]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/filemap.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include "internal.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
48
49 /*
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53
54 #include <asm/mman.h>
55
56 /*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68 /*
69 * Lock ordering:
70 *
71 * ->i_mmap_rwsem (truncate_pagecache)
72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
73 * ->swap_lock (exclusive_swap_page, others)
74 * ->i_pages lock
75 *
76 * ->i_mutex
77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
78 *
79 * ->mmap_sem
80 * ->i_mmap_rwsem
81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
83 *
84 * ->mmap_sem
85 * ->lock_page (access_process_vm)
86 *
87 * ->i_mutex (generic_perform_write)
88 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
89 *
90 * bdi->wb.list_lock
91 * sb_lock (fs/fs-writeback.c)
92 * ->i_pages lock (__sync_single_inode)
93 *
94 * ->i_mmap_rwsem
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 *
100 * ->page_table_lock or pte_lock
101 * ->swap_lock (try_to_unmap_one)
102 * ->private_lock (try_to_unmap_one)
103 * ->i_pages lock (try_to_unmap_one)
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
106 * ->private_lock (page_remove_rmap->set_page_dirty)
107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
115 * ->i_mmap_rwsem
116 * ->tasklist_lock (memory_failure, collect_procs_ao)
117 */
118
119 static void page_cache_delete(struct address_space *mapping,
120 struct page *page, void *shadow)
121 {
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
124
125 mapping_set_update(&xas, mapping);
126
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
130 nr = compound_nr(page);
131 }
132
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
139
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
154 }
155
156 static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
158 {
159 int nr;
160
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
169 cleancache_invalidate_page(mapping, page);
170
171 VM_BUG_ON_PAGE(PageTail(page), page);
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
192 page_ref_sub(page, mapcount);
193 }
194 }
195
196 /* hugetlb pages do not participate in page cache accounting. */
197 if (PageHuge(page))
198 return;
199
200 nr = hpage_nr_pages(page);
201
202 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203 if (PageSwapBacked(page)) {
204 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
209 filemap_nr_thps_dec(mapping);
210 }
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225
226 /*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
229 * is safe. The caller must hold the i_pages lock.
230 */
231 void __delete_from_page_cache(struct page *page, void *shadow)
232 {
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
238 page_cache_delete(mapping, page, shadow);
239 }
240
241 static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243 {
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256 }
257
258 /**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266 void delete_from_page_cache(struct page *page)
267 {
268 struct address_space *mapping = page_mapping(page);
269 unsigned long flags;
270
271 BUG_ON(!PageLocked(page));
272 xa_lock_irqsave(&mapping->i_pages, flags);
273 __delete_from_page_cache(page, NULL);
274 xa_unlock_irqrestore(&mapping->i_pages, flags);
275
276 page_cache_free_page(mapping, page);
277 }
278 EXPORT_SYMBOL(delete_from_page_cache);
279
280 /*
281 * page_cache_delete_batch - delete several pages from page cache
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
285 * The function walks over mapping->i_pages and removes pages passed in @pvec
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
288 * It tolerates holes in @pvec (mapping entries at those indices are not
289 * modified). The function expects only THP head pages to be present in the
290 * @pvec.
291 *
292 * The function expects the i_pages lock to be held.
293 */
294 static void page_cache_delete_batch(struct address_space *mapping,
295 struct pagevec *pvec)
296 {
297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298 int total_pages = 0;
299 int i = 0;
300 struct page *page;
301
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
304 if (i >= pagevec_count(pvec))
305 break;
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
308 if (xa_is_value(page))
309 continue;
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
326 page->mapping = NULL;
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
335 i++;
336 xas_store(&xas, NULL);
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340 }
341
342 void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344 {
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
351 xa_lock_irqsave(&mapping->i_pages, flags);
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
357 page_cache_delete_batch(mapping, pvec);
358 xa_unlock_irqrestore(&mapping->i_pages, flags);
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362 }
363
364 int filemap_check_errors(struct address_space *mapping)
365 {
366 int ret = 0;
367 /* Check for outstanding write errors */
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 ret = -ENOSPC;
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
373 ret = -EIO;
374 return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386 }
387
388 /**
389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
392 * @end: offset in bytes where the range ends (inclusive)
393 * @sync_mode: enable synchronous operation
394 *
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399 * opposed to a regular memory cleansing writeback. The difference between
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
402 *
403 * Return: %0 on success, negative error code otherwise.
404 */
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
407 {
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
411 .nr_to_write = LONG_MAX,
412 .range_start = start,
413 .range_end = end,
414 };
415
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418 return 0;
419
420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421 ret = do_writepages(mapping, &wbc);
422 wbc_detach_inode(&wbc);
423 return ret;
424 }
425
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428 {
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 loff_t end)
440 {
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
454 int filemap_flush(struct address_space *mapping)
455 {
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
471 */
472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474 {
475 struct page *page;
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
478
479 if (end_byte < start_byte)
480 return false;
481
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
498
499 return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
505 {
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
508 struct pagevec pvec;
509 int nr_pages;
510
511 if (end_byte < start_byte)
512 return;
513
514 pagevec_init(&pvec);
515 while (index <= end) {
516 unsigned i;
517
518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519 end, PAGECACHE_TAG_WRITEBACK);
520 if (!nr_pages)
521 break;
522
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
526 wait_on_page_writeback(page);
527 ClearPageError(page);
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
532 }
533
534 /**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
547 *
548 * Return: error status of the address space.
549 */
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552 {
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
555 }
556 EXPORT_SYMBOL(filemap_fdatawait_range);
557
558 /**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574 {
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577 }
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
580 /**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
595 */
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 {
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602 }
603 EXPORT_SYMBOL(file_fdatawait_range);
604
605 /**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
616 *
617 * Return: error status of the address space.
618 */
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 {
621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622 return filemap_check_and_keep_errors(mapping);
623 }
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
628 {
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
633 }
634
635 int filemap_write_and_wait(struct address_space *mapping)
636 {
637 int err = 0;
638
639 if (mapping_needs_writeback(mapping)) {
640 err = filemap_fdatawrite(mapping);
641 /*
642 * Even if the above returned error, the pages may be
643 * written partially (e.g. -ENOSPC), so we wait for it.
644 * But the -EIO is special case, it may indicate the worst
645 * thing (e.g. bug) happened, so we avoid waiting for it.
646 */
647 if (err != -EIO) {
648 int err2 = filemap_fdatawait(mapping);
649 if (!err)
650 err = err2;
651 } else {
652 /* Clear any previously stored errors */
653 filemap_check_errors(mapping);
654 }
655 } else {
656 err = filemap_check_errors(mapping);
657 }
658 return err;
659 }
660 EXPORT_SYMBOL(filemap_write_and_wait);
661
662 /**
663 * filemap_write_and_wait_range - write out & wait on a file range
664 * @mapping: the address_space for the pages
665 * @lstart: offset in bytes where the range starts
666 * @lend: offset in bytes where the range ends (inclusive)
667 *
668 * Write out and wait upon file offsets lstart->lend, inclusive.
669 *
670 * Note that @lend is inclusive (describes the last byte to be written) so
671 * that this function can be used to write to the very end-of-file (end = -1).
672 *
673 * Return: error status of the address space.
674 */
675 int filemap_write_and_wait_range(struct address_space *mapping,
676 loff_t lstart, loff_t lend)
677 {
678 int err = 0;
679
680 if (mapping_needs_writeback(mapping)) {
681 err = __filemap_fdatawrite_range(mapping, lstart, lend,
682 WB_SYNC_ALL);
683 /* See comment of filemap_write_and_wait() */
684 if (err != -EIO) {
685 int err2 = filemap_fdatawait_range(mapping,
686 lstart, lend);
687 if (!err)
688 err = err2;
689 } else {
690 /* Clear any previously stored errors */
691 filemap_check_errors(mapping);
692 }
693 } else {
694 err = filemap_check_errors(mapping);
695 }
696 return err;
697 }
698 EXPORT_SYMBOL(filemap_write_and_wait_range);
699
700 void __filemap_set_wb_err(struct address_space *mapping, int err)
701 {
702 errseq_t eseq = errseq_set(&mapping->wb_err, err);
703
704 trace_filemap_set_wb_err(mapping, eseq);
705 }
706 EXPORT_SYMBOL(__filemap_set_wb_err);
707
708 /**
709 * file_check_and_advance_wb_err - report wb error (if any) that was previously
710 * and advance wb_err to current one
711 * @file: struct file on which the error is being reported
712 *
713 * When userland calls fsync (or something like nfsd does the equivalent), we
714 * want to report any writeback errors that occurred since the last fsync (or
715 * since the file was opened if there haven't been any).
716 *
717 * Grab the wb_err from the mapping. If it matches what we have in the file,
718 * then just quickly return 0. The file is all caught up.
719 *
720 * If it doesn't match, then take the mapping value, set the "seen" flag in
721 * it and try to swap it into place. If it works, or another task beat us
722 * to it with the new value, then update the f_wb_err and return the error
723 * portion. The error at this point must be reported via proper channels
724 * (a'la fsync, or NFS COMMIT operation, etc.).
725 *
726 * While we handle mapping->wb_err with atomic operations, the f_wb_err
727 * value is protected by the f_lock since we must ensure that it reflects
728 * the latest value swapped in for this file descriptor.
729 *
730 * Return: %0 on success, negative error code otherwise.
731 */
732 int file_check_and_advance_wb_err(struct file *file)
733 {
734 int err = 0;
735 errseq_t old = READ_ONCE(file->f_wb_err);
736 struct address_space *mapping = file->f_mapping;
737
738 /* Locklessly handle the common case where nothing has changed */
739 if (errseq_check(&mapping->wb_err, old)) {
740 /* Something changed, must use slow path */
741 spin_lock(&file->f_lock);
742 old = file->f_wb_err;
743 err = errseq_check_and_advance(&mapping->wb_err,
744 &file->f_wb_err);
745 trace_file_check_and_advance_wb_err(file, old);
746 spin_unlock(&file->f_lock);
747 }
748
749 /*
750 * We're mostly using this function as a drop in replacement for
751 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
752 * that the legacy code would have had on these flags.
753 */
754 clear_bit(AS_EIO, &mapping->flags);
755 clear_bit(AS_ENOSPC, &mapping->flags);
756 return err;
757 }
758 EXPORT_SYMBOL(file_check_and_advance_wb_err);
759
760 /**
761 * file_write_and_wait_range - write out & wait on a file range
762 * @file: file pointing to address_space with pages
763 * @lstart: offset in bytes where the range starts
764 * @lend: offset in bytes where the range ends (inclusive)
765 *
766 * Write out and wait upon file offsets lstart->lend, inclusive.
767 *
768 * Note that @lend is inclusive (describes the last byte to be written) so
769 * that this function can be used to write to the very end-of-file (end = -1).
770 *
771 * After writing out and waiting on the data, we check and advance the
772 * f_wb_err cursor to the latest value, and return any errors detected there.
773 *
774 * Return: %0 on success, negative error code otherwise.
775 */
776 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
777 {
778 int err = 0, err2;
779 struct address_space *mapping = file->f_mapping;
780
781 if (mapping_needs_writeback(mapping)) {
782 err = __filemap_fdatawrite_range(mapping, lstart, lend,
783 WB_SYNC_ALL);
784 /* See comment of filemap_write_and_wait() */
785 if (err != -EIO)
786 __filemap_fdatawait_range(mapping, lstart, lend);
787 }
788 err2 = file_check_and_advance_wb_err(file);
789 if (!err)
790 err = err2;
791 return err;
792 }
793 EXPORT_SYMBOL(file_write_and_wait_range);
794
795 /**
796 * replace_page_cache_page - replace a pagecache page with a new one
797 * @old: page to be replaced
798 * @new: page to replace with
799 * @gfp_mask: allocation mode
800 *
801 * This function replaces a page in the pagecache with a new one. On
802 * success it acquires the pagecache reference for the new page and
803 * drops it for the old page. Both the old and new pages must be
804 * locked. This function does not add the new page to the LRU, the
805 * caller must do that.
806 *
807 * The remove + add is atomic. This function cannot fail.
808 *
809 * Return: %0
810 */
811 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
812 {
813 struct address_space *mapping = old->mapping;
814 void (*freepage)(struct page *) = mapping->a_ops->freepage;
815 pgoff_t offset = old->index;
816 XA_STATE(xas, &mapping->i_pages, offset);
817 unsigned long flags;
818
819 VM_BUG_ON_PAGE(!PageLocked(old), old);
820 VM_BUG_ON_PAGE(!PageLocked(new), new);
821 VM_BUG_ON_PAGE(new->mapping, new);
822
823 get_page(new);
824 new->mapping = mapping;
825 new->index = offset;
826
827 xas_lock_irqsave(&xas, flags);
828 xas_store(&xas, new);
829
830 old->mapping = NULL;
831 /* hugetlb pages do not participate in page cache accounting. */
832 if (!PageHuge(old))
833 __dec_node_page_state(new, NR_FILE_PAGES);
834 if (!PageHuge(new))
835 __inc_node_page_state(new, NR_FILE_PAGES);
836 if (PageSwapBacked(old))
837 __dec_node_page_state(new, NR_SHMEM);
838 if (PageSwapBacked(new))
839 __inc_node_page_state(new, NR_SHMEM);
840 xas_unlock_irqrestore(&xas, flags);
841 mem_cgroup_migrate(old, new);
842 if (freepage)
843 freepage(old);
844 put_page(old);
845
846 return 0;
847 }
848 EXPORT_SYMBOL_GPL(replace_page_cache_page);
849
850 noinline int __add_to_page_cache_locked(struct page *page,
851 struct address_space *mapping,
852 pgoff_t offset, gfp_t gfp_mask,
853 void **shadowp)
854 {
855 XA_STATE(xas, &mapping->i_pages, offset);
856 int huge = PageHuge(page);
857 struct mem_cgroup *memcg;
858 int error;
859
860 VM_BUG_ON_PAGE(!PageLocked(page), page);
861 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
862 mapping_set_update(&xas, mapping);
863
864 if (!huge) {
865 error = mem_cgroup_try_charge(page, current->mm,
866 gfp_mask, &memcg, false);
867 if (error)
868 return error;
869 }
870
871 get_page(page);
872 page->mapping = mapping;
873 page->index = offset;
874 gfp_mask &= GFP_RECLAIM_MASK;
875
876 do {
877 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
878 void *entry, *old = NULL;
879
880 if (order > thp_order(page))
881 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
882 order, gfp_mask);
883 xas_lock_irq(&xas);
884 xas_for_each_conflict(&xas, entry) {
885 old = entry;
886 if (!xa_is_value(entry)) {
887 xas_set_err(&xas, -EEXIST);
888 goto unlock;
889 }
890 }
891
892 if (old) {
893 if (shadowp)
894 *shadowp = old;
895 /* entry may have been split before we acquired lock */
896 order = xa_get_order(xas.xa, xas.xa_index);
897 if (order > thp_order(page)) {
898 xas_split(&xas, old, order);
899 xas_reset(&xas);
900 }
901 }
902
903 xas_store(&xas, page);
904 if (xas_error(&xas))
905 goto unlock;
906
907 if (old)
908 mapping->nrexceptional--;
909 mapping->nrpages++;
910
911 /* hugetlb pages do not participate in page cache accounting */
912 if (!huge)
913 __inc_node_page_state(page, NR_FILE_PAGES);
914 unlock:
915 xas_unlock_irq(&xas);
916 } while (xas_nomem(&xas, gfp_mask));
917
918 if (xas_error(&xas))
919 goto error;
920
921 if (!huge)
922 mem_cgroup_commit_charge(page, memcg, false, false);
923 trace_mm_filemap_add_to_page_cache(page);
924 return 0;
925 error:
926 page->mapping = NULL;
927 /* Leave page->index set: truncation relies upon it */
928 if (!huge)
929 mem_cgroup_cancel_charge(page, memcg, false);
930 put_page(page);
931 return xas_error(&xas);
932 }
933 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
934
935 /**
936 * add_to_page_cache_locked - add a locked page to the pagecache
937 * @page: page to add
938 * @mapping: the page's address_space
939 * @offset: page index
940 * @gfp_mask: page allocation mode
941 *
942 * This function is used to add a page to the pagecache. It must be locked.
943 * This function does not add the page to the LRU. The caller must do that.
944 *
945 * Return: %0 on success, negative error code otherwise.
946 */
947 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
948 pgoff_t offset, gfp_t gfp_mask)
949 {
950 return __add_to_page_cache_locked(page, mapping, offset,
951 gfp_mask, NULL);
952 }
953 EXPORT_SYMBOL(add_to_page_cache_locked);
954
955 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
956 pgoff_t offset, gfp_t gfp_mask)
957 {
958 void *shadow = NULL;
959 int ret;
960
961 __SetPageLocked(page);
962 ret = __add_to_page_cache_locked(page, mapping, offset,
963 gfp_mask, &shadow);
964 if (unlikely(ret))
965 __ClearPageLocked(page);
966 else {
967 /*
968 * The page might have been evicted from cache only
969 * recently, in which case it should be activated like
970 * any other repeatedly accessed page.
971 * The exception is pages getting rewritten; evicting other
972 * data from the working set, only to cache data that will
973 * get overwritten with something else, is a waste of memory.
974 */
975 WARN_ON_ONCE(PageActive(page));
976 if (!(gfp_mask & __GFP_WRITE) && shadow)
977 workingset_refault(page, shadow);
978 lru_cache_add(page);
979 }
980 return ret;
981 }
982 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
983
984 #ifdef CONFIG_NUMA
985 struct page *__page_cache_alloc(gfp_t gfp)
986 {
987 int n;
988 struct page *page;
989
990 if (cpuset_do_page_mem_spread()) {
991 unsigned int cpuset_mems_cookie;
992 do {
993 cpuset_mems_cookie = read_mems_allowed_begin();
994 n = cpuset_mem_spread_node();
995 page = __alloc_pages_node(n, gfp, 0);
996 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
997
998 return page;
999 }
1000 return alloc_pages(gfp, 0);
1001 }
1002 EXPORT_SYMBOL(__page_cache_alloc);
1003 #endif
1004
1005 /*
1006 * In order to wait for pages to become available there must be
1007 * waitqueues associated with pages. By using a hash table of
1008 * waitqueues where the bucket discipline is to maintain all
1009 * waiters on the same queue and wake all when any of the pages
1010 * become available, and for the woken contexts to check to be
1011 * sure the appropriate page became available, this saves space
1012 * at a cost of "thundering herd" phenomena during rare hash
1013 * collisions.
1014 */
1015 #define PAGE_WAIT_TABLE_BITS 8
1016 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1017 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1018
1019 static wait_queue_head_t *page_waitqueue(struct page *page)
1020 {
1021 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1022 }
1023
1024 void __init pagecache_init(void)
1025 {
1026 int i;
1027
1028 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1029 init_waitqueue_head(&page_wait_table[i]);
1030
1031 page_writeback_init();
1032 }
1033
1034 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1035 struct wait_page_key {
1036 struct page *page;
1037 int bit_nr;
1038 int page_match;
1039 };
1040
1041 struct wait_page_queue {
1042 struct page *page;
1043 int bit_nr;
1044 wait_queue_entry_t wait;
1045 };
1046
1047 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1048 {
1049 struct wait_page_key *key = arg;
1050 struct wait_page_queue *wait_page
1051 = container_of(wait, struct wait_page_queue, wait);
1052
1053 if (wait_page->page != key->page)
1054 return 0;
1055 key->page_match = 1;
1056
1057 if (wait_page->bit_nr != key->bit_nr)
1058 return 0;
1059
1060 /*
1061 * Stop walking if it's locked.
1062 * Is this safe if put_and_wait_on_page_locked() is in use?
1063 * Yes: the waker must hold a reference to this page, and if PG_locked
1064 * has now already been set by another task, that task must also hold
1065 * a reference to the *same usage* of this page; so there is no need
1066 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1067 */
1068 if (test_bit(key->bit_nr, &key->page->flags))
1069 return -1;
1070
1071 return autoremove_wake_function(wait, mode, sync, key);
1072 }
1073
1074 static void wake_up_page_bit(struct page *page, int bit_nr)
1075 {
1076 wait_queue_head_t *q = page_waitqueue(page);
1077 struct wait_page_key key;
1078 unsigned long flags;
1079 wait_queue_entry_t bookmark;
1080
1081 key.page = page;
1082 key.bit_nr = bit_nr;
1083 key.page_match = 0;
1084
1085 bookmark.flags = 0;
1086 bookmark.private = NULL;
1087 bookmark.func = NULL;
1088 INIT_LIST_HEAD(&bookmark.entry);
1089
1090 spin_lock_irqsave(&q->lock, flags);
1091 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1092
1093 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1094 /*
1095 * Take a breather from holding the lock,
1096 * allow pages that finish wake up asynchronously
1097 * to acquire the lock and remove themselves
1098 * from wait queue
1099 */
1100 spin_unlock_irqrestore(&q->lock, flags);
1101 cpu_relax();
1102 spin_lock_irqsave(&q->lock, flags);
1103 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1104 }
1105
1106 /*
1107 * It is possible for other pages to have collided on the waitqueue
1108 * hash, so in that case check for a page match. That prevents a long-
1109 * term waiter
1110 *
1111 * It is still possible to miss a case here, when we woke page waiters
1112 * and removed them from the waitqueue, but there are still other
1113 * page waiters.
1114 */
1115 if (!waitqueue_active(q) || !key.page_match) {
1116 ClearPageWaiters(page);
1117 /*
1118 * It's possible to miss clearing Waiters here, when we woke
1119 * our page waiters, but the hashed waitqueue has waiters for
1120 * other pages on it.
1121 *
1122 * That's okay, it's a rare case. The next waker will clear it.
1123 */
1124 }
1125 spin_unlock_irqrestore(&q->lock, flags);
1126 }
1127
1128 static void wake_up_page(struct page *page, int bit)
1129 {
1130 if (!PageWaiters(page))
1131 return;
1132 wake_up_page_bit(page, bit);
1133 }
1134
1135 /*
1136 * A choice of three behaviors for wait_on_page_bit_common():
1137 */
1138 enum behavior {
1139 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1140 * __lock_page() waiting on then setting PG_locked.
1141 */
1142 SHARED, /* Hold ref to page and check the bit when woken, like
1143 * wait_on_page_writeback() waiting on PG_writeback.
1144 */
1145 DROP, /* Drop ref to page before wait, no check when woken,
1146 * like put_and_wait_on_page_locked() on PG_locked.
1147 */
1148 };
1149
1150 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1151 struct page *page, int bit_nr, int state, enum behavior behavior)
1152 {
1153 struct wait_page_queue wait_page;
1154 wait_queue_entry_t *wait = &wait_page.wait;
1155 bool bit_is_set;
1156 bool thrashing = false;
1157 bool delayacct = false;
1158 unsigned long pflags;
1159 int ret = 0;
1160
1161 if (bit_nr == PG_locked &&
1162 !PageUptodate(page) && PageWorkingset(page)) {
1163 if (!PageSwapBacked(page)) {
1164 delayacct_thrashing_start();
1165 delayacct = true;
1166 }
1167 psi_memstall_enter(&pflags);
1168 thrashing = true;
1169 }
1170
1171 init_wait(wait);
1172 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1173 wait->func = wake_page_function;
1174 wait_page.page = page;
1175 wait_page.bit_nr = bit_nr;
1176
1177 for (;;) {
1178 spin_lock_irq(&q->lock);
1179
1180 if (likely(list_empty(&wait->entry))) {
1181 __add_wait_queue_entry_tail(q, wait);
1182 SetPageWaiters(page);
1183 }
1184
1185 set_current_state(state);
1186
1187 spin_unlock_irq(&q->lock);
1188
1189 bit_is_set = test_bit(bit_nr, &page->flags);
1190 if (behavior == DROP)
1191 put_page(page);
1192
1193 if (likely(bit_is_set))
1194 io_schedule();
1195
1196 if (behavior == EXCLUSIVE) {
1197 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1198 break;
1199 } else if (behavior == SHARED) {
1200 if (!test_bit(bit_nr, &page->flags))
1201 break;
1202 }
1203
1204 if (signal_pending_state(state, current)) {
1205 ret = -EINTR;
1206 break;
1207 }
1208
1209 if (behavior == DROP) {
1210 /*
1211 * We can no longer safely access page->flags:
1212 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1213 * there is a risk of waiting forever on a page reused
1214 * for something that keeps it locked indefinitely.
1215 * But best check for -EINTR above before breaking.
1216 */
1217 break;
1218 }
1219 }
1220
1221 finish_wait(q, wait);
1222
1223 if (thrashing) {
1224 if (delayacct)
1225 delayacct_thrashing_end();
1226 psi_memstall_leave(&pflags);
1227 }
1228
1229 /*
1230 * A signal could leave PageWaiters set. Clearing it here if
1231 * !waitqueue_active would be possible (by open-coding finish_wait),
1232 * but still fail to catch it in the case of wait hash collision. We
1233 * already can fail to clear wait hash collision cases, so don't
1234 * bother with signals either.
1235 */
1236
1237 return ret;
1238 }
1239
1240 void wait_on_page_bit(struct page *page, int bit_nr)
1241 {
1242 wait_queue_head_t *q = page_waitqueue(page);
1243 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1244 }
1245 EXPORT_SYMBOL(wait_on_page_bit);
1246
1247 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1248 {
1249 wait_queue_head_t *q = page_waitqueue(page);
1250 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1251 }
1252 EXPORT_SYMBOL(wait_on_page_bit_killable);
1253
1254 /**
1255 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1256 * @page: The page to wait for.
1257 *
1258 * The caller should hold a reference on @page. They expect the page to
1259 * become unlocked relatively soon, but do not wish to hold up migration
1260 * (for example) by holding the reference while waiting for the page to
1261 * come unlocked. After this function returns, the caller should not
1262 * dereference @page.
1263 */
1264 void put_and_wait_on_page_locked(struct page *page)
1265 {
1266 wait_queue_head_t *q;
1267
1268 page = compound_head(page);
1269 q = page_waitqueue(page);
1270 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1271 }
1272
1273 /**
1274 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1275 * @page: Page defining the wait queue of interest
1276 * @waiter: Waiter to add to the queue
1277 *
1278 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1279 */
1280 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1281 {
1282 wait_queue_head_t *q = page_waitqueue(page);
1283 unsigned long flags;
1284
1285 spin_lock_irqsave(&q->lock, flags);
1286 __add_wait_queue_entry_tail(q, waiter);
1287 SetPageWaiters(page);
1288 spin_unlock_irqrestore(&q->lock, flags);
1289 }
1290 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1291
1292 #ifndef clear_bit_unlock_is_negative_byte
1293
1294 /*
1295 * PG_waiters is the high bit in the same byte as PG_lock.
1296 *
1297 * On x86 (and on many other architectures), we can clear PG_lock and
1298 * test the sign bit at the same time. But if the architecture does
1299 * not support that special operation, we just do this all by hand
1300 * instead.
1301 *
1302 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1303 * being cleared, but a memory barrier should be unneccssary since it is
1304 * in the same byte as PG_locked.
1305 */
1306 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1307 {
1308 clear_bit_unlock(nr, mem);
1309 /* smp_mb__after_atomic(); */
1310 return test_bit(PG_waiters, mem);
1311 }
1312
1313 #endif
1314
1315 /**
1316 * unlock_page - unlock a locked page
1317 * @page: the page
1318 *
1319 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1320 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1321 * mechanism between PageLocked pages and PageWriteback pages is shared.
1322 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1323 *
1324 * Note that this depends on PG_waiters being the sign bit in the byte
1325 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1326 * clear the PG_locked bit and test PG_waiters at the same time fairly
1327 * portably (architectures that do LL/SC can test any bit, while x86 can
1328 * test the sign bit).
1329 */
1330 void unlock_page(struct page *page)
1331 {
1332 BUILD_BUG_ON(PG_waiters != 7);
1333 page = compound_head(page);
1334 VM_BUG_ON_PAGE(!PageLocked(page), page);
1335 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1336 wake_up_page_bit(page, PG_locked);
1337 }
1338 EXPORT_SYMBOL(unlock_page);
1339
1340 /**
1341 * end_page_writeback - end writeback against a page
1342 * @page: the page
1343 */
1344 void end_page_writeback(struct page *page)
1345 {
1346 /*
1347 * TestClearPageReclaim could be used here but it is an atomic
1348 * operation and overkill in this particular case. Failing to
1349 * shuffle a page marked for immediate reclaim is too mild to
1350 * justify taking an atomic operation penalty at the end of
1351 * ever page writeback.
1352 */
1353 if (PageReclaim(page)) {
1354 ClearPageReclaim(page);
1355 rotate_reclaimable_page(page);
1356 }
1357
1358 if (!test_clear_page_writeback(page))
1359 BUG();
1360
1361 smp_mb__after_atomic();
1362 wake_up_page(page, PG_writeback);
1363 }
1364 EXPORT_SYMBOL(end_page_writeback);
1365
1366 /*
1367 * After completing I/O on a page, call this routine to update the page
1368 * flags appropriately
1369 */
1370 void page_endio(struct page *page, bool is_write, int err)
1371 {
1372 if (!is_write) {
1373 if (!err) {
1374 SetPageUptodate(page);
1375 } else {
1376 ClearPageUptodate(page);
1377 SetPageError(page);
1378 }
1379 unlock_page(page);
1380 } else {
1381 if (err) {
1382 struct address_space *mapping;
1383
1384 SetPageError(page);
1385 mapping = page_mapping(page);
1386 if (mapping)
1387 mapping_set_error(mapping, err);
1388 }
1389 end_page_writeback(page);
1390 }
1391 }
1392 EXPORT_SYMBOL_GPL(page_endio);
1393
1394 /**
1395 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1396 * @__page: the page to lock
1397 */
1398 void __lock_page(struct page *__page)
1399 {
1400 struct page *page = compound_head(__page);
1401 wait_queue_head_t *q = page_waitqueue(page);
1402 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1403 EXCLUSIVE);
1404 }
1405 EXPORT_SYMBOL(__lock_page);
1406
1407 int __lock_page_killable(struct page *__page)
1408 {
1409 struct page *page = compound_head(__page);
1410 wait_queue_head_t *q = page_waitqueue(page);
1411 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1412 EXCLUSIVE);
1413 }
1414 EXPORT_SYMBOL_GPL(__lock_page_killable);
1415
1416 /*
1417 * Return values:
1418 * 1 - page is locked; mmap_sem is still held.
1419 * 0 - page is not locked.
1420 * mmap_sem has been released (up_read()), unless flags had both
1421 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1422 * which case mmap_sem is still held.
1423 *
1424 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1425 * with the page locked and the mmap_sem unperturbed.
1426 */
1427 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1428 unsigned int flags)
1429 {
1430 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1431 /*
1432 * CAUTION! In this case, mmap_sem is not released
1433 * even though return 0.
1434 */
1435 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1436 return 0;
1437
1438 up_read(&mm->mmap_sem);
1439 if (flags & FAULT_FLAG_KILLABLE)
1440 wait_on_page_locked_killable(page);
1441 else
1442 wait_on_page_locked(page);
1443 return 0;
1444 } else {
1445 if (flags & FAULT_FLAG_KILLABLE) {
1446 int ret;
1447
1448 ret = __lock_page_killable(page);
1449 if (ret) {
1450 up_read(&mm->mmap_sem);
1451 return 0;
1452 }
1453 } else
1454 __lock_page(page);
1455 return 1;
1456 }
1457 }
1458
1459 /**
1460 * page_cache_next_miss() - Find the next gap in the page cache.
1461 * @mapping: Mapping.
1462 * @index: Index.
1463 * @max_scan: Maximum range to search.
1464 *
1465 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1466 * gap with the lowest index.
1467 *
1468 * This function may be called under the rcu_read_lock. However, this will
1469 * not atomically search a snapshot of the cache at a single point in time.
1470 * For example, if a gap is created at index 5, then subsequently a gap is
1471 * created at index 10, page_cache_next_miss covering both indices may
1472 * return 10 if called under the rcu_read_lock.
1473 *
1474 * Return: The index of the gap if found, otherwise an index outside the
1475 * range specified (in which case 'return - index >= max_scan' will be true).
1476 * In the rare case of index wrap-around, 0 will be returned.
1477 */
1478 pgoff_t page_cache_next_miss(struct address_space *mapping,
1479 pgoff_t index, unsigned long max_scan)
1480 {
1481 XA_STATE(xas, &mapping->i_pages, index);
1482
1483 while (max_scan--) {
1484 void *entry = xas_next(&xas);
1485 if (!entry || xa_is_value(entry))
1486 break;
1487 if (xas.xa_index == 0)
1488 break;
1489 }
1490
1491 return xas.xa_index;
1492 }
1493 EXPORT_SYMBOL(page_cache_next_miss);
1494
1495 /**
1496 * page_cache_prev_miss() - Find the previous gap in the page cache.
1497 * @mapping: Mapping.
1498 * @index: Index.
1499 * @max_scan: Maximum range to search.
1500 *
1501 * Search the range [max(index - max_scan + 1, 0), index] for the
1502 * gap with the highest index.
1503 *
1504 * This function may be called under the rcu_read_lock. However, this will
1505 * not atomically search a snapshot of the cache at a single point in time.
1506 * For example, if a gap is created at index 10, then subsequently a gap is
1507 * created at index 5, page_cache_prev_miss() covering both indices may
1508 * return 5 if called under the rcu_read_lock.
1509 *
1510 * Return: The index of the gap if found, otherwise an index outside the
1511 * range specified (in which case 'index - return >= max_scan' will be true).
1512 * In the rare case of wrap-around, ULONG_MAX will be returned.
1513 */
1514 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1515 pgoff_t index, unsigned long max_scan)
1516 {
1517 XA_STATE(xas, &mapping->i_pages, index);
1518
1519 while (max_scan--) {
1520 void *entry = xas_prev(&xas);
1521 if (!entry || xa_is_value(entry))
1522 break;
1523 if (xas.xa_index == ULONG_MAX)
1524 break;
1525 }
1526
1527 return xas.xa_index;
1528 }
1529 EXPORT_SYMBOL(page_cache_prev_miss);
1530
1531 /**
1532 * find_get_entry - find and get a page cache entry
1533 * @mapping: the address_space to search
1534 * @offset: the page cache index
1535 *
1536 * Looks up the page cache slot at @mapping & @offset. If there is a
1537 * page cache page, it is returned with an increased refcount.
1538 *
1539 * If the slot holds a shadow entry of a previously evicted page, or a
1540 * swap entry from shmem/tmpfs, it is returned.
1541 *
1542 * Return: the found page or shadow entry, %NULL if nothing is found.
1543 */
1544 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1545 {
1546 XA_STATE(xas, &mapping->i_pages, offset);
1547 struct page *page;
1548
1549 rcu_read_lock();
1550 repeat:
1551 xas_reset(&xas);
1552 page = xas_load(&xas);
1553 if (xas_retry(&xas, page))
1554 goto repeat;
1555 /*
1556 * A shadow entry of a recently evicted page, or a swap entry from
1557 * shmem/tmpfs. Return it without attempting to raise page count.
1558 */
1559 if (!page || xa_is_value(page))
1560 goto out;
1561
1562 if (!page_cache_get_speculative(page))
1563 goto repeat;
1564
1565 /*
1566 * Has the page moved or been split?
1567 * This is part of the lockless pagecache protocol. See
1568 * include/linux/pagemap.h for details.
1569 */
1570 if (unlikely(page != xas_reload(&xas))) {
1571 put_page(page);
1572 goto repeat;
1573 }
1574 page = find_subpage(page, offset);
1575 out:
1576 rcu_read_unlock();
1577
1578 return page;
1579 }
1580 EXPORT_SYMBOL(find_get_entry);
1581
1582 /**
1583 * find_lock_entry - locate, pin and lock a page cache entry
1584 * @mapping: the address_space to search
1585 * @offset: the page cache index
1586 *
1587 * Looks up the page cache slot at @mapping & @offset. If there is a
1588 * page cache page, it is returned locked and with an increased
1589 * refcount.
1590 *
1591 * If the slot holds a shadow entry of a previously evicted page, or a
1592 * swap entry from shmem/tmpfs, it is returned.
1593 *
1594 * find_lock_entry() may sleep.
1595 *
1596 * Return: the found page or shadow entry, %NULL if nothing is found.
1597 */
1598 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1599 {
1600 struct page *page;
1601
1602 repeat:
1603 page = find_get_entry(mapping, offset);
1604 if (page && !xa_is_value(page)) {
1605 lock_page(page);
1606 /* Has the page been truncated? */
1607 if (unlikely(page_mapping(page) != mapping)) {
1608 unlock_page(page);
1609 put_page(page);
1610 goto repeat;
1611 }
1612 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1613 }
1614 return page;
1615 }
1616 EXPORT_SYMBOL(find_lock_entry);
1617
1618 /**
1619 * pagecache_get_page - find and get a page reference
1620 * @mapping: the address_space to search
1621 * @offset: the page index
1622 * @fgp_flags: PCG flags
1623 * @gfp_mask: gfp mask to use for the page cache data page allocation
1624 *
1625 * Looks up the page cache slot at @mapping & @offset.
1626 *
1627 * PCG flags modify how the page is returned.
1628 *
1629 * @fgp_flags can be:
1630 *
1631 * - FGP_ACCESSED: the page will be marked accessed
1632 * - FGP_LOCK: Page is return locked
1633 * - FGP_CREAT: If page is not present then a new page is allocated using
1634 * @gfp_mask and added to the page cache and the VM's LRU
1635 * list. The page is returned locked and with an increased
1636 * refcount.
1637 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1638 * its own locking dance if the page is already in cache, or unlock the page
1639 * before returning if we had to add the page to pagecache.
1640 *
1641 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1642 * if the GFP flags specified for FGP_CREAT are atomic.
1643 *
1644 * If there is a page cache page, it is returned with an increased refcount.
1645 *
1646 * Return: the found page or %NULL otherwise.
1647 */
1648 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1649 int fgp_flags, gfp_t gfp_mask)
1650 {
1651 struct page *page;
1652
1653 repeat:
1654 page = find_get_entry(mapping, offset);
1655 if (xa_is_value(page))
1656 page = NULL;
1657 if (!page)
1658 goto no_page;
1659
1660 if (fgp_flags & FGP_LOCK) {
1661 if (fgp_flags & FGP_NOWAIT) {
1662 if (!trylock_page(page)) {
1663 put_page(page);
1664 return NULL;
1665 }
1666 } else {
1667 lock_page(page);
1668 }
1669
1670 /* Has the page been truncated? */
1671 if (unlikely(compound_head(page)->mapping != mapping)) {
1672 unlock_page(page);
1673 put_page(page);
1674 goto repeat;
1675 }
1676 VM_BUG_ON_PAGE(page->index != offset, page);
1677 }
1678
1679 if (fgp_flags & FGP_ACCESSED)
1680 mark_page_accessed(page);
1681
1682 no_page:
1683 if (!page && (fgp_flags & FGP_CREAT)) {
1684 int err;
1685 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1686 gfp_mask |= __GFP_WRITE;
1687 if (fgp_flags & FGP_NOFS)
1688 gfp_mask &= ~__GFP_FS;
1689
1690 page = __page_cache_alloc(gfp_mask);
1691 if (!page)
1692 return NULL;
1693
1694 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1695 fgp_flags |= FGP_LOCK;
1696
1697 /* Init accessed so avoid atomic mark_page_accessed later */
1698 if (fgp_flags & FGP_ACCESSED)
1699 __SetPageReferenced(page);
1700
1701 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1702 if (unlikely(err)) {
1703 put_page(page);
1704 page = NULL;
1705 if (err == -EEXIST)
1706 goto repeat;
1707 }
1708
1709 /*
1710 * add_to_page_cache_lru locks the page, and for mmap we expect
1711 * an unlocked page.
1712 */
1713 if (page && (fgp_flags & FGP_FOR_MMAP))
1714 unlock_page(page);
1715 }
1716
1717 return page;
1718 }
1719 EXPORT_SYMBOL(pagecache_get_page);
1720
1721 /**
1722 * find_get_entries - gang pagecache lookup
1723 * @mapping: The address_space to search
1724 * @start: The starting page cache index
1725 * @nr_entries: The maximum number of entries
1726 * @entries: Where the resulting entries are placed
1727 * @indices: The cache indices corresponding to the entries in @entries
1728 *
1729 * find_get_entries() will search for and return a group of up to
1730 * @nr_entries entries in the mapping. The entries are placed at
1731 * @entries. find_get_entries() takes a reference against any actual
1732 * pages it returns.
1733 *
1734 * The search returns a group of mapping-contiguous page cache entries
1735 * with ascending indexes. There may be holes in the indices due to
1736 * not-present pages.
1737 *
1738 * Any shadow entries of evicted pages, or swap entries from
1739 * shmem/tmpfs, are included in the returned array.
1740 *
1741 * Return: the number of pages and shadow entries which were found.
1742 */
1743 unsigned find_get_entries(struct address_space *mapping,
1744 pgoff_t start, unsigned int nr_entries,
1745 struct page **entries, pgoff_t *indices)
1746 {
1747 XA_STATE(xas, &mapping->i_pages, start);
1748 struct page *page;
1749 unsigned int ret = 0;
1750
1751 if (!nr_entries)
1752 return 0;
1753
1754 rcu_read_lock();
1755 xas_for_each(&xas, page, ULONG_MAX) {
1756 if (xas_retry(&xas, page))
1757 continue;
1758 /*
1759 * A shadow entry of a recently evicted page, a swap
1760 * entry from shmem/tmpfs or a DAX entry. Return it
1761 * without attempting to raise page count.
1762 */
1763 if (xa_is_value(page))
1764 goto export;
1765
1766 if (!page_cache_get_speculative(page))
1767 goto retry;
1768
1769 /* Has the page moved or been split? */
1770 if (unlikely(page != xas_reload(&xas)))
1771 goto put_page;
1772 page = find_subpage(page, xas.xa_index);
1773
1774 export:
1775 indices[ret] = xas.xa_index;
1776 entries[ret] = page;
1777 if (++ret == nr_entries)
1778 break;
1779 continue;
1780 put_page:
1781 put_page(page);
1782 retry:
1783 xas_reset(&xas);
1784 }
1785 rcu_read_unlock();
1786 return ret;
1787 }
1788
1789 /**
1790 * find_get_pages_range - gang pagecache lookup
1791 * @mapping: The address_space to search
1792 * @start: The starting page index
1793 * @end: The final page index (inclusive)
1794 * @nr_pages: The maximum number of pages
1795 * @pages: Where the resulting pages are placed
1796 *
1797 * find_get_pages_range() will search for and return a group of up to @nr_pages
1798 * pages in the mapping starting at index @start and up to index @end
1799 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1800 * a reference against the returned pages.
1801 *
1802 * The search returns a group of mapping-contiguous pages with ascending
1803 * indexes. There may be holes in the indices due to not-present pages.
1804 * We also update @start to index the next page for the traversal.
1805 *
1806 * Return: the number of pages which were found. If this number is
1807 * smaller than @nr_pages, the end of specified range has been
1808 * reached.
1809 */
1810 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1811 pgoff_t end, unsigned int nr_pages,
1812 struct page **pages)
1813 {
1814 XA_STATE(xas, &mapping->i_pages, *start);
1815 struct page *page;
1816 unsigned ret = 0;
1817
1818 if (unlikely(!nr_pages))
1819 return 0;
1820
1821 rcu_read_lock();
1822 xas_for_each(&xas, page, end) {
1823 if (xas_retry(&xas, page))
1824 continue;
1825 /* Skip over shadow, swap and DAX entries */
1826 if (xa_is_value(page))
1827 continue;
1828
1829 if (!page_cache_get_speculative(page))
1830 goto retry;
1831
1832 /* Has the page moved or been split? */
1833 if (unlikely(page != xas_reload(&xas)))
1834 goto put_page;
1835
1836 pages[ret] = find_subpage(page, xas.xa_index);
1837 if (++ret == nr_pages) {
1838 *start = xas.xa_index + 1;
1839 goto out;
1840 }
1841 continue;
1842 put_page:
1843 put_page(page);
1844 retry:
1845 xas_reset(&xas);
1846 }
1847
1848 /*
1849 * We come here when there is no page beyond @end. We take care to not
1850 * overflow the index @start as it confuses some of the callers. This
1851 * breaks the iteration when there is a page at index -1 but that is
1852 * already broken anyway.
1853 */
1854 if (end == (pgoff_t)-1)
1855 *start = (pgoff_t)-1;
1856 else
1857 *start = end + 1;
1858 out:
1859 rcu_read_unlock();
1860
1861 return ret;
1862 }
1863
1864 /**
1865 * find_get_pages_contig - gang contiguous pagecache lookup
1866 * @mapping: The address_space to search
1867 * @index: The starting page index
1868 * @nr_pages: The maximum number of pages
1869 * @pages: Where the resulting pages are placed
1870 *
1871 * find_get_pages_contig() works exactly like find_get_pages(), except
1872 * that the returned number of pages are guaranteed to be contiguous.
1873 *
1874 * Return: the number of pages which were found.
1875 */
1876 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1877 unsigned int nr_pages, struct page **pages)
1878 {
1879 XA_STATE(xas, &mapping->i_pages, index);
1880 struct page *page;
1881 unsigned int ret = 0;
1882
1883 if (unlikely(!nr_pages))
1884 return 0;
1885
1886 rcu_read_lock();
1887 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1888 if (xas_retry(&xas, page))
1889 continue;
1890 /*
1891 * If the entry has been swapped out, we can stop looking.
1892 * No current caller is looking for DAX entries.
1893 */
1894 if (xa_is_value(page))
1895 break;
1896
1897 if (!page_cache_get_speculative(page))
1898 goto retry;
1899
1900 /* Has the page moved or been split? */
1901 if (unlikely(page != xas_reload(&xas)))
1902 goto put_page;
1903
1904 pages[ret] = find_subpage(page, xas.xa_index);
1905 if (++ret == nr_pages)
1906 break;
1907 continue;
1908 put_page:
1909 put_page(page);
1910 retry:
1911 xas_reset(&xas);
1912 }
1913 rcu_read_unlock();
1914 return ret;
1915 }
1916 EXPORT_SYMBOL(find_get_pages_contig);
1917
1918 /**
1919 * find_get_pages_range_tag - find and return pages in given range matching @tag
1920 * @mapping: the address_space to search
1921 * @index: the starting page index
1922 * @end: The final page index (inclusive)
1923 * @tag: the tag index
1924 * @nr_pages: the maximum number of pages
1925 * @pages: where the resulting pages are placed
1926 *
1927 * Like find_get_pages, except we only return pages which are tagged with
1928 * @tag. We update @index to index the next page for the traversal.
1929 *
1930 * Return: the number of pages which were found.
1931 */
1932 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1933 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1934 struct page **pages)
1935 {
1936 XA_STATE(xas, &mapping->i_pages, *index);
1937 struct page *page;
1938 unsigned ret = 0;
1939
1940 if (unlikely(!nr_pages))
1941 return 0;
1942
1943 rcu_read_lock();
1944 xas_for_each_marked(&xas, page, end, tag) {
1945 if (xas_retry(&xas, page))
1946 continue;
1947 /*
1948 * Shadow entries should never be tagged, but this iteration
1949 * is lockless so there is a window for page reclaim to evict
1950 * a page we saw tagged. Skip over it.
1951 */
1952 if (xa_is_value(page))
1953 continue;
1954
1955 if (!page_cache_get_speculative(page))
1956 goto retry;
1957
1958 /* Has the page moved or been split? */
1959 if (unlikely(page != xas_reload(&xas)))
1960 goto put_page;
1961
1962 pages[ret] = find_subpage(page, xas.xa_index);
1963 if (++ret == nr_pages) {
1964 *index = xas.xa_index + 1;
1965 goto out;
1966 }
1967 continue;
1968 put_page:
1969 put_page(page);
1970 retry:
1971 xas_reset(&xas);
1972 }
1973
1974 /*
1975 * We come here when we got to @end. We take care to not overflow the
1976 * index @index as it confuses some of the callers. This breaks the
1977 * iteration when there is a page at index -1 but that is already
1978 * broken anyway.
1979 */
1980 if (end == (pgoff_t)-1)
1981 *index = (pgoff_t)-1;
1982 else
1983 *index = end + 1;
1984 out:
1985 rcu_read_unlock();
1986
1987 return ret;
1988 }
1989 EXPORT_SYMBOL(find_get_pages_range_tag);
1990
1991 /*
1992 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1993 * a _large_ part of the i/o request. Imagine the worst scenario:
1994 *
1995 * ---R__________________________________________B__________
1996 * ^ reading here ^ bad block(assume 4k)
1997 *
1998 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1999 * => failing the whole request => read(R) => read(R+1) =>
2000 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2001 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2002 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2003 *
2004 * It is going insane. Fix it by quickly scaling down the readahead size.
2005 */
2006 static void shrink_readahead_size_eio(struct file *filp,
2007 struct file_ra_state *ra)
2008 {
2009 ra->ra_pages /= 4;
2010 }
2011
2012 /**
2013 * generic_file_buffered_read - generic file read routine
2014 * @iocb: the iocb to read
2015 * @iter: data destination
2016 * @written: already copied
2017 *
2018 * This is a generic file read routine, and uses the
2019 * mapping->a_ops->readpage() function for the actual low-level stuff.
2020 *
2021 * This is really ugly. But the goto's actually try to clarify some
2022 * of the logic when it comes to error handling etc.
2023 *
2024 * Return:
2025 * * total number of bytes copied, including those the were already @written
2026 * * negative error code if nothing was copied
2027 */
2028 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2029 struct iov_iter *iter, ssize_t written)
2030 {
2031 struct file *filp = iocb->ki_filp;
2032 struct address_space *mapping = filp->f_mapping;
2033 struct inode *inode = mapping->host;
2034 struct file_ra_state *ra = &filp->f_ra;
2035 loff_t *ppos = &iocb->ki_pos;
2036 pgoff_t index;
2037 pgoff_t last_index;
2038 pgoff_t prev_index;
2039 unsigned long offset; /* offset into pagecache page */
2040 unsigned int prev_offset;
2041 int error = 0;
2042
2043 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2044 return 0;
2045 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2046
2047 index = *ppos >> PAGE_SHIFT;
2048 prev_index = ra->prev_pos >> PAGE_SHIFT;
2049 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2050 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2051 offset = *ppos & ~PAGE_MASK;
2052
2053 for (;;) {
2054 struct page *page;
2055 pgoff_t end_index;
2056 loff_t isize;
2057 unsigned long nr, ret;
2058
2059 cond_resched();
2060 find_page:
2061 if (fatal_signal_pending(current)) {
2062 error = -EINTR;
2063 goto out;
2064 }
2065
2066 page = find_get_page(mapping, index);
2067 if (!page) {
2068 if (iocb->ki_flags & IOCB_NOWAIT)
2069 goto would_block;
2070 page_cache_sync_readahead(mapping,
2071 ra, filp,
2072 index, last_index - index);
2073 page = find_get_page(mapping, index);
2074 if (unlikely(page == NULL))
2075 goto no_cached_page;
2076 }
2077 if (PageReadahead(page)) {
2078 page_cache_async_readahead(mapping,
2079 ra, filp, page,
2080 index, last_index - index);
2081 }
2082 if (!PageUptodate(page)) {
2083 if (iocb->ki_flags & IOCB_NOWAIT) {
2084 put_page(page);
2085 goto would_block;
2086 }
2087
2088 /*
2089 * See comment in do_read_cache_page on why
2090 * wait_on_page_locked is used to avoid unnecessarily
2091 * serialisations and why it's safe.
2092 */
2093 error = wait_on_page_locked_killable(page);
2094 if (unlikely(error))
2095 goto readpage_error;
2096 if (PageUptodate(page))
2097 goto page_ok;
2098
2099 if (inode->i_blkbits == PAGE_SHIFT ||
2100 !mapping->a_ops->is_partially_uptodate)
2101 goto page_not_up_to_date;
2102 /* pipes can't handle partially uptodate pages */
2103 if (unlikely(iov_iter_is_pipe(iter)))
2104 goto page_not_up_to_date;
2105 if (!trylock_page(page))
2106 goto page_not_up_to_date;
2107 /* Did it get truncated before we got the lock? */
2108 if (!page->mapping)
2109 goto page_not_up_to_date_locked;
2110 if (!mapping->a_ops->is_partially_uptodate(page,
2111 offset, iter->count))
2112 goto page_not_up_to_date_locked;
2113 unlock_page(page);
2114 }
2115 page_ok:
2116 /*
2117 * i_size must be checked after we know the page is Uptodate.
2118 *
2119 * Checking i_size after the check allows us to calculate
2120 * the correct value for "nr", which means the zero-filled
2121 * part of the page is not copied back to userspace (unless
2122 * another truncate extends the file - this is desired though).
2123 */
2124
2125 isize = i_size_read(inode);
2126 end_index = (isize - 1) >> PAGE_SHIFT;
2127 if (unlikely(!isize || index > end_index)) {
2128 put_page(page);
2129 goto out;
2130 }
2131
2132 /* nr is the maximum number of bytes to copy from this page */
2133 nr = PAGE_SIZE;
2134 if (index == end_index) {
2135 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2136 if (nr <= offset) {
2137 put_page(page);
2138 goto out;
2139 }
2140 }
2141 nr = nr - offset;
2142
2143 /* If users can be writing to this page using arbitrary
2144 * virtual addresses, take care about potential aliasing
2145 * before reading the page on the kernel side.
2146 */
2147 if (mapping_writably_mapped(mapping))
2148 flush_dcache_page(page);
2149
2150 /*
2151 * When a sequential read accesses a page several times,
2152 * only mark it as accessed the first time.
2153 */
2154 if (prev_index != index || offset != prev_offset)
2155 mark_page_accessed(page);
2156 prev_index = index;
2157
2158 /*
2159 * Ok, we have the page, and it's up-to-date, so
2160 * now we can copy it to user space...
2161 */
2162
2163 ret = copy_page_to_iter(page, offset, nr, iter);
2164 offset += ret;
2165 index += offset >> PAGE_SHIFT;
2166 offset &= ~PAGE_MASK;
2167 prev_offset = offset;
2168
2169 put_page(page);
2170 written += ret;
2171 if (!iov_iter_count(iter))
2172 goto out;
2173 if (ret < nr) {
2174 error = -EFAULT;
2175 goto out;
2176 }
2177 continue;
2178
2179 page_not_up_to_date:
2180 /* Get exclusive access to the page ... */
2181 error = lock_page_killable(page);
2182 if (unlikely(error))
2183 goto readpage_error;
2184
2185 page_not_up_to_date_locked:
2186 /* Did it get truncated before we got the lock? */
2187 if (!page->mapping) {
2188 unlock_page(page);
2189 put_page(page);
2190 continue;
2191 }
2192
2193 /* Did somebody else fill it already? */
2194 if (PageUptodate(page)) {
2195 unlock_page(page);
2196 goto page_ok;
2197 }
2198
2199 readpage:
2200 /*
2201 * A previous I/O error may have been due to temporary
2202 * failures, eg. multipath errors.
2203 * PG_error will be set again if readpage fails.
2204 */
2205 ClearPageError(page);
2206 /* Start the actual read. The read will unlock the page. */
2207 error = mapping->a_ops->readpage(filp, page);
2208
2209 if (unlikely(error)) {
2210 if (error == AOP_TRUNCATED_PAGE) {
2211 put_page(page);
2212 error = 0;
2213 goto find_page;
2214 }
2215 goto readpage_error;
2216 }
2217
2218 if (!PageUptodate(page)) {
2219 error = lock_page_killable(page);
2220 if (unlikely(error))
2221 goto readpage_error;
2222 if (!PageUptodate(page)) {
2223 if (page->mapping == NULL) {
2224 /*
2225 * invalidate_mapping_pages got it
2226 */
2227 unlock_page(page);
2228 put_page(page);
2229 goto find_page;
2230 }
2231 unlock_page(page);
2232 shrink_readahead_size_eio(filp, ra);
2233 error = -EIO;
2234 goto readpage_error;
2235 }
2236 unlock_page(page);
2237 }
2238
2239 goto page_ok;
2240
2241 readpage_error:
2242 /* UHHUH! A synchronous read error occurred. Report it */
2243 put_page(page);
2244 goto out;
2245
2246 no_cached_page:
2247 /*
2248 * Ok, it wasn't cached, so we need to create a new
2249 * page..
2250 */
2251 page = page_cache_alloc(mapping);
2252 if (!page) {
2253 error = -ENOMEM;
2254 goto out;
2255 }
2256 error = add_to_page_cache_lru(page, mapping, index,
2257 mapping_gfp_constraint(mapping, GFP_KERNEL));
2258 if (error) {
2259 put_page(page);
2260 if (error == -EEXIST) {
2261 error = 0;
2262 goto find_page;
2263 }
2264 goto out;
2265 }
2266 goto readpage;
2267 }
2268
2269 would_block:
2270 error = -EAGAIN;
2271 out:
2272 ra->prev_pos = prev_index;
2273 ra->prev_pos <<= PAGE_SHIFT;
2274 ra->prev_pos |= prev_offset;
2275
2276 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2277 file_accessed(filp);
2278 return written ? written : error;
2279 }
2280
2281 /**
2282 * generic_file_read_iter - generic filesystem read routine
2283 * @iocb: kernel I/O control block
2284 * @iter: destination for the data read
2285 *
2286 * This is the "read_iter()" routine for all filesystems
2287 * that can use the page cache directly.
2288 * Return:
2289 * * number of bytes copied, even for partial reads
2290 * * negative error code if nothing was read
2291 */
2292 ssize_t
2293 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2294 {
2295 size_t count = iov_iter_count(iter);
2296 ssize_t retval = 0;
2297
2298 if (!count)
2299 goto out; /* skip atime */
2300
2301 if (iocb->ki_flags & IOCB_DIRECT) {
2302 struct file *file = iocb->ki_filp;
2303 struct address_space *mapping = file->f_mapping;
2304 struct inode *inode = mapping->host;
2305 loff_t size;
2306
2307 size = i_size_read(inode);
2308 if (iocb->ki_flags & IOCB_NOWAIT) {
2309 if (filemap_range_has_page(mapping, iocb->ki_pos,
2310 iocb->ki_pos + count - 1))
2311 return -EAGAIN;
2312 } else {
2313 retval = filemap_write_and_wait_range(mapping,
2314 iocb->ki_pos,
2315 iocb->ki_pos + count - 1);
2316 if (retval < 0)
2317 goto out;
2318 }
2319
2320 file_accessed(file);
2321
2322 retval = mapping->a_ops->direct_IO(iocb, iter);
2323 if (retval >= 0) {
2324 iocb->ki_pos += retval;
2325 count -= retval;
2326 }
2327 iov_iter_revert(iter, count - iov_iter_count(iter));
2328
2329 /*
2330 * Btrfs can have a short DIO read if we encounter
2331 * compressed extents, so if there was an error, or if
2332 * we've already read everything we wanted to, or if
2333 * there was a short read because we hit EOF, go ahead
2334 * and return. Otherwise fallthrough to buffered io for
2335 * the rest of the read. Buffered reads will not work for
2336 * DAX files, so don't bother trying.
2337 */
2338 if (retval < 0 || !count || iocb->ki_pos >= size ||
2339 IS_DAX(inode))
2340 goto out;
2341 }
2342
2343 retval = generic_file_buffered_read(iocb, iter, retval);
2344 out:
2345 return retval;
2346 }
2347 EXPORT_SYMBOL(generic_file_read_iter);
2348
2349 #ifdef CONFIG_MMU
2350 #define MMAP_LOTSAMISS (100)
2351 /*
2352 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2353 * @vmf - the vm_fault for this fault.
2354 * @page - the page to lock.
2355 * @fpin - the pointer to the file we may pin (or is already pinned).
2356 *
2357 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2358 * It differs in that it actually returns the page locked if it returns 1 and 0
2359 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2360 * will point to the pinned file and needs to be fput()'ed at a later point.
2361 */
2362 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2363 struct file **fpin)
2364 {
2365 if (trylock_page(page))
2366 return 1;
2367
2368 /*
2369 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2370 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2371 * is supposed to work. We have way too many special cases..
2372 */
2373 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2374 return 0;
2375
2376 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2377 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2378 if (__lock_page_killable(page)) {
2379 /*
2380 * We didn't have the right flags to drop the mmap_sem,
2381 * but all fault_handlers only check for fatal signals
2382 * if we return VM_FAULT_RETRY, so we need to drop the
2383 * mmap_sem here and return 0 if we don't have a fpin.
2384 */
2385 if (*fpin == NULL)
2386 up_read(&vmf->vma->vm_mm->mmap_sem);
2387 return 0;
2388 }
2389 } else
2390 __lock_page(page);
2391 return 1;
2392 }
2393
2394
2395 /*
2396 * Synchronous readahead happens when we don't even find a page in the page
2397 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2398 * to drop the mmap sem we return the file that was pinned in order for us to do
2399 * that. If we didn't pin a file then we return NULL. The file that is
2400 * returned needs to be fput()'ed when we're done with it.
2401 */
2402 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2403 {
2404 struct file *file = vmf->vma->vm_file;
2405 struct file_ra_state *ra = &file->f_ra;
2406 struct address_space *mapping = file->f_mapping;
2407 struct file *fpin = NULL;
2408 pgoff_t offset = vmf->pgoff;
2409
2410 /* If we don't want any read-ahead, don't bother */
2411 if (vmf->vma->vm_flags & VM_RAND_READ)
2412 return fpin;
2413 if (!ra->ra_pages)
2414 return fpin;
2415
2416 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2417 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2418 page_cache_sync_readahead(mapping, ra, file, offset,
2419 ra->ra_pages);
2420 return fpin;
2421 }
2422
2423 /* Avoid banging the cache line if not needed */
2424 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2425 ra->mmap_miss++;
2426
2427 /*
2428 * Do we miss much more than hit in this file? If so,
2429 * stop bothering with read-ahead. It will only hurt.
2430 */
2431 if (ra->mmap_miss > MMAP_LOTSAMISS)
2432 return fpin;
2433
2434 /*
2435 * mmap read-around
2436 */
2437 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2438 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2439 ra->size = ra->ra_pages;
2440 ra->async_size = ra->ra_pages / 4;
2441 ra_submit(ra, mapping, file);
2442 return fpin;
2443 }
2444
2445 /*
2446 * Asynchronous readahead happens when we find the page and PG_readahead,
2447 * so we want to possibly extend the readahead further. We return the file that
2448 * was pinned if we have to drop the mmap_sem in order to do IO.
2449 */
2450 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2451 struct page *page)
2452 {
2453 struct file *file = vmf->vma->vm_file;
2454 struct file_ra_state *ra = &file->f_ra;
2455 struct address_space *mapping = file->f_mapping;
2456 struct file *fpin = NULL;
2457 pgoff_t offset = vmf->pgoff;
2458
2459 /* If we don't want any read-ahead, don't bother */
2460 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2461 return fpin;
2462 if (ra->mmap_miss > 0)
2463 ra->mmap_miss--;
2464 if (PageReadahead(page)) {
2465 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2466 page_cache_async_readahead(mapping, ra, file,
2467 page, offset, ra->ra_pages);
2468 }
2469 return fpin;
2470 }
2471
2472 /**
2473 * filemap_fault - read in file data for page fault handling
2474 * @vmf: struct vm_fault containing details of the fault
2475 *
2476 * filemap_fault() is invoked via the vma operations vector for a
2477 * mapped memory region to read in file data during a page fault.
2478 *
2479 * The goto's are kind of ugly, but this streamlines the normal case of having
2480 * it in the page cache, and handles the special cases reasonably without
2481 * having a lot of duplicated code.
2482 *
2483 * vma->vm_mm->mmap_sem must be held on entry.
2484 *
2485 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2486 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2487 *
2488 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2489 * has not been released.
2490 *
2491 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2492 *
2493 * Return: bitwise-OR of %VM_FAULT_ codes.
2494 */
2495 vm_fault_t filemap_fault(struct vm_fault *vmf)
2496 {
2497 int error;
2498 struct file *file = vmf->vma->vm_file;
2499 struct file *fpin = NULL;
2500 struct address_space *mapping = file->f_mapping;
2501 struct file_ra_state *ra = &file->f_ra;
2502 struct inode *inode = mapping->host;
2503 pgoff_t offset = vmf->pgoff;
2504 pgoff_t max_off;
2505 struct page *page;
2506 vm_fault_t ret = 0;
2507
2508 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2509 if (unlikely(offset >= max_off))
2510 return VM_FAULT_SIGBUS;
2511
2512 /*
2513 * Do we have something in the page cache already?
2514 */
2515 page = find_get_page(mapping, offset);
2516 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2517 /*
2518 * We found the page, so try async readahead before
2519 * waiting for the lock.
2520 */
2521 fpin = do_async_mmap_readahead(vmf, page);
2522 } else if (!page) {
2523 /* No page in the page cache at all */
2524 count_vm_event(PGMAJFAULT);
2525 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2526 ret = VM_FAULT_MAJOR;
2527 fpin = do_sync_mmap_readahead(vmf);
2528 retry_find:
2529 page = pagecache_get_page(mapping, offset,
2530 FGP_CREAT|FGP_FOR_MMAP,
2531 vmf->gfp_mask);
2532 if (!page) {
2533 if (fpin)
2534 goto out_retry;
2535 return vmf_error(-ENOMEM);
2536 }
2537 }
2538
2539 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2540 goto out_retry;
2541
2542 /* Did it get truncated? */
2543 if (unlikely(compound_head(page)->mapping != mapping)) {
2544 unlock_page(page);
2545 put_page(page);
2546 goto retry_find;
2547 }
2548 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2549
2550 /*
2551 * We have a locked page in the page cache, now we need to check
2552 * that it's up-to-date. If not, it is going to be due to an error.
2553 */
2554 if (unlikely(!PageUptodate(page)))
2555 goto page_not_uptodate;
2556
2557 /*
2558 * We've made it this far and we had to drop our mmap_sem, now is the
2559 * time to return to the upper layer and have it re-find the vma and
2560 * redo the fault.
2561 */
2562 if (fpin) {
2563 unlock_page(page);
2564 goto out_retry;
2565 }
2566
2567 /*
2568 * Found the page and have a reference on it.
2569 * We must recheck i_size under page lock.
2570 */
2571 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2572 if (unlikely(offset >= max_off)) {
2573 unlock_page(page);
2574 put_page(page);
2575 return VM_FAULT_SIGBUS;
2576 }
2577
2578 vmf->page = page;
2579 return ret | VM_FAULT_LOCKED;
2580
2581 page_not_uptodate:
2582 /*
2583 * Umm, take care of errors if the page isn't up-to-date.
2584 * Try to re-read it _once_. We do this synchronously,
2585 * because there really aren't any performance issues here
2586 * and we need to check for errors.
2587 */
2588 ClearPageError(page);
2589 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2590 error = mapping->a_ops->readpage(file, page);
2591 if (!error) {
2592 wait_on_page_locked(page);
2593 if (!PageUptodate(page))
2594 error = -EIO;
2595 }
2596 if (fpin)
2597 goto out_retry;
2598 put_page(page);
2599
2600 if (!error || error == AOP_TRUNCATED_PAGE)
2601 goto retry_find;
2602
2603 /* Things didn't work out. Return zero to tell the mm layer so. */
2604 shrink_readahead_size_eio(file, ra);
2605 return VM_FAULT_SIGBUS;
2606
2607 out_retry:
2608 /*
2609 * We dropped the mmap_sem, we need to return to the fault handler to
2610 * re-find the vma and come back and find our hopefully still populated
2611 * page.
2612 */
2613 if (page)
2614 put_page(page);
2615 if (fpin)
2616 fput(fpin);
2617 return ret | VM_FAULT_RETRY;
2618 }
2619 EXPORT_SYMBOL(filemap_fault);
2620
2621 void filemap_map_pages(struct vm_fault *vmf,
2622 pgoff_t start_pgoff, pgoff_t end_pgoff)
2623 {
2624 struct file *file = vmf->vma->vm_file;
2625 struct address_space *mapping = file->f_mapping;
2626 pgoff_t last_pgoff = start_pgoff;
2627 unsigned long max_idx;
2628 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2629 struct page *page;
2630
2631 rcu_read_lock();
2632 xas_for_each(&xas, page, end_pgoff) {
2633 if (xas_retry(&xas, page))
2634 continue;
2635 if (xa_is_value(page))
2636 goto next;
2637
2638 /*
2639 * Check for a locked page first, as a speculative
2640 * reference may adversely influence page migration.
2641 */
2642 if (PageLocked(page))
2643 goto next;
2644 if (!page_cache_get_speculative(page))
2645 goto next;
2646
2647 /* Has the page moved or been split? */
2648 if (unlikely(page != xas_reload(&xas)))
2649 goto skip;
2650 page = find_subpage(page, xas.xa_index);
2651
2652 if (!PageUptodate(page) ||
2653 PageReadahead(page) ||
2654 PageHWPoison(page))
2655 goto skip;
2656 if (!trylock_page(page))
2657 goto skip;
2658
2659 if (page->mapping != mapping || !PageUptodate(page))
2660 goto unlock;
2661
2662 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2663 if (page->index >= max_idx)
2664 goto unlock;
2665
2666 if (file->f_ra.mmap_miss > 0)
2667 file->f_ra.mmap_miss--;
2668
2669 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2670 if (vmf->pte)
2671 vmf->pte += xas.xa_index - last_pgoff;
2672 last_pgoff = xas.xa_index;
2673 if (alloc_set_pte(vmf, NULL, page))
2674 goto unlock;
2675 unlock_page(page);
2676 goto next;
2677 unlock:
2678 unlock_page(page);
2679 skip:
2680 put_page(page);
2681 next:
2682 /* Huge page is mapped? No need to proceed. */
2683 if (pmd_trans_huge(*vmf->pmd))
2684 break;
2685 }
2686 rcu_read_unlock();
2687 }
2688 EXPORT_SYMBOL(filemap_map_pages);
2689
2690 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2691 {
2692 struct page *page = vmf->page;
2693 struct inode *inode = file_inode(vmf->vma->vm_file);
2694 vm_fault_t ret = VM_FAULT_LOCKED;
2695
2696 sb_start_pagefault(inode->i_sb);
2697 vma_file_update_time(vmf->vma);
2698 lock_page(page);
2699 if (page->mapping != inode->i_mapping) {
2700 unlock_page(page);
2701 ret = VM_FAULT_NOPAGE;
2702 goto out;
2703 }
2704 /*
2705 * We mark the page dirty already here so that when freeze is in
2706 * progress, we are guaranteed that writeback during freezing will
2707 * see the dirty page and writeprotect it again.
2708 */
2709 set_page_dirty(page);
2710 wait_for_stable_page(page);
2711 out:
2712 sb_end_pagefault(inode->i_sb);
2713 return ret;
2714 }
2715
2716 const struct vm_operations_struct generic_file_vm_ops = {
2717 .fault = filemap_fault,
2718 .map_pages = filemap_map_pages,
2719 .page_mkwrite = filemap_page_mkwrite,
2720 };
2721
2722 /* This is used for a general mmap of a disk file */
2723
2724 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2725 {
2726 struct address_space *mapping = file->f_mapping;
2727
2728 if (!mapping->a_ops->readpage)
2729 return -ENOEXEC;
2730 file_accessed(file);
2731 vma->vm_ops = &generic_file_vm_ops;
2732 return 0;
2733 }
2734
2735 /*
2736 * This is for filesystems which do not implement ->writepage.
2737 */
2738 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2739 {
2740 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2741 return -EINVAL;
2742 return generic_file_mmap(file, vma);
2743 }
2744 #else
2745 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2746 {
2747 return VM_FAULT_SIGBUS;
2748 }
2749 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2750 {
2751 return -ENOSYS;
2752 }
2753 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2754 {
2755 return -ENOSYS;
2756 }
2757 #endif /* CONFIG_MMU */
2758
2759 EXPORT_SYMBOL(filemap_page_mkwrite);
2760 EXPORT_SYMBOL(generic_file_mmap);
2761 EXPORT_SYMBOL(generic_file_readonly_mmap);
2762
2763 static struct page *wait_on_page_read(struct page *page)
2764 {
2765 if (!IS_ERR(page)) {
2766 wait_on_page_locked(page);
2767 if (!PageUptodate(page)) {
2768 put_page(page);
2769 page = ERR_PTR(-EIO);
2770 }
2771 }
2772 return page;
2773 }
2774
2775 static struct page *do_read_cache_page(struct address_space *mapping,
2776 pgoff_t index,
2777 int (*filler)(void *, struct page *),
2778 void *data,
2779 gfp_t gfp)
2780 {
2781 struct page *page;
2782 int err;
2783 repeat:
2784 page = find_get_page(mapping, index);
2785 if (!page) {
2786 page = __page_cache_alloc(gfp);
2787 if (!page)
2788 return ERR_PTR(-ENOMEM);
2789 err = add_to_page_cache_lru(page, mapping, index, gfp);
2790 if (unlikely(err)) {
2791 put_page(page);
2792 if (err == -EEXIST)
2793 goto repeat;
2794 /* Presumably ENOMEM for xarray node */
2795 return ERR_PTR(err);
2796 }
2797
2798 filler:
2799 if (filler)
2800 err = filler(data, page);
2801 else
2802 err = mapping->a_ops->readpage(data, page);
2803
2804 if (err < 0) {
2805 put_page(page);
2806 return ERR_PTR(err);
2807 }
2808
2809 page = wait_on_page_read(page);
2810 if (IS_ERR(page))
2811 return page;
2812 goto out;
2813 }
2814 if (PageUptodate(page))
2815 goto out;
2816
2817 /*
2818 * Page is not up to date and may be locked due one of the following
2819 * case a: Page is being filled and the page lock is held
2820 * case b: Read/write error clearing the page uptodate status
2821 * case c: Truncation in progress (page locked)
2822 * case d: Reclaim in progress
2823 *
2824 * Case a, the page will be up to date when the page is unlocked.
2825 * There is no need to serialise on the page lock here as the page
2826 * is pinned so the lock gives no additional protection. Even if the
2827 * the page is truncated, the data is still valid if PageUptodate as
2828 * it's a race vs truncate race.
2829 * Case b, the page will not be up to date
2830 * Case c, the page may be truncated but in itself, the data may still
2831 * be valid after IO completes as it's a read vs truncate race. The
2832 * operation must restart if the page is not uptodate on unlock but
2833 * otherwise serialising on page lock to stabilise the mapping gives
2834 * no additional guarantees to the caller as the page lock is
2835 * released before return.
2836 * Case d, similar to truncation. If reclaim holds the page lock, it
2837 * will be a race with remove_mapping that determines if the mapping
2838 * is valid on unlock but otherwise the data is valid and there is
2839 * no need to serialise with page lock.
2840 *
2841 * As the page lock gives no additional guarantee, we optimistically
2842 * wait on the page to be unlocked and check if it's up to date and
2843 * use the page if it is. Otherwise, the page lock is required to
2844 * distinguish between the different cases. The motivation is that we
2845 * avoid spurious serialisations and wakeups when multiple processes
2846 * wait on the same page for IO to complete.
2847 */
2848 wait_on_page_locked(page);
2849 if (PageUptodate(page))
2850 goto out;
2851
2852 /* Distinguish between all the cases under the safety of the lock */
2853 lock_page(page);
2854
2855 /* Case c or d, restart the operation */
2856 if (!page->mapping) {
2857 unlock_page(page);
2858 put_page(page);
2859 goto repeat;
2860 }
2861
2862 /* Someone else locked and filled the page in a very small window */
2863 if (PageUptodate(page)) {
2864 unlock_page(page);
2865 goto out;
2866 }
2867
2868 /*
2869 * A previous I/O error may have been due to temporary
2870 * failures.
2871 * Clear page error before actual read, PG_error will be
2872 * set again if read page fails.
2873 */
2874 ClearPageError(page);
2875 goto filler;
2876
2877 out:
2878 mark_page_accessed(page);
2879 return page;
2880 }
2881
2882 /**
2883 * read_cache_page - read into page cache, fill it if needed
2884 * @mapping: the page's address_space
2885 * @index: the page index
2886 * @filler: function to perform the read
2887 * @data: first arg to filler(data, page) function, often left as NULL
2888 *
2889 * Read into the page cache. If a page already exists, and PageUptodate() is
2890 * not set, try to fill the page and wait for it to become unlocked.
2891 *
2892 * If the page does not get brought uptodate, return -EIO.
2893 *
2894 * Return: up to date page on success, ERR_PTR() on failure.
2895 */
2896 struct page *read_cache_page(struct address_space *mapping,
2897 pgoff_t index,
2898 int (*filler)(void *, struct page *),
2899 void *data)
2900 {
2901 return do_read_cache_page(mapping, index, filler, data,
2902 mapping_gfp_mask(mapping));
2903 }
2904 EXPORT_SYMBOL(read_cache_page);
2905
2906 /**
2907 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2908 * @mapping: the page's address_space
2909 * @index: the page index
2910 * @gfp: the page allocator flags to use if allocating
2911 *
2912 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2913 * any new page allocations done using the specified allocation flags.
2914 *
2915 * If the page does not get brought uptodate, return -EIO.
2916 *
2917 * Return: up to date page on success, ERR_PTR() on failure.
2918 */
2919 struct page *read_cache_page_gfp(struct address_space *mapping,
2920 pgoff_t index,
2921 gfp_t gfp)
2922 {
2923 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2924 }
2925 EXPORT_SYMBOL(read_cache_page_gfp);
2926
2927 /*
2928 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2929 * LFS limits. If pos is under the limit it becomes a short access. If it
2930 * exceeds the limit we return -EFBIG.
2931 */
2932 static int generic_write_check_limits(struct file *file, loff_t pos,
2933 loff_t *count)
2934 {
2935 struct inode *inode = file->f_mapping->host;
2936 loff_t max_size = inode->i_sb->s_maxbytes;
2937 loff_t limit = rlimit(RLIMIT_FSIZE);
2938
2939 if (limit != RLIM_INFINITY) {
2940 if (pos >= limit) {
2941 send_sig(SIGXFSZ, current, 0);
2942 return -EFBIG;
2943 }
2944 *count = min(*count, limit - pos);
2945 }
2946
2947 if (!(file->f_flags & O_LARGEFILE))
2948 max_size = MAX_NON_LFS;
2949
2950 if (unlikely(pos >= max_size))
2951 return -EFBIG;
2952
2953 *count = min(*count, max_size - pos);
2954
2955 return 0;
2956 }
2957
2958 /*
2959 * Performs necessary checks before doing a write
2960 *
2961 * Can adjust writing position or amount of bytes to write.
2962 * Returns appropriate error code that caller should return or
2963 * zero in case that write should be allowed.
2964 */
2965 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2966 {
2967 struct file *file = iocb->ki_filp;
2968 struct inode *inode = file->f_mapping->host;
2969 loff_t count;
2970 int ret;
2971
2972 if (IS_SWAPFILE(inode))
2973 return -ETXTBSY;
2974
2975 if (!iov_iter_count(from))
2976 return 0;
2977
2978 /* FIXME: this is for backwards compatibility with 2.4 */
2979 if (iocb->ki_flags & IOCB_APPEND)
2980 iocb->ki_pos = i_size_read(inode);
2981
2982 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2983 return -EINVAL;
2984
2985 count = iov_iter_count(from);
2986 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2987 if (ret)
2988 return ret;
2989
2990 iov_iter_truncate(from, count);
2991 return iov_iter_count(from);
2992 }
2993 EXPORT_SYMBOL(generic_write_checks);
2994
2995 /*
2996 * Performs necessary checks before doing a clone.
2997 *
2998 * Can adjust amount of bytes to clone via @req_count argument.
2999 * Returns appropriate error code that caller should return or
3000 * zero in case the clone should be allowed.
3001 */
3002 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3003 struct file *file_out, loff_t pos_out,
3004 loff_t *req_count, unsigned int remap_flags)
3005 {
3006 struct inode *inode_in = file_in->f_mapping->host;
3007 struct inode *inode_out = file_out->f_mapping->host;
3008 uint64_t count = *req_count;
3009 uint64_t bcount;
3010 loff_t size_in, size_out;
3011 loff_t bs = inode_out->i_sb->s_blocksize;
3012 int ret;
3013
3014 /* The start of both ranges must be aligned to an fs block. */
3015 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3016 return -EINVAL;
3017
3018 /* Ensure offsets don't wrap. */
3019 if (pos_in + count < pos_in || pos_out + count < pos_out)
3020 return -EINVAL;
3021
3022 size_in = i_size_read(inode_in);
3023 size_out = i_size_read(inode_out);
3024
3025 /* Dedupe requires both ranges to be within EOF. */
3026 if ((remap_flags & REMAP_FILE_DEDUP) &&
3027 (pos_in >= size_in || pos_in + count > size_in ||
3028 pos_out >= size_out || pos_out + count > size_out))
3029 return -EINVAL;
3030
3031 /* Ensure the infile range is within the infile. */
3032 if (pos_in >= size_in)
3033 return -EINVAL;
3034 count = min(count, size_in - (uint64_t)pos_in);
3035
3036 ret = generic_write_check_limits(file_out, pos_out, &count);
3037 if (ret)
3038 return ret;
3039
3040 /*
3041 * If the user wanted us to link to the infile's EOF, round up to the
3042 * next block boundary for this check.
3043 *
3044 * Otherwise, make sure the count is also block-aligned, having
3045 * already confirmed the starting offsets' block alignment.
3046 */
3047 if (pos_in + count == size_in) {
3048 bcount = ALIGN(size_in, bs) - pos_in;
3049 } else {
3050 if (!IS_ALIGNED(count, bs))
3051 count = ALIGN_DOWN(count, bs);
3052 bcount = count;
3053 }
3054
3055 /* Don't allow overlapped cloning within the same file. */
3056 if (inode_in == inode_out &&
3057 pos_out + bcount > pos_in &&
3058 pos_out < pos_in + bcount)
3059 return -EINVAL;
3060
3061 /*
3062 * We shortened the request but the caller can't deal with that, so
3063 * bounce the request back to userspace.
3064 */
3065 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3066 return -EINVAL;
3067
3068 *req_count = count;
3069 return 0;
3070 }
3071
3072
3073 /*
3074 * Performs common checks before doing a file copy/clone
3075 * from @file_in to @file_out.
3076 */
3077 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3078 {
3079 struct inode *inode_in = file_inode(file_in);
3080 struct inode *inode_out = file_inode(file_out);
3081
3082 /* Don't copy dirs, pipes, sockets... */
3083 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3084 return -EISDIR;
3085 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3086 return -EINVAL;
3087
3088 if (!(file_in->f_mode & FMODE_READ) ||
3089 !(file_out->f_mode & FMODE_WRITE) ||
3090 (file_out->f_flags & O_APPEND))
3091 return -EBADF;
3092
3093 return 0;
3094 }
3095
3096 /*
3097 * Performs necessary checks before doing a file copy
3098 *
3099 * Can adjust amount of bytes to copy via @req_count argument.
3100 * Returns appropriate error code that caller should return or
3101 * zero in case the copy should be allowed.
3102 */
3103 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3104 struct file *file_out, loff_t pos_out,
3105 size_t *req_count, unsigned int flags)
3106 {
3107 struct inode *inode_in = file_inode(file_in);
3108 struct inode *inode_out = file_inode(file_out);
3109 uint64_t count = *req_count;
3110 loff_t size_in;
3111 int ret;
3112
3113 ret = generic_file_rw_checks(file_in, file_out);
3114 if (ret)
3115 return ret;
3116
3117 /* Don't touch certain kinds of inodes */
3118 if (IS_IMMUTABLE(inode_out))
3119 return -EPERM;
3120
3121 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3122 return -ETXTBSY;
3123
3124 /* Ensure offsets don't wrap. */
3125 if (pos_in + count < pos_in || pos_out + count < pos_out)
3126 return -EOVERFLOW;
3127
3128 /* Shorten the copy to EOF */
3129 size_in = i_size_read(inode_in);
3130 if (pos_in >= size_in)
3131 count = 0;
3132 else
3133 count = min(count, size_in - (uint64_t)pos_in);
3134
3135 ret = generic_write_check_limits(file_out, pos_out, &count);
3136 if (ret)
3137 return ret;
3138
3139 /* Don't allow overlapped copying within the same file. */
3140 if (inode_in == inode_out &&
3141 pos_out + count > pos_in &&
3142 pos_out < pos_in + count)
3143 return -EINVAL;
3144
3145 *req_count = count;
3146 return 0;
3147 }
3148
3149 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3150 loff_t pos, unsigned len, unsigned flags,
3151 struct page **pagep, void **fsdata)
3152 {
3153 const struct address_space_operations *aops = mapping->a_ops;
3154
3155 return aops->write_begin(file, mapping, pos, len, flags,
3156 pagep, fsdata);
3157 }
3158 EXPORT_SYMBOL(pagecache_write_begin);
3159
3160 int pagecache_write_end(struct file *file, struct address_space *mapping,
3161 loff_t pos, unsigned len, unsigned copied,
3162 struct page *page, void *fsdata)
3163 {
3164 const struct address_space_operations *aops = mapping->a_ops;
3165
3166 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3167 }
3168 EXPORT_SYMBOL(pagecache_write_end);
3169
3170 ssize_t
3171 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3172 {
3173 struct file *file = iocb->ki_filp;
3174 struct address_space *mapping = file->f_mapping;
3175 struct inode *inode = mapping->host;
3176 loff_t pos = iocb->ki_pos;
3177 ssize_t written;
3178 size_t write_len;
3179 pgoff_t end;
3180
3181 write_len = iov_iter_count(from);
3182 end = (pos + write_len - 1) >> PAGE_SHIFT;
3183
3184 if (iocb->ki_flags & IOCB_NOWAIT) {
3185 /* If there are pages to writeback, return */
3186 if (filemap_range_has_page(inode->i_mapping, pos,
3187 pos + write_len - 1))
3188 return -EAGAIN;
3189 } else {
3190 written = filemap_write_and_wait_range(mapping, pos,
3191 pos + write_len - 1);
3192 if (written)
3193 goto out;
3194 }
3195
3196 /*
3197 * After a write we want buffered reads to be sure to go to disk to get
3198 * the new data. We invalidate clean cached page from the region we're
3199 * about to write. We do this *before* the write so that we can return
3200 * without clobbering -EIOCBQUEUED from ->direct_IO().
3201 */
3202 written = invalidate_inode_pages2_range(mapping,
3203 pos >> PAGE_SHIFT, end);
3204 /*
3205 * If a page can not be invalidated, return 0 to fall back
3206 * to buffered write.
3207 */
3208 if (written) {
3209 if (written == -EBUSY)
3210 return 0;
3211 goto out;
3212 }
3213
3214 written = mapping->a_ops->direct_IO(iocb, from);
3215
3216 /*
3217 * Finally, try again to invalidate clean pages which might have been
3218 * cached by non-direct readahead, or faulted in by get_user_pages()
3219 * if the source of the write was an mmap'ed region of the file
3220 * we're writing. Either one is a pretty crazy thing to do,
3221 * so we don't support it 100%. If this invalidation
3222 * fails, tough, the write still worked...
3223 *
3224 * Most of the time we do not need this since dio_complete() will do
3225 * the invalidation for us. However there are some file systems that
3226 * do not end up with dio_complete() being called, so let's not break
3227 * them by removing it completely
3228 */
3229 if (mapping->nrpages)
3230 invalidate_inode_pages2_range(mapping,
3231 pos >> PAGE_SHIFT, end);
3232
3233 if (written > 0) {
3234 pos += written;
3235 write_len -= written;
3236 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3237 i_size_write(inode, pos);
3238 mark_inode_dirty(inode);
3239 }
3240 iocb->ki_pos = pos;
3241 }
3242 iov_iter_revert(from, write_len - iov_iter_count(from));
3243 out:
3244 return written;
3245 }
3246 EXPORT_SYMBOL(generic_file_direct_write);
3247
3248 /*
3249 * Find or create a page at the given pagecache position. Return the locked
3250 * page. This function is specifically for buffered writes.
3251 */
3252 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3253 pgoff_t index, unsigned flags)
3254 {
3255 struct page *page;
3256 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3257
3258 if (flags & AOP_FLAG_NOFS)
3259 fgp_flags |= FGP_NOFS;
3260
3261 page = pagecache_get_page(mapping, index, fgp_flags,
3262 mapping_gfp_mask(mapping));
3263 if (page)
3264 wait_for_stable_page(page);
3265
3266 return page;
3267 }
3268 EXPORT_SYMBOL(grab_cache_page_write_begin);
3269
3270 ssize_t generic_perform_write(struct file *file,
3271 struct iov_iter *i, loff_t pos)
3272 {
3273 struct address_space *mapping = file->f_mapping;
3274 const struct address_space_operations *a_ops = mapping->a_ops;
3275 long status = 0;
3276 ssize_t written = 0;
3277 unsigned int flags = 0;
3278
3279 do {
3280 struct page *page;
3281 unsigned long offset; /* Offset into pagecache page */
3282 unsigned long bytes; /* Bytes to write to page */
3283 size_t copied; /* Bytes copied from user */
3284 void *fsdata;
3285
3286 offset = (pos & (PAGE_SIZE - 1));
3287 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3288 iov_iter_count(i));
3289
3290 again:
3291 /*
3292 * Bring in the user page that we will copy from _first_.
3293 * Otherwise there's a nasty deadlock on copying from the
3294 * same page as we're writing to, without it being marked
3295 * up-to-date.
3296 *
3297 * Not only is this an optimisation, but it is also required
3298 * to check that the address is actually valid, when atomic
3299 * usercopies are used, below.
3300 */
3301 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3302 status = -EFAULT;
3303 break;
3304 }
3305
3306 if (fatal_signal_pending(current)) {
3307 status = -EINTR;
3308 break;
3309 }
3310
3311 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3312 &page, &fsdata);
3313 if (unlikely(status < 0))
3314 break;
3315
3316 if (mapping_writably_mapped(mapping))
3317 flush_dcache_page(page);
3318
3319 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3320 flush_dcache_page(page);
3321
3322 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3323 page, fsdata);
3324 if (unlikely(status < 0))
3325 break;
3326 copied = status;
3327
3328 cond_resched();
3329
3330 iov_iter_advance(i, copied);
3331 if (unlikely(copied == 0)) {
3332 /*
3333 * If we were unable to copy any data at all, we must
3334 * fall back to a single segment length write.
3335 *
3336 * If we didn't fallback here, we could livelock
3337 * because not all segments in the iov can be copied at
3338 * once without a pagefault.
3339 */
3340 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3341 iov_iter_single_seg_count(i));
3342 goto again;
3343 }
3344 pos += copied;
3345 written += copied;
3346
3347 balance_dirty_pages_ratelimited(mapping);
3348 } while (iov_iter_count(i));
3349
3350 return written ? written : status;
3351 }
3352 EXPORT_SYMBOL(generic_perform_write);
3353
3354 /**
3355 * __generic_file_write_iter - write data to a file
3356 * @iocb: IO state structure (file, offset, etc.)
3357 * @from: iov_iter with data to write
3358 *
3359 * This function does all the work needed for actually writing data to a
3360 * file. It does all basic checks, removes SUID from the file, updates
3361 * modification times and calls proper subroutines depending on whether we
3362 * do direct IO or a standard buffered write.
3363 *
3364 * It expects i_mutex to be grabbed unless we work on a block device or similar
3365 * object which does not need locking at all.
3366 *
3367 * This function does *not* take care of syncing data in case of O_SYNC write.
3368 * A caller has to handle it. This is mainly due to the fact that we want to
3369 * avoid syncing under i_mutex.
3370 *
3371 * Return:
3372 * * number of bytes written, even for truncated writes
3373 * * negative error code if no data has been written at all
3374 */
3375 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3376 {
3377 struct file *file = iocb->ki_filp;
3378 struct address_space * mapping = file->f_mapping;
3379 struct inode *inode = mapping->host;
3380 ssize_t written = 0;
3381 ssize_t err;
3382 ssize_t status;
3383
3384 /* We can write back this queue in page reclaim */
3385 current->backing_dev_info = inode_to_bdi(inode);
3386 err = file_remove_privs(file);
3387 if (err)
3388 goto out;
3389
3390 err = file_update_time(file);
3391 if (err)
3392 goto out;
3393
3394 if (iocb->ki_flags & IOCB_DIRECT) {
3395 loff_t pos, endbyte;
3396
3397 written = generic_file_direct_write(iocb, from);
3398 /*
3399 * If the write stopped short of completing, fall back to
3400 * buffered writes. Some filesystems do this for writes to
3401 * holes, for example. For DAX files, a buffered write will
3402 * not succeed (even if it did, DAX does not handle dirty
3403 * page-cache pages correctly).
3404 */
3405 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3406 goto out;
3407
3408 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3409 /*
3410 * If generic_perform_write() returned a synchronous error
3411 * then we want to return the number of bytes which were
3412 * direct-written, or the error code if that was zero. Note
3413 * that this differs from normal direct-io semantics, which
3414 * will return -EFOO even if some bytes were written.
3415 */
3416 if (unlikely(status < 0)) {
3417 err = status;
3418 goto out;
3419 }
3420 /*
3421 * We need to ensure that the page cache pages are written to
3422 * disk and invalidated to preserve the expected O_DIRECT
3423 * semantics.
3424 */
3425 endbyte = pos + status - 1;
3426 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3427 if (err == 0) {
3428 iocb->ki_pos = endbyte + 1;
3429 written += status;
3430 invalidate_mapping_pages(mapping,
3431 pos >> PAGE_SHIFT,
3432 endbyte >> PAGE_SHIFT);
3433 } else {
3434 /*
3435 * We don't know how much we wrote, so just return
3436 * the number of bytes which were direct-written
3437 */
3438 }
3439 } else {
3440 written = generic_perform_write(file, from, iocb->ki_pos);
3441 if (likely(written > 0))
3442 iocb->ki_pos += written;
3443 }
3444 out:
3445 current->backing_dev_info = NULL;
3446 return written ? written : err;
3447 }
3448 EXPORT_SYMBOL(__generic_file_write_iter);
3449
3450 /**
3451 * generic_file_write_iter - write data to a file
3452 * @iocb: IO state structure
3453 * @from: iov_iter with data to write
3454 *
3455 * This is a wrapper around __generic_file_write_iter() to be used by most
3456 * filesystems. It takes care of syncing the file in case of O_SYNC file
3457 * and acquires i_mutex as needed.
3458 * Return:
3459 * * negative error code if no data has been written at all of
3460 * vfs_fsync_range() failed for a synchronous write
3461 * * number of bytes written, even for truncated writes
3462 */
3463 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3464 {
3465 struct file *file = iocb->ki_filp;
3466 struct inode *inode = file->f_mapping->host;
3467 ssize_t ret;
3468
3469 inode_lock(inode);
3470 ret = generic_write_checks(iocb, from);
3471 if (ret > 0)
3472 ret = __generic_file_write_iter(iocb, from);
3473 inode_unlock(inode);
3474
3475 if (ret > 0)
3476 ret = generic_write_sync(iocb, ret);
3477 return ret;
3478 }
3479 EXPORT_SYMBOL(generic_file_write_iter);
3480
3481 /**
3482 * try_to_release_page() - release old fs-specific metadata on a page
3483 *
3484 * @page: the page which the kernel is trying to free
3485 * @gfp_mask: memory allocation flags (and I/O mode)
3486 *
3487 * The address_space is to try to release any data against the page
3488 * (presumably at page->private).
3489 *
3490 * This may also be called if PG_fscache is set on a page, indicating that the
3491 * page is known to the local caching routines.
3492 *
3493 * The @gfp_mask argument specifies whether I/O may be performed to release
3494 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3495 *
3496 * Return: %1 if the release was successful, otherwise return zero.
3497 */
3498 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3499 {
3500 struct address_space * const mapping = page->mapping;
3501
3502 BUG_ON(!PageLocked(page));
3503 if (PageWriteback(page))
3504 return 0;
3505
3506 if (mapping && mapping->a_ops->releasepage)
3507 return mapping->a_ops->releasepage(page, gfp_mask);
3508 return try_to_free_buffers(page);
3509 }
3510
3511 EXPORT_SYMBOL(try_to_release_page);