]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/filemap.c
mm: add filemap_fdatawait_range_keep_errors()
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include "internal.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/filemap.h>
44
45 /*
46 * FIXME: remove all knowledge of the buffer layer from the core VM
47 */
48 #include <linux/buffer_head.h> /* for try_to_free_buffers */
49
50 #include <asm/mman.h>
51
52 /*
53 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * though.
55 *
56 * Shared mappings now work. 15.8.1995 Bruno.
57 *
58 * finished 'unifying' the page and buffer cache and SMP-threaded the
59 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
60 *
61 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 */
63
64 /*
65 * Lock ordering:
66 *
67 * ->i_mmap_rwsem (truncate_pagecache)
68 * ->private_lock (__free_pte->__set_page_dirty_buffers)
69 * ->swap_lock (exclusive_swap_page, others)
70 * ->mapping->tree_lock
71 *
72 * ->i_mutex
73 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
74 *
75 * ->mmap_sem
76 * ->i_mmap_rwsem
77 * ->page_table_lock or pte_lock (various, mainly in memory.c)
78 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 *
80 * ->mmap_sem
81 * ->lock_page (access_process_vm)
82 *
83 * ->i_mutex (generic_perform_write)
84 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 *
86 * bdi->wb.list_lock
87 * sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
89 *
90 * ->i_mmap_rwsem
91 * ->anon_vma.lock (vma_adjust)
92 *
93 * ->anon_vma.lock
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 *
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
101 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
105 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
106 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
107 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
108 * ->inode->i_lock (zap_pte_range->set_page_dirty)
109 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
110 *
111 * ->i_mmap_rwsem
112 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 */
114
115 static int page_cache_tree_insert(struct address_space *mapping,
116 struct page *page, void **shadowp)
117 {
118 struct radix_tree_node *node;
119 void **slot;
120 int error;
121
122 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
123 &node, &slot);
124 if (error)
125 return error;
126 if (*slot) {
127 void *p;
128
129 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
130 if (!radix_tree_exceptional_entry(p))
131 return -EEXIST;
132
133 mapping->nrexceptional--;
134 if (shadowp)
135 *shadowp = p;
136 }
137 __radix_tree_replace(&mapping->page_tree, node, slot, page,
138 workingset_lookup_update(mapping));
139 mapping->nrpages++;
140 return 0;
141 }
142
143 static void page_cache_tree_delete(struct address_space *mapping,
144 struct page *page, void *shadow)
145 {
146 int i, nr;
147
148 /* hugetlb pages are represented by one entry in the radix tree */
149 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
150
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(PageTail(page), page);
153 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
154
155 for (i = 0; i < nr; i++) {
156 struct radix_tree_node *node;
157 void **slot;
158
159 __radix_tree_lookup(&mapping->page_tree, page->index + i,
160 &node, &slot);
161
162 VM_BUG_ON_PAGE(!node && nr != 1, page);
163
164 radix_tree_clear_tags(&mapping->page_tree, node, slot);
165 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
166 workingset_lookup_update(mapping));
167 }
168
169 page->mapping = NULL;
170 /* Leave page->index set: truncation lookup relies upon it */
171
172 if (shadow) {
173 mapping->nrexceptional += nr;
174 /*
175 * Make sure the nrexceptional update is committed before
176 * the nrpages update so that final truncate racing
177 * with reclaim does not see both counters 0 at the
178 * same time and miss a shadow entry.
179 */
180 smp_wmb();
181 }
182 mapping->nrpages -= nr;
183 }
184
185 static void unaccount_page_cache_page(struct address_space *mapping,
186 struct page *page)
187 {
188 int nr;
189
190 /*
191 * if we're uptodate, flush out into the cleancache, otherwise
192 * invalidate any existing cleancache entries. We can't leave
193 * stale data around in the cleancache once our page is gone
194 */
195 if (PageUptodate(page) && PageMappedToDisk(page))
196 cleancache_put_page(page);
197 else
198 cleancache_invalidate_page(mapping, page);
199
200 VM_BUG_ON_PAGE(PageTail(page), page);
201 VM_BUG_ON_PAGE(page_mapped(page), page);
202 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
203 int mapcount;
204
205 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
206 current->comm, page_to_pfn(page));
207 dump_page(page, "still mapped when deleted");
208 dump_stack();
209 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210
211 mapcount = page_mapcount(page);
212 if (mapping_exiting(mapping) &&
213 page_count(page) >= mapcount + 2) {
214 /*
215 * All vmas have already been torn down, so it's
216 * a good bet that actually the page is unmapped,
217 * and we'd prefer not to leak it: if we're wrong,
218 * some other bad page check should catch it later.
219 */
220 page_mapcount_reset(page);
221 page_ref_sub(page, mapcount);
222 }
223 }
224
225 /* hugetlb pages do not participate in page cache accounting. */
226 if (PageHuge(page))
227 return;
228
229 nr = hpage_nr_pages(page);
230
231 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232 if (PageSwapBacked(page)) {
233 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234 if (PageTransHuge(page))
235 __dec_node_page_state(page, NR_SHMEM_THPS);
236 } else {
237 VM_BUG_ON_PAGE(PageTransHuge(page), page);
238 }
239
240 /*
241 * At this point page must be either written or cleaned by
242 * truncate. Dirty page here signals a bug and loss of
243 * unwritten data.
244 *
245 * This fixes dirty accounting after removing the page entirely
246 * but leaves PageDirty set: it has no effect for truncated
247 * page and anyway will be cleared before returning page into
248 * buddy allocator.
249 */
250 if (WARN_ON_ONCE(PageDirty(page)))
251 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
252 }
253
254 /*
255 * Delete a page from the page cache and free it. Caller has to make
256 * sure the page is locked and that nobody else uses it - or that usage
257 * is safe. The caller must hold the mapping's tree_lock.
258 */
259 void __delete_from_page_cache(struct page *page, void *shadow)
260 {
261 struct address_space *mapping = page->mapping;
262
263 trace_mm_filemap_delete_from_page_cache(page);
264
265 unaccount_page_cache_page(mapping, page);
266 page_cache_tree_delete(mapping, page, shadow);
267 }
268
269 static void page_cache_free_page(struct address_space *mapping,
270 struct page *page)
271 {
272 void (*freepage)(struct page *);
273
274 freepage = mapping->a_ops->freepage;
275 if (freepage)
276 freepage(page);
277
278 if (PageTransHuge(page) && !PageHuge(page)) {
279 page_ref_sub(page, HPAGE_PMD_NR);
280 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
281 } else {
282 put_page(page);
283 }
284 }
285
286 /**
287 * delete_from_page_cache - delete page from page cache
288 * @page: the page which the kernel is trying to remove from page cache
289 *
290 * This must be called only on pages that have been verified to be in the page
291 * cache and locked. It will never put the page into the free list, the caller
292 * has a reference on the page.
293 */
294 void delete_from_page_cache(struct page *page)
295 {
296 struct address_space *mapping = page_mapping(page);
297 unsigned long flags;
298
299 BUG_ON(!PageLocked(page));
300 spin_lock_irqsave(&mapping->tree_lock, flags);
301 __delete_from_page_cache(page, NULL);
302 spin_unlock_irqrestore(&mapping->tree_lock, flags);
303
304 page_cache_free_page(mapping, page);
305 }
306 EXPORT_SYMBOL(delete_from_page_cache);
307
308 /*
309 * page_cache_tree_delete_batch - delete several pages from page cache
310 * @mapping: the mapping to which pages belong
311 * @pvec: pagevec with pages to delete
312 *
313 * The function walks over mapping->page_tree and removes pages passed in @pvec
314 * from the radix tree. The function expects @pvec to be sorted by page index.
315 * It tolerates holes in @pvec (radix tree entries at those indices are not
316 * modified). The function expects only THP head pages to be present in the
317 * @pvec and takes care to delete all corresponding tail pages from the radix
318 * tree as well.
319 *
320 * The function expects mapping->tree_lock to be held.
321 */
322 static void
323 page_cache_tree_delete_batch(struct address_space *mapping,
324 struct pagevec *pvec)
325 {
326 struct radix_tree_iter iter;
327 void **slot;
328 int total_pages = 0;
329 int i = 0, tail_pages = 0;
330 struct page *page;
331 pgoff_t start;
332
333 start = pvec->pages[0]->index;
334 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
335 if (i >= pagevec_count(pvec) && !tail_pages)
336 break;
337 page = radix_tree_deref_slot_protected(slot,
338 &mapping->tree_lock);
339 if (radix_tree_exceptional_entry(page))
340 continue;
341 if (!tail_pages) {
342 /*
343 * Some page got inserted in our range? Skip it. We
344 * have our pages locked so they are protected from
345 * being removed.
346 */
347 if (page != pvec->pages[i])
348 continue;
349 WARN_ON_ONCE(!PageLocked(page));
350 if (PageTransHuge(page) && !PageHuge(page))
351 tail_pages = HPAGE_PMD_NR - 1;
352 page->mapping = NULL;
353 /*
354 * Leave page->index set: truncation lookup relies
355 * upon it
356 */
357 i++;
358 } else {
359 tail_pages--;
360 }
361 radix_tree_clear_tags(&mapping->page_tree, iter.node, slot);
362 __radix_tree_replace(&mapping->page_tree, iter.node, slot, NULL,
363 workingset_lookup_update(mapping));
364 total_pages++;
365 }
366 mapping->nrpages -= total_pages;
367 }
368
369 void delete_from_page_cache_batch(struct address_space *mapping,
370 struct pagevec *pvec)
371 {
372 int i;
373 unsigned long flags;
374
375 if (!pagevec_count(pvec))
376 return;
377
378 spin_lock_irqsave(&mapping->tree_lock, flags);
379 for (i = 0; i < pagevec_count(pvec); i++) {
380 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
381
382 unaccount_page_cache_page(mapping, pvec->pages[i]);
383 }
384 page_cache_tree_delete_batch(mapping, pvec);
385 spin_unlock_irqrestore(&mapping->tree_lock, flags);
386
387 for (i = 0; i < pagevec_count(pvec); i++)
388 page_cache_free_page(mapping, pvec->pages[i]);
389 }
390
391 int filemap_check_errors(struct address_space *mapping)
392 {
393 int ret = 0;
394 /* Check for outstanding write errors */
395 if (test_bit(AS_ENOSPC, &mapping->flags) &&
396 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
397 ret = -ENOSPC;
398 if (test_bit(AS_EIO, &mapping->flags) &&
399 test_and_clear_bit(AS_EIO, &mapping->flags))
400 ret = -EIO;
401 return ret;
402 }
403 EXPORT_SYMBOL(filemap_check_errors);
404
405 static int filemap_check_and_keep_errors(struct address_space *mapping)
406 {
407 /* Check for outstanding write errors */
408 if (test_bit(AS_EIO, &mapping->flags))
409 return -EIO;
410 if (test_bit(AS_ENOSPC, &mapping->flags))
411 return -ENOSPC;
412 return 0;
413 }
414
415 /**
416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
417 * @mapping: address space structure to write
418 * @start: offset in bytes where the range starts
419 * @end: offset in bytes where the range ends (inclusive)
420 * @sync_mode: enable synchronous operation
421 *
422 * Start writeback against all of a mapping's dirty pages that lie
423 * within the byte offsets <start, end> inclusive.
424 *
425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
426 * opposed to a regular memory cleansing writeback. The difference between
427 * these two operations is that if a dirty page/buffer is encountered, it must
428 * be waited upon, and not just skipped over.
429 */
430 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
432 {
433 int ret;
434 struct writeback_control wbc = {
435 .sync_mode = sync_mode,
436 .nr_to_write = LONG_MAX,
437 .range_start = start,
438 .range_end = end,
439 };
440
441 if (!mapping_cap_writeback_dirty(mapping))
442 return 0;
443
444 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
445 ret = do_writepages(mapping, &wbc);
446 wbc_detach_inode(&wbc);
447 return ret;
448 }
449
450 static inline int __filemap_fdatawrite(struct address_space *mapping,
451 int sync_mode)
452 {
453 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
454 }
455
456 int filemap_fdatawrite(struct address_space *mapping)
457 {
458 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
459 }
460 EXPORT_SYMBOL(filemap_fdatawrite);
461
462 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
463 loff_t end)
464 {
465 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
466 }
467 EXPORT_SYMBOL(filemap_fdatawrite_range);
468
469 /**
470 * filemap_flush - mostly a non-blocking flush
471 * @mapping: target address_space
472 *
473 * This is a mostly non-blocking flush. Not suitable for data-integrity
474 * purposes - I/O may not be started against all dirty pages.
475 */
476 int filemap_flush(struct address_space *mapping)
477 {
478 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
479 }
480 EXPORT_SYMBOL(filemap_flush);
481
482 /**
483 * filemap_range_has_page - check if a page exists in range.
484 * @mapping: address space within which to check
485 * @start_byte: offset in bytes where the range starts
486 * @end_byte: offset in bytes where the range ends (inclusive)
487 *
488 * Find at least one page in the range supplied, usually used to check if
489 * direct writing in this range will trigger a writeback.
490 */
491 bool filemap_range_has_page(struct address_space *mapping,
492 loff_t start_byte, loff_t end_byte)
493 {
494 pgoff_t index = start_byte >> PAGE_SHIFT;
495 pgoff_t end = end_byte >> PAGE_SHIFT;
496 struct page *page;
497
498 if (end_byte < start_byte)
499 return false;
500
501 if (mapping->nrpages == 0)
502 return false;
503
504 if (!find_get_pages_range(mapping, &index, end, 1, &page))
505 return false;
506 put_page(page);
507 return true;
508 }
509 EXPORT_SYMBOL(filemap_range_has_page);
510
511 static void __filemap_fdatawait_range(struct address_space *mapping,
512 loff_t start_byte, loff_t end_byte)
513 {
514 pgoff_t index = start_byte >> PAGE_SHIFT;
515 pgoff_t end = end_byte >> PAGE_SHIFT;
516 struct pagevec pvec;
517 int nr_pages;
518
519 if (end_byte < start_byte)
520 return;
521
522 pagevec_init(&pvec);
523 while (index <= end) {
524 unsigned i;
525
526 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
527 end, PAGECACHE_TAG_WRITEBACK);
528 if (!nr_pages)
529 break;
530
531 for (i = 0; i < nr_pages; i++) {
532 struct page *page = pvec.pages[i];
533
534 wait_on_page_writeback(page);
535 ClearPageError(page);
536 }
537 pagevec_release(&pvec);
538 cond_resched();
539 }
540 }
541
542 /**
543 * filemap_fdatawait_range - wait for writeback to complete
544 * @mapping: address space structure to wait for
545 * @start_byte: offset in bytes where the range starts
546 * @end_byte: offset in bytes where the range ends (inclusive)
547 *
548 * Walk the list of under-writeback pages of the given address space
549 * in the given range and wait for all of them. Check error status of
550 * the address space and return it.
551 *
552 * Since the error status of the address space is cleared by this function,
553 * callers are responsible for checking the return value and handling and/or
554 * reporting the error.
555 */
556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558 {
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
561 }
562 EXPORT_SYMBOL(filemap_fdatawait_range);
563
564 /**
565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566 * @mapping: address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the given address space in the
571 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
572 * this function does not clear error status of the address space.
573 *
574 * Use this function if callers don't handle errors themselves. Expected
575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576 * fsfreeze(8)
577 */
578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 loff_t start_byte, loff_t end_byte)
580 {
581 __filemap_fdatawait_range(mapping, start_byte, end_byte);
582 return filemap_check_and_keep_errors(mapping);
583 }
584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585
586 /**
587 * file_fdatawait_range - wait for writeback to complete
588 * @file: file pointing to address space structure to wait for
589 * @start_byte: offset in bytes where the range starts
590 * @end_byte: offset in bytes where the range ends (inclusive)
591 *
592 * Walk the list of under-writeback pages of the address space that file
593 * refers to, in the given range and wait for all of them. Check error
594 * status of the address space vs. the file->f_wb_err cursor and return it.
595 *
596 * Since the error status of the file is advanced by this function,
597 * callers are responsible for checking the return value and handling and/or
598 * reporting the error.
599 */
600 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
601 {
602 struct address_space *mapping = file->f_mapping;
603
604 __filemap_fdatawait_range(mapping, start_byte, end_byte);
605 return file_check_and_advance_wb_err(file);
606 }
607 EXPORT_SYMBOL(file_fdatawait_range);
608
609 /**
610 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
611 * @mapping: address space structure to wait for
612 *
613 * Walk the list of under-writeback pages of the given address space
614 * and wait for all of them. Unlike filemap_fdatawait(), this function
615 * does not clear error status of the address space.
616 *
617 * Use this function if callers don't handle errors themselves. Expected
618 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
619 * fsfreeze(8)
620 */
621 int filemap_fdatawait_keep_errors(struct address_space *mapping)
622 {
623 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
624 return filemap_check_and_keep_errors(mapping);
625 }
626 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
627
628 static bool mapping_needs_writeback(struct address_space *mapping)
629 {
630 return (!dax_mapping(mapping) && mapping->nrpages) ||
631 (dax_mapping(mapping) && mapping->nrexceptional);
632 }
633
634 int filemap_write_and_wait(struct address_space *mapping)
635 {
636 int err = 0;
637
638 if (mapping_needs_writeback(mapping)) {
639 err = filemap_fdatawrite(mapping);
640 /*
641 * Even if the above returned error, the pages may be
642 * written partially (e.g. -ENOSPC), so we wait for it.
643 * But the -EIO is special case, it may indicate the worst
644 * thing (e.g. bug) happened, so we avoid waiting for it.
645 */
646 if (err != -EIO) {
647 int err2 = filemap_fdatawait(mapping);
648 if (!err)
649 err = err2;
650 } else {
651 /* Clear any previously stored errors */
652 filemap_check_errors(mapping);
653 }
654 } else {
655 err = filemap_check_errors(mapping);
656 }
657 return err;
658 }
659 EXPORT_SYMBOL(filemap_write_and_wait);
660
661 /**
662 * filemap_write_and_wait_range - write out & wait on a file range
663 * @mapping: the address_space for the pages
664 * @lstart: offset in bytes where the range starts
665 * @lend: offset in bytes where the range ends (inclusive)
666 *
667 * Write out and wait upon file offsets lstart->lend, inclusive.
668 *
669 * Note that @lend is inclusive (describes the last byte to be written) so
670 * that this function can be used to write to the very end-of-file (end = -1).
671 */
672 int filemap_write_and_wait_range(struct address_space *mapping,
673 loff_t lstart, loff_t lend)
674 {
675 int err = 0;
676
677 if (mapping_needs_writeback(mapping)) {
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
680 /* See comment of filemap_write_and_wait() */
681 if (err != -EIO) {
682 int err2 = filemap_fdatawait_range(mapping,
683 lstart, lend);
684 if (!err)
685 err = err2;
686 } else {
687 /* Clear any previously stored errors */
688 filemap_check_errors(mapping);
689 }
690 } else {
691 err = filemap_check_errors(mapping);
692 }
693 return err;
694 }
695 EXPORT_SYMBOL(filemap_write_and_wait_range);
696
697 void __filemap_set_wb_err(struct address_space *mapping, int err)
698 {
699 errseq_t eseq = errseq_set(&mapping->wb_err, err);
700
701 trace_filemap_set_wb_err(mapping, eseq);
702 }
703 EXPORT_SYMBOL(__filemap_set_wb_err);
704
705 /**
706 * file_check_and_advance_wb_err - report wb error (if any) that was previously
707 * and advance wb_err to current one
708 * @file: struct file on which the error is being reported
709 *
710 * When userland calls fsync (or something like nfsd does the equivalent), we
711 * want to report any writeback errors that occurred since the last fsync (or
712 * since the file was opened if there haven't been any).
713 *
714 * Grab the wb_err from the mapping. If it matches what we have in the file,
715 * then just quickly return 0. The file is all caught up.
716 *
717 * If it doesn't match, then take the mapping value, set the "seen" flag in
718 * it and try to swap it into place. If it works, or another task beat us
719 * to it with the new value, then update the f_wb_err and return the error
720 * portion. The error at this point must be reported via proper channels
721 * (a'la fsync, or NFS COMMIT operation, etc.).
722 *
723 * While we handle mapping->wb_err with atomic operations, the f_wb_err
724 * value is protected by the f_lock since we must ensure that it reflects
725 * the latest value swapped in for this file descriptor.
726 */
727 int file_check_and_advance_wb_err(struct file *file)
728 {
729 int err = 0;
730 errseq_t old = READ_ONCE(file->f_wb_err);
731 struct address_space *mapping = file->f_mapping;
732
733 /* Locklessly handle the common case where nothing has changed */
734 if (errseq_check(&mapping->wb_err, old)) {
735 /* Something changed, must use slow path */
736 spin_lock(&file->f_lock);
737 old = file->f_wb_err;
738 err = errseq_check_and_advance(&mapping->wb_err,
739 &file->f_wb_err);
740 trace_file_check_and_advance_wb_err(file, old);
741 spin_unlock(&file->f_lock);
742 }
743
744 /*
745 * We're mostly using this function as a drop in replacement for
746 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
747 * that the legacy code would have had on these flags.
748 */
749 clear_bit(AS_EIO, &mapping->flags);
750 clear_bit(AS_ENOSPC, &mapping->flags);
751 return err;
752 }
753 EXPORT_SYMBOL(file_check_and_advance_wb_err);
754
755 /**
756 * file_write_and_wait_range - write out & wait on a file range
757 * @file: file pointing to address_space with pages
758 * @lstart: offset in bytes where the range starts
759 * @lend: offset in bytes where the range ends (inclusive)
760 *
761 * Write out and wait upon file offsets lstart->lend, inclusive.
762 *
763 * Note that @lend is inclusive (describes the last byte to be written) so
764 * that this function can be used to write to the very end-of-file (end = -1).
765 *
766 * After writing out and waiting on the data, we check and advance the
767 * f_wb_err cursor to the latest value, and return any errors detected there.
768 */
769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770 {
771 int err = 0, err2;
772 struct address_space *mapping = file->f_mapping;
773
774 if (mapping_needs_writeback(mapping)) {
775 err = __filemap_fdatawrite_range(mapping, lstart, lend,
776 WB_SYNC_ALL);
777 /* See comment of filemap_write_and_wait() */
778 if (err != -EIO)
779 __filemap_fdatawait_range(mapping, lstart, lend);
780 }
781 err2 = file_check_and_advance_wb_err(file);
782 if (!err)
783 err = err2;
784 return err;
785 }
786 EXPORT_SYMBOL(file_write_and_wait_range);
787
788 /**
789 * replace_page_cache_page - replace a pagecache page with a new one
790 * @old: page to be replaced
791 * @new: page to replace with
792 * @gfp_mask: allocation mode
793 *
794 * This function replaces a page in the pagecache with a new one. On
795 * success it acquires the pagecache reference for the new page and
796 * drops it for the old page. Both the old and new pages must be
797 * locked. This function does not add the new page to the LRU, the
798 * caller must do that.
799 *
800 * The remove + add is atomic. The only way this function can fail is
801 * memory allocation failure.
802 */
803 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
804 {
805 int error;
806
807 VM_BUG_ON_PAGE(!PageLocked(old), old);
808 VM_BUG_ON_PAGE(!PageLocked(new), new);
809 VM_BUG_ON_PAGE(new->mapping, new);
810
811 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
812 if (!error) {
813 struct address_space *mapping = old->mapping;
814 void (*freepage)(struct page *);
815 unsigned long flags;
816
817 pgoff_t offset = old->index;
818 freepage = mapping->a_ops->freepage;
819
820 get_page(new);
821 new->mapping = mapping;
822 new->index = offset;
823
824 spin_lock_irqsave(&mapping->tree_lock, flags);
825 __delete_from_page_cache(old, NULL);
826 error = page_cache_tree_insert(mapping, new, NULL);
827 BUG_ON(error);
828
829 /*
830 * hugetlb pages do not participate in page cache accounting.
831 */
832 if (!PageHuge(new))
833 __inc_node_page_state(new, NR_FILE_PAGES);
834 if (PageSwapBacked(new))
835 __inc_node_page_state(new, NR_SHMEM);
836 spin_unlock_irqrestore(&mapping->tree_lock, flags);
837 mem_cgroup_migrate(old, new);
838 radix_tree_preload_end();
839 if (freepage)
840 freepage(old);
841 put_page(old);
842 }
843
844 return error;
845 }
846 EXPORT_SYMBOL_GPL(replace_page_cache_page);
847
848 static int __add_to_page_cache_locked(struct page *page,
849 struct address_space *mapping,
850 pgoff_t offset, gfp_t gfp_mask,
851 void **shadowp)
852 {
853 int huge = PageHuge(page);
854 struct mem_cgroup *memcg;
855 int error;
856
857 VM_BUG_ON_PAGE(!PageLocked(page), page);
858 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
859
860 if (!huge) {
861 error = mem_cgroup_try_charge(page, current->mm,
862 gfp_mask, &memcg, false);
863 if (error)
864 return error;
865 }
866
867 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
868 if (error) {
869 if (!huge)
870 mem_cgroup_cancel_charge(page, memcg, false);
871 return error;
872 }
873
874 get_page(page);
875 page->mapping = mapping;
876 page->index = offset;
877
878 spin_lock_irq(&mapping->tree_lock);
879 error = page_cache_tree_insert(mapping, page, shadowp);
880 radix_tree_preload_end();
881 if (unlikely(error))
882 goto err_insert;
883
884 /* hugetlb pages do not participate in page cache accounting. */
885 if (!huge)
886 __inc_node_page_state(page, NR_FILE_PAGES);
887 spin_unlock_irq(&mapping->tree_lock);
888 if (!huge)
889 mem_cgroup_commit_charge(page, memcg, false, false);
890 trace_mm_filemap_add_to_page_cache(page);
891 return 0;
892 err_insert:
893 page->mapping = NULL;
894 /* Leave page->index set: truncation relies upon it */
895 spin_unlock_irq(&mapping->tree_lock);
896 if (!huge)
897 mem_cgroup_cancel_charge(page, memcg, false);
898 put_page(page);
899 return error;
900 }
901
902 /**
903 * add_to_page_cache_locked - add a locked page to the pagecache
904 * @page: page to add
905 * @mapping: the page's address_space
906 * @offset: page index
907 * @gfp_mask: page allocation mode
908 *
909 * This function is used to add a page to the pagecache. It must be locked.
910 * This function does not add the page to the LRU. The caller must do that.
911 */
912 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
913 pgoff_t offset, gfp_t gfp_mask)
914 {
915 return __add_to_page_cache_locked(page, mapping, offset,
916 gfp_mask, NULL);
917 }
918 EXPORT_SYMBOL(add_to_page_cache_locked);
919
920 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
921 pgoff_t offset, gfp_t gfp_mask)
922 {
923 void *shadow = NULL;
924 int ret;
925
926 __SetPageLocked(page);
927 ret = __add_to_page_cache_locked(page, mapping, offset,
928 gfp_mask, &shadow);
929 if (unlikely(ret))
930 __ClearPageLocked(page);
931 else {
932 /*
933 * The page might have been evicted from cache only
934 * recently, in which case it should be activated like
935 * any other repeatedly accessed page.
936 * The exception is pages getting rewritten; evicting other
937 * data from the working set, only to cache data that will
938 * get overwritten with something else, is a waste of memory.
939 */
940 if (!(gfp_mask & __GFP_WRITE) &&
941 shadow && workingset_refault(shadow)) {
942 SetPageActive(page);
943 workingset_activation(page);
944 } else
945 ClearPageActive(page);
946 lru_cache_add(page);
947 }
948 return ret;
949 }
950 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
951
952 #ifdef CONFIG_NUMA
953 struct page *__page_cache_alloc(gfp_t gfp)
954 {
955 int n;
956 struct page *page;
957
958 if (cpuset_do_page_mem_spread()) {
959 unsigned int cpuset_mems_cookie;
960 do {
961 cpuset_mems_cookie = read_mems_allowed_begin();
962 n = cpuset_mem_spread_node();
963 page = __alloc_pages_node(n, gfp, 0);
964 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
965
966 return page;
967 }
968 return alloc_pages(gfp, 0);
969 }
970 EXPORT_SYMBOL(__page_cache_alloc);
971 #endif
972
973 /*
974 * In order to wait for pages to become available there must be
975 * waitqueues associated with pages. By using a hash table of
976 * waitqueues where the bucket discipline is to maintain all
977 * waiters on the same queue and wake all when any of the pages
978 * become available, and for the woken contexts to check to be
979 * sure the appropriate page became available, this saves space
980 * at a cost of "thundering herd" phenomena during rare hash
981 * collisions.
982 */
983 #define PAGE_WAIT_TABLE_BITS 8
984 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
985 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
986
987 static wait_queue_head_t *page_waitqueue(struct page *page)
988 {
989 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
990 }
991
992 void __init pagecache_init(void)
993 {
994 int i;
995
996 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
997 init_waitqueue_head(&page_wait_table[i]);
998
999 page_writeback_init();
1000 }
1001
1002 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1003 struct wait_page_key {
1004 struct page *page;
1005 int bit_nr;
1006 int page_match;
1007 };
1008
1009 struct wait_page_queue {
1010 struct page *page;
1011 int bit_nr;
1012 wait_queue_entry_t wait;
1013 };
1014
1015 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1016 {
1017 struct wait_page_key *key = arg;
1018 struct wait_page_queue *wait_page
1019 = container_of(wait, struct wait_page_queue, wait);
1020
1021 if (wait_page->page != key->page)
1022 return 0;
1023 key->page_match = 1;
1024
1025 if (wait_page->bit_nr != key->bit_nr)
1026 return 0;
1027
1028 /* Stop walking if it's locked */
1029 if (test_bit(key->bit_nr, &key->page->flags))
1030 return -1;
1031
1032 return autoremove_wake_function(wait, mode, sync, key);
1033 }
1034
1035 static void wake_up_page_bit(struct page *page, int bit_nr)
1036 {
1037 wait_queue_head_t *q = page_waitqueue(page);
1038 struct wait_page_key key;
1039 unsigned long flags;
1040 wait_queue_entry_t bookmark;
1041
1042 key.page = page;
1043 key.bit_nr = bit_nr;
1044 key.page_match = 0;
1045
1046 bookmark.flags = 0;
1047 bookmark.private = NULL;
1048 bookmark.func = NULL;
1049 INIT_LIST_HEAD(&bookmark.entry);
1050
1051 spin_lock_irqsave(&q->lock, flags);
1052 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1053
1054 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1055 /*
1056 * Take a breather from holding the lock,
1057 * allow pages that finish wake up asynchronously
1058 * to acquire the lock and remove themselves
1059 * from wait queue
1060 */
1061 spin_unlock_irqrestore(&q->lock, flags);
1062 cpu_relax();
1063 spin_lock_irqsave(&q->lock, flags);
1064 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1065 }
1066
1067 /*
1068 * It is possible for other pages to have collided on the waitqueue
1069 * hash, so in that case check for a page match. That prevents a long-
1070 * term waiter
1071 *
1072 * It is still possible to miss a case here, when we woke page waiters
1073 * and removed them from the waitqueue, but there are still other
1074 * page waiters.
1075 */
1076 if (!waitqueue_active(q) || !key.page_match) {
1077 ClearPageWaiters(page);
1078 /*
1079 * It's possible to miss clearing Waiters here, when we woke
1080 * our page waiters, but the hashed waitqueue has waiters for
1081 * other pages on it.
1082 *
1083 * That's okay, it's a rare case. The next waker will clear it.
1084 */
1085 }
1086 spin_unlock_irqrestore(&q->lock, flags);
1087 }
1088
1089 static void wake_up_page(struct page *page, int bit)
1090 {
1091 if (!PageWaiters(page))
1092 return;
1093 wake_up_page_bit(page, bit);
1094 }
1095
1096 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1097 struct page *page, int bit_nr, int state, bool lock)
1098 {
1099 struct wait_page_queue wait_page;
1100 wait_queue_entry_t *wait = &wait_page.wait;
1101 int ret = 0;
1102
1103 init_wait(wait);
1104 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1105 wait->func = wake_page_function;
1106 wait_page.page = page;
1107 wait_page.bit_nr = bit_nr;
1108
1109 for (;;) {
1110 spin_lock_irq(&q->lock);
1111
1112 if (likely(list_empty(&wait->entry))) {
1113 __add_wait_queue_entry_tail(q, wait);
1114 SetPageWaiters(page);
1115 }
1116
1117 set_current_state(state);
1118
1119 spin_unlock_irq(&q->lock);
1120
1121 if (likely(test_bit(bit_nr, &page->flags))) {
1122 io_schedule();
1123 }
1124
1125 if (lock) {
1126 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1127 break;
1128 } else {
1129 if (!test_bit(bit_nr, &page->flags))
1130 break;
1131 }
1132
1133 if (unlikely(signal_pending_state(state, current))) {
1134 ret = -EINTR;
1135 break;
1136 }
1137 }
1138
1139 finish_wait(q, wait);
1140
1141 /*
1142 * A signal could leave PageWaiters set. Clearing it here if
1143 * !waitqueue_active would be possible (by open-coding finish_wait),
1144 * but still fail to catch it in the case of wait hash collision. We
1145 * already can fail to clear wait hash collision cases, so don't
1146 * bother with signals either.
1147 */
1148
1149 return ret;
1150 }
1151
1152 void wait_on_page_bit(struct page *page, int bit_nr)
1153 {
1154 wait_queue_head_t *q = page_waitqueue(page);
1155 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1156 }
1157 EXPORT_SYMBOL(wait_on_page_bit);
1158
1159 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1160 {
1161 wait_queue_head_t *q = page_waitqueue(page);
1162 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1163 }
1164 EXPORT_SYMBOL(wait_on_page_bit_killable);
1165
1166 /**
1167 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1168 * @page: Page defining the wait queue of interest
1169 * @waiter: Waiter to add to the queue
1170 *
1171 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1172 */
1173 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1174 {
1175 wait_queue_head_t *q = page_waitqueue(page);
1176 unsigned long flags;
1177
1178 spin_lock_irqsave(&q->lock, flags);
1179 __add_wait_queue_entry_tail(q, waiter);
1180 SetPageWaiters(page);
1181 spin_unlock_irqrestore(&q->lock, flags);
1182 }
1183 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1184
1185 #ifndef clear_bit_unlock_is_negative_byte
1186
1187 /*
1188 * PG_waiters is the high bit in the same byte as PG_lock.
1189 *
1190 * On x86 (and on many other architectures), we can clear PG_lock and
1191 * test the sign bit at the same time. But if the architecture does
1192 * not support that special operation, we just do this all by hand
1193 * instead.
1194 *
1195 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1196 * being cleared, but a memory barrier should be unneccssary since it is
1197 * in the same byte as PG_locked.
1198 */
1199 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1200 {
1201 clear_bit_unlock(nr, mem);
1202 /* smp_mb__after_atomic(); */
1203 return test_bit(PG_waiters, mem);
1204 }
1205
1206 #endif
1207
1208 /**
1209 * unlock_page - unlock a locked page
1210 * @page: the page
1211 *
1212 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1213 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1214 * mechanism between PageLocked pages and PageWriteback pages is shared.
1215 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1216 *
1217 * Note that this depends on PG_waiters being the sign bit in the byte
1218 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1219 * clear the PG_locked bit and test PG_waiters at the same time fairly
1220 * portably (architectures that do LL/SC can test any bit, while x86 can
1221 * test the sign bit).
1222 */
1223 void unlock_page(struct page *page)
1224 {
1225 BUILD_BUG_ON(PG_waiters != 7);
1226 page = compound_head(page);
1227 VM_BUG_ON_PAGE(!PageLocked(page), page);
1228 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1229 wake_up_page_bit(page, PG_locked);
1230 }
1231 EXPORT_SYMBOL(unlock_page);
1232
1233 /**
1234 * end_page_writeback - end writeback against a page
1235 * @page: the page
1236 */
1237 void end_page_writeback(struct page *page)
1238 {
1239 /*
1240 * TestClearPageReclaim could be used here but it is an atomic
1241 * operation and overkill in this particular case. Failing to
1242 * shuffle a page marked for immediate reclaim is too mild to
1243 * justify taking an atomic operation penalty at the end of
1244 * ever page writeback.
1245 */
1246 if (PageReclaim(page)) {
1247 ClearPageReclaim(page);
1248 rotate_reclaimable_page(page);
1249 }
1250
1251 if (!test_clear_page_writeback(page))
1252 BUG();
1253
1254 smp_mb__after_atomic();
1255 wake_up_page(page, PG_writeback);
1256 }
1257 EXPORT_SYMBOL(end_page_writeback);
1258
1259 /*
1260 * After completing I/O on a page, call this routine to update the page
1261 * flags appropriately
1262 */
1263 void page_endio(struct page *page, bool is_write, int err)
1264 {
1265 if (!is_write) {
1266 if (!err) {
1267 SetPageUptodate(page);
1268 } else {
1269 ClearPageUptodate(page);
1270 SetPageError(page);
1271 }
1272 unlock_page(page);
1273 } else {
1274 if (err) {
1275 struct address_space *mapping;
1276
1277 SetPageError(page);
1278 mapping = page_mapping(page);
1279 if (mapping)
1280 mapping_set_error(mapping, err);
1281 }
1282 end_page_writeback(page);
1283 }
1284 }
1285 EXPORT_SYMBOL_GPL(page_endio);
1286
1287 /**
1288 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1289 * @__page: the page to lock
1290 */
1291 void __lock_page(struct page *__page)
1292 {
1293 struct page *page = compound_head(__page);
1294 wait_queue_head_t *q = page_waitqueue(page);
1295 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1296 }
1297 EXPORT_SYMBOL(__lock_page);
1298
1299 int __lock_page_killable(struct page *__page)
1300 {
1301 struct page *page = compound_head(__page);
1302 wait_queue_head_t *q = page_waitqueue(page);
1303 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1304 }
1305 EXPORT_SYMBOL_GPL(__lock_page_killable);
1306
1307 /*
1308 * Return values:
1309 * 1 - page is locked; mmap_sem is still held.
1310 * 0 - page is not locked.
1311 * mmap_sem has been released (up_read()), unless flags had both
1312 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1313 * which case mmap_sem is still held.
1314 *
1315 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1316 * with the page locked and the mmap_sem unperturbed.
1317 */
1318 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1319 unsigned int flags)
1320 {
1321 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1322 /*
1323 * CAUTION! In this case, mmap_sem is not released
1324 * even though return 0.
1325 */
1326 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1327 return 0;
1328
1329 up_read(&mm->mmap_sem);
1330 if (flags & FAULT_FLAG_KILLABLE)
1331 wait_on_page_locked_killable(page);
1332 else
1333 wait_on_page_locked(page);
1334 return 0;
1335 } else {
1336 if (flags & FAULT_FLAG_KILLABLE) {
1337 int ret;
1338
1339 ret = __lock_page_killable(page);
1340 if (ret) {
1341 up_read(&mm->mmap_sem);
1342 return 0;
1343 }
1344 } else
1345 __lock_page(page);
1346 return 1;
1347 }
1348 }
1349
1350 /**
1351 * page_cache_next_hole - find the next hole (not-present entry)
1352 * @mapping: mapping
1353 * @index: index
1354 * @max_scan: maximum range to search
1355 *
1356 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1357 * lowest indexed hole.
1358 *
1359 * Returns: the index of the hole if found, otherwise returns an index
1360 * outside of the set specified (in which case 'return - index >=
1361 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1362 * be returned.
1363 *
1364 * page_cache_next_hole may be called under rcu_read_lock. However,
1365 * like radix_tree_gang_lookup, this will not atomically search a
1366 * snapshot of the tree at a single point in time. For example, if a
1367 * hole is created at index 5, then subsequently a hole is created at
1368 * index 10, page_cache_next_hole covering both indexes may return 10
1369 * if called under rcu_read_lock.
1370 */
1371 pgoff_t page_cache_next_hole(struct address_space *mapping,
1372 pgoff_t index, unsigned long max_scan)
1373 {
1374 unsigned long i;
1375
1376 for (i = 0; i < max_scan; i++) {
1377 struct page *page;
1378
1379 page = radix_tree_lookup(&mapping->page_tree, index);
1380 if (!page || radix_tree_exceptional_entry(page))
1381 break;
1382 index++;
1383 if (index == 0)
1384 break;
1385 }
1386
1387 return index;
1388 }
1389 EXPORT_SYMBOL(page_cache_next_hole);
1390
1391 /**
1392 * page_cache_prev_hole - find the prev hole (not-present entry)
1393 * @mapping: mapping
1394 * @index: index
1395 * @max_scan: maximum range to search
1396 *
1397 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1398 * the first hole.
1399 *
1400 * Returns: the index of the hole if found, otherwise returns an index
1401 * outside of the set specified (in which case 'index - return >=
1402 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1403 * will be returned.
1404 *
1405 * page_cache_prev_hole may be called under rcu_read_lock. However,
1406 * like radix_tree_gang_lookup, this will not atomically search a
1407 * snapshot of the tree at a single point in time. For example, if a
1408 * hole is created at index 10, then subsequently a hole is created at
1409 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1410 * called under rcu_read_lock.
1411 */
1412 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1413 pgoff_t index, unsigned long max_scan)
1414 {
1415 unsigned long i;
1416
1417 for (i = 0; i < max_scan; i++) {
1418 struct page *page;
1419
1420 page = radix_tree_lookup(&mapping->page_tree, index);
1421 if (!page || radix_tree_exceptional_entry(page))
1422 break;
1423 index--;
1424 if (index == ULONG_MAX)
1425 break;
1426 }
1427
1428 return index;
1429 }
1430 EXPORT_SYMBOL(page_cache_prev_hole);
1431
1432 /**
1433 * find_get_entry - find and get a page cache entry
1434 * @mapping: the address_space to search
1435 * @offset: the page cache index
1436 *
1437 * Looks up the page cache slot at @mapping & @offset. If there is a
1438 * page cache page, it is returned with an increased refcount.
1439 *
1440 * If the slot holds a shadow entry of a previously evicted page, or a
1441 * swap entry from shmem/tmpfs, it is returned.
1442 *
1443 * Otherwise, %NULL is returned.
1444 */
1445 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1446 {
1447 void **pagep;
1448 struct page *head, *page;
1449
1450 rcu_read_lock();
1451 repeat:
1452 page = NULL;
1453 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1454 if (pagep) {
1455 page = radix_tree_deref_slot(pagep);
1456 if (unlikely(!page))
1457 goto out;
1458 if (radix_tree_exception(page)) {
1459 if (radix_tree_deref_retry(page))
1460 goto repeat;
1461 /*
1462 * A shadow entry of a recently evicted page,
1463 * or a swap entry from shmem/tmpfs. Return
1464 * it without attempting to raise page count.
1465 */
1466 goto out;
1467 }
1468
1469 head = compound_head(page);
1470 if (!page_cache_get_speculative(head))
1471 goto repeat;
1472
1473 /* The page was split under us? */
1474 if (compound_head(page) != head) {
1475 put_page(head);
1476 goto repeat;
1477 }
1478
1479 /*
1480 * Has the page moved?
1481 * This is part of the lockless pagecache protocol. See
1482 * include/linux/pagemap.h for details.
1483 */
1484 if (unlikely(page != *pagep)) {
1485 put_page(head);
1486 goto repeat;
1487 }
1488 }
1489 out:
1490 rcu_read_unlock();
1491
1492 return page;
1493 }
1494 EXPORT_SYMBOL(find_get_entry);
1495
1496 /**
1497 * find_lock_entry - locate, pin and lock a page cache entry
1498 * @mapping: the address_space to search
1499 * @offset: the page cache index
1500 *
1501 * Looks up the page cache slot at @mapping & @offset. If there is a
1502 * page cache page, it is returned locked and with an increased
1503 * refcount.
1504 *
1505 * If the slot holds a shadow entry of a previously evicted page, or a
1506 * swap entry from shmem/tmpfs, it is returned.
1507 *
1508 * Otherwise, %NULL is returned.
1509 *
1510 * find_lock_entry() may sleep.
1511 */
1512 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1513 {
1514 struct page *page;
1515
1516 repeat:
1517 page = find_get_entry(mapping, offset);
1518 if (page && !radix_tree_exception(page)) {
1519 lock_page(page);
1520 /* Has the page been truncated? */
1521 if (unlikely(page_mapping(page) != mapping)) {
1522 unlock_page(page);
1523 put_page(page);
1524 goto repeat;
1525 }
1526 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1527 }
1528 return page;
1529 }
1530 EXPORT_SYMBOL(find_lock_entry);
1531
1532 /**
1533 * pagecache_get_page - find and get a page reference
1534 * @mapping: the address_space to search
1535 * @offset: the page index
1536 * @fgp_flags: PCG flags
1537 * @gfp_mask: gfp mask to use for the page cache data page allocation
1538 *
1539 * Looks up the page cache slot at @mapping & @offset.
1540 *
1541 * PCG flags modify how the page is returned.
1542 *
1543 * @fgp_flags can be:
1544 *
1545 * - FGP_ACCESSED: the page will be marked accessed
1546 * - FGP_LOCK: Page is return locked
1547 * - FGP_CREAT: If page is not present then a new page is allocated using
1548 * @gfp_mask and added to the page cache and the VM's LRU
1549 * list. The page is returned locked and with an increased
1550 * refcount. Otherwise, NULL is returned.
1551 *
1552 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1553 * if the GFP flags specified for FGP_CREAT are atomic.
1554 *
1555 * If there is a page cache page, it is returned with an increased refcount.
1556 */
1557 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1558 int fgp_flags, gfp_t gfp_mask)
1559 {
1560 struct page *page;
1561
1562 repeat:
1563 page = find_get_entry(mapping, offset);
1564 if (radix_tree_exceptional_entry(page))
1565 page = NULL;
1566 if (!page)
1567 goto no_page;
1568
1569 if (fgp_flags & FGP_LOCK) {
1570 if (fgp_flags & FGP_NOWAIT) {
1571 if (!trylock_page(page)) {
1572 put_page(page);
1573 return NULL;
1574 }
1575 } else {
1576 lock_page(page);
1577 }
1578
1579 /* Has the page been truncated? */
1580 if (unlikely(page->mapping != mapping)) {
1581 unlock_page(page);
1582 put_page(page);
1583 goto repeat;
1584 }
1585 VM_BUG_ON_PAGE(page->index != offset, page);
1586 }
1587
1588 if (page && (fgp_flags & FGP_ACCESSED))
1589 mark_page_accessed(page);
1590
1591 no_page:
1592 if (!page && (fgp_flags & FGP_CREAT)) {
1593 int err;
1594 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1595 gfp_mask |= __GFP_WRITE;
1596 if (fgp_flags & FGP_NOFS)
1597 gfp_mask &= ~__GFP_FS;
1598
1599 page = __page_cache_alloc(gfp_mask);
1600 if (!page)
1601 return NULL;
1602
1603 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1604 fgp_flags |= FGP_LOCK;
1605
1606 /* Init accessed so avoid atomic mark_page_accessed later */
1607 if (fgp_flags & FGP_ACCESSED)
1608 __SetPageReferenced(page);
1609
1610 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1611 if (unlikely(err)) {
1612 put_page(page);
1613 page = NULL;
1614 if (err == -EEXIST)
1615 goto repeat;
1616 }
1617 }
1618
1619 return page;
1620 }
1621 EXPORT_SYMBOL(pagecache_get_page);
1622
1623 /**
1624 * find_get_entries - gang pagecache lookup
1625 * @mapping: The address_space to search
1626 * @start: The starting page cache index
1627 * @nr_entries: The maximum number of entries
1628 * @entries: Where the resulting entries are placed
1629 * @indices: The cache indices corresponding to the entries in @entries
1630 *
1631 * find_get_entries() will search for and return a group of up to
1632 * @nr_entries entries in the mapping. The entries are placed at
1633 * @entries. find_get_entries() takes a reference against any actual
1634 * pages it returns.
1635 *
1636 * The search returns a group of mapping-contiguous page cache entries
1637 * with ascending indexes. There may be holes in the indices due to
1638 * not-present pages.
1639 *
1640 * Any shadow entries of evicted pages, or swap entries from
1641 * shmem/tmpfs, are included in the returned array.
1642 *
1643 * find_get_entries() returns the number of pages and shadow entries
1644 * which were found.
1645 */
1646 unsigned find_get_entries(struct address_space *mapping,
1647 pgoff_t start, unsigned int nr_entries,
1648 struct page **entries, pgoff_t *indices)
1649 {
1650 void **slot;
1651 unsigned int ret = 0;
1652 struct radix_tree_iter iter;
1653
1654 if (!nr_entries)
1655 return 0;
1656
1657 rcu_read_lock();
1658 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1659 struct page *head, *page;
1660 repeat:
1661 page = radix_tree_deref_slot(slot);
1662 if (unlikely(!page))
1663 continue;
1664 if (radix_tree_exception(page)) {
1665 if (radix_tree_deref_retry(page)) {
1666 slot = radix_tree_iter_retry(&iter);
1667 continue;
1668 }
1669 /*
1670 * A shadow entry of a recently evicted page, a swap
1671 * entry from shmem/tmpfs or a DAX entry. Return it
1672 * without attempting to raise page count.
1673 */
1674 goto export;
1675 }
1676
1677 head = compound_head(page);
1678 if (!page_cache_get_speculative(head))
1679 goto repeat;
1680
1681 /* The page was split under us? */
1682 if (compound_head(page) != head) {
1683 put_page(head);
1684 goto repeat;
1685 }
1686
1687 /* Has the page moved? */
1688 if (unlikely(page != *slot)) {
1689 put_page(head);
1690 goto repeat;
1691 }
1692 export:
1693 indices[ret] = iter.index;
1694 entries[ret] = page;
1695 if (++ret == nr_entries)
1696 break;
1697 }
1698 rcu_read_unlock();
1699 return ret;
1700 }
1701
1702 /**
1703 * find_get_pages_range - gang pagecache lookup
1704 * @mapping: The address_space to search
1705 * @start: The starting page index
1706 * @end: The final page index (inclusive)
1707 * @nr_pages: The maximum number of pages
1708 * @pages: Where the resulting pages are placed
1709 *
1710 * find_get_pages_range() will search for and return a group of up to @nr_pages
1711 * pages in the mapping starting at index @start and up to index @end
1712 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1713 * a reference against the returned pages.
1714 *
1715 * The search returns a group of mapping-contiguous pages with ascending
1716 * indexes. There may be holes in the indices due to not-present pages.
1717 * We also update @start to index the next page for the traversal.
1718 *
1719 * find_get_pages_range() returns the number of pages which were found. If this
1720 * number is smaller than @nr_pages, the end of specified range has been
1721 * reached.
1722 */
1723 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1724 pgoff_t end, unsigned int nr_pages,
1725 struct page **pages)
1726 {
1727 struct radix_tree_iter iter;
1728 void **slot;
1729 unsigned ret = 0;
1730
1731 if (unlikely(!nr_pages))
1732 return 0;
1733
1734 rcu_read_lock();
1735 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1736 struct page *head, *page;
1737
1738 if (iter.index > end)
1739 break;
1740 repeat:
1741 page = radix_tree_deref_slot(slot);
1742 if (unlikely(!page))
1743 continue;
1744
1745 if (radix_tree_exception(page)) {
1746 if (radix_tree_deref_retry(page)) {
1747 slot = radix_tree_iter_retry(&iter);
1748 continue;
1749 }
1750 /*
1751 * A shadow entry of a recently evicted page,
1752 * or a swap entry from shmem/tmpfs. Skip
1753 * over it.
1754 */
1755 continue;
1756 }
1757
1758 head = compound_head(page);
1759 if (!page_cache_get_speculative(head))
1760 goto repeat;
1761
1762 /* The page was split under us? */
1763 if (compound_head(page) != head) {
1764 put_page(head);
1765 goto repeat;
1766 }
1767
1768 /* Has the page moved? */
1769 if (unlikely(page != *slot)) {
1770 put_page(head);
1771 goto repeat;
1772 }
1773
1774 pages[ret] = page;
1775 if (++ret == nr_pages) {
1776 *start = pages[ret - 1]->index + 1;
1777 goto out;
1778 }
1779 }
1780
1781 /*
1782 * We come here when there is no page beyond @end. We take care to not
1783 * overflow the index @start as it confuses some of the callers. This
1784 * breaks the iteration when there is page at index -1 but that is
1785 * already broken anyway.
1786 */
1787 if (end == (pgoff_t)-1)
1788 *start = (pgoff_t)-1;
1789 else
1790 *start = end + 1;
1791 out:
1792 rcu_read_unlock();
1793
1794 return ret;
1795 }
1796
1797 /**
1798 * find_get_pages_contig - gang contiguous pagecache lookup
1799 * @mapping: The address_space to search
1800 * @index: The starting page index
1801 * @nr_pages: The maximum number of pages
1802 * @pages: Where the resulting pages are placed
1803 *
1804 * find_get_pages_contig() works exactly like find_get_pages(), except
1805 * that the returned number of pages are guaranteed to be contiguous.
1806 *
1807 * find_get_pages_contig() returns the number of pages which were found.
1808 */
1809 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1810 unsigned int nr_pages, struct page **pages)
1811 {
1812 struct radix_tree_iter iter;
1813 void **slot;
1814 unsigned int ret = 0;
1815
1816 if (unlikely(!nr_pages))
1817 return 0;
1818
1819 rcu_read_lock();
1820 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1821 struct page *head, *page;
1822 repeat:
1823 page = radix_tree_deref_slot(slot);
1824 /* The hole, there no reason to continue */
1825 if (unlikely(!page))
1826 break;
1827
1828 if (radix_tree_exception(page)) {
1829 if (radix_tree_deref_retry(page)) {
1830 slot = radix_tree_iter_retry(&iter);
1831 continue;
1832 }
1833 /*
1834 * A shadow entry of a recently evicted page,
1835 * or a swap entry from shmem/tmpfs. Stop
1836 * looking for contiguous pages.
1837 */
1838 break;
1839 }
1840
1841 head = compound_head(page);
1842 if (!page_cache_get_speculative(head))
1843 goto repeat;
1844
1845 /* The page was split under us? */
1846 if (compound_head(page) != head) {
1847 put_page(head);
1848 goto repeat;
1849 }
1850
1851 /* Has the page moved? */
1852 if (unlikely(page != *slot)) {
1853 put_page(head);
1854 goto repeat;
1855 }
1856
1857 /*
1858 * must check mapping and index after taking the ref.
1859 * otherwise we can get both false positives and false
1860 * negatives, which is just confusing to the caller.
1861 */
1862 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1863 put_page(page);
1864 break;
1865 }
1866
1867 pages[ret] = page;
1868 if (++ret == nr_pages)
1869 break;
1870 }
1871 rcu_read_unlock();
1872 return ret;
1873 }
1874 EXPORT_SYMBOL(find_get_pages_contig);
1875
1876 /**
1877 * find_get_pages_range_tag - find and return pages in given range matching @tag
1878 * @mapping: the address_space to search
1879 * @index: the starting page index
1880 * @end: The final page index (inclusive)
1881 * @tag: the tag index
1882 * @nr_pages: the maximum number of pages
1883 * @pages: where the resulting pages are placed
1884 *
1885 * Like find_get_pages, except we only return pages which are tagged with
1886 * @tag. We update @index to index the next page for the traversal.
1887 */
1888 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1889 pgoff_t end, int tag, unsigned int nr_pages,
1890 struct page **pages)
1891 {
1892 struct radix_tree_iter iter;
1893 void **slot;
1894 unsigned ret = 0;
1895
1896 if (unlikely(!nr_pages))
1897 return 0;
1898
1899 rcu_read_lock();
1900 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1901 &iter, *index, tag) {
1902 struct page *head, *page;
1903
1904 if (iter.index > end)
1905 break;
1906 repeat:
1907 page = radix_tree_deref_slot(slot);
1908 if (unlikely(!page))
1909 continue;
1910
1911 if (radix_tree_exception(page)) {
1912 if (radix_tree_deref_retry(page)) {
1913 slot = radix_tree_iter_retry(&iter);
1914 continue;
1915 }
1916 /*
1917 * A shadow entry of a recently evicted page.
1918 *
1919 * Those entries should never be tagged, but
1920 * this tree walk is lockless and the tags are
1921 * looked up in bulk, one radix tree node at a
1922 * time, so there is a sizable window for page
1923 * reclaim to evict a page we saw tagged.
1924 *
1925 * Skip over it.
1926 */
1927 continue;
1928 }
1929
1930 head = compound_head(page);
1931 if (!page_cache_get_speculative(head))
1932 goto repeat;
1933
1934 /* The page was split under us? */
1935 if (compound_head(page) != head) {
1936 put_page(head);
1937 goto repeat;
1938 }
1939
1940 /* Has the page moved? */
1941 if (unlikely(page != *slot)) {
1942 put_page(head);
1943 goto repeat;
1944 }
1945
1946 pages[ret] = page;
1947 if (++ret == nr_pages) {
1948 *index = pages[ret - 1]->index + 1;
1949 goto out;
1950 }
1951 }
1952
1953 /*
1954 * We come here when we got at @end. We take care to not overflow the
1955 * index @index as it confuses some of the callers. This breaks the
1956 * iteration when there is page at index -1 but that is already broken
1957 * anyway.
1958 */
1959 if (end == (pgoff_t)-1)
1960 *index = (pgoff_t)-1;
1961 else
1962 *index = end + 1;
1963 out:
1964 rcu_read_unlock();
1965
1966 return ret;
1967 }
1968 EXPORT_SYMBOL(find_get_pages_range_tag);
1969
1970 /**
1971 * find_get_entries_tag - find and return entries that match @tag
1972 * @mapping: the address_space to search
1973 * @start: the starting page cache index
1974 * @tag: the tag index
1975 * @nr_entries: the maximum number of entries
1976 * @entries: where the resulting entries are placed
1977 * @indices: the cache indices corresponding to the entries in @entries
1978 *
1979 * Like find_get_entries, except we only return entries which are tagged with
1980 * @tag.
1981 */
1982 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1983 int tag, unsigned int nr_entries,
1984 struct page **entries, pgoff_t *indices)
1985 {
1986 void **slot;
1987 unsigned int ret = 0;
1988 struct radix_tree_iter iter;
1989
1990 if (!nr_entries)
1991 return 0;
1992
1993 rcu_read_lock();
1994 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1995 &iter, start, tag) {
1996 struct page *head, *page;
1997 repeat:
1998 page = radix_tree_deref_slot(slot);
1999 if (unlikely(!page))
2000 continue;
2001 if (radix_tree_exception(page)) {
2002 if (radix_tree_deref_retry(page)) {
2003 slot = radix_tree_iter_retry(&iter);
2004 continue;
2005 }
2006
2007 /*
2008 * A shadow entry of a recently evicted page, a swap
2009 * entry from shmem/tmpfs or a DAX entry. Return it
2010 * without attempting to raise page count.
2011 */
2012 goto export;
2013 }
2014
2015 head = compound_head(page);
2016 if (!page_cache_get_speculative(head))
2017 goto repeat;
2018
2019 /* The page was split under us? */
2020 if (compound_head(page) != head) {
2021 put_page(head);
2022 goto repeat;
2023 }
2024
2025 /* Has the page moved? */
2026 if (unlikely(page != *slot)) {
2027 put_page(head);
2028 goto repeat;
2029 }
2030 export:
2031 indices[ret] = iter.index;
2032 entries[ret] = page;
2033 if (++ret == nr_entries)
2034 break;
2035 }
2036 rcu_read_unlock();
2037 return ret;
2038 }
2039 EXPORT_SYMBOL(find_get_entries_tag);
2040
2041 /*
2042 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2043 * a _large_ part of the i/o request. Imagine the worst scenario:
2044 *
2045 * ---R__________________________________________B__________
2046 * ^ reading here ^ bad block(assume 4k)
2047 *
2048 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2049 * => failing the whole request => read(R) => read(R+1) =>
2050 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2051 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2052 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2053 *
2054 * It is going insane. Fix it by quickly scaling down the readahead size.
2055 */
2056 static void shrink_readahead_size_eio(struct file *filp,
2057 struct file_ra_state *ra)
2058 {
2059 ra->ra_pages /= 4;
2060 }
2061
2062 /**
2063 * generic_file_buffered_read - generic file read routine
2064 * @iocb: the iocb to read
2065 * @iter: data destination
2066 * @written: already copied
2067 *
2068 * This is a generic file read routine, and uses the
2069 * mapping->a_ops->readpage() function for the actual low-level stuff.
2070 *
2071 * This is really ugly. But the goto's actually try to clarify some
2072 * of the logic when it comes to error handling etc.
2073 */
2074 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2075 struct iov_iter *iter, ssize_t written)
2076 {
2077 struct file *filp = iocb->ki_filp;
2078 struct address_space *mapping = filp->f_mapping;
2079 struct inode *inode = mapping->host;
2080 struct file_ra_state *ra = &filp->f_ra;
2081 loff_t *ppos = &iocb->ki_pos;
2082 pgoff_t index;
2083 pgoff_t last_index;
2084 pgoff_t prev_index;
2085 unsigned long offset; /* offset into pagecache page */
2086 unsigned int prev_offset;
2087 int error = 0;
2088
2089 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2090 return 0;
2091 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2092
2093 index = *ppos >> PAGE_SHIFT;
2094 prev_index = ra->prev_pos >> PAGE_SHIFT;
2095 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2096 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2097 offset = *ppos & ~PAGE_MASK;
2098
2099 for (;;) {
2100 struct page *page;
2101 pgoff_t end_index;
2102 loff_t isize;
2103 unsigned long nr, ret;
2104
2105 cond_resched();
2106 find_page:
2107 if (fatal_signal_pending(current)) {
2108 error = -EINTR;
2109 goto out;
2110 }
2111
2112 page = find_get_page(mapping, index);
2113 if (!page) {
2114 if (iocb->ki_flags & IOCB_NOWAIT)
2115 goto would_block;
2116 page_cache_sync_readahead(mapping,
2117 ra, filp,
2118 index, last_index - index);
2119 page = find_get_page(mapping, index);
2120 if (unlikely(page == NULL))
2121 goto no_cached_page;
2122 }
2123 if (PageReadahead(page)) {
2124 page_cache_async_readahead(mapping,
2125 ra, filp, page,
2126 index, last_index - index);
2127 }
2128 if (!PageUptodate(page)) {
2129 if (iocb->ki_flags & IOCB_NOWAIT) {
2130 put_page(page);
2131 goto would_block;
2132 }
2133
2134 /*
2135 * See comment in do_read_cache_page on why
2136 * wait_on_page_locked is used to avoid unnecessarily
2137 * serialisations and why it's safe.
2138 */
2139 error = wait_on_page_locked_killable(page);
2140 if (unlikely(error))
2141 goto readpage_error;
2142 if (PageUptodate(page))
2143 goto page_ok;
2144
2145 if (inode->i_blkbits == PAGE_SHIFT ||
2146 !mapping->a_ops->is_partially_uptodate)
2147 goto page_not_up_to_date;
2148 /* pipes can't handle partially uptodate pages */
2149 if (unlikely(iter->type & ITER_PIPE))
2150 goto page_not_up_to_date;
2151 if (!trylock_page(page))
2152 goto page_not_up_to_date;
2153 /* Did it get truncated before we got the lock? */
2154 if (!page->mapping)
2155 goto page_not_up_to_date_locked;
2156 if (!mapping->a_ops->is_partially_uptodate(page,
2157 offset, iter->count))
2158 goto page_not_up_to_date_locked;
2159 unlock_page(page);
2160 }
2161 page_ok:
2162 /*
2163 * i_size must be checked after we know the page is Uptodate.
2164 *
2165 * Checking i_size after the check allows us to calculate
2166 * the correct value for "nr", which means the zero-filled
2167 * part of the page is not copied back to userspace (unless
2168 * another truncate extends the file - this is desired though).
2169 */
2170
2171 isize = i_size_read(inode);
2172 end_index = (isize - 1) >> PAGE_SHIFT;
2173 if (unlikely(!isize || index > end_index)) {
2174 put_page(page);
2175 goto out;
2176 }
2177
2178 /* nr is the maximum number of bytes to copy from this page */
2179 nr = PAGE_SIZE;
2180 if (index == end_index) {
2181 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2182 if (nr <= offset) {
2183 put_page(page);
2184 goto out;
2185 }
2186 }
2187 nr = nr - offset;
2188
2189 /* If users can be writing to this page using arbitrary
2190 * virtual addresses, take care about potential aliasing
2191 * before reading the page on the kernel side.
2192 */
2193 if (mapping_writably_mapped(mapping))
2194 flush_dcache_page(page);
2195
2196 /*
2197 * When a sequential read accesses a page several times,
2198 * only mark it as accessed the first time.
2199 */
2200 if (prev_index != index || offset != prev_offset)
2201 mark_page_accessed(page);
2202 prev_index = index;
2203
2204 /*
2205 * Ok, we have the page, and it's up-to-date, so
2206 * now we can copy it to user space...
2207 */
2208
2209 ret = copy_page_to_iter(page, offset, nr, iter);
2210 offset += ret;
2211 index += offset >> PAGE_SHIFT;
2212 offset &= ~PAGE_MASK;
2213 prev_offset = offset;
2214
2215 put_page(page);
2216 written += ret;
2217 if (!iov_iter_count(iter))
2218 goto out;
2219 if (ret < nr) {
2220 error = -EFAULT;
2221 goto out;
2222 }
2223 continue;
2224
2225 page_not_up_to_date:
2226 /* Get exclusive access to the page ... */
2227 error = lock_page_killable(page);
2228 if (unlikely(error))
2229 goto readpage_error;
2230
2231 page_not_up_to_date_locked:
2232 /* Did it get truncated before we got the lock? */
2233 if (!page->mapping) {
2234 unlock_page(page);
2235 put_page(page);
2236 continue;
2237 }
2238
2239 /* Did somebody else fill it already? */
2240 if (PageUptodate(page)) {
2241 unlock_page(page);
2242 goto page_ok;
2243 }
2244
2245 readpage:
2246 /*
2247 * A previous I/O error may have been due to temporary
2248 * failures, eg. multipath errors.
2249 * PG_error will be set again if readpage fails.
2250 */
2251 ClearPageError(page);
2252 /* Start the actual read. The read will unlock the page. */
2253 error = mapping->a_ops->readpage(filp, page);
2254
2255 if (unlikely(error)) {
2256 if (error == AOP_TRUNCATED_PAGE) {
2257 put_page(page);
2258 error = 0;
2259 goto find_page;
2260 }
2261 goto readpage_error;
2262 }
2263
2264 if (!PageUptodate(page)) {
2265 error = lock_page_killable(page);
2266 if (unlikely(error))
2267 goto readpage_error;
2268 if (!PageUptodate(page)) {
2269 if (page->mapping == NULL) {
2270 /*
2271 * invalidate_mapping_pages got it
2272 */
2273 unlock_page(page);
2274 put_page(page);
2275 goto find_page;
2276 }
2277 unlock_page(page);
2278 shrink_readahead_size_eio(filp, ra);
2279 error = -EIO;
2280 goto readpage_error;
2281 }
2282 unlock_page(page);
2283 }
2284
2285 goto page_ok;
2286
2287 readpage_error:
2288 /* UHHUH! A synchronous read error occurred. Report it */
2289 put_page(page);
2290 goto out;
2291
2292 no_cached_page:
2293 /*
2294 * Ok, it wasn't cached, so we need to create a new
2295 * page..
2296 */
2297 page = page_cache_alloc(mapping);
2298 if (!page) {
2299 error = -ENOMEM;
2300 goto out;
2301 }
2302 error = add_to_page_cache_lru(page, mapping, index,
2303 mapping_gfp_constraint(mapping, GFP_KERNEL));
2304 if (error) {
2305 put_page(page);
2306 if (error == -EEXIST) {
2307 error = 0;
2308 goto find_page;
2309 }
2310 goto out;
2311 }
2312 goto readpage;
2313 }
2314
2315 would_block:
2316 error = -EAGAIN;
2317 out:
2318 ra->prev_pos = prev_index;
2319 ra->prev_pos <<= PAGE_SHIFT;
2320 ra->prev_pos |= prev_offset;
2321
2322 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2323 file_accessed(filp);
2324 return written ? written : error;
2325 }
2326
2327 /**
2328 * generic_file_read_iter - generic filesystem read routine
2329 * @iocb: kernel I/O control block
2330 * @iter: destination for the data read
2331 *
2332 * This is the "read_iter()" routine for all filesystems
2333 * that can use the page cache directly.
2334 */
2335 ssize_t
2336 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2337 {
2338 size_t count = iov_iter_count(iter);
2339 ssize_t retval = 0;
2340
2341 if (!count)
2342 goto out; /* skip atime */
2343
2344 if (iocb->ki_flags & IOCB_DIRECT) {
2345 struct file *file = iocb->ki_filp;
2346 struct address_space *mapping = file->f_mapping;
2347 struct inode *inode = mapping->host;
2348 loff_t size;
2349
2350 size = i_size_read(inode);
2351 if (iocb->ki_flags & IOCB_NOWAIT) {
2352 if (filemap_range_has_page(mapping, iocb->ki_pos,
2353 iocb->ki_pos + count - 1))
2354 return -EAGAIN;
2355 } else {
2356 retval = filemap_write_and_wait_range(mapping,
2357 iocb->ki_pos,
2358 iocb->ki_pos + count - 1);
2359 if (retval < 0)
2360 goto out;
2361 }
2362
2363 file_accessed(file);
2364
2365 retval = mapping->a_ops->direct_IO(iocb, iter);
2366 if (retval >= 0) {
2367 iocb->ki_pos += retval;
2368 count -= retval;
2369 }
2370 iov_iter_revert(iter, count - iov_iter_count(iter));
2371
2372 /*
2373 * Btrfs can have a short DIO read if we encounter
2374 * compressed extents, so if there was an error, or if
2375 * we've already read everything we wanted to, or if
2376 * there was a short read because we hit EOF, go ahead
2377 * and return. Otherwise fallthrough to buffered io for
2378 * the rest of the read. Buffered reads will not work for
2379 * DAX files, so don't bother trying.
2380 */
2381 if (retval < 0 || !count || iocb->ki_pos >= size ||
2382 IS_DAX(inode))
2383 goto out;
2384 }
2385
2386 retval = generic_file_buffered_read(iocb, iter, retval);
2387 out:
2388 return retval;
2389 }
2390 EXPORT_SYMBOL(generic_file_read_iter);
2391
2392 #ifdef CONFIG_MMU
2393 /**
2394 * page_cache_read - adds requested page to the page cache if not already there
2395 * @file: file to read
2396 * @offset: page index
2397 * @gfp_mask: memory allocation flags
2398 *
2399 * This adds the requested page to the page cache if it isn't already there,
2400 * and schedules an I/O to read in its contents from disk.
2401 */
2402 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2403 {
2404 struct address_space *mapping = file->f_mapping;
2405 struct page *page;
2406 int ret;
2407
2408 do {
2409 page = __page_cache_alloc(gfp_mask);
2410 if (!page)
2411 return -ENOMEM;
2412
2413 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2414 if (ret == 0)
2415 ret = mapping->a_ops->readpage(file, page);
2416 else if (ret == -EEXIST)
2417 ret = 0; /* losing race to add is OK */
2418
2419 put_page(page);
2420
2421 } while (ret == AOP_TRUNCATED_PAGE);
2422
2423 return ret;
2424 }
2425
2426 #define MMAP_LOTSAMISS (100)
2427
2428 /*
2429 * Synchronous readahead happens when we don't even find
2430 * a page in the page cache at all.
2431 */
2432 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2433 struct file_ra_state *ra,
2434 struct file *file,
2435 pgoff_t offset)
2436 {
2437 struct address_space *mapping = file->f_mapping;
2438
2439 /* If we don't want any read-ahead, don't bother */
2440 if (vma->vm_flags & VM_RAND_READ)
2441 return;
2442 if (!ra->ra_pages)
2443 return;
2444
2445 if (vma->vm_flags & VM_SEQ_READ) {
2446 page_cache_sync_readahead(mapping, ra, file, offset,
2447 ra->ra_pages);
2448 return;
2449 }
2450
2451 /* Avoid banging the cache line if not needed */
2452 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2453 ra->mmap_miss++;
2454
2455 /*
2456 * Do we miss much more than hit in this file? If so,
2457 * stop bothering with read-ahead. It will only hurt.
2458 */
2459 if (ra->mmap_miss > MMAP_LOTSAMISS)
2460 return;
2461
2462 /*
2463 * mmap read-around
2464 */
2465 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2466 ra->size = ra->ra_pages;
2467 ra->async_size = ra->ra_pages / 4;
2468 ra_submit(ra, mapping, file);
2469 }
2470
2471 /*
2472 * Asynchronous readahead happens when we find the page and PG_readahead,
2473 * so we want to possibly extend the readahead further..
2474 */
2475 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2476 struct file_ra_state *ra,
2477 struct file *file,
2478 struct page *page,
2479 pgoff_t offset)
2480 {
2481 struct address_space *mapping = file->f_mapping;
2482
2483 /* If we don't want any read-ahead, don't bother */
2484 if (vma->vm_flags & VM_RAND_READ)
2485 return;
2486 if (ra->mmap_miss > 0)
2487 ra->mmap_miss--;
2488 if (PageReadahead(page))
2489 page_cache_async_readahead(mapping, ra, file,
2490 page, offset, ra->ra_pages);
2491 }
2492
2493 /**
2494 * filemap_fault - read in file data for page fault handling
2495 * @vmf: struct vm_fault containing details of the fault
2496 *
2497 * filemap_fault() is invoked via the vma operations vector for a
2498 * mapped memory region to read in file data during a page fault.
2499 *
2500 * The goto's are kind of ugly, but this streamlines the normal case of having
2501 * it in the page cache, and handles the special cases reasonably without
2502 * having a lot of duplicated code.
2503 *
2504 * vma->vm_mm->mmap_sem must be held on entry.
2505 *
2506 * If our return value has VM_FAULT_RETRY set, it's because
2507 * lock_page_or_retry() returned 0.
2508 * The mmap_sem has usually been released in this case.
2509 * See __lock_page_or_retry() for the exception.
2510 *
2511 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2512 * has not been released.
2513 *
2514 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2515 */
2516 int filemap_fault(struct vm_fault *vmf)
2517 {
2518 int error;
2519 struct file *file = vmf->vma->vm_file;
2520 struct address_space *mapping = file->f_mapping;
2521 struct file_ra_state *ra = &file->f_ra;
2522 struct inode *inode = mapping->host;
2523 pgoff_t offset = vmf->pgoff;
2524 pgoff_t max_off;
2525 struct page *page;
2526 int ret = 0;
2527
2528 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2529 if (unlikely(offset >= max_off))
2530 return VM_FAULT_SIGBUS;
2531
2532 /*
2533 * Do we have something in the page cache already?
2534 */
2535 page = find_get_page(mapping, offset);
2536 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2537 /*
2538 * We found the page, so try async readahead before
2539 * waiting for the lock.
2540 */
2541 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2542 } else if (!page) {
2543 /* No page in the page cache at all */
2544 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2545 count_vm_event(PGMAJFAULT);
2546 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2547 ret = VM_FAULT_MAJOR;
2548 retry_find:
2549 page = find_get_page(mapping, offset);
2550 if (!page)
2551 goto no_cached_page;
2552 }
2553
2554 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2555 put_page(page);
2556 return ret | VM_FAULT_RETRY;
2557 }
2558
2559 /* Did it get truncated? */
2560 if (unlikely(page->mapping != mapping)) {
2561 unlock_page(page);
2562 put_page(page);
2563 goto retry_find;
2564 }
2565 VM_BUG_ON_PAGE(page->index != offset, page);
2566
2567 /*
2568 * We have a locked page in the page cache, now we need to check
2569 * that it's up-to-date. If not, it is going to be due to an error.
2570 */
2571 if (unlikely(!PageUptodate(page)))
2572 goto page_not_uptodate;
2573
2574 /*
2575 * Found the page and have a reference on it.
2576 * We must recheck i_size under page lock.
2577 */
2578 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2579 if (unlikely(offset >= max_off)) {
2580 unlock_page(page);
2581 put_page(page);
2582 return VM_FAULT_SIGBUS;
2583 }
2584
2585 vmf->page = page;
2586 return ret | VM_FAULT_LOCKED;
2587
2588 no_cached_page:
2589 /*
2590 * We're only likely to ever get here if MADV_RANDOM is in
2591 * effect.
2592 */
2593 error = page_cache_read(file, offset, vmf->gfp_mask);
2594
2595 /*
2596 * The page we want has now been added to the page cache.
2597 * In the unlikely event that someone removed it in the
2598 * meantime, we'll just come back here and read it again.
2599 */
2600 if (error >= 0)
2601 goto retry_find;
2602
2603 /*
2604 * An error return from page_cache_read can result if the
2605 * system is low on memory, or a problem occurs while trying
2606 * to schedule I/O.
2607 */
2608 if (error == -ENOMEM)
2609 return VM_FAULT_OOM;
2610 return VM_FAULT_SIGBUS;
2611
2612 page_not_uptodate:
2613 /*
2614 * Umm, take care of errors if the page isn't up-to-date.
2615 * Try to re-read it _once_. We do this synchronously,
2616 * because there really aren't any performance issues here
2617 * and we need to check for errors.
2618 */
2619 ClearPageError(page);
2620 error = mapping->a_ops->readpage(file, page);
2621 if (!error) {
2622 wait_on_page_locked(page);
2623 if (!PageUptodate(page))
2624 error = -EIO;
2625 }
2626 put_page(page);
2627
2628 if (!error || error == AOP_TRUNCATED_PAGE)
2629 goto retry_find;
2630
2631 /* Things didn't work out. Return zero to tell the mm layer so. */
2632 shrink_readahead_size_eio(file, ra);
2633 return VM_FAULT_SIGBUS;
2634 }
2635 EXPORT_SYMBOL(filemap_fault);
2636
2637 void filemap_map_pages(struct vm_fault *vmf,
2638 pgoff_t start_pgoff, pgoff_t end_pgoff)
2639 {
2640 struct radix_tree_iter iter;
2641 void **slot;
2642 struct file *file = vmf->vma->vm_file;
2643 struct address_space *mapping = file->f_mapping;
2644 pgoff_t last_pgoff = start_pgoff;
2645 unsigned long max_idx;
2646 struct page *head, *page;
2647
2648 rcu_read_lock();
2649 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2650 start_pgoff) {
2651 if (iter.index > end_pgoff)
2652 break;
2653 repeat:
2654 page = radix_tree_deref_slot(slot);
2655 if (unlikely(!page))
2656 goto next;
2657 if (radix_tree_exception(page)) {
2658 if (radix_tree_deref_retry(page)) {
2659 slot = radix_tree_iter_retry(&iter);
2660 continue;
2661 }
2662 goto next;
2663 }
2664
2665 head = compound_head(page);
2666 if (!page_cache_get_speculative(head))
2667 goto repeat;
2668
2669 /* The page was split under us? */
2670 if (compound_head(page) != head) {
2671 put_page(head);
2672 goto repeat;
2673 }
2674
2675 /* Has the page moved? */
2676 if (unlikely(page != *slot)) {
2677 put_page(head);
2678 goto repeat;
2679 }
2680
2681 if (!PageUptodate(page) ||
2682 PageReadahead(page) ||
2683 PageHWPoison(page))
2684 goto skip;
2685 if (!trylock_page(page))
2686 goto skip;
2687
2688 if (page->mapping != mapping || !PageUptodate(page))
2689 goto unlock;
2690
2691 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2692 if (page->index >= max_idx)
2693 goto unlock;
2694
2695 if (file->f_ra.mmap_miss > 0)
2696 file->f_ra.mmap_miss--;
2697
2698 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2699 if (vmf->pte)
2700 vmf->pte += iter.index - last_pgoff;
2701 last_pgoff = iter.index;
2702 if (alloc_set_pte(vmf, NULL, page))
2703 goto unlock;
2704 unlock_page(page);
2705 goto next;
2706 unlock:
2707 unlock_page(page);
2708 skip:
2709 put_page(page);
2710 next:
2711 /* Huge page is mapped? No need to proceed. */
2712 if (pmd_trans_huge(*vmf->pmd))
2713 break;
2714 if (iter.index == end_pgoff)
2715 break;
2716 }
2717 rcu_read_unlock();
2718 }
2719 EXPORT_SYMBOL(filemap_map_pages);
2720
2721 int filemap_page_mkwrite(struct vm_fault *vmf)
2722 {
2723 struct page *page = vmf->page;
2724 struct inode *inode = file_inode(vmf->vma->vm_file);
2725 int ret = VM_FAULT_LOCKED;
2726
2727 sb_start_pagefault(inode->i_sb);
2728 vma_file_update_time(vmf->vma);
2729 lock_page(page);
2730 if (page->mapping != inode->i_mapping) {
2731 unlock_page(page);
2732 ret = VM_FAULT_NOPAGE;
2733 goto out;
2734 }
2735 /*
2736 * We mark the page dirty already here so that when freeze is in
2737 * progress, we are guaranteed that writeback during freezing will
2738 * see the dirty page and writeprotect it again.
2739 */
2740 set_page_dirty(page);
2741 wait_for_stable_page(page);
2742 out:
2743 sb_end_pagefault(inode->i_sb);
2744 return ret;
2745 }
2746 EXPORT_SYMBOL(filemap_page_mkwrite);
2747
2748 const struct vm_operations_struct generic_file_vm_ops = {
2749 .fault = filemap_fault,
2750 .map_pages = filemap_map_pages,
2751 .page_mkwrite = filemap_page_mkwrite,
2752 };
2753
2754 /* This is used for a general mmap of a disk file */
2755
2756 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2757 {
2758 struct address_space *mapping = file->f_mapping;
2759
2760 if (!mapping->a_ops->readpage)
2761 return -ENOEXEC;
2762 file_accessed(file);
2763 vma->vm_ops = &generic_file_vm_ops;
2764 return 0;
2765 }
2766
2767 /*
2768 * This is for filesystems which do not implement ->writepage.
2769 */
2770 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2771 {
2772 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2773 return -EINVAL;
2774 return generic_file_mmap(file, vma);
2775 }
2776 #else
2777 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2778 {
2779 return -ENOSYS;
2780 }
2781 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2782 {
2783 return -ENOSYS;
2784 }
2785 #endif /* CONFIG_MMU */
2786
2787 EXPORT_SYMBOL(generic_file_mmap);
2788 EXPORT_SYMBOL(generic_file_readonly_mmap);
2789
2790 static struct page *wait_on_page_read(struct page *page)
2791 {
2792 if (!IS_ERR(page)) {
2793 wait_on_page_locked(page);
2794 if (!PageUptodate(page)) {
2795 put_page(page);
2796 page = ERR_PTR(-EIO);
2797 }
2798 }
2799 return page;
2800 }
2801
2802 static struct page *do_read_cache_page(struct address_space *mapping,
2803 pgoff_t index,
2804 int (*filler)(void *, struct page *),
2805 void *data,
2806 gfp_t gfp)
2807 {
2808 struct page *page;
2809 int err;
2810 repeat:
2811 page = find_get_page(mapping, index);
2812 if (!page) {
2813 page = __page_cache_alloc(gfp);
2814 if (!page)
2815 return ERR_PTR(-ENOMEM);
2816 err = add_to_page_cache_lru(page, mapping, index, gfp);
2817 if (unlikely(err)) {
2818 put_page(page);
2819 if (err == -EEXIST)
2820 goto repeat;
2821 /* Presumably ENOMEM for radix tree node */
2822 return ERR_PTR(err);
2823 }
2824
2825 filler:
2826 err = filler(data, page);
2827 if (err < 0) {
2828 put_page(page);
2829 return ERR_PTR(err);
2830 }
2831
2832 page = wait_on_page_read(page);
2833 if (IS_ERR(page))
2834 return page;
2835 goto out;
2836 }
2837 if (PageUptodate(page))
2838 goto out;
2839
2840 /*
2841 * Page is not up to date and may be locked due one of the following
2842 * case a: Page is being filled and the page lock is held
2843 * case b: Read/write error clearing the page uptodate status
2844 * case c: Truncation in progress (page locked)
2845 * case d: Reclaim in progress
2846 *
2847 * Case a, the page will be up to date when the page is unlocked.
2848 * There is no need to serialise on the page lock here as the page
2849 * is pinned so the lock gives no additional protection. Even if the
2850 * the page is truncated, the data is still valid if PageUptodate as
2851 * it's a race vs truncate race.
2852 * Case b, the page will not be up to date
2853 * Case c, the page may be truncated but in itself, the data may still
2854 * be valid after IO completes as it's a read vs truncate race. The
2855 * operation must restart if the page is not uptodate on unlock but
2856 * otherwise serialising on page lock to stabilise the mapping gives
2857 * no additional guarantees to the caller as the page lock is
2858 * released before return.
2859 * Case d, similar to truncation. If reclaim holds the page lock, it
2860 * will be a race with remove_mapping that determines if the mapping
2861 * is valid on unlock but otherwise the data is valid and there is
2862 * no need to serialise with page lock.
2863 *
2864 * As the page lock gives no additional guarantee, we optimistically
2865 * wait on the page to be unlocked and check if it's up to date and
2866 * use the page if it is. Otherwise, the page lock is required to
2867 * distinguish between the different cases. The motivation is that we
2868 * avoid spurious serialisations and wakeups when multiple processes
2869 * wait on the same page for IO to complete.
2870 */
2871 wait_on_page_locked(page);
2872 if (PageUptodate(page))
2873 goto out;
2874
2875 /* Distinguish between all the cases under the safety of the lock */
2876 lock_page(page);
2877
2878 /* Case c or d, restart the operation */
2879 if (!page->mapping) {
2880 unlock_page(page);
2881 put_page(page);
2882 goto repeat;
2883 }
2884
2885 /* Someone else locked and filled the page in a very small window */
2886 if (PageUptodate(page)) {
2887 unlock_page(page);
2888 goto out;
2889 }
2890 goto filler;
2891
2892 out:
2893 mark_page_accessed(page);
2894 return page;
2895 }
2896
2897 /**
2898 * read_cache_page - read into page cache, fill it if needed
2899 * @mapping: the page's address_space
2900 * @index: the page index
2901 * @filler: function to perform the read
2902 * @data: first arg to filler(data, page) function, often left as NULL
2903 *
2904 * Read into the page cache. If a page already exists, and PageUptodate() is
2905 * not set, try to fill the page and wait for it to become unlocked.
2906 *
2907 * If the page does not get brought uptodate, return -EIO.
2908 */
2909 struct page *read_cache_page(struct address_space *mapping,
2910 pgoff_t index,
2911 int (*filler)(void *, struct page *),
2912 void *data)
2913 {
2914 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2915 }
2916 EXPORT_SYMBOL(read_cache_page);
2917
2918 /**
2919 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2920 * @mapping: the page's address_space
2921 * @index: the page index
2922 * @gfp: the page allocator flags to use if allocating
2923 *
2924 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2925 * any new page allocations done using the specified allocation flags.
2926 *
2927 * If the page does not get brought uptodate, return -EIO.
2928 */
2929 struct page *read_cache_page_gfp(struct address_space *mapping,
2930 pgoff_t index,
2931 gfp_t gfp)
2932 {
2933 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2934
2935 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2936 }
2937 EXPORT_SYMBOL(read_cache_page_gfp);
2938
2939 /*
2940 * Performs necessary checks before doing a write
2941 *
2942 * Can adjust writing position or amount of bytes to write.
2943 * Returns appropriate error code that caller should return or
2944 * zero in case that write should be allowed.
2945 */
2946 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2947 {
2948 struct file *file = iocb->ki_filp;
2949 struct inode *inode = file->f_mapping->host;
2950 unsigned long limit = rlimit(RLIMIT_FSIZE);
2951 loff_t pos;
2952
2953 if (!iov_iter_count(from))
2954 return 0;
2955
2956 /* FIXME: this is for backwards compatibility with 2.4 */
2957 if (iocb->ki_flags & IOCB_APPEND)
2958 iocb->ki_pos = i_size_read(inode);
2959
2960 pos = iocb->ki_pos;
2961
2962 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2963 return -EINVAL;
2964
2965 if (limit != RLIM_INFINITY) {
2966 if (iocb->ki_pos >= limit) {
2967 send_sig(SIGXFSZ, current, 0);
2968 return -EFBIG;
2969 }
2970 iov_iter_truncate(from, limit - (unsigned long)pos);
2971 }
2972
2973 /*
2974 * LFS rule
2975 */
2976 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2977 !(file->f_flags & O_LARGEFILE))) {
2978 if (pos >= MAX_NON_LFS)
2979 return -EFBIG;
2980 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2981 }
2982
2983 /*
2984 * Are we about to exceed the fs block limit ?
2985 *
2986 * If we have written data it becomes a short write. If we have
2987 * exceeded without writing data we send a signal and return EFBIG.
2988 * Linus frestrict idea will clean these up nicely..
2989 */
2990 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2991 return -EFBIG;
2992
2993 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2994 return iov_iter_count(from);
2995 }
2996 EXPORT_SYMBOL(generic_write_checks);
2997
2998 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2999 loff_t pos, unsigned len, unsigned flags,
3000 struct page **pagep, void **fsdata)
3001 {
3002 const struct address_space_operations *aops = mapping->a_ops;
3003
3004 return aops->write_begin(file, mapping, pos, len, flags,
3005 pagep, fsdata);
3006 }
3007 EXPORT_SYMBOL(pagecache_write_begin);
3008
3009 int pagecache_write_end(struct file *file, struct address_space *mapping,
3010 loff_t pos, unsigned len, unsigned copied,
3011 struct page *page, void *fsdata)
3012 {
3013 const struct address_space_operations *aops = mapping->a_ops;
3014
3015 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3016 }
3017 EXPORT_SYMBOL(pagecache_write_end);
3018
3019 ssize_t
3020 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3021 {
3022 struct file *file = iocb->ki_filp;
3023 struct address_space *mapping = file->f_mapping;
3024 struct inode *inode = mapping->host;
3025 loff_t pos = iocb->ki_pos;
3026 ssize_t written;
3027 size_t write_len;
3028 pgoff_t end;
3029
3030 write_len = iov_iter_count(from);
3031 end = (pos + write_len - 1) >> PAGE_SHIFT;
3032
3033 if (iocb->ki_flags & IOCB_NOWAIT) {
3034 /* If there are pages to writeback, return */
3035 if (filemap_range_has_page(inode->i_mapping, pos,
3036 pos + iov_iter_count(from)))
3037 return -EAGAIN;
3038 } else {
3039 written = filemap_write_and_wait_range(mapping, pos,
3040 pos + write_len - 1);
3041 if (written)
3042 goto out;
3043 }
3044
3045 /*
3046 * After a write we want buffered reads to be sure to go to disk to get
3047 * the new data. We invalidate clean cached page from the region we're
3048 * about to write. We do this *before* the write so that we can return
3049 * without clobbering -EIOCBQUEUED from ->direct_IO().
3050 */
3051 written = invalidate_inode_pages2_range(mapping,
3052 pos >> PAGE_SHIFT, end);
3053 /*
3054 * If a page can not be invalidated, return 0 to fall back
3055 * to buffered write.
3056 */
3057 if (written) {
3058 if (written == -EBUSY)
3059 return 0;
3060 goto out;
3061 }
3062
3063 written = mapping->a_ops->direct_IO(iocb, from);
3064
3065 /*
3066 * Finally, try again to invalidate clean pages which might have been
3067 * cached by non-direct readahead, or faulted in by get_user_pages()
3068 * if the source of the write was an mmap'ed region of the file
3069 * we're writing. Either one is a pretty crazy thing to do,
3070 * so we don't support it 100%. If this invalidation
3071 * fails, tough, the write still worked...
3072 *
3073 * Most of the time we do not need this since dio_complete() will do
3074 * the invalidation for us. However there are some file systems that
3075 * do not end up with dio_complete() being called, so let's not break
3076 * them by removing it completely
3077 */
3078 if (mapping->nrpages)
3079 invalidate_inode_pages2_range(mapping,
3080 pos >> PAGE_SHIFT, end);
3081
3082 if (written > 0) {
3083 pos += written;
3084 write_len -= written;
3085 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3086 i_size_write(inode, pos);
3087 mark_inode_dirty(inode);
3088 }
3089 iocb->ki_pos = pos;
3090 }
3091 iov_iter_revert(from, write_len - iov_iter_count(from));
3092 out:
3093 return written;
3094 }
3095 EXPORT_SYMBOL(generic_file_direct_write);
3096
3097 /*
3098 * Find or create a page at the given pagecache position. Return the locked
3099 * page. This function is specifically for buffered writes.
3100 */
3101 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3102 pgoff_t index, unsigned flags)
3103 {
3104 struct page *page;
3105 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3106
3107 if (flags & AOP_FLAG_NOFS)
3108 fgp_flags |= FGP_NOFS;
3109
3110 page = pagecache_get_page(mapping, index, fgp_flags,
3111 mapping_gfp_mask(mapping));
3112 if (page)
3113 wait_for_stable_page(page);
3114
3115 return page;
3116 }
3117 EXPORT_SYMBOL(grab_cache_page_write_begin);
3118
3119 ssize_t generic_perform_write(struct file *file,
3120 struct iov_iter *i, loff_t pos)
3121 {
3122 struct address_space *mapping = file->f_mapping;
3123 const struct address_space_operations *a_ops = mapping->a_ops;
3124 long status = 0;
3125 ssize_t written = 0;
3126 unsigned int flags = 0;
3127
3128 do {
3129 struct page *page;
3130 unsigned long offset; /* Offset into pagecache page */
3131 unsigned long bytes; /* Bytes to write to page */
3132 size_t copied; /* Bytes copied from user */
3133 void *fsdata;
3134
3135 offset = (pos & (PAGE_SIZE - 1));
3136 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3137 iov_iter_count(i));
3138
3139 again:
3140 /*
3141 * Bring in the user page that we will copy from _first_.
3142 * Otherwise there's a nasty deadlock on copying from the
3143 * same page as we're writing to, without it being marked
3144 * up-to-date.
3145 *
3146 * Not only is this an optimisation, but it is also required
3147 * to check that the address is actually valid, when atomic
3148 * usercopies are used, below.
3149 */
3150 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3151 status = -EFAULT;
3152 break;
3153 }
3154
3155 if (fatal_signal_pending(current)) {
3156 status = -EINTR;
3157 break;
3158 }
3159
3160 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3161 &page, &fsdata);
3162 if (unlikely(status < 0))
3163 break;
3164
3165 if (mapping_writably_mapped(mapping))
3166 flush_dcache_page(page);
3167
3168 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3169 flush_dcache_page(page);
3170
3171 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3172 page, fsdata);
3173 if (unlikely(status < 0))
3174 break;
3175 copied = status;
3176
3177 cond_resched();
3178
3179 iov_iter_advance(i, copied);
3180 if (unlikely(copied == 0)) {
3181 /*
3182 * If we were unable to copy any data at all, we must
3183 * fall back to a single segment length write.
3184 *
3185 * If we didn't fallback here, we could livelock
3186 * because not all segments in the iov can be copied at
3187 * once without a pagefault.
3188 */
3189 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3190 iov_iter_single_seg_count(i));
3191 goto again;
3192 }
3193 pos += copied;
3194 written += copied;
3195
3196 balance_dirty_pages_ratelimited(mapping);
3197 } while (iov_iter_count(i));
3198
3199 return written ? written : status;
3200 }
3201 EXPORT_SYMBOL(generic_perform_write);
3202
3203 /**
3204 * __generic_file_write_iter - write data to a file
3205 * @iocb: IO state structure (file, offset, etc.)
3206 * @from: iov_iter with data to write
3207 *
3208 * This function does all the work needed for actually writing data to a
3209 * file. It does all basic checks, removes SUID from the file, updates
3210 * modification times and calls proper subroutines depending on whether we
3211 * do direct IO or a standard buffered write.
3212 *
3213 * It expects i_mutex to be grabbed unless we work on a block device or similar
3214 * object which does not need locking at all.
3215 *
3216 * This function does *not* take care of syncing data in case of O_SYNC write.
3217 * A caller has to handle it. This is mainly due to the fact that we want to
3218 * avoid syncing under i_mutex.
3219 */
3220 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3221 {
3222 struct file *file = iocb->ki_filp;
3223 struct address_space * mapping = file->f_mapping;
3224 struct inode *inode = mapping->host;
3225 ssize_t written = 0;
3226 ssize_t err;
3227 ssize_t status;
3228
3229 /* We can write back this queue in page reclaim */
3230 current->backing_dev_info = inode_to_bdi(inode);
3231 err = file_remove_privs(file);
3232 if (err)
3233 goto out;
3234
3235 err = file_update_time(file);
3236 if (err)
3237 goto out;
3238
3239 if (iocb->ki_flags & IOCB_DIRECT) {
3240 loff_t pos, endbyte;
3241
3242 written = generic_file_direct_write(iocb, from);
3243 /*
3244 * If the write stopped short of completing, fall back to
3245 * buffered writes. Some filesystems do this for writes to
3246 * holes, for example. For DAX files, a buffered write will
3247 * not succeed (even if it did, DAX does not handle dirty
3248 * page-cache pages correctly).
3249 */
3250 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3251 goto out;
3252
3253 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3254 /*
3255 * If generic_perform_write() returned a synchronous error
3256 * then we want to return the number of bytes which were
3257 * direct-written, or the error code if that was zero. Note
3258 * that this differs from normal direct-io semantics, which
3259 * will return -EFOO even if some bytes were written.
3260 */
3261 if (unlikely(status < 0)) {
3262 err = status;
3263 goto out;
3264 }
3265 /*
3266 * We need to ensure that the page cache pages are written to
3267 * disk and invalidated to preserve the expected O_DIRECT
3268 * semantics.
3269 */
3270 endbyte = pos + status - 1;
3271 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3272 if (err == 0) {
3273 iocb->ki_pos = endbyte + 1;
3274 written += status;
3275 invalidate_mapping_pages(mapping,
3276 pos >> PAGE_SHIFT,
3277 endbyte >> PAGE_SHIFT);
3278 } else {
3279 /*
3280 * We don't know how much we wrote, so just return
3281 * the number of bytes which were direct-written
3282 */
3283 }
3284 } else {
3285 written = generic_perform_write(file, from, iocb->ki_pos);
3286 if (likely(written > 0))
3287 iocb->ki_pos += written;
3288 }
3289 out:
3290 current->backing_dev_info = NULL;
3291 return written ? written : err;
3292 }
3293 EXPORT_SYMBOL(__generic_file_write_iter);
3294
3295 /**
3296 * generic_file_write_iter - write data to a file
3297 * @iocb: IO state structure
3298 * @from: iov_iter with data to write
3299 *
3300 * This is a wrapper around __generic_file_write_iter() to be used by most
3301 * filesystems. It takes care of syncing the file in case of O_SYNC file
3302 * and acquires i_mutex as needed.
3303 */
3304 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3305 {
3306 struct file *file = iocb->ki_filp;
3307 struct inode *inode = file->f_mapping->host;
3308 ssize_t ret;
3309
3310 inode_lock(inode);
3311 ret = generic_write_checks(iocb, from);
3312 if (ret > 0)
3313 ret = __generic_file_write_iter(iocb, from);
3314 inode_unlock(inode);
3315
3316 if (ret > 0)
3317 ret = generic_write_sync(iocb, ret);
3318 return ret;
3319 }
3320 EXPORT_SYMBOL(generic_file_write_iter);
3321
3322 /**
3323 * try_to_release_page() - release old fs-specific metadata on a page
3324 *
3325 * @page: the page which the kernel is trying to free
3326 * @gfp_mask: memory allocation flags (and I/O mode)
3327 *
3328 * The address_space is to try to release any data against the page
3329 * (presumably at page->private). If the release was successful, return '1'.
3330 * Otherwise return zero.
3331 *
3332 * This may also be called if PG_fscache is set on a page, indicating that the
3333 * page is known to the local caching routines.
3334 *
3335 * The @gfp_mask argument specifies whether I/O may be performed to release
3336 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3337 *
3338 */
3339 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3340 {
3341 struct address_space * const mapping = page->mapping;
3342
3343 BUG_ON(!PageLocked(page));
3344 if (PageWriteback(page))
3345 return 0;
3346
3347 if (mapping && mapping->a_ops->releasepage)
3348 return mapping->a_ops->releasepage(page, gfp_mask);
3349 return try_to_free_buffers(page);
3350 }
3351
3352 EXPORT_SYMBOL(try_to_release_page);