1612 * not atomically search a snapshot of the cache at a single point in time.
1613 * For example, if a gap is created at index 5, then subsequently a gap is
1614 * created at index 10, page_cache_next_miss covering both indices may
1615 * return 10 if called under the rcu_read_lock.
1616 *
1617 * Return: The index of the gap if found, otherwise an index outside the
1618 * range specified (in which case 'return - index >= max_scan' will be true).
1619 * In the rare case of index wrap-around, 0 will be returned.
1620 */
1621 pgoff_t page_cache_next_miss(struct address_space *mapping,
1622 pgoff_t index, unsigned long max_scan)
1623 {
1624 XA_STATE(xas, &mapping->i_pages, index);
1625
1626 while (max_scan--) {
1627 void *entry = xas_next(&xas);
1628 if (!entry || xa_is_value(entry))
1629 break;
1630 if (xas.xa_index == 0)
1631 break;
1632 }
1633
1634 return xas.xa_index;
1635 }
1636 EXPORT_SYMBOL(page_cache_next_miss);
1637
1638 /**
1639 * page_cache_prev_miss() - Find the previous gap in the page cache.
1640 * @mapping: Mapping.
1641 * @index: Index.
1642 * @max_scan: Maximum range to search.
1643 *
1644 * Search the range [max(index - max_scan + 1, 0), index] for the
1645 * gap with the highest index.
1646 *
1647 * This function may be called under the rcu_read_lock. However, this will
1648 * not atomically search a snapshot of the cache at a single point in time.
1649 * For example, if a gap is created at index 10, then subsequently a gap is
1650 * created at index 5, page_cache_prev_miss() covering both indices may
1651 * return 5 if called under the rcu_read_lock.
1652 *
1653 * Return: The index of the gap if found, otherwise an index outside the
1654 * range specified (in which case 'index - return >= max_scan' will be true).
1655 * In the rare case of wrap-around, ULONG_MAX will be returned.
1656 */
1657 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1658 pgoff_t index, unsigned long max_scan)
1659 {
1660 XA_STATE(xas, &mapping->i_pages, index);
1661
1662 while (max_scan--) {
1663 void *entry = xas_prev(&xas);
1664 if (!entry || xa_is_value(entry))
1665 break;
1666 if (xas.xa_index == ULONG_MAX)
1667 break;
1668 }
1669
1670 return xas.xa_index;
1671 }
1672 EXPORT_SYMBOL(page_cache_prev_miss);
1673
1674 /**
1675 * find_get_entry - find and get a page cache entry
1676 * @mapping: the address_space to search
1677 * @index: The page cache index.
1678 *
1679 * Looks up the page cache slot at @mapping & @offset. If there is a
1680 * page cache page, the head page is returned with an increased refcount.
1681 *
1682 * If the slot holds a shadow entry of a previously evicted page, or a
1683 * swap entry from shmem/tmpfs, it is returned.
1684 *
1685 * Return: The head page or shadow entry, %NULL if nothing is found.
1686 */
1687 struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
1688 {
1689 XA_STATE(xas, &mapping->i_pages, index);
1690 struct page *page;
1691
1692 rcu_read_lock();
1693 repeat:
1694 xas_reset(&xas);
1695 page = xas_load(&xas);
1696 if (xas_retry(&xas, page))
1697 goto repeat;
1698 /*
1699 * A shadow entry of a recently evicted page, or a swap entry from
1700 * shmem/tmpfs. Return it without attempting to raise page count.
1701 */
1702 if (!page || xa_is_value(page))
1703 goto out;
1704
1705 if (!page_cache_get_speculative(page))
1706 goto repeat;
1707
1708 /*
1709 * Has the page moved or been split?
1710 * This is part of the lockless pagecache protocol. See
1711 * include/linux/pagemap.h for details.
1712 */
1713 if (unlikely(page != xas_reload(&xas))) {
1714 put_page(page);
1715 goto repeat;
1716 }
1717 out:
1718 rcu_read_unlock();
1719
1720 return page;
1721 }
1722
1723 /**
1724 * find_lock_entry - Locate and lock a page cache entry.
1725 * @mapping: The address_space to search.
1726 * @index: The page cache index.
1727 *
1728 * Looks up the page at @mapping & @index. If there is a page in the
1729 * cache, the head page is returned locked and with an increased refcount.
1730 *
1731 * If the slot holds a shadow entry of a previously evicted page, or a
1732 * swap entry from shmem/tmpfs, it is returned.
1733 *
1734 * Context: May sleep.
1735 * Return: The head page or shadow entry, %NULL if nothing is found.
1736 */
1737 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
1738 {
1739 struct page *page;
1740
1741 repeat:
1742 page = find_get_entry(mapping, index);
1743 if (page && !xa_is_value(page)) {
1744 lock_page(page);
1745 /* Has the page been truncated? */
1746 if (unlikely(page->mapping != mapping)) {
1747 unlock_page(page);
1748 put_page(page);
1749 goto repeat;
1750 }
1751 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1752 }
1753 return page;
1754 }
1755
1756 /**
1757 * pagecache_get_page - Find and get a reference to a page.
1758 * @mapping: The address_space to search.
1759 * @index: The page index.
1760 * @fgp_flags: %FGP flags modify how the page is returned.
1761 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1762 *
1763 * Looks up the page cache entry at @mapping & @index.
1764 *
1765 * @fgp_flags can be zero or more of these flags:
1766 *
1767 * * %FGP_ACCESSED - The page will be marked accessed.
1768 * * %FGP_LOCK - The page is returned locked.
1769 * * %FGP_HEAD - If the page is present and a THP, return the head page
1770 * rather than the exact page specified by the index.
1771 * * %FGP_CREAT - If no page is present then a new page is allocated using
1772 * @gfp_mask and added to the page cache and the VM's LRU list.
1773 * The page is returned locked and with an increased refcount.
1774 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1775 * page is already in cache. If the page was allocated, unlock it before
1776 * returning so the caller can do the same dance.
1777 * * %FGP_WRITE - The page will be written
1778 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1779 * * %FGP_NOWAIT - Don't get blocked by page lock
1780 *
1781 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1782 * if the %GFP flags specified for %FGP_CREAT are atomic.
1783 *
1784 * If there is a page cache page, it is returned with an increased refcount.
1785 *
1786 * Return: The found page or %NULL otherwise.
1787 */
1788 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1789 int fgp_flags, gfp_t gfp_mask)
1790 {
1791 struct page *page;
1792
1793 repeat:
1794 page = find_get_entry(mapping, index);
1795 if (xa_is_value(page))
1796 page = NULL;
1797 if (!page)
1798 goto no_page;
1799
1800 if (fgp_flags & FGP_LOCK) {
1801 if (fgp_flags & FGP_NOWAIT) {
1802 if (!trylock_page(page)) {
1803 put_page(page);
1804 return NULL;
1805 }
1806 } else {
1807 lock_page(page);
1808 }
1809
1810 /* Has the page been truncated? */
1811 if (unlikely(page->mapping != mapping)) {
1812 unlock_page(page);
1813 put_page(page);
1814 goto repeat;
1815 }
1816 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1817 }
1818
1819 if (fgp_flags & FGP_ACCESSED)
1820 mark_page_accessed(page);
1821 else if (fgp_flags & FGP_WRITE) {
1822 /* Clear idle flag for buffer write */
1823 if (page_is_idle(page))
1824 clear_page_idle(page);
1825 }
1826 if (!(fgp_flags & FGP_HEAD))
1827 page = find_subpage(page, index);
1828
1829 no_page:
1830 if (!page && (fgp_flags & FGP_CREAT)) {
1831 int err;
1832 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1833 gfp_mask |= __GFP_WRITE;
1834 if (fgp_flags & FGP_NOFS)
1835 gfp_mask &= ~__GFP_FS;
1836
1837 page = __page_cache_alloc(gfp_mask);
1838 if (!page)
1839 return NULL;
1840
1841 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1842 fgp_flags |= FGP_LOCK;
1843
1844 /* Init accessed so avoid atomic mark_page_accessed later */
1845 if (fgp_flags & FGP_ACCESSED)
1846 __SetPageReferenced(page);
1847
1848 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1849 if (unlikely(err)) {
1850 put_page(page);
1851 page = NULL;
1852 if (err == -EEXIST)
1853 goto repeat;
1854 }
1855
1856 /*
1857 * add_to_page_cache_lru locks the page, and for mmap we expect
1858 * an unlocked page.
1859 */
1860 if (page && (fgp_flags & FGP_FOR_MMAP))
1861 unlock_page(page);
1862 }
1863
1864 return page;
1865 }
1866 EXPORT_SYMBOL(pagecache_get_page);
1867
1868 /**
1869 * find_get_entries - gang pagecache lookup
1870 * @mapping: The address_space to search
1871 * @start: The starting page cache index
1872 * @nr_entries: The maximum number of entries
1873 * @entries: Where the resulting entries are placed
1874 * @indices: The cache indices corresponding to the entries in @entries
1875 *
1876 * find_get_entries() will search for and return a group of up to
1877 * @nr_entries entries in the mapping. The entries are placed at
1878 * @entries. find_get_entries() takes a reference against any actual
1879 * pages it returns.
1880 *
1881 * The search returns a group of mapping-contiguous page cache entries
1882 * with ascending indexes. There may be holes in the indices due to
1883 * not-present pages.
1884 *
1885 * Any shadow entries of evicted pages, or swap entries from
1886 * shmem/tmpfs, are included in the returned array.
1887 *
1888 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1889 * stops at that page: the caller is likely to have a better way to handle
1890 * the compound page as a whole, and then skip its extent, than repeatedly
1891 * calling find_get_entries() to return all its tails.
1892 *
1893 * Return: the number of pages and shadow entries which were found.
1894 */
1895 unsigned find_get_entries(struct address_space *mapping,
1896 pgoff_t start, unsigned int nr_entries,
1897 struct page **entries, pgoff_t *indices)
1898 {
1899 XA_STATE(xas, &mapping->i_pages, start);
1900 struct page *page;
1901 unsigned int ret = 0;
1902
1903 if (!nr_entries)
1904 return 0;
1905
1906 rcu_read_lock();
1907 xas_for_each(&xas, page, ULONG_MAX) {
1908 if (xas_retry(&xas, page))
1909 continue;
1910 /*
1911 * A shadow entry of a recently evicted page, a swap
1912 * entry from shmem/tmpfs or a DAX entry. Return it
1913 * without attempting to raise page count.
1914 */
1915 if (xa_is_value(page))
1916 goto export;
1917
1918 if (!page_cache_get_speculative(page))
1919 goto retry;
1920
1921 /* Has the page moved or been split? */
1922 if (unlikely(page != xas_reload(&xas)))
1923 goto put_page;
1924
1925 /*
1926 * Terminate early on finding a THP, to allow the caller to
1927 * handle it all at once; but continue if this is hugetlbfs.
1928 */
1929 if (PageTransHuge(page) && !PageHuge(page)) {
1930 page = find_subpage(page, xas.xa_index);
1931 nr_entries = ret + 1;
1932 }
1933 export:
1934 indices[ret] = xas.xa_index;
1935 entries[ret] = page;
1936 if (++ret == nr_entries)
1937 break;
1938 continue;
1939 put_page:
1940 put_page(page);
1941 retry:
1942 xas_reset(&xas);
1943 }
1944 rcu_read_unlock();
1945 return ret;
1946 }
1947
1948 /**
1949 * find_get_pages_range - gang pagecache lookup
1950 * @mapping: The address_space to search
1951 * @start: The starting page index
1952 * @end: The final page index (inclusive)
1953 * @nr_pages: The maximum number of pages
1954 * @pages: Where the resulting pages are placed
1955 *
1956 * find_get_pages_range() will search for and return a group of up to @nr_pages
1957 * pages in the mapping starting at index @start and up to index @end
1958 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1959 * a reference against the returned pages.
1960 *
1961 * The search returns a group of mapping-contiguous pages with ascending
1962 * indexes. There may be holes in the indices due to not-present pages.
1963 * We also update @start to index the next page for the traversal.
1964 *
1965 * Return: the number of pages which were found. If this number is
1966 * smaller than @nr_pages, the end of specified range has been
1967 * reached.
1968 */
1969 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1970 pgoff_t end, unsigned int nr_pages,
1971 struct page **pages)
1972 {
1973 XA_STATE(xas, &mapping->i_pages, *start);
1974 struct page *page;
1975 unsigned ret = 0;
1976
1977 if (unlikely(!nr_pages))
1978 return 0;
1979
1980 rcu_read_lock();
1981 xas_for_each(&xas, page, end) {
1982 if (xas_retry(&xas, page))
1983 continue;
1984 /* Skip over shadow, swap and DAX entries */
1985 if (xa_is_value(page))
1986 continue;
1987
1988 if (!page_cache_get_speculative(page))
1989 goto retry;
1990
1991 /* Has the page moved or been split? */
1992 if (unlikely(page != xas_reload(&xas)))
1993 goto put_page;
1994
1995 pages[ret] = find_subpage(page, xas.xa_index);
1996 if (++ret == nr_pages) {
1997 *start = xas.xa_index + 1;
1998 goto out;
1999 }
2000 continue;
2001 put_page:
2002 put_page(page);
2003 retry:
2004 xas_reset(&xas);
2005 }
2006
2007 /*
2008 * We come here when there is no page beyond @end. We take care to not
2009 * overflow the index @start as it confuses some of the callers. This
2010 * breaks the iteration when there is a page at index -1 but that is
2011 * already broken anyway.
2012 */
2013 if (end == (pgoff_t)-1)
2014 *start = (pgoff_t)-1;
2015 else
2016 *start = end + 1;
2017 out:
2018 rcu_read_unlock();
2019
2020 return ret;
2021 }
2022
2023 /**
2024 * find_get_pages_contig - gang contiguous pagecache lookup
2025 * @mapping: The address_space to search
2026 * @index: The starting page index
2027 * @nr_pages: The maximum number of pages
2028 * @pages: Where the resulting pages are placed
2029 *
2030 * find_get_pages_contig() works exactly like find_get_pages(), except
2031 * that the returned number of pages are guaranteed to be contiguous.
2032 *
2033 * Return: the number of pages which were found.
2034 */
2035 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2036 unsigned int nr_pages, struct page **pages)
2037 {
2038 XA_STATE(xas, &mapping->i_pages, index);
2039 struct page *page;
2040 unsigned int ret = 0;
2041
2042 if (unlikely(!nr_pages))
2043 return 0;
2044
2045 rcu_read_lock();
2046 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2047 if (xas_retry(&xas, page))
2048 continue;
2049 /*
2050 * If the entry has been swapped out, we can stop looking.
2051 * No current caller is looking for DAX entries.
2052 */
2053 if (xa_is_value(page))
2054 break;
2055
2056 if (!page_cache_get_speculative(page))
2057 goto retry;
2058
2059 /* Has the page moved or been split? */
2060 if (unlikely(page != xas_reload(&xas)))
2061 goto put_page;
2062
2063 pages[ret] = find_subpage(page, xas.xa_index);
2064 if (++ret == nr_pages)
2065 break;
2066 continue;
2067 put_page:
2068 put_page(page);
2069 retry:
2070 xas_reset(&xas);
2071 }
2072 rcu_read_unlock();
2073 return ret;
2074 }
2075 EXPORT_SYMBOL(find_get_pages_contig);
2076
2077 /**
2078 * find_get_pages_range_tag - find and return pages in given range matching @tag
2079 * @mapping: the address_space to search
2080 * @index: the starting page index
2081 * @end: The final page index (inclusive)
2082 * @tag: the tag index
2083 * @nr_pages: the maximum number of pages
2084 * @pages: where the resulting pages are placed
2085 *
2086 * Like find_get_pages, except we only return pages which are tagged with
2087 * @tag. We update @index to index the next page for the traversal.
2088 *
2089 * Return: the number of pages which were found.
2090 */
2091 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2092 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2093 struct page **pages)
2094 {
2095 XA_STATE(xas, &mapping->i_pages, *index);
2096 struct page *page;
2097 unsigned ret = 0;
2098
2099 if (unlikely(!nr_pages))
2100 return 0;
2101
2102 rcu_read_lock();
2103 xas_for_each_marked(&xas, page, end, tag) {
2104 if (xas_retry(&xas, page))
2105 continue;
2106 /*
2107 * Shadow entries should never be tagged, but this iteration
2108 * is lockless so there is a window for page reclaim to evict
2109 * a page we saw tagged. Skip over it.
2110 */
2111 if (xa_is_value(page))
2112 continue;
2113
2114 if (!page_cache_get_speculative(page))
2115 goto retry;
2116
2117 /* Has the page moved or been split? */
2118 if (unlikely(page != xas_reload(&xas)))
2119 goto put_page;
2120
2121 pages[ret] = find_subpage(page, xas.xa_index);
2122 if (++ret == nr_pages) {
2123 *index = xas.xa_index + 1;
2124 goto out;
2125 }
2126 continue;
2127 put_page:
2128 put_page(page);
2129 retry:
2130 xas_reset(&xas);
2131 }
2132
2133 /*
2134 * We come here when we got to @end. We take care to not overflow the
2135 * index @index as it confuses some of the callers. This breaks the
2136 * iteration when there is a page at index -1 but that is already
2137 * broken anyway.
2138 */
2139 if (end == (pgoff_t)-1)
2140 *index = (pgoff_t)-1;
2141 else
2142 *index = end + 1;
2143 out:
2144 rcu_read_unlock();
2145
2146 return ret;
2147 }
2148 EXPORT_SYMBOL(find_get_pages_range_tag);
2149
2150 /*
2151 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2152 * a _large_ part of the i/o request. Imagine the worst scenario:
2153 *
2154 * ---R__________________________________________B__________
2155 * ^ reading here ^ bad block(assume 4k)
2156 *
2157 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2158 * => failing the whole request => read(R) => read(R+1) =>
2159 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2160 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2161 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2162 *
2163 * It is going insane. Fix it by quickly scaling down the readahead size.
2164 */
2165 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2166 {
2167 ra->ra_pages /= 4;
2168 }
2169
2170 static int lock_page_for_iocb(struct kiocb *iocb, struct page *page)
2171 {
2172 if (iocb->ki_flags & IOCB_WAITQ)
2173 return lock_page_async(page, iocb->ki_waitq);
2174 else if (iocb->ki_flags & IOCB_NOWAIT)
2175 return trylock_page(page) ? 0 : -EAGAIN;
2176 else
2177 return lock_page_killable(page);
2178 }
2179
2180 static struct page *
2181 generic_file_buffered_read_readpage(struct kiocb *iocb,
2182 struct file *filp,
2183 struct address_space *mapping,
2184 struct page *page)
2185 {
2186 struct file_ra_state *ra = &filp->f_ra;
2187 int error;
2188
2189 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2190 unlock_page(page);
2191 put_page(page);
2192 return ERR_PTR(-EAGAIN);
2193 }
2194
2195 /*
2196 * A previous I/O error may have been due to temporary
2197 * failures, eg. multipath errors.
2198 * PG_error will be set again if readpage fails.
2199 */
2200 ClearPageError(page);
2201 /* Start the actual read. The read will unlock the page. */
2202 error = mapping->a_ops->readpage(filp, page);
2203
2204 if (unlikely(error)) {
2205 put_page(page);
2206 return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL;
2207 }
2208
2209 if (!PageUptodate(page)) {
2210 error = lock_page_for_iocb(iocb, page);
2211 if (unlikely(error)) {
2212 put_page(page);
2213 return ERR_PTR(error);
2214 }
2215 if (!PageUptodate(page)) {
2216 if (page->mapping == NULL) {
2217 /*
2218 * invalidate_mapping_pages got it
2219 */
2220 unlock_page(page);
2221 put_page(page);
2222 return NULL;
2223 }
2224 unlock_page(page);
2225 shrink_readahead_size_eio(ra);
2226 put_page(page);
2227 return ERR_PTR(-EIO);
2228 }
2229 unlock_page(page);
2230 }
2231
2232 return page;
2233 }
2234
2235 static struct page *
2236 generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb,
2237 struct file *filp,
2238 struct iov_iter *iter,
2239 struct page *page,
2240 loff_t pos, loff_t count)
2241 {
2242 struct address_space *mapping = filp->f_mapping;
2243 struct inode *inode = mapping->host;
2244 int error;
2245
2246 /*
2247 * See comment in do_read_cache_page on why
2248 * wait_on_page_locked is used to avoid unnecessarily
2249 * serialisations and why it's safe.
2250 */
2251 if (iocb->ki_flags & IOCB_WAITQ) {
2252 error = wait_on_page_locked_async(page,
2253 iocb->ki_waitq);
2254 } else {
2255 error = wait_on_page_locked_killable(page);
2256 }
2257 if (unlikely(error)) {
2258 put_page(page);
2259 return ERR_PTR(error);
2260 }
2261 if (PageUptodate(page))
2262 return page;
2263
2264 if (inode->i_blkbits == PAGE_SHIFT ||
2265 !mapping->a_ops->is_partially_uptodate)
2266 goto page_not_up_to_date;
2267 /* pipes can't handle partially uptodate pages */
2268 if (unlikely(iov_iter_is_pipe(iter)))
2269 goto page_not_up_to_date;
2270 if (!trylock_page(page))
2271 goto page_not_up_to_date;
2272 /* Did it get truncated before we got the lock? */
2273 if (!page->mapping)
2274 goto page_not_up_to_date_locked;
2275 if (!mapping->a_ops->is_partially_uptodate(page,
2276 pos & ~PAGE_MASK, count))
2277 goto page_not_up_to_date_locked;
2278 unlock_page(page);
2279 return page;
2280
2281 page_not_up_to_date:
2282 /* Get exclusive access to the page ... */
2283 error = lock_page_for_iocb(iocb, page);
2284 if (unlikely(error)) {
2285 put_page(page);
2286 return ERR_PTR(error);
2287 }
2288
2289 page_not_up_to_date_locked:
2290 /* Did it get truncated before we got the lock? */
2291 if (!page->mapping) {
2292 unlock_page(page);
2293 put_page(page);
2294 return NULL;
2295 }
2296
2297 /* Did somebody else fill it already? */
2298 if (PageUptodate(page)) {
2299 unlock_page(page);
2300 return page;
2301 }
2302
2303 return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
2304 }
2305
2306 static struct page *
2307 generic_file_buffered_read_no_cached_page(struct kiocb *iocb,
2308 struct iov_iter *iter)
2309 {
2310 struct file *filp = iocb->ki_filp;
2311 struct address_space *mapping = filp->f_mapping;
2312 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2313 struct page *page;
2314 int error;
2315
2316 if (iocb->ki_flags & IOCB_NOIO)
2317 return ERR_PTR(-EAGAIN);
2318
2319 /*
2320 * Ok, it wasn't cached, so we need to create a new
2321 * page..
2322 */
2323 page = page_cache_alloc(mapping);
2324 if (!page)
2325 return ERR_PTR(-ENOMEM);
2326
2327 error = add_to_page_cache_lru(page, mapping, index,
2328 mapping_gfp_constraint(mapping, GFP_KERNEL));
2329 if (error) {
2330 put_page(page);
2331 return error != -EEXIST ? ERR_PTR(error) : NULL;
2332 }
2333
2334 return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
2335 }
2336
2337 static int generic_file_buffered_read_get_pages(struct kiocb *iocb,
2338 struct iov_iter *iter,
2339 struct page **pages,
2340 unsigned int nr)
2341 {
2342 struct file *filp = iocb->ki_filp;
2343 struct address_space *mapping = filp->f_mapping;
2344 struct file_ra_state *ra = &filp->f_ra;
2345 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2346 pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2347 int i, j, nr_got, err = 0;
2348
2349 nr = min_t(unsigned long, last_index - index, nr);
2350 find_page:
2351 if (fatal_signal_pending(current))
2352 return -EINTR;
2353
2354 nr_got = find_get_pages_contig(mapping, index, nr, pages);
2355 if (nr_got)
2356 goto got_pages;
2357
2358 if (iocb->ki_flags & IOCB_NOIO)
2359 return -EAGAIN;
2360
2361 page_cache_sync_readahead(mapping, ra, filp, index, last_index - index);
2362
2363 nr_got = find_get_pages_contig(mapping, index, nr, pages);
2364 if (nr_got)
2365 goto got_pages;
2366
2367 pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter);
2368 err = PTR_ERR_OR_ZERO(pages[0]);
2369 if (!IS_ERR_OR_NULL(pages[0]))
2370 nr_got = 1;
2371 got_pages:
2372 for (i = 0; i < nr_got; i++) {
2373 struct page *page = pages[i];
2374 pgoff_t pg_index = index + i;
2375 loff_t pg_pos = max(iocb->ki_pos,
2376 (loff_t) pg_index << PAGE_SHIFT);
2377 loff_t pg_count = iocb->ki_pos + iter->count - pg_pos;
2378
2379 if (PageReadahead(page)) {
2380 if (iocb->ki_flags & IOCB_NOIO) {
2381 for (j = i; j < nr_got; j++)
2382 put_page(pages[j]);
2383 nr_got = i;
2384 err = -EAGAIN;
2385 break;
2386 }
2387 page_cache_async_readahead(mapping, ra, filp, page,
2388 pg_index, last_index - pg_index);
2389 }
2390
2391 if (!PageUptodate(page)) {
2392 if ((iocb->ki_flags & IOCB_NOWAIT) ||
2393 ((iocb->ki_flags & IOCB_WAITQ) && i)) {
2394 for (j = i; j < nr_got; j++)
2395 put_page(pages[j]);
2396 nr_got = i;
2397 err = -EAGAIN;
2398 break;
2399 }
2400
2401 page = generic_file_buffered_read_pagenotuptodate(iocb,
2402 filp, iter, page, pg_pos, pg_count);
2403 if (IS_ERR_OR_NULL(page)) {
2404 for (j = i + 1; j < nr_got; j++)
2405 put_page(pages[j]);
2406 nr_got = i;
2407 err = PTR_ERR_OR_ZERO(page);
2408 break;
2409 }
2410 }
2411 }
2412
2413 if (likely(nr_got))
2414 return nr_got;
2415 if (err)
2416 return err;
2417 /*
2418 * No pages and no error means we raced and should retry:
2419 */
2420 goto find_page;
2421 }
2422
2423 /**
2424 * generic_file_buffered_read - generic file read routine
2425 * @iocb: the iocb to read
2426 * @iter: data destination
2427 * @written: already copied
2428 *
2429 * This is a generic file read routine, and uses the
2430 * mapping->a_ops->readpage() function for the actual low-level stuff.
2431 *
2432 * This is really ugly. But the goto's actually try to clarify some
2433 * of the logic when it comes to error handling etc.
2434 *
2435 * Return:
2436 * * total number of bytes copied, including those the were already @written
2437 * * negative error code if nothing was copied
2438 */
2439 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2440 struct iov_iter *iter, ssize_t written)
2441 {
2442 struct file *filp = iocb->ki_filp;
2443 struct file_ra_state *ra = &filp->f_ra;
2444 struct address_space *mapping = filp->f_mapping;
2445 struct inode *inode = mapping->host;
2446 struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL;
2447 unsigned int nr_pages = min_t(unsigned int, 512,
2448 ((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) -
2449 (iocb->ki_pos >> PAGE_SHIFT));
2450 int i, pg_nr, error = 0;
2451 bool writably_mapped;
2452 loff_t isize, end_offset;
2453
2454 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2455 return 0;
2456 if (unlikely(!iov_iter_count(iter)))
2457 return 0;
2458
2459 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2460
2461 if (nr_pages > ARRAY_SIZE(pages_onstack))
2462 pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
2463
2464 if (!pages) {
2465 pages = pages_onstack;
2466 nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack));
2467 }
2468
2469 do {
2470 cond_resched();
2471
2472 /*
2473 * If we've already successfully copied some data, then we
2474 * can no longer safely return -EIOCBQUEUED. Hence mark
2475 * an async read NOWAIT at that point.
2476 */
2477 if ((iocb->ki_flags & IOCB_WAITQ) && written)
2478 iocb->ki_flags |= IOCB_NOWAIT;
2479
2480 i = 0;
2481 pg_nr = generic_file_buffered_read_get_pages(iocb, iter,
2482 pages, nr_pages);
2483 if (pg_nr < 0) {
2484 error = pg_nr;
2485 break;
2486 }
2487
2488 /*
2489 * i_size must be checked after we know the pages are Uptodate.
2490 *
2491 * Checking i_size after the check allows us to calculate
2492 * the correct value for "nr", which means the zero-filled
2493 * part of the page is not copied back to userspace (unless
2494 * another truncate extends the file - this is desired though).
2495 */
2496 isize = i_size_read(inode);
2497 if (unlikely(iocb->ki_pos >= isize))
2498 goto put_pages;
2499
2500 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2501
2502 while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr >
2503 (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT)
2504 put_page(pages[--pg_nr]);
2505
2506 /*
2507 * Once we start copying data, we don't want to be touching any
2508 * cachelines that might be contended:
2509 */
2510 writably_mapped = mapping_writably_mapped(mapping);
2511
2512 /*
2513 * When a sequential read accesses a page several times, only
2514 * mark it as accessed the first time.
2515 */
2516 if (iocb->ki_pos >> PAGE_SHIFT !=
2517 ra->prev_pos >> PAGE_SHIFT)
2518 mark_page_accessed(pages[0]);
2519 for (i = 1; i < pg_nr; i++)
2520 mark_page_accessed(pages[i]);
2521
2522 for (i = 0; i < pg_nr; i++) {
2523 unsigned int offset = iocb->ki_pos & ~PAGE_MASK;
2524 unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2525 PAGE_SIZE - offset);
2526 unsigned int copied;
2527
2528 /*
2529 * If users can be writing to this page using arbitrary
2530 * virtual addresses, take care about potential aliasing
2531 * before reading the page on the kernel side.
2532 */
2533 if (writably_mapped)
2534 flush_dcache_page(pages[i]);
2535
2536 copied = copy_page_to_iter(pages[i], offset, bytes, iter);
2537
2538 written += copied;
2539 iocb->ki_pos += copied;
2540 ra->prev_pos = iocb->ki_pos;
2541
2542 if (copied < bytes) {
2543 error = -EFAULT;
2544 break;
2545 }
2546 }
2547 put_pages:
2548 for (i = 0; i < pg_nr; i++)
2549 put_page(pages[i]);
2550 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2551
2552 file_accessed(filp);
2553
2554 if (pages != pages_onstack)
2555 kfree(pages);
2556
2557 return written ? written : error;
2558 }
2559 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2560
2561 /**
2562 * generic_file_read_iter - generic filesystem read routine
2563 * @iocb: kernel I/O control block
2564 * @iter: destination for the data read
2565 *
2566 * This is the "read_iter()" routine for all filesystems
2567 * that can use the page cache directly.
2568 *
2569 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2570 * be returned when no data can be read without waiting for I/O requests
2571 * to complete; it doesn't prevent readahead.
2572 *
2573 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2574 * requests shall be made for the read or for readahead. When no data
2575 * can be read, -EAGAIN shall be returned. When readahead would be
2576 * triggered, a partial, possibly empty read shall be returned.
2577 *
2578 * Return:
2579 * * number of bytes copied, even for partial reads
2580 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2581 */
2582 ssize_t
2583 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2584 {
2585 size_t count = iov_iter_count(iter);
2586 ssize_t retval = 0;
2587
2588 if (!count)
2589 goto out; /* skip atime */
2590
2591 if (iocb->ki_flags & IOCB_DIRECT) {
2592 struct file *file = iocb->ki_filp;
2593 struct address_space *mapping = file->f_mapping;
2594 struct inode *inode = mapping->host;
2595 loff_t size;
2596
2597 size = i_size_read(inode);
2598 if (iocb->ki_flags & IOCB_NOWAIT) {
2599 if (filemap_range_has_page(mapping, iocb->ki_pos,
2600 iocb->ki_pos + count - 1))
2601 return -EAGAIN;
2602 } else {
2603 retval = filemap_write_and_wait_range(mapping,
2604 iocb->ki_pos,
2605 iocb->ki_pos + count - 1);
2606 if (retval < 0)
2607 goto out;
2608 }
2609
2610 file_accessed(file);
2611
2612 retval = mapping->a_ops->direct_IO(iocb, iter);
2613 if (retval >= 0) {
2614 iocb->ki_pos += retval;
2615 count -= retval;
2616 }
2617 iov_iter_revert(iter, count - iov_iter_count(iter));
2618
2619 /*
2620 * Btrfs can have a short DIO read if we encounter
2621 * compressed extents, so if there was an error, or if
2622 * we've already read everything we wanted to, or if
2623 * there was a short read because we hit EOF, go ahead
2624 * and return. Otherwise fallthrough to buffered io for
2625 * the rest of the read. Buffered reads will not work for
2626 * DAX files, so don't bother trying.
2627 */
2628 if (retval < 0 || !count || iocb->ki_pos >= size ||
2629 IS_DAX(inode))
2630 goto out;
2631 }
2632
2633 retval = generic_file_buffered_read(iocb, iter, retval);
2634 out:
2635 return retval;
2636 }
2637 EXPORT_SYMBOL(generic_file_read_iter);
2638
2639 #ifdef CONFIG_MMU
2640 #define MMAP_LOTSAMISS (100)
2641 /*
2642 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2643 * @vmf - the vm_fault for this fault.
2644 * @page - the page to lock.
2645 * @fpin - the pointer to the file we may pin (or is already pinned).
2646 *
2647 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2648 * It differs in that it actually returns the page locked if it returns 1 and 0
2649 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2650 * will point to the pinned file and needs to be fput()'ed at a later point.
2651 */
2652 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2653 struct file **fpin)
2654 {
2655 if (trylock_page(page))
2656 return 1;
2657
2658 /*
2659 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2660 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2661 * is supposed to work. We have way too many special cases..
2662 */
2663 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2664 return 0;
2665
2666 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2667 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2668 if (__lock_page_killable(page)) {
2669 /*
2670 * We didn't have the right flags to drop the mmap_lock,
2671 * but all fault_handlers only check for fatal signals
2672 * if we return VM_FAULT_RETRY, so we need to drop the
2673 * mmap_lock here and return 0 if we don't have a fpin.
2674 */
2675 if (*fpin == NULL)
2676 mmap_read_unlock(vmf->vma->vm_mm);
2677 return 0;
2678 }
2679 } else
2680 __lock_page(page);
2681 return 1;
2682 }
2683
2684
2685 /*
2686 * Synchronous readahead happens when we don't even find a page in the page
2687 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2688 * to drop the mmap sem we return the file that was pinned in order for us to do
2689 * that. If we didn't pin a file then we return NULL. The file that is
2690 * returned needs to be fput()'ed when we're done with it.
2691 */
2692 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2693 {
2694 struct file *file = vmf->vma->vm_file;
2695 struct file_ra_state *ra = &file->f_ra;
2696 struct address_space *mapping = file->f_mapping;
2697 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2698 struct file *fpin = NULL;
2699 unsigned int mmap_miss;
2700
2701 /* If we don't want any read-ahead, don't bother */
2702 if (vmf->vma->vm_flags & VM_RAND_READ)
2703 return fpin;
2704 if (!ra->ra_pages)
2705 return fpin;
2706
2707 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2708 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2709 page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2710 return fpin;
2711 }
2712
2713 /* Avoid banging the cache line if not needed */
2714 mmap_miss = READ_ONCE(ra->mmap_miss);
2715 if (mmap_miss < MMAP_LOTSAMISS * 10)
2716 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2717
2718 /*
2719 * Do we miss much more than hit in this file? If so,
2720 * stop bothering with read-ahead. It will only hurt.
2721 */
2722 if (mmap_miss > MMAP_LOTSAMISS)
2723 return fpin;
2724
2725 /*
2726 * mmap read-around
2727 */
2728 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2729 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2730 ra->size = ra->ra_pages;
2731 ra->async_size = ra->ra_pages / 4;
2732 ractl._index = ra->start;
2733 do_page_cache_ra(&ractl, ra->size, ra->async_size);
2734 return fpin;
2735 }
2736
2737 /*
2738 * Asynchronous readahead happens when we find the page and PG_readahead,
2739 * so we want to possibly extend the readahead further. We return the file that
2740 * was pinned if we have to drop the mmap_lock in order to do IO.
2741 */
2742 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2743 struct page *page)
2744 {
2745 struct file *file = vmf->vma->vm_file;
2746 struct file_ra_state *ra = &file->f_ra;
2747 struct address_space *mapping = file->f_mapping;
2748 struct file *fpin = NULL;
2749 unsigned int mmap_miss;
2750 pgoff_t offset = vmf->pgoff;
2751
2752 /* If we don't want any read-ahead, don't bother */
2753 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2754 return fpin;
2755 mmap_miss = READ_ONCE(ra->mmap_miss);
2756 if (mmap_miss)
2757 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2758 if (PageReadahead(page)) {
2759 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2760 page_cache_async_readahead(mapping, ra, file,
2761 page, offset, ra->ra_pages);
2762 }
2763 return fpin;
2764 }
2765
2766 /**
2767 * filemap_fault - read in file data for page fault handling
2768 * @vmf: struct vm_fault containing details of the fault
2769 *
2770 * filemap_fault() is invoked via the vma operations vector for a
2771 * mapped memory region to read in file data during a page fault.
2772 *
2773 * The goto's are kind of ugly, but this streamlines the normal case of having
2774 * it in the page cache, and handles the special cases reasonably without
2775 * having a lot of duplicated code.
2776 *
2777 * vma->vm_mm->mmap_lock must be held on entry.
2778 *
2779 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2780 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2781 *
2782 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2783 * has not been released.
2784 *
2785 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2786 *
2787 * Return: bitwise-OR of %VM_FAULT_ codes.
2788 */
2789 vm_fault_t filemap_fault(struct vm_fault *vmf)
2790 {
2791 int error;
2792 struct file *file = vmf->vma->vm_file;
2793 struct file *fpin = NULL;
2794 struct address_space *mapping = file->f_mapping;
2795 struct file_ra_state *ra = &file->f_ra;
2796 struct inode *inode = mapping->host;
2797 pgoff_t offset = vmf->pgoff;
2798 pgoff_t max_off;
2799 struct page *page;
2800 vm_fault_t ret = 0;
2801
2802 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2803 if (unlikely(offset >= max_off))
2804 return VM_FAULT_SIGBUS;
2805
2806 /*
2807 * Do we have something in the page cache already?
2808 */
2809 page = find_get_page(mapping, offset);
2810 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2811 /*
2812 * We found the page, so try async readahead before
2813 * waiting for the lock.
2814 */
2815 fpin = do_async_mmap_readahead(vmf, page);
2816 } else if (!page) {
2817 /* No page in the page cache at all */
2818 count_vm_event(PGMAJFAULT);
2819 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2820 ret = VM_FAULT_MAJOR;
2821 fpin = do_sync_mmap_readahead(vmf);
2822 retry_find:
2823 page = pagecache_get_page(mapping, offset,
2824 FGP_CREAT|FGP_FOR_MMAP,
2825 vmf->gfp_mask);
2826 if (!page) {
2827 if (fpin)
2828 goto out_retry;
2829 return VM_FAULT_OOM;
2830 }
2831 }
2832
2833 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2834 goto out_retry;
2835
2836 /* Did it get truncated? */
2837 if (unlikely(compound_head(page)->mapping != mapping)) {
2838 unlock_page(page);
2839 put_page(page);
2840 goto retry_find;
2841 }
2842 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2843
2844 /*
2845 * We have a locked page in the page cache, now we need to check
2846 * that it's up-to-date. If not, it is going to be due to an error.
2847 */
2848 if (unlikely(!PageUptodate(page)))
2849 goto page_not_uptodate;
2850
2851 /*
2852 * We've made it this far and we had to drop our mmap_lock, now is the
2853 * time to return to the upper layer and have it re-find the vma and
2854 * redo the fault.
2855 */
2856 if (fpin) {
2857 unlock_page(page);
2858 goto out_retry;
2859 }
2860
2861 /*
2862 * Found the page and have a reference on it.
2863 * We must recheck i_size under page lock.
2864 */
2865 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2866 if (unlikely(offset >= max_off)) {
2867 unlock_page(page);
2868 put_page(page);
2869 return VM_FAULT_SIGBUS;
2870 }
2871
2872 vmf->page = page;
2873 return ret | VM_FAULT_LOCKED;
2874
2875 page_not_uptodate:
2876 /*
2877 * Umm, take care of errors if the page isn't up-to-date.
2878 * Try to re-read it _once_. We do this synchronously,
2879 * because there really aren't any performance issues here
2880 * and we need to check for errors.
2881 */
2882 ClearPageError(page);
2883 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2884 error = mapping->a_ops->readpage(file, page);
2885 if (!error) {
2886 wait_on_page_locked(page);
2887 if (!PageUptodate(page))
2888 error = -EIO;
2889 }
2890 if (fpin)
2891 goto out_retry;
2892 put_page(page);
2893
2894 if (!error || error == AOP_TRUNCATED_PAGE)
2895 goto retry_find;
2896
2897 shrink_readahead_size_eio(ra);
2898 return VM_FAULT_SIGBUS;
2899
2900 out_retry:
2901 /*
2902 * We dropped the mmap_lock, we need to return to the fault handler to
2903 * re-find the vma and come back and find our hopefully still populated
2904 * page.
2905 */
2906 if (page)
2907 put_page(page);
2908 if (fpin)
2909 fput(fpin);
2910 return ret | VM_FAULT_RETRY;
2911 }
2912 EXPORT_SYMBOL(filemap_fault);
2913
2914 void filemap_map_pages(struct vm_fault *vmf,
2915 pgoff_t start_pgoff, pgoff_t end_pgoff)
2916 {
2917 struct file *file = vmf->vma->vm_file;
2918 struct address_space *mapping = file->f_mapping;
2919 pgoff_t last_pgoff = start_pgoff;
2920 unsigned long max_idx;
2921 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2922 struct page *head, *page;
2923 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2924
2925 rcu_read_lock();
2926 xas_for_each(&xas, head, end_pgoff) {
2927 if (xas_retry(&xas, head))
2928 continue;
2929 if (xa_is_value(head))
2930 goto next;
2931
2932 /*
2933 * Check for a locked page first, as a speculative
2934 * reference may adversely influence page migration.
2935 */
2936 if (PageLocked(head))
2937 goto next;
2938 if (!page_cache_get_speculative(head))
2939 goto next;
2940
2941 /* Has the page moved or been split? */
2942 if (unlikely(head != xas_reload(&xas)))
2943 goto skip;
2944 page = find_subpage(head, xas.xa_index);
2945
2946 if (!PageUptodate(head) ||
2947 PageReadahead(page) ||
2948 PageHWPoison(page))
2949 goto skip;
2950 if (!trylock_page(head))
2951 goto skip;
2952
2953 if (head->mapping != mapping || !PageUptodate(head))
2954 goto unlock;
2955
2956 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2957 if (xas.xa_index >= max_idx)
2958 goto unlock;
2959
2960 if (mmap_miss > 0)
2961 mmap_miss--;
2962
2963 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2964 if (vmf->pte)
2965 vmf->pte += xas.xa_index - last_pgoff;
2966 last_pgoff = xas.xa_index;
2967 if (alloc_set_pte(vmf, page))
2968 goto unlock;
2969 unlock_page(head);
2970 goto next;
2971 unlock:
2972 unlock_page(head);
2973 skip:
2974 put_page(head);
2975 next:
2976 /* Huge page is mapped? No need to proceed. */
2977 if (pmd_trans_huge(*vmf->pmd))
2978 break;
2979 }
2980 rcu_read_unlock();
2981 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2982 }
2983 EXPORT_SYMBOL(filemap_map_pages);
2984
2985 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2986 {
2987 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
2988 struct page *page = vmf->page;
2989 vm_fault_t ret = VM_FAULT_LOCKED;
2990
2991 sb_start_pagefault(mapping->host->i_sb);
2992 file_update_time(vmf->vma->vm_file);
2993 lock_page(page);
2994 if (page->mapping != mapping) {
2995 unlock_page(page);
2996 ret = VM_FAULT_NOPAGE;
2997 goto out;
2998 }
2999 /*
3000 * We mark the page dirty already here so that when freeze is in
3001 * progress, we are guaranteed that writeback during freezing will
3002 * see the dirty page and writeprotect it again.
3003 */
3004 set_page_dirty(page);
3005 wait_for_stable_page(page);
3006 out:
3007 sb_end_pagefault(mapping->host->i_sb);
3008 return ret;
3009 }
3010
3011 const struct vm_operations_struct generic_file_vm_ops = {
3012 .fault = filemap_fault,
3013 .map_pages = filemap_map_pages,
3014 .page_mkwrite = filemap_page_mkwrite,
3015 };
3016
3017 /* This is used for a general mmap of a disk file */
3018
3019 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3020 {
3021 struct address_space *mapping = file->f_mapping;
3022
3023 if (!mapping->a_ops->readpage)
3024 return -ENOEXEC;
3025 file_accessed(file);
3026 vma->vm_ops = &generic_file_vm_ops;
3027 return 0;
3028 }
3029
3030 /*
3031 * This is for filesystems which do not implement ->writepage.
3032 */
3033 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3034 {
3035 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3036 return -EINVAL;
3037 return generic_file_mmap(file, vma);
3038 }
3039 #else
3040 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3041 {
3042 return VM_FAULT_SIGBUS;
3043 }
3044 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3045 {
3046 return -ENOSYS;
3047 }
3048 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3049 {
3050 return -ENOSYS;
3051 }
3052 #endif /* CONFIG_MMU */
3053
3054 EXPORT_SYMBOL(filemap_page_mkwrite);
3055 EXPORT_SYMBOL(generic_file_mmap);
3056 EXPORT_SYMBOL(generic_file_readonly_mmap);
3057
3058 static struct page *wait_on_page_read(struct page *page)
3059 {
3060 if (!IS_ERR(page)) {
3061 wait_on_page_locked(page);
3062 if (!PageUptodate(page)) {
3063 put_page(page);
3064 page = ERR_PTR(-EIO);
3065 }
3066 }
3067 return page;
3068 }
3069
3070 static struct page *do_read_cache_page(struct address_space *mapping,
3071 pgoff_t index,
3072 int (*filler)(void *, struct page *),
3073 void *data,
3074 gfp_t gfp)
3075 {
3076 struct page *page;
3077 int err;
3078 repeat:
3079 page = find_get_page(mapping, index);
3080 if (!page) {
3081 page = __page_cache_alloc(gfp);
3082 if (!page)
3083 return ERR_PTR(-ENOMEM);
3084 err = add_to_page_cache_lru(page, mapping, index, gfp);
3085 if (unlikely(err)) {
3086 put_page(page);
3087 if (err == -EEXIST)
3088 goto repeat;
3089 /* Presumably ENOMEM for xarray node */
3090 return ERR_PTR(err);
3091 }
3092
3093 filler:
3094 if (filler)
3095 err = filler(data, page);
3096 else
3097 err = mapping->a_ops->readpage(data, page);
3098
3099 if (err < 0) {
3100 put_page(page);
3101 return ERR_PTR(err);
3102 }
3103
3104 page = wait_on_page_read(page);
3105 if (IS_ERR(page))
3106 return page;
3107 goto out;
3108 }
3109 if (PageUptodate(page))
3110 goto out;
3111
3112 /*
3113 * Page is not up to date and may be locked due to one of the following
3114 * case a: Page is being filled and the page lock is held
3115 * case b: Read/write error clearing the page uptodate status
3116 * case c: Truncation in progress (page locked)
3117 * case d: Reclaim in progress
3118 *
3119 * Case a, the page will be up to date when the page is unlocked.
3120 * There is no need to serialise on the page lock here as the page
3121 * is pinned so the lock gives no additional protection. Even if the
3122 * page is truncated, the data is still valid if PageUptodate as
3123 * it's a race vs truncate race.
3124 * Case b, the page will not be up to date
3125 * Case c, the page may be truncated but in itself, the data may still
3126 * be valid after IO completes as it's a read vs truncate race. The
3127 * operation must restart if the page is not uptodate on unlock but
3128 * otherwise serialising on page lock to stabilise the mapping gives
3129 * no additional guarantees to the caller as the page lock is
3130 * released before return.
3131 * Case d, similar to truncation. If reclaim holds the page lock, it
3132 * will be a race with remove_mapping that determines if the mapping
3133 * is valid on unlock but otherwise the data is valid and there is
3134 * no need to serialise with page lock.
3135 *
3136 * As the page lock gives no additional guarantee, we optimistically
3137 * wait on the page to be unlocked and check if it's up to date and
3138 * use the page if it is. Otherwise, the page lock is required to
3139 * distinguish between the different cases. The motivation is that we
3140 * avoid spurious serialisations and wakeups when multiple processes
3141 * wait on the same page for IO to complete.
3142 */
3143 wait_on_page_locked(page);
3144 if (PageUptodate(page))
3145 goto out;
3146
3147 /* Distinguish between all the cases under the safety of the lock */
3148 lock_page(page);
3149
3150 /* Case c or d, restart the operation */
3151 if (!page->mapping) {
3152 unlock_page(page);
3153 put_page(page);
3154 goto repeat;
3155 }
3156
3157 /* Someone else locked and filled the page in a very small window */
3158 if (PageUptodate(page)) {
3159 unlock_page(page);
3160 goto out;
3161 }
3162
3163 /*
3164 * A previous I/O error may have been due to temporary
3165 * failures.
3166 * Clear page error before actual read, PG_error will be
3167 * set again if read page fails.
3168 */
3169 ClearPageError(page);
3170 goto filler;
3171
3172 out:
3173 mark_page_accessed(page);
3174 return page;
3175 }
3176
3177 /**
3178 * read_cache_page - read into page cache, fill it if needed
3179 * @mapping: the page's address_space
3180 * @index: the page index
3181 * @filler: function to perform the read
3182 * @data: first arg to filler(data, page) function, often left as NULL
3183 *
3184 * Read into the page cache. If a page already exists, and PageUptodate() is
3185 * not set, try to fill the page and wait for it to become unlocked.
3186 *
3187 * If the page does not get brought uptodate, return -EIO.
3188 *
3189 * Return: up to date page on success, ERR_PTR() on failure.
3190 */
3191 struct page *read_cache_page(struct address_space *mapping,
3192 pgoff_t index,
3193 int (*filler)(void *, struct page *),
3194 void *data)
3195 {
3196 return do_read_cache_page(mapping, index, filler, data,
3197 mapping_gfp_mask(mapping));
3198 }
3199 EXPORT_SYMBOL(read_cache_page);
3200
3201 /**
3202 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3203 * @mapping: the page's address_space
3204 * @index: the page index
3205 * @gfp: the page allocator flags to use if allocating
3206 *
3207 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3208 * any new page allocations done using the specified allocation flags.
3209 *
3210 * If the page does not get brought uptodate, return -EIO.
3211 *
3212 * Return: up to date page on success, ERR_PTR() on failure.
3213 */
3214 struct page *read_cache_page_gfp(struct address_space *mapping,
3215 pgoff_t index,
3216 gfp_t gfp)
3217 {
3218 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3219 }
3220 EXPORT_SYMBOL(read_cache_page_gfp);
3221
3222 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3223 loff_t pos, unsigned len, unsigned flags,
3224 struct page **pagep, void **fsdata)
3225 {
3226 const struct address_space_operations *aops = mapping->a_ops;
3227
3228 return aops->write_begin(file, mapping, pos, len, flags,
3229 pagep, fsdata);
3230 }
3231 EXPORT_SYMBOL(pagecache_write_begin);
3232
3233 int pagecache_write_end(struct file *file, struct address_space *mapping,
3234 loff_t pos, unsigned len, unsigned copied,
3235 struct page *page, void *fsdata)
3236 {
3237 const struct address_space_operations *aops = mapping->a_ops;
3238
3239 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3240 }
3241 EXPORT_SYMBOL(pagecache_write_end);
3242
3243 /*
3244 * Warn about a page cache invalidation failure during a direct I/O write.
3245 */
3246 void dio_warn_stale_pagecache(struct file *filp)
3247 {
3248 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3249 char pathname[128];
3250 char *path;
3251
3252 errseq_set(&filp->f_mapping->wb_err, -EIO);
3253 if (__ratelimit(&_rs)) {
3254 path = file_path(filp, pathname, sizeof(pathname));
3255 if (IS_ERR(path))
3256 path = "(unknown)";
3257 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3258 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3259 current->comm);
3260 }
3261 }
3262
3263 ssize_t
3264 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3265 {
3266 struct file *file = iocb->ki_filp;
3267 struct address_space *mapping = file->f_mapping;
3268 struct inode *inode = mapping->host;
3269 loff_t pos = iocb->ki_pos;
3270 ssize_t written;
3271 size_t write_len;
3272 pgoff_t end;
3273
3274 write_len = iov_iter_count(from);
3275 end = (pos + write_len - 1) >> PAGE_SHIFT;
3276
3277 if (iocb->ki_flags & IOCB_NOWAIT) {
3278 /* If there are pages to writeback, return */
3279 if (filemap_range_has_page(file->f_mapping, pos,
3280 pos + write_len - 1))
3281 return -EAGAIN;
3282 } else {
3283 written = filemap_write_and_wait_range(mapping, pos,
3284 pos + write_len - 1);
3285 if (written)
3286 goto out;
3287 }
3288
3289 /*
3290 * After a write we want buffered reads to be sure to go to disk to get
3291 * the new data. We invalidate clean cached page from the region we're
3292 * about to write. We do this *before* the write so that we can return
3293 * without clobbering -EIOCBQUEUED from ->direct_IO().
3294 */
3295 written = invalidate_inode_pages2_range(mapping,
3296 pos >> PAGE_SHIFT, end);
3297 /*
3298 * If a page can not be invalidated, return 0 to fall back
3299 * to buffered write.
3300 */
3301 if (written) {
3302 if (written == -EBUSY)
3303 return 0;
3304 goto out;
3305 }
3306
3307 written = mapping->a_ops->direct_IO(iocb, from);
3308
3309 /*
3310 * Finally, try again to invalidate clean pages which might have been
3311 * cached by non-direct readahead, or faulted in by get_user_pages()
3312 * if the source of the write was an mmap'ed region of the file
3313 * we're writing. Either one is a pretty crazy thing to do,
3314 * so we don't support it 100%. If this invalidation
3315 * fails, tough, the write still worked...
3316 *
3317 * Most of the time we do not need this since dio_complete() will do
3318 * the invalidation for us. However there are some file systems that
3319 * do not end up with dio_complete() being called, so let's not break
3320 * them by removing it completely.
3321 *
3322 * Noticeable example is a blkdev_direct_IO().
3323 *
3324 * Skip invalidation for async writes or if mapping has no pages.
3325 */
3326 if (written > 0 && mapping->nrpages &&
3327 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3328 dio_warn_stale_pagecache(file);
3329
3330 if (written > 0) {
3331 pos += written;
3332 write_len -= written;
3333 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3334 i_size_write(inode, pos);
3335 mark_inode_dirty(inode);
3336 }
3337 iocb->ki_pos = pos;
3338 }
3339 iov_iter_revert(from, write_len - iov_iter_count(from));
3340 out:
3341 return written;
3342 }
3343 EXPORT_SYMBOL(generic_file_direct_write);
3344
3345 /*
3346 * Find or create a page at the given pagecache position. Return the locked
3347 * page. This function is specifically for buffered writes.
3348 */
3349 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3350 pgoff_t index, unsigned flags)
3351 {
3352 struct page *page;
3353 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3354
3355 if (flags & AOP_FLAG_NOFS)
3356 fgp_flags |= FGP_NOFS;
3357
3358 page = pagecache_get_page(mapping, index, fgp_flags,
3359 mapping_gfp_mask(mapping));
3360 if (page)
3361 wait_for_stable_page(page);
3362
3363 return page;
3364 }
3365 EXPORT_SYMBOL(grab_cache_page_write_begin);
3366
3367 ssize_t generic_perform_write(struct file *file,
3368 struct iov_iter *i, loff_t pos)
3369 {
3370 struct address_space *mapping = file->f_mapping;
3371 const struct address_space_operations *a_ops = mapping->a_ops;
3372 long status = 0;
3373 ssize_t written = 0;
3374 unsigned int flags = 0;
3375
3376 do {
3377 struct page *page;
3378 unsigned long offset; /* Offset into pagecache page */
3379 unsigned long bytes; /* Bytes to write to page */
3380 size_t copied; /* Bytes copied from user */
3381 void *fsdata;
3382
3383 offset = (pos & (PAGE_SIZE - 1));
3384 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3385 iov_iter_count(i));
3386
3387 again:
3388 /*
3389 * Bring in the user page that we will copy from _first_.
3390 * Otherwise there's a nasty deadlock on copying from the
3391 * same page as we're writing to, without it being marked
3392 * up-to-date.
3393 *
3394 * Not only is this an optimisation, but it is also required
3395 * to check that the address is actually valid, when atomic
3396 * usercopies are used, below.
3397 */
3398 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3399 status = -EFAULT;
3400 break;
3401 }
3402
3403 if (fatal_signal_pending(current)) {
3404 status = -EINTR;
3405 break;
3406 }
3407
3408 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3409 &page, &fsdata);
3410 if (unlikely(status < 0))
3411 break;
3412
3413 if (mapping_writably_mapped(mapping))
3414 flush_dcache_page(page);
3415
3416 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3417 flush_dcache_page(page);
3418
3419 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3420 page, fsdata);
3421 if (unlikely(status < 0))
3422 break;
3423 copied = status;
3424
3425 cond_resched();
3426
3427 iov_iter_advance(i, copied);
3428 if (unlikely(copied == 0)) {
3429 /*
3430 * If we were unable to copy any data at all, we must
3431 * fall back to a single segment length write.
3432 *
3433 * If we didn't fallback here, we could livelock
3434 * because not all segments in the iov can be copied at
3435 * once without a pagefault.
3436 */
3437 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3438 iov_iter_single_seg_count(i));
3439 goto again;
3440 }
3441 pos += copied;
3442 written += copied;
3443
3444 balance_dirty_pages_ratelimited(mapping);
3445 } while (iov_iter_count(i));
3446
3447 return written ? written : status;
3448 }
3449 EXPORT_SYMBOL(generic_perform_write);
3450
3451 /**
3452 * __generic_file_write_iter - write data to a file
3453 * @iocb: IO state structure (file, offset, etc.)
3454 * @from: iov_iter with data to write
3455 *
3456 * This function does all the work needed for actually writing data to a
3457 * file. It does all basic checks, removes SUID from the file, updates
3458 * modification times and calls proper subroutines depending on whether we
3459 * do direct IO or a standard buffered write.
3460 *
3461 * It expects i_mutex to be grabbed unless we work on a block device or similar
3462 * object which does not need locking at all.
3463 *
3464 * This function does *not* take care of syncing data in case of O_SYNC write.
3465 * A caller has to handle it. This is mainly due to the fact that we want to
3466 * avoid syncing under i_mutex.
3467 *
3468 * Return:
3469 * * number of bytes written, even for truncated writes
3470 * * negative error code if no data has been written at all
3471 */
3472 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3473 {
3474 struct file *file = iocb->ki_filp;
3475 struct address_space * mapping = file->f_mapping;
3476 struct inode *inode = mapping->host;
3477 ssize_t written = 0;
3478 ssize_t err;
3479 ssize_t status;
3480
3481 /* We can write back this queue in page reclaim */
3482 current->backing_dev_info = inode_to_bdi(inode);
3483 err = file_remove_privs(file);
3484 if (err)
3485 goto out;
3486
3487 err = file_update_time(file);
3488 if (err)
3489 goto out;
3490
3491 if (iocb->ki_flags & IOCB_DIRECT) {
3492 loff_t pos, endbyte;
3493
3494 written = generic_file_direct_write(iocb, from);
3495 /*
3496 * If the write stopped short of completing, fall back to
3497 * buffered writes. Some filesystems do this for writes to
3498 * holes, for example. For DAX files, a buffered write will
3499 * not succeed (even if it did, DAX does not handle dirty
3500 * page-cache pages correctly).
3501 */
3502 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3503 goto out;
3504
3505 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3506 /*
3507 * If generic_perform_write() returned a synchronous error
3508 * then we want to return the number of bytes which were
3509 * direct-written, or the error code if that was zero. Note
3510 * that this differs from normal direct-io semantics, which
3511 * will return -EFOO even if some bytes were written.
3512 */
3513 if (unlikely(status < 0)) {
3514 err = status;
3515 goto out;
3516 }
3517 /*
3518 * We need to ensure that the page cache pages are written to
3519 * disk and invalidated to preserve the expected O_DIRECT
3520 * semantics.
3521 */
3522 endbyte = pos + status - 1;
3523 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3524 if (err == 0) {
3525 iocb->ki_pos = endbyte + 1;
3526 written += status;
3527 invalidate_mapping_pages(mapping,
3528 pos >> PAGE_SHIFT,
3529 endbyte >> PAGE_SHIFT);
3530 } else {
3531 /*
3532 * We don't know how much we wrote, so just return
3533 * the number of bytes which were direct-written
3534 */
3535 }
3536 } else {
3537 written = generic_perform_write(file, from, iocb->ki_pos);
3538 if (likely(written > 0))
3539 iocb->ki_pos += written;
3540 }
3541 out:
3542 current->backing_dev_info = NULL;
3543 return written ? written : err;
3544 }
3545 EXPORT_SYMBOL(__generic_file_write_iter);
3546
3547 /**
3548 * generic_file_write_iter - write data to a file
3549 * @iocb: IO state structure
3550 * @from: iov_iter with data to write
3551 *
3552 * This is a wrapper around __generic_file_write_iter() to be used by most
3553 * filesystems. It takes care of syncing the file in case of O_SYNC file
3554 * and acquires i_mutex as needed.
3555 * Return:
3556 * * negative error code if no data has been written at all of
3557 * vfs_fsync_range() failed for a synchronous write
3558 * * number of bytes written, even for truncated writes
3559 */
3560 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3561 {
3562 struct file *file = iocb->ki_filp;
3563 struct inode *inode = file->f_mapping->host;
3564 ssize_t ret;
3565
3566 inode_lock(inode);
3567 ret = generic_write_checks(iocb, from);
3568 if (ret > 0)
3569 ret = __generic_file_write_iter(iocb, from);
3570 inode_unlock(inode);
3571
3572 if (ret > 0)
3573 ret = generic_write_sync(iocb, ret);
3574 return ret;
3575 }
3576 EXPORT_SYMBOL(generic_file_write_iter);
3577
3578 /**
3579 * try_to_release_page() - release old fs-specific metadata on a page
3580 *
3581 * @page: the page which the kernel is trying to free
3582 * @gfp_mask: memory allocation flags (and I/O mode)
3583 *
3584 * The address_space is to try to release any data against the page
3585 * (presumably at page->private).
3586 *
3587 * This may also be called if PG_fscache is set on a page, indicating that the
3588 * page is known to the local caching routines.
3589 *
3590 * The @gfp_mask argument specifies whether I/O may be performed to release
3591 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3592 *
3593 * Return: %1 if the release was successful, otherwise return zero.
3594 */
3595 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3596 {
3597 struct address_space * const mapping = page->mapping;
3598
3599 BUG_ON(!PageLocked(page));
3600 if (PageWriteback(page))
3601 return 0;
3602
3603 if (mapping && mapping->a_ops->releasepage)
3604 return mapping->a_ops->releasepage(page, gfp_mask);
3605 return try_to_free_buffers(page);
3606 }
3607
3608 EXPORT_SYMBOL(try_to_release_page);