]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/filemap.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-hirsute-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
37
38 /*
39 * FIXME: remove all knowledge of the buffer layer from the core VM
40 */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42
43 #include <asm/mman.h>
44
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 loff_t offset, unsigned long nr_segs);
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_lock
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * ->i_mutex
84 * ->i_alloc_sem (various)
85 *
86 * ->inode_lock
87 * ->sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
89 *
90 * ->i_mmap_lock
91 * ->anon_vma.lock (vma_adjust)
92 *
93 * ->anon_vma.lock
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 *
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone.lru_lock (follow_page->mark_page_accessed)
101 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
108 * ->task->proc_lock
109 * ->dcache_lock (proc_pid_lookup)
110 */
111
112 /*
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
116 */
117 void __remove_from_page_cache(struct page *page)
118 {
119 struct address_space *mapping = page->mapping;
120
121 mem_cgroup_uncharge_page(page);
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 BUG_ON(page_mapped(page));
127
128 /*
129 * Some filesystems seem to re-dirty the page even after
130 * the VM has canceled the dirty bit (eg ext3 journaling).
131 *
132 * Fix it up by doing a final dirty accounting check after
133 * having removed the page entirely.
134 */
135 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136 dec_zone_page_state(page, NR_FILE_DIRTY);
137 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 }
139 }
140
141 void remove_from_page_cache(struct page *page)
142 {
143 struct address_space *mapping = page->mapping;
144
145 BUG_ON(!PageLocked(page));
146
147 write_lock_irq(&mapping->tree_lock);
148 __remove_from_page_cache(page);
149 write_unlock_irq(&mapping->tree_lock);
150 }
151
152 static int sync_page(void *word)
153 {
154 struct address_space *mapping;
155 struct page *page;
156
157 page = container_of((unsigned long *)word, struct page, flags);
158
159 /*
160 * page_mapping() is being called without PG_locked held.
161 * Some knowledge of the state and use of the page is used to
162 * reduce the requirements down to a memory barrier.
163 * The danger here is of a stale page_mapping() return value
164 * indicating a struct address_space different from the one it's
165 * associated with when it is associated with one.
166 * After smp_mb(), it's either the correct page_mapping() for
167 * the page, or an old page_mapping() and the page's own
168 * page_mapping() has gone NULL.
169 * The ->sync_page() address_space operation must tolerate
170 * page_mapping() going NULL. By an amazing coincidence,
171 * this comes about because none of the users of the page
172 * in the ->sync_page() methods make essential use of the
173 * page_mapping(), merely passing the page down to the backing
174 * device's unplug functions when it's non-NULL, which in turn
175 * ignore it for all cases but swap, where only page_private(page) is
176 * of interest. When page_mapping() does go NULL, the entire
177 * call stack gracefully ignores the page and returns.
178 * -- wli
179 */
180 smp_mb();
181 mapping = page_mapping(page);
182 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183 mapping->a_ops->sync_page(page);
184 io_schedule();
185 return 0;
186 }
187
188 static int sync_page_killable(void *word)
189 {
190 sync_page(word);
191 return fatal_signal_pending(current) ? -EINTR : 0;
192 }
193
194 /**
195 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196 * @mapping: address space structure to write
197 * @start: offset in bytes where the range starts
198 * @end: offset in bytes where the range ends (inclusive)
199 * @sync_mode: enable synchronous operation
200 *
201 * Start writeback against all of a mapping's dirty pages that lie
202 * within the byte offsets <start, end> inclusive.
203 *
204 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205 * opposed to a regular memory cleansing writeback. The difference between
206 * these two operations is that if a dirty page/buffer is encountered, it must
207 * be waited upon, and not just skipped over.
208 */
209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210 loff_t end, int sync_mode)
211 {
212 int ret;
213 struct writeback_control wbc = {
214 .sync_mode = sync_mode,
215 .nr_to_write = mapping->nrpages * 2,
216 .range_start = start,
217 .range_end = end,
218 };
219
220 if (!mapping_cap_writeback_dirty(mapping))
221 return 0;
222
223 ret = do_writepages(mapping, &wbc);
224 return ret;
225 }
226
227 static inline int __filemap_fdatawrite(struct address_space *mapping,
228 int sync_mode)
229 {
230 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 }
232
233 int filemap_fdatawrite(struct address_space *mapping)
234 {
235 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 }
237 EXPORT_SYMBOL(filemap_fdatawrite);
238
239 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 loff_t end)
241 {
242 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243 }
244
245 /**
246 * filemap_flush - mostly a non-blocking flush
247 * @mapping: target address_space
248 *
249 * This is a mostly non-blocking flush. Not suitable for data-integrity
250 * purposes - I/O may not be started against all dirty pages.
251 */
252 int filemap_flush(struct address_space *mapping)
253 {
254 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 }
256 EXPORT_SYMBOL(filemap_flush);
257
258 /**
259 * wait_on_page_writeback_range - wait for writeback to complete
260 * @mapping: target address_space
261 * @start: beginning page index
262 * @end: ending page index
263 *
264 * Wait for writeback to complete against pages indexed by start->end
265 * inclusive
266 */
267 int wait_on_page_writeback_range(struct address_space *mapping,
268 pgoff_t start, pgoff_t end)
269 {
270 struct pagevec pvec;
271 int nr_pages;
272 int ret = 0;
273 pgoff_t index;
274
275 if (end < start)
276 return 0;
277
278 pagevec_init(&pvec, 0);
279 index = start;
280 while ((index <= end) &&
281 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 PAGECACHE_TAG_WRITEBACK,
283 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 unsigned i;
285
286 for (i = 0; i < nr_pages; i++) {
287 struct page *page = pvec.pages[i];
288
289 /* until radix tree lookup accepts end_index */
290 if (page->index > end)
291 continue;
292
293 wait_on_page_writeback(page);
294 if (PageError(page))
295 ret = -EIO;
296 }
297 pagevec_release(&pvec);
298 cond_resched();
299 }
300
301 /* Check for outstanding write errors */
302 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 ret = -ENOSPC;
304 if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 ret = -EIO;
306
307 return ret;
308 }
309
310 /**
311 * sync_page_range - write and wait on all pages in the passed range
312 * @inode: target inode
313 * @mapping: target address_space
314 * @pos: beginning offset in pages to write
315 * @count: number of bytes to write
316 *
317 * Write and wait upon all the pages in the passed range. This is a "data
318 * integrity" operation. It waits upon in-flight writeout before starting and
319 * waiting upon new writeout. If there was an IO error, return it.
320 *
321 * We need to re-take i_mutex during the generic_osync_inode list walk because
322 * it is otherwise livelockable.
323 */
324 int sync_page_range(struct inode *inode, struct address_space *mapping,
325 loff_t pos, loff_t count)
326 {
327 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
328 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
329 int ret;
330
331 if (!mapping_cap_writeback_dirty(mapping) || !count)
332 return 0;
333 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334 if (ret == 0) {
335 mutex_lock(&inode->i_mutex);
336 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
337 mutex_unlock(&inode->i_mutex);
338 }
339 if (ret == 0)
340 ret = wait_on_page_writeback_range(mapping, start, end);
341 return ret;
342 }
343 EXPORT_SYMBOL(sync_page_range);
344
345 /**
346 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
347 * @inode: target inode
348 * @mapping: target address_space
349 * @pos: beginning offset in pages to write
350 * @count: number of bytes to write
351 *
352 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353 * as it forces O_SYNC writers to different parts of the same file
354 * to be serialised right until io completion.
355 */
356 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
357 loff_t pos, loff_t count)
358 {
359 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
360 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
361 int ret;
362
363 if (!mapping_cap_writeback_dirty(mapping) || !count)
364 return 0;
365 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366 if (ret == 0)
367 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368 if (ret == 0)
369 ret = wait_on_page_writeback_range(mapping, start, end);
370 return ret;
371 }
372 EXPORT_SYMBOL(sync_page_range_nolock);
373
374 /**
375 * filemap_fdatawait - wait for all under-writeback pages to complete
376 * @mapping: address space structure to wait for
377 *
378 * Walk the list of under-writeback pages of the given address space
379 * and wait for all of them.
380 */
381 int filemap_fdatawait(struct address_space *mapping)
382 {
383 loff_t i_size = i_size_read(mapping->host);
384
385 if (i_size == 0)
386 return 0;
387
388 return wait_on_page_writeback_range(mapping, 0,
389 (i_size - 1) >> PAGE_CACHE_SHIFT);
390 }
391 EXPORT_SYMBOL(filemap_fdatawait);
392
393 int filemap_write_and_wait(struct address_space *mapping)
394 {
395 int err = 0;
396
397 if (mapping->nrpages) {
398 err = filemap_fdatawrite(mapping);
399 /*
400 * Even if the above returned error, the pages may be
401 * written partially (e.g. -ENOSPC), so we wait for it.
402 * But the -EIO is special case, it may indicate the worst
403 * thing (e.g. bug) happened, so we avoid waiting for it.
404 */
405 if (err != -EIO) {
406 int err2 = filemap_fdatawait(mapping);
407 if (!err)
408 err = err2;
409 }
410 }
411 return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414
415 /**
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
420 *
421 * Write out and wait upon file offsets lstart->lend, inclusive.
422 *
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
425 */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 loff_t lstart, loff_t lend)
428 {
429 int err = 0;
430
431 if (mapping->nrpages) {
432 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 WB_SYNC_ALL);
434 /* See comment of filemap_write_and_wait() */
435 if (err != -EIO) {
436 int err2 = wait_on_page_writeback_range(mapping,
437 lstart >> PAGE_CACHE_SHIFT,
438 lend >> PAGE_CACHE_SHIFT);
439 if (!err)
440 err = err2;
441 }
442 }
443 return err;
444 }
445
446 /**
447 * add_to_page_cache - add newly allocated pagecache pages
448 * @page: page to add
449 * @mapping: the page's address_space
450 * @offset: page index
451 * @gfp_mask: page allocation mode
452 *
453 * This function is used to add newly allocated pagecache pages;
454 * the page is new, so we can just run SetPageLocked() against it.
455 * The other page state flags were set by rmqueue().
456 *
457 * This function does not add the page to the LRU. The caller must do that.
458 */
459 int add_to_page_cache(struct page *page, struct address_space *mapping,
460 pgoff_t offset, gfp_t gfp_mask)
461 {
462 int error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & ~__GFP_HIGHMEM);
464 if (error)
465 goto out;
466
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 write_lock_irq(&mapping->tree_lock);
470 error = radix_tree_insert(&mapping->page_tree, offset, page);
471 if (!error) {
472 page_cache_get(page);
473 SetPageLocked(page);
474 page->mapping = mapping;
475 page->index = offset;
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else
479 mem_cgroup_uncharge_page(page);
480
481 write_unlock_irq(&mapping->tree_lock);
482 radix_tree_preload_end();
483 } else
484 mem_cgroup_uncharge_page(page);
485 out:
486 return error;
487 }
488 EXPORT_SYMBOL(add_to_page_cache);
489
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491 pgoff_t offset, gfp_t gfp_mask)
492 {
493 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
494 if (ret == 0)
495 lru_cache_add(page);
496 return ret;
497 }
498
499 #ifdef CONFIG_NUMA
500 struct page *__page_cache_alloc(gfp_t gfp)
501 {
502 if (cpuset_do_page_mem_spread()) {
503 int n = cpuset_mem_spread_node();
504 return alloc_pages_node(n, gfp, 0);
505 }
506 return alloc_pages(gfp, 0);
507 }
508 EXPORT_SYMBOL(__page_cache_alloc);
509 #endif
510
511 static int __sleep_on_page_lock(void *word)
512 {
513 io_schedule();
514 return 0;
515 }
516
517 /*
518 * In order to wait for pages to become available there must be
519 * waitqueues associated with pages. By using a hash table of
520 * waitqueues where the bucket discipline is to maintain all
521 * waiters on the same queue and wake all when any of the pages
522 * become available, and for the woken contexts to check to be
523 * sure the appropriate page became available, this saves space
524 * at a cost of "thundering herd" phenomena during rare hash
525 * collisions.
526 */
527 static wait_queue_head_t *page_waitqueue(struct page *page)
528 {
529 const struct zone *zone = page_zone(page);
530
531 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
532 }
533
534 static inline void wake_up_page(struct page *page, int bit)
535 {
536 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
537 }
538
539 void wait_on_page_bit(struct page *page, int bit_nr)
540 {
541 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
542
543 if (test_bit(bit_nr, &page->flags))
544 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
545 TASK_UNINTERRUPTIBLE);
546 }
547 EXPORT_SYMBOL(wait_on_page_bit);
548
549 /**
550 * unlock_page - unlock a locked page
551 * @page: the page
552 *
553 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555 * mechananism between PageLocked pages and PageWriteback pages is shared.
556 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
557 *
558 * The first mb is necessary to safely close the critical section opened by the
559 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561 * parallel wait_on_page_locked()).
562 */
563 void unlock_page(struct page *page)
564 {
565 smp_mb__before_clear_bit();
566 if (!TestClearPageLocked(page))
567 BUG();
568 smp_mb__after_clear_bit();
569 wake_up_page(page, PG_locked);
570 }
571 EXPORT_SYMBOL(unlock_page);
572
573 /**
574 * end_page_writeback - end writeback against a page
575 * @page: the page
576 */
577 void end_page_writeback(struct page *page)
578 {
579 if (TestClearPageReclaim(page))
580 rotate_reclaimable_page(page);
581
582 if (!test_clear_page_writeback(page))
583 BUG();
584
585 smp_mb__after_clear_bit();
586 wake_up_page(page, PG_writeback);
587 }
588 EXPORT_SYMBOL(end_page_writeback);
589
590 /**
591 * __lock_page - get a lock on the page, assuming we need to sleep to get it
592 * @page: the page to lock
593 *
594 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
595 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
596 * chances are that on the second loop, the block layer's plug list is empty,
597 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
598 */
599 void __lock_page(struct page *page)
600 {
601 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
602
603 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
604 TASK_UNINTERRUPTIBLE);
605 }
606 EXPORT_SYMBOL(__lock_page);
607
608 int __lock_page_killable(struct page *page)
609 {
610 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611
612 return __wait_on_bit_lock(page_waitqueue(page), &wait,
613 sync_page_killable, TASK_KILLABLE);
614 }
615
616 /**
617 * __lock_page_nosync - get a lock on the page, without calling sync_page()
618 * @page: the page to lock
619 *
620 * Variant of lock_page that does not require the caller to hold a reference
621 * on the page's mapping.
622 */
623 void __lock_page_nosync(struct page *page)
624 {
625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
627 TASK_UNINTERRUPTIBLE);
628 }
629
630 /**
631 * find_get_page - find and get a page reference
632 * @mapping: the address_space to search
633 * @offset: the page index
634 *
635 * Is there a pagecache struct page at the given (mapping, offset) tuple?
636 * If yes, increment its refcount and return it; if no, return NULL.
637 */
638 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
639 {
640 struct page *page;
641
642 read_lock_irq(&mapping->tree_lock);
643 page = radix_tree_lookup(&mapping->page_tree, offset);
644 if (page)
645 page_cache_get(page);
646 read_unlock_irq(&mapping->tree_lock);
647 return page;
648 }
649 EXPORT_SYMBOL(find_get_page);
650
651 /**
652 * find_lock_page - locate, pin and lock a pagecache page
653 * @mapping: the address_space to search
654 * @offset: the page index
655 *
656 * Locates the desired pagecache page, locks it, increments its reference
657 * count and returns its address.
658 *
659 * Returns zero if the page was not present. find_lock_page() may sleep.
660 */
661 struct page *find_lock_page(struct address_space *mapping,
662 pgoff_t offset)
663 {
664 struct page *page;
665
666 repeat:
667 read_lock_irq(&mapping->tree_lock);
668 page = radix_tree_lookup(&mapping->page_tree, offset);
669 if (page) {
670 page_cache_get(page);
671 if (TestSetPageLocked(page)) {
672 read_unlock_irq(&mapping->tree_lock);
673 __lock_page(page);
674
675 /* Has the page been truncated while we slept? */
676 if (unlikely(page->mapping != mapping)) {
677 unlock_page(page);
678 page_cache_release(page);
679 goto repeat;
680 }
681 VM_BUG_ON(page->index != offset);
682 goto out;
683 }
684 }
685 read_unlock_irq(&mapping->tree_lock);
686 out:
687 return page;
688 }
689 EXPORT_SYMBOL(find_lock_page);
690
691 /**
692 * find_or_create_page - locate or add a pagecache page
693 * @mapping: the page's address_space
694 * @index: the page's index into the mapping
695 * @gfp_mask: page allocation mode
696 *
697 * Locates a page in the pagecache. If the page is not present, a new page
698 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
699 * LRU list. The returned page is locked and has its reference count
700 * incremented.
701 *
702 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
703 * allocation!
704 *
705 * find_or_create_page() returns the desired page's address, or zero on
706 * memory exhaustion.
707 */
708 struct page *find_or_create_page(struct address_space *mapping,
709 pgoff_t index, gfp_t gfp_mask)
710 {
711 struct page *page;
712 int err;
713 repeat:
714 page = find_lock_page(mapping, index);
715 if (!page) {
716 page = __page_cache_alloc(gfp_mask);
717 if (!page)
718 return NULL;
719 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
720 if (unlikely(err)) {
721 page_cache_release(page);
722 page = NULL;
723 if (err == -EEXIST)
724 goto repeat;
725 }
726 }
727 return page;
728 }
729 EXPORT_SYMBOL(find_or_create_page);
730
731 /**
732 * find_get_pages - gang pagecache lookup
733 * @mapping: The address_space to search
734 * @start: The starting page index
735 * @nr_pages: The maximum number of pages
736 * @pages: Where the resulting pages are placed
737 *
738 * find_get_pages() will search for and return a group of up to
739 * @nr_pages pages in the mapping. The pages are placed at @pages.
740 * find_get_pages() takes a reference against the returned pages.
741 *
742 * The search returns a group of mapping-contiguous pages with ascending
743 * indexes. There may be holes in the indices due to not-present pages.
744 *
745 * find_get_pages() returns the number of pages which were found.
746 */
747 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
748 unsigned int nr_pages, struct page **pages)
749 {
750 unsigned int i;
751 unsigned int ret;
752
753 read_lock_irq(&mapping->tree_lock);
754 ret = radix_tree_gang_lookup(&mapping->page_tree,
755 (void **)pages, start, nr_pages);
756 for (i = 0; i < ret; i++)
757 page_cache_get(pages[i]);
758 read_unlock_irq(&mapping->tree_lock);
759 return ret;
760 }
761
762 /**
763 * find_get_pages_contig - gang contiguous pagecache lookup
764 * @mapping: The address_space to search
765 * @index: The starting page index
766 * @nr_pages: The maximum number of pages
767 * @pages: Where the resulting pages are placed
768 *
769 * find_get_pages_contig() works exactly like find_get_pages(), except
770 * that the returned number of pages are guaranteed to be contiguous.
771 *
772 * find_get_pages_contig() returns the number of pages which were found.
773 */
774 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
775 unsigned int nr_pages, struct page **pages)
776 {
777 unsigned int i;
778 unsigned int ret;
779
780 read_lock_irq(&mapping->tree_lock);
781 ret = radix_tree_gang_lookup(&mapping->page_tree,
782 (void **)pages, index, nr_pages);
783 for (i = 0; i < ret; i++) {
784 if (pages[i]->mapping == NULL || pages[i]->index != index)
785 break;
786
787 page_cache_get(pages[i]);
788 index++;
789 }
790 read_unlock_irq(&mapping->tree_lock);
791 return i;
792 }
793 EXPORT_SYMBOL(find_get_pages_contig);
794
795 /**
796 * find_get_pages_tag - find and return pages that match @tag
797 * @mapping: the address_space to search
798 * @index: the starting page index
799 * @tag: the tag index
800 * @nr_pages: the maximum number of pages
801 * @pages: where the resulting pages are placed
802 *
803 * Like find_get_pages, except we only return pages which are tagged with
804 * @tag. We update @index to index the next page for the traversal.
805 */
806 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
807 int tag, unsigned int nr_pages, struct page **pages)
808 {
809 unsigned int i;
810 unsigned int ret;
811
812 read_lock_irq(&mapping->tree_lock);
813 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
814 (void **)pages, *index, nr_pages, tag);
815 for (i = 0; i < ret; i++)
816 page_cache_get(pages[i]);
817 if (ret)
818 *index = pages[ret - 1]->index + 1;
819 read_unlock_irq(&mapping->tree_lock);
820 return ret;
821 }
822 EXPORT_SYMBOL(find_get_pages_tag);
823
824 /**
825 * grab_cache_page_nowait - returns locked page at given index in given cache
826 * @mapping: target address_space
827 * @index: the page index
828 *
829 * Same as grab_cache_page(), but do not wait if the page is unavailable.
830 * This is intended for speculative data generators, where the data can
831 * be regenerated if the page couldn't be grabbed. This routine should
832 * be safe to call while holding the lock for another page.
833 *
834 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
835 * and deadlock against the caller's locked page.
836 */
837 struct page *
838 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
839 {
840 struct page *page = find_get_page(mapping, index);
841
842 if (page) {
843 if (!TestSetPageLocked(page))
844 return page;
845 page_cache_release(page);
846 return NULL;
847 }
848 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
849 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
850 page_cache_release(page);
851 page = NULL;
852 }
853 return page;
854 }
855 EXPORT_SYMBOL(grab_cache_page_nowait);
856
857 /*
858 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
859 * a _large_ part of the i/o request. Imagine the worst scenario:
860 *
861 * ---R__________________________________________B__________
862 * ^ reading here ^ bad block(assume 4k)
863 *
864 * read(R) => miss => readahead(R...B) => media error => frustrating retries
865 * => failing the whole request => read(R) => read(R+1) =>
866 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
867 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
868 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
869 *
870 * It is going insane. Fix it by quickly scaling down the readahead size.
871 */
872 static void shrink_readahead_size_eio(struct file *filp,
873 struct file_ra_state *ra)
874 {
875 if (!ra->ra_pages)
876 return;
877
878 ra->ra_pages /= 4;
879 }
880
881 /**
882 * do_generic_file_read - generic file read routine
883 * @filp: the file to read
884 * @ppos: current file position
885 * @desc: read_descriptor
886 * @actor: read method
887 *
888 * This is a generic file read routine, and uses the
889 * mapping->a_ops->readpage() function for the actual low-level stuff.
890 *
891 * This is really ugly. But the goto's actually try to clarify some
892 * of the logic when it comes to error handling etc.
893 */
894 static void do_generic_file_read(struct file *filp, loff_t *ppos,
895 read_descriptor_t *desc, read_actor_t actor)
896 {
897 struct address_space *mapping = filp->f_mapping;
898 struct inode *inode = mapping->host;
899 struct file_ra_state *ra = &filp->f_ra;
900 pgoff_t index;
901 pgoff_t last_index;
902 pgoff_t prev_index;
903 unsigned long offset; /* offset into pagecache page */
904 unsigned int prev_offset;
905 int error;
906
907 index = *ppos >> PAGE_CACHE_SHIFT;
908 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
909 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
910 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
911 offset = *ppos & ~PAGE_CACHE_MASK;
912
913 for (;;) {
914 struct page *page;
915 pgoff_t end_index;
916 loff_t isize;
917 unsigned long nr, ret;
918
919 cond_resched();
920 find_page:
921 page = find_get_page(mapping, index);
922 if (!page) {
923 page_cache_sync_readahead(mapping,
924 ra, filp,
925 index, last_index - index);
926 page = find_get_page(mapping, index);
927 if (unlikely(page == NULL))
928 goto no_cached_page;
929 }
930 if (PageReadahead(page)) {
931 page_cache_async_readahead(mapping,
932 ra, filp, page,
933 index, last_index - index);
934 }
935 if (!PageUptodate(page))
936 goto page_not_up_to_date;
937 page_ok:
938 /*
939 * i_size must be checked after we know the page is Uptodate.
940 *
941 * Checking i_size after the check allows us to calculate
942 * the correct value for "nr", which means the zero-filled
943 * part of the page is not copied back to userspace (unless
944 * another truncate extends the file - this is desired though).
945 */
946
947 isize = i_size_read(inode);
948 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
949 if (unlikely(!isize || index > end_index)) {
950 page_cache_release(page);
951 goto out;
952 }
953
954 /* nr is the maximum number of bytes to copy from this page */
955 nr = PAGE_CACHE_SIZE;
956 if (index == end_index) {
957 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
958 if (nr <= offset) {
959 page_cache_release(page);
960 goto out;
961 }
962 }
963 nr = nr - offset;
964
965 /* If users can be writing to this page using arbitrary
966 * virtual addresses, take care about potential aliasing
967 * before reading the page on the kernel side.
968 */
969 if (mapping_writably_mapped(mapping))
970 flush_dcache_page(page);
971
972 /*
973 * When a sequential read accesses a page several times,
974 * only mark it as accessed the first time.
975 */
976 if (prev_index != index || offset != prev_offset)
977 mark_page_accessed(page);
978 prev_index = index;
979
980 /*
981 * Ok, we have the page, and it's up-to-date, so
982 * now we can copy it to user space...
983 *
984 * The actor routine returns how many bytes were actually used..
985 * NOTE! This may not be the same as how much of a user buffer
986 * we filled up (we may be padding etc), so we can only update
987 * "pos" here (the actor routine has to update the user buffer
988 * pointers and the remaining count).
989 */
990 ret = actor(desc, page, offset, nr);
991 offset += ret;
992 index += offset >> PAGE_CACHE_SHIFT;
993 offset &= ~PAGE_CACHE_MASK;
994 prev_offset = offset;
995
996 page_cache_release(page);
997 if (ret == nr && desc->count)
998 continue;
999 goto out;
1000
1001 page_not_up_to_date:
1002 /* Get exclusive access to the page ... */
1003 if (lock_page_killable(page))
1004 goto readpage_eio;
1005
1006 /* Did it get truncated before we got the lock? */
1007 if (!page->mapping) {
1008 unlock_page(page);
1009 page_cache_release(page);
1010 continue;
1011 }
1012
1013 /* Did somebody else fill it already? */
1014 if (PageUptodate(page)) {
1015 unlock_page(page);
1016 goto page_ok;
1017 }
1018
1019 readpage:
1020 /* Start the actual read. The read will unlock the page. */
1021 error = mapping->a_ops->readpage(filp, page);
1022
1023 if (unlikely(error)) {
1024 if (error == AOP_TRUNCATED_PAGE) {
1025 page_cache_release(page);
1026 goto find_page;
1027 }
1028 goto readpage_error;
1029 }
1030
1031 if (!PageUptodate(page)) {
1032 if (lock_page_killable(page))
1033 goto readpage_eio;
1034 if (!PageUptodate(page)) {
1035 if (page->mapping == NULL) {
1036 /*
1037 * invalidate_inode_pages got it
1038 */
1039 unlock_page(page);
1040 page_cache_release(page);
1041 goto find_page;
1042 }
1043 unlock_page(page);
1044 shrink_readahead_size_eio(filp, ra);
1045 goto readpage_eio;
1046 }
1047 unlock_page(page);
1048 }
1049
1050 goto page_ok;
1051
1052 readpage_eio:
1053 error = -EIO;
1054 readpage_error:
1055 /* UHHUH! A synchronous read error occurred. Report it */
1056 desc->error = error;
1057 page_cache_release(page);
1058 goto out;
1059
1060 no_cached_page:
1061 /*
1062 * Ok, it wasn't cached, so we need to create a new
1063 * page..
1064 */
1065 page = page_cache_alloc_cold(mapping);
1066 if (!page) {
1067 desc->error = -ENOMEM;
1068 goto out;
1069 }
1070 error = add_to_page_cache_lru(page, mapping,
1071 index, GFP_KERNEL);
1072 if (error) {
1073 page_cache_release(page);
1074 if (error == -EEXIST)
1075 goto find_page;
1076 desc->error = error;
1077 goto out;
1078 }
1079 goto readpage;
1080 }
1081
1082 out:
1083 ra->prev_pos = prev_index;
1084 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1085 ra->prev_pos |= prev_offset;
1086
1087 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1088 if (filp)
1089 file_accessed(filp);
1090 }
1091
1092 int file_read_actor(read_descriptor_t *desc, struct page *page,
1093 unsigned long offset, unsigned long size)
1094 {
1095 char *kaddr;
1096 unsigned long left, count = desc->count;
1097
1098 if (size > count)
1099 size = count;
1100
1101 /*
1102 * Faults on the destination of a read are common, so do it before
1103 * taking the kmap.
1104 */
1105 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1106 kaddr = kmap_atomic(page, KM_USER0);
1107 left = __copy_to_user_inatomic(desc->arg.buf,
1108 kaddr + offset, size);
1109 kunmap_atomic(kaddr, KM_USER0);
1110 if (left == 0)
1111 goto success;
1112 }
1113
1114 /* Do it the slow way */
1115 kaddr = kmap(page);
1116 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1117 kunmap(page);
1118
1119 if (left) {
1120 size -= left;
1121 desc->error = -EFAULT;
1122 }
1123 success:
1124 desc->count = count - size;
1125 desc->written += size;
1126 desc->arg.buf += size;
1127 return size;
1128 }
1129
1130 /*
1131 * Performs necessary checks before doing a write
1132 * @iov: io vector request
1133 * @nr_segs: number of segments in the iovec
1134 * @count: number of bytes to write
1135 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1136 *
1137 * Adjust number of segments and amount of bytes to write (nr_segs should be
1138 * properly initialized first). Returns appropriate error code that caller
1139 * should return or zero in case that write should be allowed.
1140 */
1141 int generic_segment_checks(const struct iovec *iov,
1142 unsigned long *nr_segs, size_t *count, int access_flags)
1143 {
1144 unsigned long seg;
1145 size_t cnt = 0;
1146 for (seg = 0; seg < *nr_segs; seg++) {
1147 const struct iovec *iv = &iov[seg];
1148
1149 /*
1150 * If any segment has a negative length, or the cumulative
1151 * length ever wraps negative then return -EINVAL.
1152 */
1153 cnt += iv->iov_len;
1154 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1155 return -EINVAL;
1156 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1157 continue;
1158 if (seg == 0)
1159 return -EFAULT;
1160 *nr_segs = seg;
1161 cnt -= iv->iov_len; /* This segment is no good */
1162 break;
1163 }
1164 *count = cnt;
1165 return 0;
1166 }
1167 EXPORT_SYMBOL(generic_segment_checks);
1168
1169 /**
1170 * generic_file_aio_read - generic filesystem read routine
1171 * @iocb: kernel I/O control block
1172 * @iov: io vector request
1173 * @nr_segs: number of segments in the iovec
1174 * @pos: current file position
1175 *
1176 * This is the "read()" routine for all filesystems
1177 * that can use the page cache directly.
1178 */
1179 ssize_t
1180 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1181 unsigned long nr_segs, loff_t pos)
1182 {
1183 struct file *filp = iocb->ki_filp;
1184 ssize_t retval;
1185 unsigned long seg;
1186 size_t count;
1187 loff_t *ppos = &iocb->ki_pos;
1188
1189 count = 0;
1190 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1191 if (retval)
1192 return retval;
1193
1194 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1195 if (filp->f_flags & O_DIRECT) {
1196 loff_t size;
1197 struct address_space *mapping;
1198 struct inode *inode;
1199
1200 mapping = filp->f_mapping;
1201 inode = mapping->host;
1202 retval = 0;
1203 if (!count)
1204 goto out; /* skip atime */
1205 size = i_size_read(inode);
1206 if (pos < size) {
1207 retval = generic_file_direct_IO(READ, iocb,
1208 iov, pos, nr_segs);
1209 if (retval > 0)
1210 *ppos = pos + retval;
1211 }
1212 if (likely(retval != 0)) {
1213 file_accessed(filp);
1214 goto out;
1215 }
1216 }
1217
1218 retval = 0;
1219 if (count) {
1220 for (seg = 0; seg < nr_segs; seg++) {
1221 read_descriptor_t desc;
1222
1223 desc.written = 0;
1224 desc.arg.buf = iov[seg].iov_base;
1225 desc.count = iov[seg].iov_len;
1226 if (desc.count == 0)
1227 continue;
1228 desc.error = 0;
1229 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1230 retval += desc.written;
1231 if (desc.error) {
1232 retval = retval ?: desc.error;
1233 break;
1234 }
1235 if (desc.count > 0)
1236 break;
1237 }
1238 }
1239 out:
1240 return retval;
1241 }
1242 EXPORT_SYMBOL(generic_file_aio_read);
1243
1244 static ssize_t
1245 do_readahead(struct address_space *mapping, struct file *filp,
1246 pgoff_t index, unsigned long nr)
1247 {
1248 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1249 return -EINVAL;
1250
1251 force_page_cache_readahead(mapping, filp, index,
1252 max_sane_readahead(nr));
1253 return 0;
1254 }
1255
1256 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1257 {
1258 ssize_t ret;
1259 struct file *file;
1260
1261 ret = -EBADF;
1262 file = fget(fd);
1263 if (file) {
1264 if (file->f_mode & FMODE_READ) {
1265 struct address_space *mapping = file->f_mapping;
1266 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1267 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1268 unsigned long len = end - start + 1;
1269 ret = do_readahead(mapping, file, start, len);
1270 }
1271 fput(file);
1272 }
1273 return ret;
1274 }
1275
1276 #ifdef CONFIG_MMU
1277 /**
1278 * page_cache_read - adds requested page to the page cache if not already there
1279 * @file: file to read
1280 * @offset: page index
1281 *
1282 * This adds the requested page to the page cache if it isn't already there,
1283 * and schedules an I/O to read in its contents from disk.
1284 */
1285 static int page_cache_read(struct file *file, pgoff_t offset)
1286 {
1287 struct address_space *mapping = file->f_mapping;
1288 struct page *page;
1289 int ret;
1290
1291 do {
1292 page = page_cache_alloc_cold(mapping);
1293 if (!page)
1294 return -ENOMEM;
1295
1296 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1297 if (ret == 0)
1298 ret = mapping->a_ops->readpage(file, page);
1299 else if (ret == -EEXIST)
1300 ret = 0; /* losing race to add is OK */
1301
1302 page_cache_release(page);
1303
1304 } while (ret == AOP_TRUNCATED_PAGE);
1305
1306 return ret;
1307 }
1308
1309 #define MMAP_LOTSAMISS (100)
1310
1311 /**
1312 * filemap_fault - read in file data for page fault handling
1313 * @vma: vma in which the fault was taken
1314 * @vmf: struct vm_fault containing details of the fault
1315 *
1316 * filemap_fault() is invoked via the vma operations vector for a
1317 * mapped memory region to read in file data during a page fault.
1318 *
1319 * The goto's are kind of ugly, but this streamlines the normal case of having
1320 * it in the page cache, and handles the special cases reasonably without
1321 * having a lot of duplicated code.
1322 */
1323 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325 int error;
1326 struct file *file = vma->vm_file;
1327 struct address_space *mapping = file->f_mapping;
1328 struct file_ra_state *ra = &file->f_ra;
1329 struct inode *inode = mapping->host;
1330 struct page *page;
1331 pgoff_t size;
1332 int did_readaround = 0;
1333 int ret = 0;
1334
1335 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1336 if (vmf->pgoff >= size)
1337 return VM_FAULT_SIGBUS;
1338
1339 /* If we don't want any read-ahead, don't bother */
1340 if (VM_RandomReadHint(vma))
1341 goto no_cached_page;
1342
1343 /*
1344 * Do we have something in the page cache already?
1345 */
1346 retry_find:
1347 page = find_lock_page(mapping, vmf->pgoff);
1348 /*
1349 * For sequential accesses, we use the generic readahead logic.
1350 */
1351 if (VM_SequentialReadHint(vma)) {
1352 if (!page) {
1353 page_cache_sync_readahead(mapping, ra, file,
1354 vmf->pgoff, 1);
1355 page = find_lock_page(mapping, vmf->pgoff);
1356 if (!page)
1357 goto no_cached_page;
1358 }
1359 if (PageReadahead(page)) {
1360 page_cache_async_readahead(mapping, ra, file, page,
1361 vmf->pgoff, 1);
1362 }
1363 }
1364
1365 if (!page) {
1366 unsigned long ra_pages;
1367
1368 ra->mmap_miss++;
1369
1370 /*
1371 * Do we miss much more than hit in this file? If so,
1372 * stop bothering with read-ahead. It will only hurt.
1373 */
1374 if (ra->mmap_miss > MMAP_LOTSAMISS)
1375 goto no_cached_page;
1376
1377 /*
1378 * To keep the pgmajfault counter straight, we need to
1379 * check did_readaround, as this is an inner loop.
1380 */
1381 if (!did_readaround) {
1382 ret = VM_FAULT_MAJOR;
1383 count_vm_event(PGMAJFAULT);
1384 }
1385 did_readaround = 1;
1386 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1387 if (ra_pages) {
1388 pgoff_t start = 0;
1389
1390 if (vmf->pgoff > ra_pages / 2)
1391 start = vmf->pgoff - ra_pages / 2;
1392 do_page_cache_readahead(mapping, file, start, ra_pages);
1393 }
1394 page = find_lock_page(mapping, vmf->pgoff);
1395 if (!page)
1396 goto no_cached_page;
1397 }
1398
1399 if (!did_readaround)
1400 ra->mmap_miss--;
1401
1402 /*
1403 * We have a locked page in the page cache, now we need to check
1404 * that it's up-to-date. If not, it is going to be due to an error.
1405 */
1406 if (unlikely(!PageUptodate(page)))
1407 goto page_not_uptodate;
1408
1409 /* Must recheck i_size under page lock */
1410 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1411 if (unlikely(vmf->pgoff >= size)) {
1412 unlock_page(page);
1413 page_cache_release(page);
1414 return VM_FAULT_SIGBUS;
1415 }
1416
1417 /*
1418 * Found the page and have a reference on it.
1419 */
1420 mark_page_accessed(page);
1421 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1422 vmf->page = page;
1423 return ret | VM_FAULT_LOCKED;
1424
1425 no_cached_page:
1426 /*
1427 * We're only likely to ever get here if MADV_RANDOM is in
1428 * effect.
1429 */
1430 error = page_cache_read(file, vmf->pgoff);
1431
1432 /*
1433 * The page we want has now been added to the page cache.
1434 * In the unlikely event that someone removed it in the
1435 * meantime, we'll just come back here and read it again.
1436 */
1437 if (error >= 0)
1438 goto retry_find;
1439
1440 /*
1441 * An error return from page_cache_read can result if the
1442 * system is low on memory, or a problem occurs while trying
1443 * to schedule I/O.
1444 */
1445 if (error == -ENOMEM)
1446 return VM_FAULT_OOM;
1447 return VM_FAULT_SIGBUS;
1448
1449 page_not_uptodate:
1450 /* IO error path */
1451 if (!did_readaround) {
1452 ret = VM_FAULT_MAJOR;
1453 count_vm_event(PGMAJFAULT);
1454 }
1455
1456 /*
1457 * Umm, take care of errors if the page isn't up-to-date.
1458 * Try to re-read it _once_. We do this synchronously,
1459 * because there really aren't any performance issues here
1460 * and we need to check for errors.
1461 */
1462 ClearPageError(page);
1463 error = mapping->a_ops->readpage(file, page);
1464 page_cache_release(page);
1465
1466 if (!error || error == AOP_TRUNCATED_PAGE)
1467 goto retry_find;
1468
1469 /* Things didn't work out. Return zero to tell the mm layer so. */
1470 shrink_readahead_size_eio(file, ra);
1471 return VM_FAULT_SIGBUS;
1472 }
1473 EXPORT_SYMBOL(filemap_fault);
1474
1475 struct vm_operations_struct generic_file_vm_ops = {
1476 .fault = filemap_fault,
1477 };
1478
1479 /* This is used for a general mmap of a disk file */
1480
1481 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1482 {
1483 struct address_space *mapping = file->f_mapping;
1484
1485 if (!mapping->a_ops->readpage)
1486 return -ENOEXEC;
1487 file_accessed(file);
1488 vma->vm_ops = &generic_file_vm_ops;
1489 vma->vm_flags |= VM_CAN_NONLINEAR;
1490 return 0;
1491 }
1492
1493 /*
1494 * This is for filesystems which do not implement ->writepage.
1495 */
1496 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1497 {
1498 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1499 return -EINVAL;
1500 return generic_file_mmap(file, vma);
1501 }
1502 #else
1503 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1504 {
1505 return -ENOSYS;
1506 }
1507 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1508 {
1509 return -ENOSYS;
1510 }
1511 #endif /* CONFIG_MMU */
1512
1513 EXPORT_SYMBOL(generic_file_mmap);
1514 EXPORT_SYMBOL(generic_file_readonly_mmap);
1515
1516 static struct page *__read_cache_page(struct address_space *mapping,
1517 pgoff_t index,
1518 int (*filler)(void *,struct page*),
1519 void *data)
1520 {
1521 struct page *page;
1522 int err;
1523 repeat:
1524 page = find_get_page(mapping, index);
1525 if (!page) {
1526 page = page_cache_alloc_cold(mapping);
1527 if (!page)
1528 return ERR_PTR(-ENOMEM);
1529 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1530 if (unlikely(err)) {
1531 page_cache_release(page);
1532 if (err == -EEXIST)
1533 goto repeat;
1534 /* Presumably ENOMEM for radix tree node */
1535 return ERR_PTR(err);
1536 }
1537 err = filler(data, page);
1538 if (err < 0) {
1539 page_cache_release(page);
1540 page = ERR_PTR(err);
1541 }
1542 }
1543 return page;
1544 }
1545
1546 /**
1547 * read_cache_page_async - read into page cache, fill it if needed
1548 * @mapping: the page's address_space
1549 * @index: the page index
1550 * @filler: function to perform the read
1551 * @data: destination for read data
1552 *
1553 * Same as read_cache_page, but don't wait for page to become unlocked
1554 * after submitting it to the filler.
1555 *
1556 * Read into the page cache. If a page already exists, and PageUptodate() is
1557 * not set, try to fill the page but don't wait for it to become unlocked.
1558 *
1559 * If the page does not get brought uptodate, return -EIO.
1560 */
1561 struct page *read_cache_page_async(struct address_space *mapping,
1562 pgoff_t index,
1563 int (*filler)(void *,struct page*),
1564 void *data)
1565 {
1566 struct page *page;
1567 int err;
1568
1569 retry:
1570 page = __read_cache_page(mapping, index, filler, data);
1571 if (IS_ERR(page))
1572 return page;
1573 if (PageUptodate(page))
1574 goto out;
1575
1576 lock_page(page);
1577 if (!page->mapping) {
1578 unlock_page(page);
1579 page_cache_release(page);
1580 goto retry;
1581 }
1582 if (PageUptodate(page)) {
1583 unlock_page(page);
1584 goto out;
1585 }
1586 err = filler(data, page);
1587 if (err < 0) {
1588 page_cache_release(page);
1589 return ERR_PTR(err);
1590 }
1591 out:
1592 mark_page_accessed(page);
1593 return page;
1594 }
1595 EXPORT_SYMBOL(read_cache_page_async);
1596
1597 /**
1598 * read_cache_page - read into page cache, fill it if needed
1599 * @mapping: the page's address_space
1600 * @index: the page index
1601 * @filler: function to perform the read
1602 * @data: destination for read data
1603 *
1604 * Read into the page cache. If a page already exists, and PageUptodate() is
1605 * not set, try to fill the page then wait for it to become unlocked.
1606 *
1607 * If the page does not get brought uptodate, return -EIO.
1608 */
1609 struct page *read_cache_page(struct address_space *mapping,
1610 pgoff_t index,
1611 int (*filler)(void *,struct page*),
1612 void *data)
1613 {
1614 struct page *page;
1615
1616 page = read_cache_page_async(mapping, index, filler, data);
1617 if (IS_ERR(page))
1618 goto out;
1619 wait_on_page_locked(page);
1620 if (!PageUptodate(page)) {
1621 page_cache_release(page);
1622 page = ERR_PTR(-EIO);
1623 }
1624 out:
1625 return page;
1626 }
1627 EXPORT_SYMBOL(read_cache_page);
1628
1629 /*
1630 * The logic we want is
1631 *
1632 * if suid or (sgid and xgrp)
1633 * remove privs
1634 */
1635 int should_remove_suid(struct dentry *dentry)
1636 {
1637 mode_t mode = dentry->d_inode->i_mode;
1638 int kill = 0;
1639
1640 /* suid always must be killed */
1641 if (unlikely(mode & S_ISUID))
1642 kill = ATTR_KILL_SUID;
1643
1644 /*
1645 * sgid without any exec bits is just a mandatory locking mark; leave
1646 * it alone. If some exec bits are set, it's a real sgid; kill it.
1647 */
1648 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1649 kill |= ATTR_KILL_SGID;
1650
1651 if (unlikely(kill && !capable(CAP_FSETID)))
1652 return kill;
1653
1654 return 0;
1655 }
1656 EXPORT_SYMBOL(should_remove_suid);
1657
1658 static int __remove_suid(struct dentry *dentry, int kill)
1659 {
1660 struct iattr newattrs;
1661
1662 newattrs.ia_valid = ATTR_FORCE | kill;
1663 return notify_change(dentry, &newattrs);
1664 }
1665
1666 int remove_suid(struct dentry *dentry)
1667 {
1668 int killsuid = should_remove_suid(dentry);
1669 int killpriv = security_inode_need_killpriv(dentry);
1670 int error = 0;
1671
1672 if (killpriv < 0)
1673 return killpriv;
1674 if (killpriv)
1675 error = security_inode_killpriv(dentry);
1676 if (!error && killsuid)
1677 error = __remove_suid(dentry, killsuid);
1678
1679 return error;
1680 }
1681 EXPORT_SYMBOL(remove_suid);
1682
1683 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1684 const struct iovec *iov, size_t base, size_t bytes)
1685 {
1686 size_t copied = 0, left = 0;
1687
1688 while (bytes) {
1689 char __user *buf = iov->iov_base + base;
1690 int copy = min(bytes, iov->iov_len - base);
1691
1692 base = 0;
1693 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1694 copied += copy;
1695 bytes -= copy;
1696 vaddr += copy;
1697 iov++;
1698
1699 if (unlikely(left))
1700 break;
1701 }
1702 return copied - left;
1703 }
1704
1705 /*
1706 * Copy as much as we can into the page and return the number of bytes which
1707 * were sucessfully copied. If a fault is encountered then return the number of
1708 * bytes which were copied.
1709 */
1710 size_t iov_iter_copy_from_user_atomic(struct page *page,
1711 struct iov_iter *i, unsigned long offset, size_t bytes)
1712 {
1713 char *kaddr;
1714 size_t copied;
1715
1716 BUG_ON(!in_atomic());
1717 kaddr = kmap_atomic(page, KM_USER0);
1718 if (likely(i->nr_segs == 1)) {
1719 int left;
1720 char __user *buf = i->iov->iov_base + i->iov_offset;
1721 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1722 buf, bytes);
1723 copied = bytes - left;
1724 } else {
1725 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1726 i->iov, i->iov_offset, bytes);
1727 }
1728 kunmap_atomic(kaddr, KM_USER0);
1729
1730 return copied;
1731 }
1732 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1733
1734 /*
1735 * This has the same sideeffects and return value as
1736 * iov_iter_copy_from_user_atomic().
1737 * The difference is that it attempts to resolve faults.
1738 * Page must not be locked.
1739 */
1740 size_t iov_iter_copy_from_user(struct page *page,
1741 struct iov_iter *i, unsigned long offset, size_t bytes)
1742 {
1743 char *kaddr;
1744 size_t copied;
1745
1746 kaddr = kmap(page);
1747 if (likely(i->nr_segs == 1)) {
1748 int left;
1749 char __user *buf = i->iov->iov_base + i->iov_offset;
1750 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1751 copied = bytes - left;
1752 } else {
1753 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1754 i->iov, i->iov_offset, bytes);
1755 }
1756 kunmap(page);
1757 return copied;
1758 }
1759 EXPORT_SYMBOL(iov_iter_copy_from_user);
1760
1761 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1762 {
1763 BUG_ON(i->count < bytes);
1764
1765 if (likely(i->nr_segs == 1)) {
1766 i->iov_offset += bytes;
1767 i->count -= bytes;
1768 } else {
1769 const struct iovec *iov = i->iov;
1770 size_t base = i->iov_offset;
1771
1772 /*
1773 * The !iov->iov_len check ensures we skip over unlikely
1774 * zero-length segments (without overruning the iovec).
1775 */
1776 while (bytes || unlikely(!iov->iov_len && i->count)) {
1777 int copy;
1778
1779 copy = min(bytes, iov->iov_len - base);
1780 BUG_ON(!i->count || i->count < copy);
1781 i->count -= copy;
1782 bytes -= copy;
1783 base += copy;
1784 if (iov->iov_len == base) {
1785 iov++;
1786 base = 0;
1787 }
1788 }
1789 i->iov = iov;
1790 i->iov_offset = base;
1791 }
1792 }
1793 EXPORT_SYMBOL(iov_iter_advance);
1794
1795 /*
1796 * Fault in the first iovec of the given iov_iter, to a maximum length
1797 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1798 * accessed (ie. because it is an invalid address).
1799 *
1800 * writev-intensive code may want this to prefault several iovecs -- that
1801 * would be possible (callers must not rely on the fact that _only_ the
1802 * first iovec will be faulted with the current implementation).
1803 */
1804 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1805 {
1806 char __user *buf = i->iov->iov_base + i->iov_offset;
1807 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1808 return fault_in_pages_readable(buf, bytes);
1809 }
1810 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1811
1812 /*
1813 * Return the count of just the current iov_iter segment.
1814 */
1815 size_t iov_iter_single_seg_count(struct iov_iter *i)
1816 {
1817 const struct iovec *iov = i->iov;
1818 if (i->nr_segs == 1)
1819 return i->count;
1820 else
1821 return min(i->count, iov->iov_len - i->iov_offset);
1822 }
1823 EXPORT_SYMBOL(iov_iter_single_seg_count);
1824
1825 /*
1826 * Performs necessary checks before doing a write
1827 *
1828 * Can adjust writing position or amount of bytes to write.
1829 * Returns appropriate error code that caller should return or
1830 * zero in case that write should be allowed.
1831 */
1832 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1833 {
1834 struct inode *inode = file->f_mapping->host;
1835 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1836
1837 if (unlikely(*pos < 0))
1838 return -EINVAL;
1839
1840 if (!isblk) {
1841 /* FIXME: this is for backwards compatibility with 2.4 */
1842 if (file->f_flags & O_APPEND)
1843 *pos = i_size_read(inode);
1844
1845 if (limit != RLIM_INFINITY) {
1846 if (*pos >= limit) {
1847 send_sig(SIGXFSZ, current, 0);
1848 return -EFBIG;
1849 }
1850 if (*count > limit - (typeof(limit))*pos) {
1851 *count = limit - (typeof(limit))*pos;
1852 }
1853 }
1854 }
1855
1856 /*
1857 * LFS rule
1858 */
1859 if (unlikely(*pos + *count > MAX_NON_LFS &&
1860 !(file->f_flags & O_LARGEFILE))) {
1861 if (*pos >= MAX_NON_LFS) {
1862 return -EFBIG;
1863 }
1864 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1865 *count = MAX_NON_LFS - (unsigned long)*pos;
1866 }
1867 }
1868
1869 /*
1870 * Are we about to exceed the fs block limit ?
1871 *
1872 * If we have written data it becomes a short write. If we have
1873 * exceeded without writing data we send a signal and return EFBIG.
1874 * Linus frestrict idea will clean these up nicely..
1875 */
1876 if (likely(!isblk)) {
1877 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1878 if (*count || *pos > inode->i_sb->s_maxbytes) {
1879 return -EFBIG;
1880 }
1881 /* zero-length writes at ->s_maxbytes are OK */
1882 }
1883
1884 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1885 *count = inode->i_sb->s_maxbytes - *pos;
1886 } else {
1887 #ifdef CONFIG_BLOCK
1888 loff_t isize;
1889 if (bdev_read_only(I_BDEV(inode)))
1890 return -EPERM;
1891 isize = i_size_read(inode);
1892 if (*pos >= isize) {
1893 if (*count || *pos > isize)
1894 return -ENOSPC;
1895 }
1896
1897 if (*pos + *count > isize)
1898 *count = isize - *pos;
1899 #else
1900 return -EPERM;
1901 #endif
1902 }
1903 return 0;
1904 }
1905 EXPORT_SYMBOL(generic_write_checks);
1906
1907 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1908 loff_t pos, unsigned len, unsigned flags,
1909 struct page **pagep, void **fsdata)
1910 {
1911 const struct address_space_operations *aops = mapping->a_ops;
1912
1913 if (aops->write_begin) {
1914 return aops->write_begin(file, mapping, pos, len, flags,
1915 pagep, fsdata);
1916 } else {
1917 int ret;
1918 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1919 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1920 struct inode *inode = mapping->host;
1921 struct page *page;
1922 again:
1923 page = __grab_cache_page(mapping, index);
1924 *pagep = page;
1925 if (!page)
1926 return -ENOMEM;
1927
1928 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1929 /*
1930 * There is no way to resolve a short write situation
1931 * for a !Uptodate page (except by double copying in
1932 * the caller done by generic_perform_write_2copy).
1933 *
1934 * Instead, we have to bring it uptodate here.
1935 */
1936 ret = aops->readpage(file, page);
1937 page_cache_release(page);
1938 if (ret) {
1939 if (ret == AOP_TRUNCATED_PAGE)
1940 goto again;
1941 return ret;
1942 }
1943 goto again;
1944 }
1945
1946 ret = aops->prepare_write(file, page, offset, offset+len);
1947 if (ret) {
1948 unlock_page(page);
1949 page_cache_release(page);
1950 if (pos + len > inode->i_size)
1951 vmtruncate(inode, inode->i_size);
1952 }
1953 return ret;
1954 }
1955 }
1956 EXPORT_SYMBOL(pagecache_write_begin);
1957
1958 int pagecache_write_end(struct file *file, struct address_space *mapping,
1959 loff_t pos, unsigned len, unsigned copied,
1960 struct page *page, void *fsdata)
1961 {
1962 const struct address_space_operations *aops = mapping->a_ops;
1963 int ret;
1964
1965 if (aops->write_end) {
1966 mark_page_accessed(page);
1967 ret = aops->write_end(file, mapping, pos, len, copied,
1968 page, fsdata);
1969 } else {
1970 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1971 struct inode *inode = mapping->host;
1972
1973 flush_dcache_page(page);
1974 ret = aops->commit_write(file, page, offset, offset+len);
1975 unlock_page(page);
1976 mark_page_accessed(page);
1977 page_cache_release(page);
1978
1979 if (ret < 0) {
1980 if (pos + len > inode->i_size)
1981 vmtruncate(inode, inode->i_size);
1982 } else if (ret > 0)
1983 ret = min_t(size_t, copied, ret);
1984 else
1985 ret = copied;
1986 }
1987
1988 return ret;
1989 }
1990 EXPORT_SYMBOL(pagecache_write_end);
1991
1992 ssize_t
1993 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1994 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1995 size_t count, size_t ocount)
1996 {
1997 struct file *file = iocb->ki_filp;
1998 struct address_space *mapping = file->f_mapping;
1999 struct inode *inode = mapping->host;
2000 ssize_t written;
2001
2002 if (count != ocount)
2003 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2004
2005 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2006 if (written > 0) {
2007 loff_t end = pos + written;
2008 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2009 i_size_write(inode, end);
2010 mark_inode_dirty(inode);
2011 }
2012 *ppos = end;
2013 }
2014
2015 /*
2016 * Sync the fs metadata but not the minor inode changes and
2017 * of course not the data as we did direct DMA for the IO.
2018 * i_mutex is held, which protects generic_osync_inode() from
2019 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2020 */
2021 if ((written >= 0 || written == -EIOCBQUEUED) &&
2022 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2023 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2024 if (err < 0)
2025 written = err;
2026 }
2027 return written;
2028 }
2029 EXPORT_SYMBOL(generic_file_direct_write);
2030
2031 /*
2032 * Find or create a page at the given pagecache position. Return the locked
2033 * page. This function is specifically for buffered writes.
2034 */
2035 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2036 {
2037 int status;
2038 struct page *page;
2039 repeat:
2040 page = find_lock_page(mapping, index);
2041 if (likely(page))
2042 return page;
2043
2044 page = page_cache_alloc(mapping);
2045 if (!page)
2046 return NULL;
2047 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2048 if (unlikely(status)) {
2049 page_cache_release(page);
2050 if (status == -EEXIST)
2051 goto repeat;
2052 return NULL;
2053 }
2054 return page;
2055 }
2056 EXPORT_SYMBOL(__grab_cache_page);
2057
2058 static ssize_t generic_perform_write_2copy(struct file *file,
2059 struct iov_iter *i, loff_t pos)
2060 {
2061 struct address_space *mapping = file->f_mapping;
2062 const struct address_space_operations *a_ops = mapping->a_ops;
2063 struct inode *inode = mapping->host;
2064 long status = 0;
2065 ssize_t written = 0;
2066
2067 do {
2068 struct page *src_page;
2069 struct page *page;
2070 pgoff_t index; /* Pagecache index for current page */
2071 unsigned long offset; /* Offset into pagecache page */
2072 unsigned long bytes; /* Bytes to write to page */
2073 size_t copied; /* Bytes copied from user */
2074
2075 offset = (pos & (PAGE_CACHE_SIZE - 1));
2076 index = pos >> PAGE_CACHE_SHIFT;
2077 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2078 iov_iter_count(i));
2079
2080 /*
2081 * a non-NULL src_page indicates that we're doing the
2082 * copy via get_user_pages and kmap.
2083 */
2084 src_page = NULL;
2085
2086 /*
2087 * Bring in the user page that we will copy from _first_.
2088 * Otherwise there's a nasty deadlock on copying from the
2089 * same page as we're writing to, without it being marked
2090 * up-to-date.
2091 *
2092 * Not only is this an optimisation, but it is also required
2093 * to check that the address is actually valid, when atomic
2094 * usercopies are used, below.
2095 */
2096 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2097 status = -EFAULT;
2098 break;
2099 }
2100
2101 page = __grab_cache_page(mapping, index);
2102 if (!page) {
2103 status = -ENOMEM;
2104 break;
2105 }
2106
2107 /*
2108 * non-uptodate pages cannot cope with short copies, and we
2109 * cannot take a pagefault with the destination page locked.
2110 * So pin the source page to copy it.
2111 */
2112 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2113 unlock_page(page);
2114
2115 src_page = alloc_page(GFP_KERNEL);
2116 if (!src_page) {
2117 page_cache_release(page);
2118 status = -ENOMEM;
2119 break;
2120 }
2121
2122 /*
2123 * Cannot get_user_pages with a page locked for the
2124 * same reason as we can't take a page fault with a
2125 * page locked (as explained below).
2126 */
2127 copied = iov_iter_copy_from_user(src_page, i,
2128 offset, bytes);
2129 if (unlikely(copied == 0)) {
2130 status = -EFAULT;
2131 page_cache_release(page);
2132 page_cache_release(src_page);
2133 break;
2134 }
2135 bytes = copied;
2136
2137 lock_page(page);
2138 /*
2139 * Can't handle the page going uptodate here, because
2140 * that means we would use non-atomic usercopies, which
2141 * zero out the tail of the page, which can cause
2142 * zeroes to become transiently visible. We could just
2143 * use a non-zeroing copy, but the APIs aren't too
2144 * consistent.
2145 */
2146 if (unlikely(!page->mapping || PageUptodate(page))) {
2147 unlock_page(page);
2148 page_cache_release(page);
2149 page_cache_release(src_page);
2150 continue;
2151 }
2152 }
2153
2154 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2155 if (unlikely(status))
2156 goto fs_write_aop_error;
2157
2158 if (!src_page) {
2159 /*
2160 * Must not enter the pagefault handler here, because
2161 * we hold the page lock, so we might recursively
2162 * deadlock on the same lock, or get an ABBA deadlock
2163 * against a different lock, or against the mmap_sem
2164 * (which nests outside the page lock). So increment
2165 * preempt count, and use _atomic usercopies.
2166 *
2167 * The page is uptodate so we are OK to encounter a
2168 * short copy: if unmodified parts of the page are
2169 * marked dirty and written out to disk, it doesn't
2170 * really matter.
2171 */
2172 pagefault_disable();
2173 copied = iov_iter_copy_from_user_atomic(page, i,
2174 offset, bytes);
2175 pagefault_enable();
2176 } else {
2177 void *src, *dst;
2178 src = kmap_atomic(src_page, KM_USER0);
2179 dst = kmap_atomic(page, KM_USER1);
2180 memcpy(dst + offset, src + offset, bytes);
2181 kunmap_atomic(dst, KM_USER1);
2182 kunmap_atomic(src, KM_USER0);
2183 copied = bytes;
2184 }
2185 flush_dcache_page(page);
2186
2187 status = a_ops->commit_write(file, page, offset, offset+bytes);
2188 if (unlikely(status < 0))
2189 goto fs_write_aop_error;
2190 if (unlikely(status > 0)) /* filesystem did partial write */
2191 copied = min_t(size_t, copied, status);
2192
2193 unlock_page(page);
2194 mark_page_accessed(page);
2195 page_cache_release(page);
2196 if (src_page)
2197 page_cache_release(src_page);
2198
2199 iov_iter_advance(i, copied);
2200 pos += copied;
2201 written += copied;
2202
2203 balance_dirty_pages_ratelimited(mapping);
2204 cond_resched();
2205 continue;
2206
2207 fs_write_aop_error:
2208 unlock_page(page);
2209 page_cache_release(page);
2210 if (src_page)
2211 page_cache_release(src_page);
2212
2213 /*
2214 * prepare_write() may have instantiated a few blocks
2215 * outside i_size. Trim these off again. Don't need
2216 * i_size_read because we hold i_mutex.
2217 */
2218 if (pos + bytes > inode->i_size)
2219 vmtruncate(inode, inode->i_size);
2220 break;
2221 } while (iov_iter_count(i));
2222
2223 return written ? written : status;
2224 }
2225
2226 static ssize_t generic_perform_write(struct file *file,
2227 struct iov_iter *i, loff_t pos)
2228 {
2229 struct address_space *mapping = file->f_mapping;
2230 const struct address_space_operations *a_ops = mapping->a_ops;
2231 long status = 0;
2232 ssize_t written = 0;
2233 unsigned int flags = 0;
2234
2235 /*
2236 * Copies from kernel address space cannot fail (NFSD is a big user).
2237 */
2238 if (segment_eq(get_fs(), KERNEL_DS))
2239 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2240
2241 do {
2242 struct page *page;
2243 pgoff_t index; /* Pagecache index for current page */
2244 unsigned long offset; /* Offset into pagecache page */
2245 unsigned long bytes; /* Bytes to write to page */
2246 size_t copied; /* Bytes copied from user */
2247 void *fsdata;
2248
2249 offset = (pos & (PAGE_CACHE_SIZE - 1));
2250 index = pos >> PAGE_CACHE_SHIFT;
2251 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2252 iov_iter_count(i));
2253
2254 again:
2255
2256 /*
2257 * Bring in the user page that we will copy from _first_.
2258 * Otherwise there's a nasty deadlock on copying from the
2259 * same page as we're writing to, without it being marked
2260 * up-to-date.
2261 *
2262 * Not only is this an optimisation, but it is also required
2263 * to check that the address is actually valid, when atomic
2264 * usercopies are used, below.
2265 */
2266 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2267 status = -EFAULT;
2268 break;
2269 }
2270
2271 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2272 &page, &fsdata);
2273 if (unlikely(status))
2274 break;
2275
2276 pagefault_disable();
2277 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2278 pagefault_enable();
2279 flush_dcache_page(page);
2280
2281 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2282 page, fsdata);
2283 if (unlikely(status < 0))
2284 break;
2285 copied = status;
2286
2287 cond_resched();
2288
2289 iov_iter_advance(i, copied);
2290 if (unlikely(copied == 0)) {
2291 /*
2292 * If we were unable to copy any data at all, we must
2293 * fall back to a single segment length write.
2294 *
2295 * If we didn't fallback here, we could livelock
2296 * because not all segments in the iov can be copied at
2297 * once without a pagefault.
2298 */
2299 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2300 iov_iter_single_seg_count(i));
2301 goto again;
2302 }
2303 pos += copied;
2304 written += copied;
2305
2306 balance_dirty_pages_ratelimited(mapping);
2307
2308 } while (iov_iter_count(i));
2309
2310 return written ? written : status;
2311 }
2312
2313 ssize_t
2314 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2315 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2316 size_t count, ssize_t written)
2317 {
2318 struct file *file = iocb->ki_filp;
2319 struct address_space *mapping = file->f_mapping;
2320 const struct address_space_operations *a_ops = mapping->a_ops;
2321 struct inode *inode = mapping->host;
2322 ssize_t status;
2323 struct iov_iter i;
2324
2325 iov_iter_init(&i, iov, nr_segs, count, written);
2326 if (a_ops->write_begin)
2327 status = generic_perform_write(file, &i, pos);
2328 else
2329 status = generic_perform_write_2copy(file, &i, pos);
2330
2331 if (likely(status >= 0)) {
2332 written += status;
2333 *ppos = pos + status;
2334
2335 /*
2336 * For now, when the user asks for O_SYNC, we'll actually give
2337 * O_DSYNC
2338 */
2339 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2340 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2341 status = generic_osync_inode(inode, mapping,
2342 OSYNC_METADATA|OSYNC_DATA);
2343 }
2344 }
2345
2346 /*
2347 * If we get here for O_DIRECT writes then we must have fallen through
2348 * to buffered writes (block instantiation inside i_size). So we sync
2349 * the file data here, to try to honour O_DIRECT expectations.
2350 */
2351 if (unlikely(file->f_flags & O_DIRECT) && written)
2352 status = filemap_write_and_wait(mapping);
2353
2354 return written ? written : status;
2355 }
2356 EXPORT_SYMBOL(generic_file_buffered_write);
2357
2358 static ssize_t
2359 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2360 unsigned long nr_segs, loff_t *ppos)
2361 {
2362 struct file *file = iocb->ki_filp;
2363 struct address_space * mapping = file->f_mapping;
2364 size_t ocount; /* original count */
2365 size_t count; /* after file limit checks */
2366 struct inode *inode = mapping->host;
2367 loff_t pos;
2368 ssize_t written;
2369 ssize_t err;
2370
2371 ocount = 0;
2372 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2373 if (err)
2374 return err;
2375
2376 count = ocount;
2377 pos = *ppos;
2378
2379 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2380
2381 /* We can write back this queue in page reclaim */
2382 current->backing_dev_info = mapping->backing_dev_info;
2383 written = 0;
2384
2385 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2386 if (err)
2387 goto out;
2388
2389 if (count == 0)
2390 goto out;
2391
2392 err = remove_suid(file->f_path.dentry);
2393 if (err)
2394 goto out;
2395
2396 file_update_time(file);
2397
2398 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2399 if (unlikely(file->f_flags & O_DIRECT)) {
2400 loff_t endbyte;
2401 ssize_t written_buffered;
2402
2403 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2404 ppos, count, ocount);
2405 if (written < 0 || written == count)
2406 goto out;
2407 /*
2408 * direct-io write to a hole: fall through to buffered I/O
2409 * for completing the rest of the request.
2410 */
2411 pos += written;
2412 count -= written;
2413 written_buffered = generic_file_buffered_write(iocb, iov,
2414 nr_segs, pos, ppos, count,
2415 written);
2416 /*
2417 * If generic_file_buffered_write() retuned a synchronous error
2418 * then we want to return the number of bytes which were
2419 * direct-written, or the error code if that was zero. Note
2420 * that this differs from normal direct-io semantics, which
2421 * will return -EFOO even if some bytes were written.
2422 */
2423 if (written_buffered < 0) {
2424 err = written_buffered;
2425 goto out;
2426 }
2427
2428 /*
2429 * We need to ensure that the page cache pages are written to
2430 * disk and invalidated to preserve the expected O_DIRECT
2431 * semantics.
2432 */
2433 endbyte = pos + written_buffered - written - 1;
2434 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2435 SYNC_FILE_RANGE_WAIT_BEFORE|
2436 SYNC_FILE_RANGE_WRITE|
2437 SYNC_FILE_RANGE_WAIT_AFTER);
2438 if (err == 0) {
2439 written = written_buffered;
2440 invalidate_mapping_pages(mapping,
2441 pos >> PAGE_CACHE_SHIFT,
2442 endbyte >> PAGE_CACHE_SHIFT);
2443 } else {
2444 /*
2445 * We don't know how much we wrote, so just return
2446 * the number of bytes which were direct-written
2447 */
2448 }
2449 } else {
2450 written = generic_file_buffered_write(iocb, iov, nr_segs,
2451 pos, ppos, count, written);
2452 }
2453 out:
2454 current->backing_dev_info = NULL;
2455 return written ? written : err;
2456 }
2457
2458 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2459 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2460 {
2461 struct file *file = iocb->ki_filp;
2462 struct address_space *mapping = file->f_mapping;
2463 struct inode *inode = mapping->host;
2464 ssize_t ret;
2465
2466 BUG_ON(iocb->ki_pos != pos);
2467
2468 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2469 &iocb->ki_pos);
2470
2471 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2472 ssize_t err;
2473
2474 err = sync_page_range_nolock(inode, mapping, pos, ret);
2475 if (err < 0)
2476 ret = err;
2477 }
2478 return ret;
2479 }
2480 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2481
2482 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2483 unsigned long nr_segs, loff_t pos)
2484 {
2485 struct file *file = iocb->ki_filp;
2486 struct address_space *mapping = file->f_mapping;
2487 struct inode *inode = mapping->host;
2488 ssize_t ret;
2489
2490 BUG_ON(iocb->ki_pos != pos);
2491
2492 mutex_lock(&inode->i_mutex);
2493 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2494 &iocb->ki_pos);
2495 mutex_unlock(&inode->i_mutex);
2496
2497 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2498 ssize_t err;
2499
2500 err = sync_page_range(inode, mapping, pos, ret);
2501 if (err < 0)
2502 ret = err;
2503 }
2504 return ret;
2505 }
2506 EXPORT_SYMBOL(generic_file_aio_write);
2507
2508 /*
2509 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2510 * went wrong during pagecache shootdown.
2511 */
2512 static ssize_t
2513 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2514 loff_t offset, unsigned long nr_segs)
2515 {
2516 struct file *file = iocb->ki_filp;
2517 struct address_space *mapping = file->f_mapping;
2518 ssize_t retval;
2519 size_t write_len;
2520 pgoff_t end = 0; /* silence gcc */
2521
2522 /*
2523 * If it's a write, unmap all mmappings of the file up-front. This
2524 * will cause any pte dirty bits to be propagated into the pageframes
2525 * for the subsequent filemap_write_and_wait().
2526 */
2527 if (rw == WRITE) {
2528 write_len = iov_length(iov, nr_segs);
2529 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2530 if (mapping_mapped(mapping))
2531 unmap_mapping_range(mapping, offset, write_len, 0);
2532 }
2533
2534 retval = filemap_write_and_wait(mapping);
2535 if (retval)
2536 goto out;
2537
2538 /*
2539 * After a write we want buffered reads to be sure to go to disk to get
2540 * the new data. We invalidate clean cached page from the region we're
2541 * about to write. We do this *before* the write so that we can return
2542 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2543 */
2544 if (rw == WRITE && mapping->nrpages) {
2545 retval = invalidate_inode_pages2_range(mapping,
2546 offset >> PAGE_CACHE_SHIFT, end);
2547 if (retval)
2548 goto out;
2549 }
2550
2551 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2552
2553 /*
2554 * Finally, try again to invalidate clean pages which might have been
2555 * cached by non-direct readahead, or faulted in by get_user_pages()
2556 * if the source of the write was an mmap'ed region of the file
2557 * we're writing. Either one is a pretty crazy thing to do,
2558 * so we don't support it 100%. If this invalidation
2559 * fails, tough, the write still worked...
2560 */
2561 if (rw == WRITE && mapping->nrpages) {
2562 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2563 }
2564 out:
2565 return retval;
2566 }
2567
2568 /**
2569 * try_to_release_page() - release old fs-specific metadata on a page
2570 *
2571 * @page: the page which the kernel is trying to free
2572 * @gfp_mask: memory allocation flags (and I/O mode)
2573 *
2574 * The address_space is to try to release any data against the page
2575 * (presumably at page->private). If the release was successful, return `1'.
2576 * Otherwise return zero.
2577 *
2578 * The @gfp_mask argument specifies whether I/O may be performed to release
2579 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2580 *
2581 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2582 */
2583 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2584 {
2585 struct address_space * const mapping = page->mapping;
2586
2587 BUG_ON(!PageLocked(page));
2588 if (PageWriteback(page))
2589 return 0;
2590
2591 if (mapping && mapping->a_ops->releasepage)
2592 return mapping->a_ops->releasepage(page, gfp_mask);
2593 return try_to_free_buffers(page);
2594 }
2595
2596 EXPORT_SYMBOL(try_to_release_page);