]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/filemap.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58 /*
59 * Lock ordering:
60 *
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
65 *
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
79 *
80 * ->i_mutex
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
107 *
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_lock
111 */
112
113 /*
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
117 */
118 void __remove_from_page_cache(struct page *page)
119 {
120 struct address_space *mapping = page->mapping;
121
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 if (PageSwapBacked(page))
127 __dec_zone_page_state(page, NR_SHMEM);
128 BUG_ON(page_mapped(page));
129
130 /*
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
133 *
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
136 */
137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 dec_zone_page_state(page, NR_FILE_DIRTY);
139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 }
141 }
142
143 void remove_from_page_cache(struct page *page)
144 {
145 struct address_space *mapping = page->mapping;
146
147 BUG_ON(!PageLocked(page));
148
149 spin_lock_irq(&mapping->tree_lock);
150 __remove_from_page_cache(page);
151 spin_unlock_irq(&mapping->tree_lock);
152 mem_cgroup_uncharge_cache_page(page);
153 }
154
155 static int sync_page(void *word)
156 {
157 struct address_space *mapping;
158 struct page *page;
159
160 page = container_of((unsigned long *)word, struct page, flags);
161
162 /*
163 * page_mapping() is being called without PG_locked held.
164 * Some knowledge of the state and use of the page is used to
165 * reduce the requirements down to a memory barrier.
166 * The danger here is of a stale page_mapping() return value
167 * indicating a struct address_space different from the one it's
168 * associated with when it is associated with one.
169 * After smp_mb(), it's either the correct page_mapping() for
170 * the page, or an old page_mapping() and the page's own
171 * page_mapping() has gone NULL.
172 * The ->sync_page() address_space operation must tolerate
173 * page_mapping() going NULL. By an amazing coincidence,
174 * this comes about because none of the users of the page
175 * in the ->sync_page() methods make essential use of the
176 * page_mapping(), merely passing the page down to the backing
177 * device's unplug functions when it's non-NULL, which in turn
178 * ignore it for all cases but swap, where only page_private(page) is
179 * of interest. When page_mapping() does go NULL, the entire
180 * call stack gracefully ignores the page and returns.
181 * -- wli
182 */
183 smp_mb();
184 mapping = page_mapping(page);
185 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186 mapping->a_ops->sync_page(page);
187 io_schedule();
188 return 0;
189 }
190
191 static int sync_page_killable(void *word)
192 {
193 sync_page(word);
194 return fatal_signal_pending(current) ? -EINTR : 0;
195 }
196
197 /**
198 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
199 * @mapping: address space structure to write
200 * @start: offset in bytes where the range starts
201 * @end: offset in bytes where the range ends (inclusive)
202 * @sync_mode: enable synchronous operation
203 *
204 * Start writeback against all of a mapping's dirty pages that lie
205 * within the byte offsets <start, end> inclusive.
206 *
207 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
208 * opposed to a regular memory cleansing writeback. The difference between
209 * these two operations is that if a dirty page/buffer is encountered, it must
210 * be waited upon, and not just skipped over.
211 */
212 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
213 loff_t end, int sync_mode)
214 {
215 int ret;
216 struct writeback_control wbc = {
217 .sync_mode = sync_mode,
218 .nr_to_write = LONG_MAX,
219 .range_start = start,
220 .range_end = end,
221 };
222
223 if (!mapping_cap_writeback_dirty(mapping))
224 return 0;
225
226 ret = do_writepages(mapping, &wbc);
227 return ret;
228 }
229
230 static inline int __filemap_fdatawrite(struct address_space *mapping,
231 int sync_mode)
232 {
233 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
234 }
235
236 int filemap_fdatawrite(struct address_space *mapping)
237 {
238 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
239 }
240 EXPORT_SYMBOL(filemap_fdatawrite);
241
242 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
243 loff_t end)
244 {
245 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
246 }
247 EXPORT_SYMBOL(filemap_fdatawrite_range);
248
249 /**
250 * filemap_flush - mostly a non-blocking flush
251 * @mapping: target address_space
252 *
253 * This is a mostly non-blocking flush. Not suitable for data-integrity
254 * purposes - I/O may not be started against all dirty pages.
255 */
256 int filemap_flush(struct address_space *mapping)
257 {
258 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
259 }
260 EXPORT_SYMBOL(filemap_flush);
261
262 /**
263 * filemap_fdatawait_range - wait for writeback to complete
264 * @mapping: address space structure to wait for
265 * @start_byte: offset in bytes where the range starts
266 * @end_byte: offset in bytes where the range ends (inclusive)
267 *
268 * Walk the list of under-writeback pages of the given address space
269 * in the given range and wait for all of them.
270 */
271 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
272 loff_t end_byte)
273 {
274 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
275 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
276 struct pagevec pvec;
277 int nr_pages;
278 int ret = 0;
279
280 if (end_byte < start_byte)
281 return 0;
282
283 pagevec_init(&pvec, 0);
284 while ((index <= end) &&
285 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
286 PAGECACHE_TAG_WRITEBACK,
287 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
288 unsigned i;
289
290 for (i = 0; i < nr_pages; i++) {
291 struct page *page = pvec.pages[i];
292
293 /* until radix tree lookup accepts end_index */
294 if (page->index > end)
295 continue;
296
297 wait_on_page_writeback(page);
298 if (PageError(page))
299 ret = -EIO;
300 }
301 pagevec_release(&pvec);
302 cond_resched();
303 }
304
305 /* Check for outstanding write errors */
306 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307 ret = -ENOSPC;
308 if (test_and_clear_bit(AS_EIO, &mapping->flags))
309 ret = -EIO;
310
311 return ret;
312 }
313 EXPORT_SYMBOL(filemap_fdatawait_range);
314
315 /**
316 * filemap_fdatawait - wait for all under-writeback pages to complete
317 * @mapping: address space structure to wait for
318 *
319 * Walk the list of under-writeback pages of the given address space
320 * and wait for all of them.
321 */
322 int filemap_fdatawait(struct address_space *mapping)
323 {
324 loff_t i_size = i_size_read(mapping->host);
325
326 if (i_size == 0)
327 return 0;
328
329 return filemap_fdatawait_range(mapping, 0, i_size - 1);
330 }
331 EXPORT_SYMBOL(filemap_fdatawait);
332
333 int filemap_write_and_wait(struct address_space *mapping)
334 {
335 int err = 0;
336
337 if (mapping->nrpages) {
338 err = filemap_fdatawrite(mapping);
339 /*
340 * Even if the above returned error, the pages may be
341 * written partially (e.g. -ENOSPC), so we wait for it.
342 * But the -EIO is special case, it may indicate the worst
343 * thing (e.g. bug) happened, so we avoid waiting for it.
344 */
345 if (err != -EIO) {
346 int err2 = filemap_fdatawait(mapping);
347 if (!err)
348 err = err2;
349 }
350 }
351 return err;
352 }
353 EXPORT_SYMBOL(filemap_write_and_wait);
354
355 /**
356 * filemap_write_and_wait_range - write out & wait on a file range
357 * @mapping: the address_space for the pages
358 * @lstart: offset in bytes where the range starts
359 * @lend: offset in bytes where the range ends (inclusive)
360 *
361 * Write out and wait upon file offsets lstart->lend, inclusive.
362 *
363 * Note that `lend' is inclusive (describes the last byte to be written) so
364 * that this function can be used to write to the very end-of-file (end = -1).
365 */
366 int filemap_write_and_wait_range(struct address_space *mapping,
367 loff_t lstart, loff_t lend)
368 {
369 int err = 0;
370
371 if (mapping->nrpages) {
372 err = __filemap_fdatawrite_range(mapping, lstart, lend,
373 WB_SYNC_ALL);
374 /* See comment of filemap_write_and_wait() */
375 if (err != -EIO) {
376 int err2 = filemap_fdatawait_range(mapping,
377 lstart, lend);
378 if (!err)
379 err = err2;
380 }
381 }
382 return err;
383 }
384 EXPORT_SYMBOL(filemap_write_and_wait_range);
385
386 /**
387 * add_to_page_cache_locked - add a locked page to the pagecache
388 * @page: page to add
389 * @mapping: the page's address_space
390 * @offset: page index
391 * @gfp_mask: page allocation mode
392 *
393 * This function is used to add a page to the pagecache. It must be locked.
394 * This function does not add the page to the LRU. The caller must do that.
395 */
396 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
397 pgoff_t offset, gfp_t gfp_mask)
398 {
399 int error;
400
401 VM_BUG_ON(!PageLocked(page));
402
403 error = mem_cgroup_cache_charge(page, current->mm,
404 gfp_mask & GFP_RECLAIM_MASK);
405 if (error)
406 goto out;
407
408 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
409 if (error == 0) {
410 page_cache_get(page);
411 page->mapping = mapping;
412 page->index = offset;
413
414 spin_lock_irq(&mapping->tree_lock);
415 error = radix_tree_insert(&mapping->page_tree, offset, page);
416 if (likely(!error)) {
417 mapping->nrpages++;
418 __inc_zone_page_state(page, NR_FILE_PAGES);
419 if (PageSwapBacked(page))
420 __inc_zone_page_state(page, NR_SHMEM);
421 spin_unlock_irq(&mapping->tree_lock);
422 } else {
423 page->mapping = NULL;
424 spin_unlock_irq(&mapping->tree_lock);
425 mem_cgroup_uncharge_cache_page(page);
426 page_cache_release(page);
427 }
428 radix_tree_preload_end();
429 } else
430 mem_cgroup_uncharge_cache_page(page);
431 out:
432 return error;
433 }
434 EXPORT_SYMBOL(add_to_page_cache_locked);
435
436 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
437 pgoff_t offset, gfp_t gfp_mask)
438 {
439 int ret;
440
441 /*
442 * Splice_read and readahead add shmem/tmpfs pages into the page cache
443 * before shmem_readpage has a chance to mark them as SwapBacked: they
444 * need to go on the anon lru below, and mem_cgroup_cache_charge
445 * (called in add_to_page_cache) needs to know where they're going too.
446 */
447 if (mapping_cap_swap_backed(mapping))
448 SetPageSwapBacked(page);
449
450 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
451 if (ret == 0) {
452 if (page_is_file_cache(page))
453 lru_cache_add_file(page);
454 else
455 lru_cache_add_anon(page);
456 }
457 return ret;
458 }
459 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
460
461 #ifdef CONFIG_NUMA
462 struct page *__page_cache_alloc(gfp_t gfp)
463 {
464 int n;
465 struct page *page;
466
467 if (cpuset_do_page_mem_spread()) {
468 get_mems_allowed();
469 n = cpuset_mem_spread_node();
470 page = alloc_pages_exact_node(n, gfp, 0);
471 put_mems_allowed();
472 return page;
473 }
474 return alloc_pages(gfp, 0);
475 }
476 EXPORT_SYMBOL(__page_cache_alloc);
477 #endif
478
479 static int __sleep_on_page_lock(void *word)
480 {
481 io_schedule();
482 return 0;
483 }
484
485 /*
486 * In order to wait for pages to become available there must be
487 * waitqueues associated with pages. By using a hash table of
488 * waitqueues where the bucket discipline is to maintain all
489 * waiters on the same queue and wake all when any of the pages
490 * become available, and for the woken contexts to check to be
491 * sure the appropriate page became available, this saves space
492 * at a cost of "thundering herd" phenomena during rare hash
493 * collisions.
494 */
495 static wait_queue_head_t *page_waitqueue(struct page *page)
496 {
497 const struct zone *zone = page_zone(page);
498
499 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
500 }
501
502 static inline void wake_up_page(struct page *page, int bit)
503 {
504 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
505 }
506
507 void wait_on_page_bit(struct page *page, int bit_nr)
508 {
509 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
510
511 if (test_bit(bit_nr, &page->flags))
512 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
513 TASK_UNINTERRUPTIBLE);
514 }
515 EXPORT_SYMBOL(wait_on_page_bit);
516
517 /**
518 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
519 * @page: Page defining the wait queue of interest
520 * @waiter: Waiter to add to the queue
521 *
522 * Add an arbitrary @waiter to the wait queue for the nominated @page.
523 */
524 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
525 {
526 wait_queue_head_t *q = page_waitqueue(page);
527 unsigned long flags;
528
529 spin_lock_irqsave(&q->lock, flags);
530 __add_wait_queue(q, waiter);
531 spin_unlock_irqrestore(&q->lock, flags);
532 }
533 EXPORT_SYMBOL_GPL(add_page_wait_queue);
534
535 /**
536 * unlock_page - unlock a locked page
537 * @page: the page
538 *
539 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
540 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
541 * mechananism between PageLocked pages and PageWriteback pages is shared.
542 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
543 *
544 * The mb is necessary to enforce ordering between the clear_bit and the read
545 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
546 */
547 void unlock_page(struct page *page)
548 {
549 VM_BUG_ON(!PageLocked(page));
550 clear_bit_unlock(PG_locked, &page->flags);
551 smp_mb__after_clear_bit();
552 wake_up_page(page, PG_locked);
553 }
554 EXPORT_SYMBOL(unlock_page);
555
556 /**
557 * end_page_writeback - end writeback against a page
558 * @page: the page
559 */
560 void end_page_writeback(struct page *page)
561 {
562 if (TestClearPageReclaim(page))
563 rotate_reclaimable_page(page);
564
565 if (!test_clear_page_writeback(page))
566 BUG();
567
568 smp_mb__after_clear_bit();
569 wake_up_page(page, PG_writeback);
570 }
571 EXPORT_SYMBOL(end_page_writeback);
572
573 /**
574 * __lock_page - get a lock on the page, assuming we need to sleep to get it
575 * @page: the page to lock
576 *
577 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
578 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
579 * chances are that on the second loop, the block layer's plug list is empty,
580 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
581 */
582 void __lock_page(struct page *page)
583 {
584 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
585
586 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
587 TASK_UNINTERRUPTIBLE);
588 }
589 EXPORT_SYMBOL(__lock_page);
590
591 int __lock_page_killable(struct page *page)
592 {
593 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
594
595 return __wait_on_bit_lock(page_waitqueue(page), &wait,
596 sync_page_killable, TASK_KILLABLE);
597 }
598 EXPORT_SYMBOL_GPL(__lock_page_killable);
599
600 /**
601 * __lock_page_nosync - get a lock on the page, without calling sync_page()
602 * @page: the page to lock
603 *
604 * Variant of lock_page that does not require the caller to hold a reference
605 * on the page's mapping.
606 */
607 void __lock_page_nosync(struct page *page)
608 {
609 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
610 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
611 TASK_UNINTERRUPTIBLE);
612 }
613
614 /**
615 * find_get_page - find and get a page reference
616 * @mapping: the address_space to search
617 * @offset: the page index
618 *
619 * Is there a pagecache struct page at the given (mapping, offset) tuple?
620 * If yes, increment its refcount and return it; if no, return NULL.
621 */
622 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
623 {
624 void **pagep;
625 struct page *page;
626
627 rcu_read_lock();
628 repeat:
629 page = NULL;
630 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
631 if (pagep) {
632 page = radix_tree_deref_slot(pagep);
633 if (unlikely(!page || page == RADIX_TREE_RETRY))
634 goto repeat;
635
636 if (!page_cache_get_speculative(page))
637 goto repeat;
638
639 /*
640 * Has the page moved?
641 * This is part of the lockless pagecache protocol. See
642 * include/linux/pagemap.h for details.
643 */
644 if (unlikely(page != *pagep)) {
645 page_cache_release(page);
646 goto repeat;
647 }
648 }
649 rcu_read_unlock();
650
651 return page;
652 }
653 EXPORT_SYMBOL(find_get_page);
654
655 /**
656 * find_lock_page - locate, pin and lock a pagecache page
657 * @mapping: the address_space to search
658 * @offset: the page index
659 *
660 * Locates the desired pagecache page, locks it, increments its reference
661 * count and returns its address.
662 *
663 * Returns zero if the page was not present. find_lock_page() may sleep.
664 */
665 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
666 {
667 struct page *page;
668
669 repeat:
670 page = find_get_page(mapping, offset);
671 if (page) {
672 lock_page(page);
673 /* Has the page been truncated? */
674 if (unlikely(page->mapping != mapping)) {
675 unlock_page(page);
676 page_cache_release(page);
677 goto repeat;
678 }
679 VM_BUG_ON(page->index != offset);
680 }
681 return page;
682 }
683 EXPORT_SYMBOL(find_lock_page);
684
685 /**
686 * find_or_create_page - locate or add a pagecache page
687 * @mapping: the page's address_space
688 * @index: the page's index into the mapping
689 * @gfp_mask: page allocation mode
690 *
691 * Locates a page in the pagecache. If the page is not present, a new page
692 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
693 * LRU list. The returned page is locked and has its reference count
694 * incremented.
695 *
696 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
697 * allocation!
698 *
699 * find_or_create_page() returns the desired page's address, or zero on
700 * memory exhaustion.
701 */
702 struct page *find_or_create_page(struct address_space *mapping,
703 pgoff_t index, gfp_t gfp_mask)
704 {
705 struct page *page;
706 int err;
707 repeat:
708 page = find_lock_page(mapping, index);
709 if (!page) {
710 page = __page_cache_alloc(gfp_mask);
711 if (!page)
712 return NULL;
713 /*
714 * We want a regular kernel memory (not highmem or DMA etc)
715 * allocation for the radix tree nodes, but we need to honour
716 * the context-specific requirements the caller has asked for.
717 * GFP_RECLAIM_MASK collects those requirements.
718 */
719 err = add_to_page_cache_lru(page, mapping, index,
720 (gfp_mask & GFP_RECLAIM_MASK));
721 if (unlikely(err)) {
722 page_cache_release(page);
723 page = NULL;
724 if (err == -EEXIST)
725 goto repeat;
726 }
727 }
728 return page;
729 }
730 EXPORT_SYMBOL(find_or_create_page);
731
732 /**
733 * find_get_pages - gang pagecache lookup
734 * @mapping: The address_space to search
735 * @start: The starting page index
736 * @nr_pages: The maximum number of pages
737 * @pages: Where the resulting pages are placed
738 *
739 * find_get_pages() will search for and return a group of up to
740 * @nr_pages pages in the mapping. The pages are placed at @pages.
741 * find_get_pages() takes a reference against the returned pages.
742 *
743 * The search returns a group of mapping-contiguous pages with ascending
744 * indexes. There may be holes in the indices due to not-present pages.
745 *
746 * find_get_pages() returns the number of pages which were found.
747 */
748 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
749 unsigned int nr_pages, struct page **pages)
750 {
751 unsigned int i;
752 unsigned int ret;
753 unsigned int nr_found;
754
755 rcu_read_lock();
756 restart:
757 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
758 (void ***)pages, start, nr_pages);
759 ret = 0;
760 for (i = 0; i < nr_found; i++) {
761 struct page *page;
762 repeat:
763 page = radix_tree_deref_slot((void **)pages[i]);
764 if (unlikely(!page))
765 continue;
766 /*
767 * this can only trigger if nr_found == 1, making livelock
768 * a non issue.
769 */
770 if (unlikely(page == RADIX_TREE_RETRY))
771 goto restart;
772
773 if (!page_cache_get_speculative(page))
774 goto repeat;
775
776 /* Has the page moved? */
777 if (unlikely(page != *((void **)pages[i]))) {
778 page_cache_release(page);
779 goto repeat;
780 }
781
782 pages[ret] = page;
783 ret++;
784 }
785 rcu_read_unlock();
786 return ret;
787 }
788
789 /**
790 * find_get_pages_contig - gang contiguous pagecache lookup
791 * @mapping: The address_space to search
792 * @index: The starting page index
793 * @nr_pages: The maximum number of pages
794 * @pages: Where the resulting pages are placed
795 *
796 * find_get_pages_contig() works exactly like find_get_pages(), except
797 * that the returned number of pages are guaranteed to be contiguous.
798 *
799 * find_get_pages_contig() returns the number of pages which were found.
800 */
801 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
802 unsigned int nr_pages, struct page **pages)
803 {
804 unsigned int i;
805 unsigned int ret;
806 unsigned int nr_found;
807
808 rcu_read_lock();
809 restart:
810 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
811 (void ***)pages, index, nr_pages);
812 ret = 0;
813 for (i = 0; i < nr_found; i++) {
814 struct page *page;
815 repeat:
816 page = radix_tree_deref_slot((void **)pages[i]);
817 if (unlikely(!page))
818 continue;
819 /*
820 * this can only trigger if nr_found == 1, making livelock
821 * a non issue.
822 */
823 if (unlikely(page == RADIX_TREE_RETRY))
824 goto restart;
825
826 if (page->mapping == NULL || page->index != index)
827 break;
828
829 if (!page_cache_get_speculative(page))
830 goto repeat;
831
832 /* Has the page moved? */
833 if (unlikely(page != *((void **)pages[i]))) {
834 page_cache_release(page);
835 goto repeat;
836 }
837
838 pages[ret] = page;
839 ret++;
840 index++;
841 }
842 rcu_read_unlock();
843 return ret;
844 }
845 EXPORT_SYMBOL(find_get_pages_contig);
846
847 /**
848 * find_get_pages_tag - find and return pages that match @tag
849 * @mapping: the address_space to search
850 * @index: the starting page index
851 * @tag: the tag index
852 * @nr_pages: the maximum number of pages
853 * @pages: where the resulting pages are placed
854 *
855 * Like find_get_pages, except we only return pages which are tagged with
856 * @tag. We update @index to index the next page for the traversal.
857 */
858 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
859 int tag, unsigned int nr_pages, struct page **pages)
860 {
861 unsigned int i;
862 unsigned int ret;
863 unsigned int nr_found;
864
865 rcu_read_lock();
866 restart:
867 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
868 (void ***)pages, *index, nr_pages, tag);
869 ret = 0;
870 for (i = 0; i < nr_found; i++) {
871 struct page *page;
872 repeat:
873 page = radix_tree_deref_slot((void **)pages[i]);
874 if (unlikely(!page))
875 continue;
876 /*
877 * this can only trigger if nr_found == 1, making livelock
878 * a non issue.
879 */
880 if (unlikely(page == RADIX_TREE_RETRY))
881 goto restart;
882
883 if (!page_cache_get_speculative(page))
884 goto repeat;
885
886 /* Has the page moved? */
887 if (unlikely(page != *((void **)pages[i]))) {
888 page_cache_release(page);
889 goto repeat;
890 }
891
892 pages[ret] = page;
893 ret++;
894 }
895 rcu_read_unlock();
896
897 if (ret)
898 *index = pages[ret - 1]->index + 1;
899
900 return ret;
901 }
902 EXPORT_SYMBOL(find_get_pages_tag);
903
904 /**
905 * grab_cache_page_nowait - returns locked page at given index in given cache
906 * @mapping: target address_space
907 * @index: the page index
908 *
909 * Same as grab_cache_page(), but do not wait if the page is unavailable.
910 * This is intended for speculative data generators, where the data can
911 * be regenerated if the page couldn't be grabbed. This routine should
912 * be safe to call while holding the lock for another page.
913 *
914 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
915 * and deadlock against the caller's locked page.
916 */
917 struct page *
918 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
919 {
920 struct page *page = find_get_page(mapping, index);
921
922 if (page) {
923 if (trylock_page(page))
924 return page;
925 page_cache_release(page);
926 return NULL;
927 }
928 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
929 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
930 page_cache_release(page);
931 page = NULL;
932 }
933 return page;
934 }
935 EXPORT_SYMBOL(grab_cache_page_nowait);
936
937 /*
938 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
939 * a _large_ part of the i/o request. Imagine the worst scenario:
940 *
941 * ---R__________________________________________B__________
942 * ^ reading here ^ bad block(assume 4k)
943 *
944 * read(R) => miss => readahead(R...B) => media error => frustrating retries
945 * => failing the whole request => read(R) => read(R+1) =>
946 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
947 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
948 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
949 *
950 * It is going insane. Fix it by quickly scaling down the readahead size.
951 */
952 static void shrink_readahead_size_eio(struct file *filp,
953 struct file_ra_state *ra)
954 {
955 ra->ra_pages /= 4;
956 }
957
958 /**
959 * do_generic_file_read - generic file read routine
960 * @filp: the file to read
961 * @ppos: current file position
962 * @desc: read_descriptor
963 * @actor: read method
964 *
965 * This is a generic file read routine, and uses the
966 * mapping->a_ops->readpage() function for the actual low-level stuff.
967 *
968 * This is really ugly. But the goto's actually try to clarify some
969 * of the logic when it comes to error handling etc.
970 */
971 static void do_generic_file_read(struct file *filp, loff_t *ppos,
972 read_descriptor_t *desc, read_actor_t actor)
973 {
974 struct address_space *mapping = filp->f_mapping;
975 struct inode *inode = mapping->host;
976 struct file_ra_state *ra = &filp->f_ra;
977 pgoff_t index;
978 pgoff_t last_index;
979 pgoff_t prev_index;
980 unsigned long offset; /* offset into pagecache page */
981 unsigned int prev_offset;
982 int error;
983
984 index = *ppos >> PAGE_CACHE_SHIFT;
985 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
986 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
987 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
988 offset = *ppos & ~PAGE_CACHE_MASK;
989
990 for (;;) {
991 struct page *page;
992 pgoff_t end_index;
993 loff_t isize;
994 unsigned long nr, ret;
995
996 cond_resched();
997 find_page:
998 page = find_get_page(mapping, index);
999 if (!page) {
1000 page_cache_sync_readahead(mapping,
1001 ra, filp,
1002 index, last_index - index);
1003 page = find_get_page(mapping, index);
1004 if (unlikely(page == NULL))
1005 goto no_cached_page;
1006 }
1007 if (PageReadahead(page)) {
1008 page_cache_async_readahead(mapping,
1009 ra, filp, page,
1010 index, last_index - index);
1011 }
1012 if (!PageUptodate(page)) {
1013 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1014 !mapping->a_ops->is_partially_uptodate)
1015 goto page_not_up_to_date;
1016 if (!trylock_page(page))
1017 goto page_not_up_to_date;
1018 if (!mapping->a_ops->is_partially_uptodate(page,
1019 desc, offset))
1020 goto page_not_up_to_date_locked;
1021 unlock_page(page);
1022 }
1023 page_ok:
1024 /*
1025 * i_size must be checked after we know the page is Uptodate.
1026 *
1027 * Checking i_size after the check allows us to calculate
1028 * the correct value for "nr", which means the zero-filled
1029 * part of the page is not copied back to userspace (unless
1030 * another truncate extends the file - this is desired though).
1031 */
1032
1033 isize = i_size_read(inode);
1034 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1035 if (unlikely(!isize || index > end_index)) {
1036 page_cache_release(page);
1037 goto out;
1038 }
1039
1040 /* nr is the maximum number of bytes to copy from this page */
1041 nr = PAGE_CACHE_SIZE;
1042 if (index == end_index) {
1043 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1044 if (nr <= offset) {
1045 page_cache_release(page);
1046 goto out;
1047 }
1048 }
1049 nr = nr - offset;
1050
1051 /* If users can be writing to this page using arbitrary
1052 * virtual addresses, take care about potential aliasing
1053 * before reading the page on the kernel side.
1054 */
1055 if (mapping_writably_mapped(mapping))
1056 flush_dcache_page(page);
1057
1058 /*
1059 * When a sequential read accesses a page several times,
1060 * only mark it as accessed the first time.
1061 */
1062 if (prev_index != index || offset != prev_offset)
1063 mark_page_accessed(page);
1064 prev_index = index;
1065
1066 /*
1067 * Ok, we have the page, and it's up-to-date, so
1068 * now we can copy it to user space...
1069 *
1070 * The actor routine returns how many bytes were actually used..
1071 * NOTE! This may not be the same as how much of a user buffer
1072 * we filled up (we may be padding etc), so we can only update
1073 * "pos" here (the actor routine has to update the user buffer
1074 * pointers and the remaining count).
1075 */
1076 ret = actor(desc, page, offset, nr);
1077 offset += ret;
1078 index += offset >> PAGE_CACHE_SHIFT;
1079 offset &= ~PAGE_CACHE_MASK;
1080 prev_offset = offset;
1081
1082 page_cache_release(page);
1083 if (ret == nr && desc->count)
1084 continue;
1085 goto out;
1086
1087 page_not_up_to_date:
1088 /* Get exclusive access to the page ... */
1089 error = lock_page_killable(page);
1090 if (unlikely(error))
1091 goto readpage_error;
1092
1093 page_not_up_to_date_locked:
1094 /* Did it get truncated before we got the lock? */
1095 if (!page->mapping) {
1096 unlock_page(page);
1097 page_cache_release(page);
1098 continue;
1099 }
1100
1101 /* Did somebody else fill it already? */
1102 if (PageUptodate(page)) {
1103 unlock_page(page);
1104 goto page_ok;
1105 }
1106
1107 readpage:
1108 /*
1109 * A previous I/O error may have been due to temporary
1110 * failures, eg. multipath errors.
1111 * PG_error will be set again if readpage fails.
1112 */
1113 ClearPageError(page);
1114 /* Start the actual read. The read will unlock the page. */
1115 error = mapping->a_ops->readpage(filp, page);
1116
1117 if (unlikely(error)) {
1118 if (error == AOP_TRUNCATED_PAGE) {
1119 page_cache_release(page);
1120 goto find_page;
1121 }
1122 goto readpage_error;
1123 }
1124
1125 if (!PageUptodate(page)) {
1126 error = lock_page_killable(page);
1127 if (unlikely(error))
1128 goto readpage_error;
1129 if (!PageUptodate(page)) {
1130 if (page->mapping == NULL) {
1131 /*
1132 * invalidate_mapping_pages got it
1133 */
1134 unlock_page(page);
1135 page_cache_release(page);
1136 goto find_page;
1137 }
1138 unlock_page(page);
1139 shrink_readahead_size_eio(filp, ra);
1140 error = -EIO;
1141 goto readpage_error;
1142 }
1143 unlock_page(page);
1144 }
1145
1146 goto page_ok;
1147
1148 readpage_error:
1149 /* UHHUH! A synchronous read error occurred. Report it */
1150 desc->error = error;
1151 page_cache_release(page);
1152 goto out;
1153
1154 no_cached_page:
1155 /*
1156 * Ok, it wasn't cached, so we need to create a new
1157 * page..
1158 */
1159 page = page_cache_alloc_cold(mapping);
1160 if (!page) {
1161 desc->error = -ENOMEM;
1162 goto out;
1163 }
1164 error = add_to_page_cache_lru(page, mapping,
1165 index, GFP_KERNEL);
1166 if (error) {
1167 page_cache_release(page);
1168 if (error == -EEXIST)
1169 goto find_page;
1170 desc->error = error;
1171 goto out;
1172 }
1173 goto readpage;
1174 }
1175
1176 out:
1177 ra->prev_pos = prev_index;
1178 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1179 ra->prev_pos |= prev_offset;
1180
1181 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1182 file_accessed(filp);
1183 }
1184
1185 int file_read_actor(read_descriptor_t *desc, struct page *page,
1186 unsigned long offset, unsigned long size)
1187 {
1188 char *kaddr;
1189 unsigned long left, count = desc->count;
1190
1191 if (size > count)
1192 size = count;
1193
1194 /*
1195 * Faults on the destination of a read are common, so do it before
1196 * taking the kmap.
1197 */
1198 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1199 kaddr = kmap_atomic(page, KM_USER0);
1200 left = __copy_to_user_inatomic(desc->arg.buf,
1201 kaddr + offset, size);
1202 kunmap_atomic(kaddr, KM_USER0);
1203 if (left == 0)
1204 goto success;
1205 }
1206
1207 /* Do it the slow way */
1208 kaddr = kmap(page);
1209 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1210 kunmap(page);
1211
1212 if (left) {
1213 size -= left;
1214 desc->error = -EFAULT;
1215 }
1216 success:
1217 desc->count = count - size;
1218 desc->written += size;
1219 desc->arg.buf += size;
1220 return size;
1221 }
1222
1223 /*
1224 * Performs necessary checks before doing a write
1225 * @iov: io vector request
1226 * @nr_segs: number of segments in the iovec
1227 * @count: number of bytes to write
1228 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1229 *
1230 * Adjust number of segments and amount of bytes to write (nr_segs should be
1231 * properly initialized first). Returns appropriate error code that caller
1232 * should return or zero in case that write should be allowed.
1233 */
1234 int generic_segment_checks(const struct iovec *iov,
1235 unsigned long *nr_segs, size_t *count, int access_flags)
1236 {
1237 unsigned long seg;
1238 size_t cnt = 0;
1239 for (seg = 0; seg < *nr_segs; seg++) {
1240 const struct iovec *iv = &iov[seg];
1241
1242 /*
1243 * If any segment has a negative length, or the cumulative
1244 * length ever wraps negative then return -EINVAL.
1245 */
1246 cnt += iv->iov_len;
1247 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1248 return -EINVAL;
1249 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1250 continue;
1251 if (seg == 0)
1252 return -EFAULT;
1253 *nr_segs = seg;
1254 cnt -= iv->iov_len; /* This segment is no good */
1255 break;
1256 }
1257 *count = cnt;
1258 return 0;
1259 }
1260 EXPORT_SYMBOL(generic_segment_checks);
1261
1262 /**
1263 * generic_file_aio_read - generic filesystem read routine
1264 * @iocb: kernel I/O control block
1265 * @iov: io vector request
1266 * @nr_segs: number of segments in the iovec
1267 * @pos: current file position
1268 *
1269 * This is the "read()" routine for all filesystems
1270 * that can use the page cache directly.
1271 */
1272 ssize_t
1273 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1274 unsigned long nr_segs, loff_t pos)
1275 {
1276 struct file *filp = iocb->ki_filp;
1277 ssize_t retval;
1278 unsigned long seg = 0;
1279 size_t count;
1280 loff_t *ppos = &iocb->ki_pos;
1281
1282 count = 0;
1283 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1284 if (retval)
1285 return retval;
1286
1287 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1288 if (filp->f_flags & O_DIRECT) {
1289 loff_t size;
1290 struct address_space *mapping;
1291 struct inode *inode;
1292
1293 mapping = filp->f_mapping;
1294 inode = mapping->host;
1295 if (!count)
1296 goto out; /* skip atime */
1297 size = i_size_read(inode);
1298 if (pos < size) {
1299 retval = filemap_write_and_wait_range(mapping, pos,
1300 pos + iov_length(iov, nr_segs) - 1);
1301 if (!retval) {
1302 retval = mapping->a_ops->direct_IO(READ, iocb,
1303 iov, pos, nr_segs);
1304 }
1305 if (retval > 0) {
1306 *ppos = pos + retval;
1307 count -= retval;
1308 }
1309
1310 /*
1311 * Btrfs can have a short DIO read if we encounter
1312 * compressed extents, so if there was an error, or if
1313 * we've already read everything we wanted to, or if
1314 * there was a short read because we hit EOF, go ahead
1315 * and return. Otherwise fallthrough to buffered io for
1316 * the rest of the read.
1317 */
1318 if (retval < 0 || !count || *ppos >= size) {
1319 file_accessed(filp);
1320 goto out;
1321 }
1322 }
1323 }
1324
1325 count = retval;
1326 for (seg = 0; seg < nr_segs; seg++) {
1327 read_descriptor_t desc;
1328 loff_t offset = 0;
1329
1330 /*
1331 * If we did a short DIO read we need to skip the section of the
1332 * iov that we've already read data into.
1333 */
1334 if (count) {
1335 if (count > iov[seg].iov_len) {
1336 count -= iov[seg].iov_len;
1337 continue;
1338 }
1339 offset = count;
1340 count = 0;
1341 }
1342
1343 desc.written = 0;
1344 desc.arg.buf = iov[seg].iov_base + offset;
1345 desc.count = iov[seg].iov_len - offset;
1346 if (desc.count == 0)
1347 continue;
1348 desc.error = 0;
1349 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1350 retval += desc.written;
1351 if (desc.error) {
1352 retval = retval ?: desc.error;
1353 break;
1354 }
1355 if (desc.count > 0)
1356 break;
1357 }
1358 out:
1359 return retval;
1360 }
1361 EXPORT_SYMBOL(generic_file_aio_read);
1362
1363 static ssize_t
1364 do_readahead(struct address_space *mapping, struct file *filp,
1365 pgoff_t index, unsigned long nr)
1366 {
1367 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1368 return -EINVAL;
1369
1370 force_page_cache_readahead(mapping, filp, index, nr);
1371 return 0;
1372 }
1373
1374 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1375 {
1376 ssize_t ret;
1377 struct file *file;
1378
1379 ret = -EBADF;
1380 file = fget(fd);
1381 if (file) {
1382 if (file->f_mode & FMODE_READ) {
1383 struct address_space *mapping = file->f_mapping;
1384 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1385 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1386 unsigned long len = end - start + 1;
1387 ret = do_readahead(mapping, file, start, len);
1388 }
1389 fput(file);
1390 }
1391 return ret;
1392 }
1393 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1394 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1395 {
1396 return SYSC_readahead((int) fd, offset, (size_t) count);
1397 }
1398 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1399 #endif
1400
1401 #ifdef CONFIG_MMU
1402 /**
1403 * page_cache_read - adds requested page to the page cache if not already there
1404 * @file: file to read
1405 * @offset: page index
1406 *
1407 * This adds the requested page to the page cache if it isn't already there,
1408 * and schedules an I/O to read in its contents from disk.
1409 */
1410 static int page_cache_read(struct file *file, pgoff_t offset)
1411 {
1412 struct address_space *mapping = file->f_mapping;
1413 struct page *page;
1414 int ret;
1415
1416 do {
1417 page = page_cache_alloc_cold(mapping);
1418 if (!page)
1419 return -ENOMEM;
1420
1421 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1422 if (ret == 0)
1423 ret = mapping->a_ops->readpage(file, page);
1424 else if (ret == -EEXIST)
1425 ret = 0; /* losing race to add is OK */
1426
1427 page_cache_release(page);
1428
1429 } while (ret == AOP_TRUNCATED_PAGE);
1430
1431 return ret;
1432 }
1433
1434 #define MMAP_LOTSAMISS (100)
1435
1436 /*
1437 * Synchronous readahead happens when we don't even find
1438 * a page in the page cache at all.
1439 */
1440 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1441 struct file_ra_state *ra,
1442 struct file *file,
1443 pgoff_t offset)
1444 {
1445 unsigned long ra_pages;
1446 struct address_space *mapping = file->f_mapping;
1447
1448 /* If we don't want any read-ahead, don't bother */
1449 if (VM_RandomReadHint(vma))
1450 return;
1451
1452 if (VM_SequentialReadHint(vma) ||
1453 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1454 page_cache_sync_readahead(mapping, ra, file, offset,
1455 ra->ra_pages);
1456 return;
1457 }
1458
1459 if (ra->mmap_miss < INT_MAX)
1460 ra->mmap_miss++;
1461
1462 /*
1463 * Do we miss much more than hit in this file? If so,
1464 * stop bothering with read-ahead. It will only hurt.
1465 */
1466 if (ra->mmap_miss > MMAP_LOTSAMISS)
1467 return;
1468
1469 /*
1470 * mmap read-around
1471 */
1472 ra_pages = max_sane_readahead(ra->ra_pages);
1473 if (ra_pages) {
1474 ra->start = max_t(long, 0, offset - ra_pages/2);
1475 ra->size = ra_pages;
1476 ra->async_size = 0;
1477 ra_submit(ra, mapping, file);
1478 }
1479 }
1480
1481 /*
1482 * Asynchronous readahead happens when we find the page and PG_readahead,
1483 * so we want to possibly extend the readahead further..
1484 */
1485 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1486 struct file_ra_state *ra,
1487 struct file *file,
1488 struct page *page,
1489 pgoff_t offset)
1490 {
1491 struct address_space *mapping = file->f_mapping;
1492
1493 /* If we don't want any read-ahead, don't bother */
1494 if (VM_RandomReadHint(vma))
1495 return;
1496 if (ra->mmap_miss > 0)
1497 ra->mmap_miss--;
1498 if (PageReadahead(page))
1499 page_cache_async_readahead(mapping, ra, file,
1500 page, offset, ra->ra_pages);
1501 }
1502
1503 /**
1504 * filemap_fault - read in file data for page fault handling
1505 * @vma: vma in which the fault was taken
1506 * @vmf: struct vm_fault containing details of the fault
1507 *
1508 * filemap_fault() is invoked via the vma operations vector for a
1509 * mapped memory region to read in file data during a page fault.
1510 *
1511 * The goto's are kind of ugly, but this streamlines the normal case of having
1512 * it in the page cache, and handles the special cases reasonably without
1513 * having a lot of duplicated code.
1514 */
1515 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1516 {
1517 int error;
1518 struct file *file = vma->vm_file;
1519 struct address_space *mapping = file->f_mapping;
1520 struct file_ra_state *ra = &file->f_ra;
1521 struct inode *inode = mapping->host;
1522 pgoff_t offset = vmf->pgoff;
1523 struct page *page;
1524 pgoff_t size;
1525 int ret = 0;
1526
1527 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1528 if (offset >= size)
1529 return VM_FAULT_SIGBUS;
1530
1531 /*
1532 * Do we have something in the page cache already?
1533 */
1534 page = find_get_page(mapping, offset);
1535 if (likely(page)) {
1536 /*
1537 * We found the page, so try async readahead before
1538 * waiting for the lock.
1539 */
1540 do_async_mmap_readahead(vma, ra, file, page, offset);
1541 lock_page(page);
1542
1543 /* Did it get truncated? */
1544 if (unlikely(page->mapping != mapping)) {
1545 unlock_page(page);
1546 put_page(page);
1547 goto no_cached_page;
1548 }
1549 } else {
1550 /* No page in the page cache at all */
1551 do_sync_mmap_readahead(vma, ra, file, offset);
1552 count_vm_event(PGMAJFAULT);
1553 ret = VM_FAULT_MAJOR;
1554 retry_find:
1555 page = find_lock_page(mapping, offset);
1556 if (!page)
1557 goto no_cached_page;
1558 }
1559
1560 /*
1561 * We have a locked page in the page cache, now we need to check
1562 * that it's up-to-date. If not, it is going to be due to an error.
1563 */
1564 if (unlikely(!PageUptodate(page)))
1565 goto page_not_uptodate;
1566
1567 /*
1568 * Found the page and have a reference on it.
1569 * We must recheck i_size under page lock.
1570 */
1571 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1572 if (unlikely(offset >= size)) {
1573 unlock_page(page);
1574 page_cache_release(page);
1575 return VM_FAULT_SIGBUS;
1576 }
1577
1578 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1579 vmf->page = page;
1580 return ret | VM_FAULT_LOCKED;
1581
1582 no_cached_page:
1583 /*
1584 * We're only likely to ever get here if MADV_RANDOM is in
1585 * effect.
1586 */
1587 error = page_cache_read(file, offset);
1588
1589 /*
1590 * The page we want has now been added to the page cache.
1591 * In the unlikely event that someone removed it in the
1592 * meantime, we'll just come back here and read it again.
1593 */
1594 if (error >= 0)
1595 goto retry_find;
1596
1597 /*
1598 * An error return from page_cache_read can result if the
1599 * system is low on memory, or a problem occurs while trying
1600 * to schedule I/O.
1601 */
1602 if (error == -ENOMEM)
1603 return VM_FAULT_OOM;
1604 return VM_FAULT_SIGBUS;
1605
1606 page_not_uptodate:
1607 /*
1608 * Umm, take care of errors if the page isn't up-to-date.
1609 * Try to re-read it _once_. We do this synchronously,
1610 * because there really aren't any performance issues here
1611 * and we need to check for errors.
1612 */
1613 ClearPageError(page);
1614 error = mapping->a_ops->readpage(file, page);
1615 if (!error) {
1616 wait_on_page_locked(page);
1617 if (!PageUptodate(page))
1618 error = -EIO;
1619 }
1620 page_cache_release(page);
1621
1622 if (!error || error == AOP_TRUNCATED_PAGE)
1623 goto retry_find;
1624
1625 /* Things didn't work out. Return zero to tell the mm layer so. */
1626 shrink_readahead_size_eio(file, ra);
1627 return VM_FAULT_SIGBUS;
1628 }
1629 EXPORT_SYMBOL(filemap_fault);
1630
1631 const struct vm_operations_struct generic_file_vm_ops = {
1632 .fault = filemap_fault,
1633 };
1634
1635 /* This is used for a general mmap of a disk file */
1636
1637 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1638 {
1639 struct address_space *mapping = file->f_mapping;
1640
1641 if (!mapping->a_ops->readpage)
1642 return -ENOEXEC;
1643 file_accessed(file);
1644 vma->vm_ops = &generic_file_vm_ops;
1645 vma->vm_flags |= VM_CAN_NONLINEAR;
1646 return 0;
1647 }
1648
1649 /*
1650 * This is for filesystems which do not implement ->writepage.
1651 */
1652 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1653 {
1654 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1655 return -EINVAL;
1656 return generic_file_mmap(file, vma);
1657 }
1658 #else
1659 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1660 {
1661 return -ENOSYS;
1662 }
1663 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1664 {
1665 return -ENOSYS;
1666 }
1667 #endif /* CONFIG_MMU */
1668
1669 EXPORT_SYMBOL(generic_file_mmap);
1670 EXPORT_SYMBOL(generic_file_readonly_mmap);
1671
1672 static struct page *__read_cache_page(struct address_space *mapping,
1673 pgoff_t index,
1674 int (*filler)(void *,struct page*),
1675 void *data,
1676 gfp_t gfp)
1677 {
1678 struct page *page;
1679 int err;
1680 repeat:
1681 page = find_get_page(mapping, index);
1682 if (!page) {
1683 page = __page_cache_alloc(gfp | __GFP_COLD);
1684 if (!page)
1685 return ERR_PTR(-ENOMEM);
1686 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1687 if (unlikely(err)) {
1688 page_cache_release(page);
1689 if (err == -EEXIST)
1690 goto repeat;
1691 /* Presumably ENOMEM for radix tree node */
1692 return ERR_PTR(err);
1693 }
1694 err = filler(data, page);
1695 if (err < 0) {
1696 page_cache_release(page);
1697 page = ERR_PTR(err);
1698 }
1699 }
1700 return page;
1701 }
1702
1703 static struct page *do_read_cache_page(struct address_space *mapping,
1704 pgoff_t index,
1705 int (*filler)(void *,struct page*),
1706 void *data,
1707 gfp_t gfp)
1708
1709 {
1710 struct page *page;
1711 int err;
1712
1713 retry:
1714 page = __read_cache_page(mapping, index, filler, data, gfp);
1715 if (IS_ERR(page))
1716 return page;
1717 if (PageUptodate(page))
1718 goto out;
1719
1720 lock_page(page);
1721 if (!page->mapping) {
1722 unlock_page(page);
1723 page_cache_release(page);
1724 goto retry;
1725 }
1726 if (PageUptodate(page)) {
1727 unlock_page(page);
1728 goto out;
1729 }
1730 err = filler(data, page);
1731 if (err < 0) {
1732 page_cache_release(page);
1733 return ERR_PTR(err);
1734 }
1735 out:
1736 mark_page_accessed(page);
1737 return page;
1738 }
1739
1740 /**
1741 * read_cache_page_async - read into page cache, fill it if needed
1742 * @mapping: the page's address_space
1743 * @index: the page index
1744 * @filler: function to perform the read
1745 * @data: destination for read data
1746 *
1747 * Same as read_cache_page, but don't wait for page to become unlocked
1748 * after submitting it to the filler.
1749 *
1750 * Read into the page cache. If a page already exists, and PageUptodate() is
1751 * not set, try to fill the page but don't wait for it to become unlocked.
1752 *
1753 * If the page does not get brought uptodate, return -EIO.
1754 */
1755 struct page *read_cache_page_async(struct address_space *mapping,
1756 pgoff_t index,
1757 int (*filler)(void *,struct page*),
1758 void *data)
1759 {
1760 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1761 }
1762 EXPORT_SYMBOL(read_cache_page_async);
1763
1764 static struct page *wait_on_page_read(struct page *page)
1765 {
1766 if (!IS_ERR(page)) {
1767 wait_on_page_locked(page);
1768 if (!PageUptodate(page)) {
1769 page_cache_release(page);
1770 page = ERR_PTR(-EIO);
1771 }
1772 }
1773 return page;
1774 }
1775
1776 /**
1777 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1778 * @mapping: the page's address_space
1779 * @index: the page index
1780 * @gfp: the page allocator flags to use if allocating
1781 *
1782 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1783 * any new page allocations done using the specified allocation flags. Note
1784 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1785 * expect to do this atomically or anything like that - but you can pass in
1786 * other page requirements.
1787 *
1788 * If the page does not get brought uptodate, return -EIO.
1789 */
1790 struct page *read_cache_page_gfp(struct address_space *mapping,
1791 pgoff_t index,
1792 gfp_t gfp)
1793 {
1794 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1795
1796 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1797 }
1798 EXPORT_SYMBOL(read_cache_page_gfp);
1799
1800 /**
1801 * read_cache_page - read into page cache, fill it if needed
1802 * @mapping: the page's address_space
1803 * @index: the page index
1804 * @filler: function to perform the read
1805 * @data: destination for read data
1806 *
1807 * Read into the page cache. If a page already exists, and PageUptodate() is
1808 * not set, try to fill the page then wait for it to become unlocked.
1809 *
1810 * If the page does not get brought uptodate, return -EIO.
1811 */
1812 struct page *read_cache_page(struct address_space *mapping,
1813 pgoff_t index,
1814 int (*filler)(void *,struct page*),
1815 void *data)
1816 {
1817 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1818 }
1819 EXPORT_SYMBOL(read_cache_page);
1820
1821 /*
1822 * The logic we want is
1823 *
1824 * if suid or (sgid and xgrp)
1825 * remove privs
1826 */
1827 int should_remove_suid(struct dentry *dentry)
1828 {
1829 mode_t mode = dentry->d_inode->i_mode;
1830 int kill = 0;
1831
1832 /* suid always must be killed */
1833 if (unlikely(mode & S_ISUID))
1834 kill = ATTR_KILL_SUID;
1835
1836 /*
1837 * sgid without any exec bits is just a mandatory locking mark; leave
1838 * it alone. If some exec bits are set, it's a real sgid; kill it.
1839 */
1840 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1841 kill |= ATTR_KILL_SGID;
1842
1843 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1844 return kill;
1845
1846 return 0;
1847 }
1848 EXPORT_SYMBOL(should_remove_suid);
1849
1850 static int __remove_suid(struct dentry *dentry, int kill)
1851 {
1852 struct iattr newattrs;
1853
1854 newattrs.ia_valid = ATTR_FORCE | kill;
1855 return notify_change(dentry, &newattrs);
1856 }
1857
1858 int file_remove_suid(struct file *file)
1859 {
1860 struct dentry *dentry = file->f_path.dentry;
1861 int killsuid = should_remove_suid(dentry);
1862 int killpriv = security_inode_need_killpriv(dentry);
1863 int error = 0;
1864
1865 if (killpriv < 0)
1866 return killpriv;
1867 if (killpriv)
1868 error = security_inode_killpriv(dentry);
1869 if (!error && killsuid)
1870 error = __remove_suid(dentry, killsuid);
1871
1872 return error;
1873 }
1874 EXPORT_SYMBOL(file_remove_suid);
1875
1876 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1877 const struct iovec *iov, size_t base, size_t bytes)
1878 {
1879 size_t copied = 0, left = 0;
1880
1881 while (bytes) {
1882 char __user *buf = iov->iov_base + base;
1883 int copy = min(bytes, iov->iov_len - base);
1884
1885 base = 0;
1886 left = __copy_from_user_inatomic(vaddr, buf, copy);
1887 copied += copy;
1888 bytes -= copy;
1889 vaddr += copy;
1890 iov++;
1891
1892 if (unlikely(left))
1893 break;
1894 }
1895 return copied - left;
1896 }
1897
1898 /*
1899 * Copy as much as we can into the page and return the number of bytes which
1900 * were successfully copied. If a fault is encountered then return the number of
1901 * bytes which were copied.
1902 */
1903 size_t iov_iter_copy_from_user_atomic(struct page *page,
1904 struct iov_iter *i, unsigned long offset, size_t bytes)
1905 {
1906 char *kaddr;
1907 size_t copied;
1908
1909 BUG_ON(!in_atomic());
1910 kaddr = kmap_atomic(page, KM_USER0);
1911 if (likely(i->nr_segs == 1)) {
1912 int left;
1913 char __user *buf = i->iov->iov_base + i->iov_offset;
1914 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1915 copied = bytes - left;
1916 } else {
1917 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1918 i->iov, i->iov_offset, bytes);
1919 }
1920 kunmap_atomic(kaddr, KM_USER0);
1921
1922 return copied;
1923 }
1924 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1925
1926 /*
1927 * This has the same sideeffects and return value as
1928 * iov_iter_copy_from_user_atomic().
1929 * The difference is that it attempts to resolve faults.
1930 * Page must not be locked.
1931 */
1932 size_t iov_iter_copy_from_user(struct page *page,
1933 struct iov_iter *i, unsigned long offset, size_t bytes)
1934 {
1935 char *kaddr;
1936 size_t copied;
1937
1938 kaddr = kmap(page);
1939 if (likely(i->nr_segs == 1)) {
1940 int left;
1941 char __user *buf = i->iov->iov_base + i->iov_offset;
1942 left = __copy_from_user(kaddr + offset, buf, bytes);
1943 copied = bytes - left;
1944 } else {
1945 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1946 i->iov, i->iov_offset, bytes);
1947 }
1948 kunmap(page);
1949 return copied;
1950 }
1951 EXPORT_SYMBOL(iov_iter_copy_from_user);
1952
1953 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1954 {
1955 BUG_ON(i->count < bytes);
1956
1957 if (likely(i->nr_segs == 1)) {
1958 i->iov_offset += bytes;
1959 i->count -= bytes;
1960 } else {
1961 const struct iovec *iov = i->iov;
1962 size_t base = i->iov_offset;
1963
1964 /*
1965 * The !iov->iov_len check ensures we skip over unlikely
1966 * zero-length segments (without overruning the iovec).
1967 */
1968 while (bytes || unlikely(i->count && !iov->iov_len)) {
1969 int copy;
1970
1971 copy = min(bytes, iov->iov_len - base);
1972 BUG_ON(!i->count || i->count < copy);
1973 i->count -= copy;
1974 bytes -= copy;
1975 base += copy;
1976 if (iov->iov_len == base) {
1977 iov++;
1978 base = 0;
1979 }
1980 }
1981 i->iov = iov;
1982 i->iov_offset = base;
1983 }
1984 }
1985 EXPORT_SYMBOL(iov_iter_advance);
1986
1987 /*
1988 * Fault in the first iovec of the given iov_iter, to a maximum length
1989 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1990 * accessed (ie. because it is an invalid address).
1991 *
1992 * writev-intensive code may want this to prefault several iovecs -- that
1993 * would be possible (callers must not rely on the fact that _only_ the
1994 * first iovec will be faulted with the current implementation).
1995 */
1996 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1997 {
1998 char __user *buf = i->iov->iov_base + i->iov_offset;
1999 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2000 return fault_in_pages_readable(buf, bytes);
2001 }
2002 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2003
2004 /*
2005 * Return the count of just the current iov_iter segment.
2006 */
2007 size_t iov_iter_single_seg_count(struct iov_iter *i)
2008 {
2009 const struct iovec *iov = i->iov;
2010 if (i->nr_segs == 1)
2011 return i->count;
2012 else
2013 return min(i->count, iov->iov_len - i->iov_offset);
2014 }
2015 EXPORT_SYMBOL(iov_iter_single_seg_count);
2016
2017 /*
2018 * Performs necessary checks before doing a write
2019 *
2020 * Can adjust writing position or amount of bytes to write.
2021 * Returns appropriate error code that caller should return or
2022 * zero in case that write should be allowed.
2023 */
2024 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2025 {
2026 struct inode *inode = file->f_mapping->host;
2027 unsigned long limit = rlimit(RLIMIT_FSIZE);
2028
2029 if (unlikely(*pos < 0))
2030 return -EINVAL;
2031
2032 if (!isblk) {
2033 /* FIXME: this is for backwards compatibility with 2.4 */
2034 if (file->f_flags & O_APPEND)
2035 *pos = i_size_read(inode);
2036
2037 if (limit != RLIM_INFINITY) {
2038 if (*pos >= limit) {
2039 send_sig(SIGXFSZ, current, 0);
2040 return -EFBIG;
2041 }
2042 if (*count > limit - (typeof(limit))*pos) {
2043 *count = limit - (typeof(limit))*pos;
2044 }
2045 }
2046 }
2047
2048 /*
2049 * LFS rule
2050 */
2051 if (unlikely(*pos + *count > MAX_NON_LFS &&
2052 !(file->f_flags & O_LARGEFILE))) {
2053 if (*pos >= MAX_NON_LFS) {
2054 return -EFBIG;
2055 }
2056 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2057 *count = MAX_NON_LFS - (unsigned long)*pos;
2058 }
2059 }
2060
2061 /*
2062 * Are we about to exceed the fs block limit ?
2063 *
2064 * If we have written data it becomes a short write. If we have
2065 * exceeded without writing data we send a signal and return EFBIG.
2066 * Linus frestrict idea will clean these up nicely..
2067 */
2068 if (likely(!isblk)) {
2069 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2070 if (*count || *pos > inode->i_sb->s_maxbytes) {
2071 return -EFBIG;
2072 }
2073 /* zero-length writes at ->s_maxbytes are OK */
2074 }
2075
2076 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2077 *count = inode->i_sb->s_maxbytes - *pos;
2078 } else {
2079 #ifdef CONFIG_BLOCK
2080 loff_t isize;
2081 if (bdev_read_only(I_BDEV(inode)))
2082 return -EPERM;
2083 isize = i_size_read(inode);
2084 if (*pos >= isize) {
2085 if (*count || *pos > isize)
2086 return -ENOSPC;
2087 }
2088
2089 if (*pos + *count > isize)
2090 *count = isize - *pos;
2091 #else
2092 return -EPERM;
2093 #endif
2094 }
2095 return 0;
2096 }
2097 EXPORT_SYMBOL(generic_write_checks);
2098
2099 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2100 loff_t pos, unsigned len, unsigned flags,
2101 struct page **pagep, void **fsdata)
2102 {
2103 const struct address_space_operations *aops = mapping->a_ops;
2104
2105 return aops->write_begin(file, mapping, pos, len, flags,
2106 pagep, fsdata);
2107 }
2108 EXPORT_SYMBOL(pagecache_write_begin);
2109
2110 int pagecache_write_end(struct file *file, struct address_space *mapping,
2111 loff_t pos, unsigned len, unsigned copied,
2112 struct page *page, void *fsdata)
2113 {
2114 const struct address_space_operations *aops = mapping->a_ops;
2115
2116 mark_page_accessed(page);
2117 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2118 }
2119 EXPORT_SYMBOL(pagecache_write_end);
2120
2121 ssize_t
2122 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2123 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2124 size_t count, size_t ocount)
2125 {
2126 struct file *file = iocb->ki_filp;
2127 struct address_space *mapping = file->f_mapping;
2128 struct inode *inode = mapping->host;
2129 ssize_t written;
2130 size_t write_len;
2131 pgoff_t end;
2132
2133 if (count != ocount)
2134 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2135
2136 write_len = iov_length(iov, *nr_segs);
2137 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2138
2139 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2140 if (written)
2141 goto out;
2142
2143 /*
2144 * After a write we want buffered reads to be sure to go to disk to get
2145 * the new data. We invalidate clean cached page from the region we're
2146 * about to write. We do this *before* the write so that we can return
2147 * without clobbering -EIOCBQUEUED from ->direct_IO().
2148 */
2149 if (mapping->nrpages) {
2150 written = invalidate_inode_pages2_range(mapping,
2151 pos >> PAGE_CACHE_SHIFT, end);
2152 /*
2153 * If a page can not be invalidated, return 0 to fall back
2154 * to buffered write.
2155 */
2156 if (written) {
2157 if (written == -EBUSY)
2158 return 0;
2159 goto out;
2160 }
2161 }
2162
2163 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2164
2165 /*
2166 * Finally, try again to invalidate clean pages which might have been
2167 * cached by non-direct readahead, or faulted in by get_user_pages()
2168 * if the source of the write was an mmap'ed region of the file
2169 * we're writing. Either one is a pretty crazy thing to do,
2170 * so we don't support it 100%. If this invalidation
2171 * fails, tough, the write still worked...
2172 */
2173 if (mapping->nrpages) {
2174 invalidate_inode_pages2_range(mapping,
2175 pos >> PAGE_CACHE_SHIFT, end);
2176 }
2177
2178 if (written > 0) {
2179 loff_t end = pos + written;
2180 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2181 i_size_write(inode, end);
2182 mark_inode_dirty(inode);
2183 }
2184 *ppos = end;
2185 }
2186 out:
2187 return written;
2188 }
2189 EXPORT_SYMBOL(generic_file_direct_write);
2190
2191 /*
2192 * Find or create a page at the given pagecache position. Return the locked
2193 * page. This function is specifically for buffered writes.
2194 */
2195 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2196 pgoff_t index, unsigned flags)
2197 {
2198 int status;
2199 struct page *page;
2200 gfp_t gfp_notmask = 0;
2201 if (flags & AOP_FLAG_NOFS)
2202 gfp_notmask = __GFP_FS;
2203 repeat:
2204 page = find_lock_page(mapping, index);
2205 if (likely(page))
2206 return page;
2207
2208 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2209 if (!page)
2210 return NULL;
2211 status = add_to_page_cache_lru(page, mapping, index,
2212 GFP_KERNEL & ~gfp_notmask);
2213 if (unlikely(status)) {
2214 page_cache_release(page);
2215 if (status == -EEXIST)
2216 goto repeat;
2217 return NULL;
2218 }
2219 return page;
2220 }
2221 EXPORT_SYMBOL(grab_cache_page_write_begin);
2222
2223 static ssize_t generic_perform_write(struct file *file,
2224 struct iov_iter *i, loff_t pos)
2225 {
2226 struct address_space *mapping = file->f_mapping;
2227 const struct address_space_operations *a_ops = mapping->a_ops;
2228 long status = 0;
2229 ssize_t written = 0;
2230 unsigned int flags = 0;
2231
2232 /*
2233 * Copies from kernel address space cannot fail (NFSD is a big user).
2234 */
2235 if (segment_eq(get_fs(), KERNEL_DS))
2236 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2237
2238 do {
2239 struct page *page;
2240 pgoff_t index; /* Pagecache index for current page */
2241 unsigned long offset; /* Offset into pagecache page */
2242 unsigned long bytes; /* Bytes to write to page */
2243 size_t copied; /* Bytes copied from user */
2244 void *fsdata;
2245
2246 offset = (pos & (PAGE_CACHE_SIZE - 1));
2247 index = pos >> PAGE_CACHE_SHIFT;
2248 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2249 iov_iter_count(i));
2250
2251 again:
2252
2253 /*
2254 * Bring in the user page that we will copy from _first_.
2255 * Otherwise there's a nasty deadlock on copying from the
2256 * same page as we're writing to, without it being marked
2257 * up-to-date.
2258 *
2259 * Not only is this an optimisation, but it is also required
2260 * to check that the address is actually valid, when atomic
2261 * usercopies are used, below.
2262 */
2263 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2264 status = -EFAULT;
2265 break;
2266 }
2267
2268 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2269 &page, &fsdata);
2270 if (unlikely(status))
2271 break;
2272
2273 if (mapping_writably_mapped(mapping))
2274 flush_dcache_page(page);
2275
2276 pagefault_disable();
2277 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2278 pagefault_enable();
2279 flush_dcache_page(page);
2280
2281 mark_page_accessed(page);
2282 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2283 page, fsdata);
2284 if (unlikely(status < 0))
2285 break;
2286 copied = status;
2287
2288 cond_resched();
2289
2290 iov_iter_advance(i, copied);
2291 if (unlikely(copied == 0)) {
2292 /*
2293 * If we were unable to copy any data at all, we must
2294 * fall back to a single segment length write.
2295 *
2296 * If we didn't fallback here, we could livelock
2297 * because not all segments in the iov can be copied at
2298 * once without a pagefault.
2299 */
2300 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2301 iov_iter_single_seg_count(i));
2302 goto again;
2303 }
2304 pos += copied;
2305 written += copied;
2306
2307 balance_dirty_pages_ratelimited(mapping);
2308
2309 } while (iov_iter_count(i));
2310
2311 return written ? written : status;
2312 }
2313
2314 ssize_t
2315 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2316 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2317 size_t count, ssize_t written)
2318 {
2319 struct file *file = iocb->ki_filp;
2320 ssize_t status;
2321 struct iov_iter i;
2322
2323 iov_iter_init(&i, iov, nr_segs, count, written);
2324 status = generic_perform_write(file, &i, pos);
2325
2326 if (likely(status >= 0)) {
2327 written += status;
2328 *ppos = pos + status;
2329 }
2330
2331 return written ? written : status;
2332 }
2333 EXPORT_SYMBOL(generic_file_buffered_write);
2334
2335 /**
2336 * __generic_file_aio_write - write data to a file
2337 * @iocb: IO state structure (file, offset, etc.)
2338 * @iov: vector with data to write
2339 * @nr_segs: number of segments in the vector
2340 * @ppos: position where to write
2341 *
2342 * This function does all the work needed for actually writing data to a
2343 * file. It does all basic checks, removes SUID from the file, updates
2344 * modification times and calls proper subroutines depending on whether we
2345 * do direct IO or a standard buffered write.
2346 *
2347 * It expects i_mutex to be grabbed unless we work on a block device or similar
2348 * object which does not need locking at all.
2349 *
2350 * This function does *not* take care of syncing data in case of O_SYNC write.
2351 * A caller has to handle it. This is mainly due to the fact that we want to
2352 * avoid syncing under i_mutex.
2353 */
2354 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2355 unsigned long nr_segs, loff_t *ppos)
2356 {
2357 struct file *file = iocb->ki_filp;
2358 struct address_space * mapping = file->f_mapping;
2359 size_t ocount; /* original count */
2360 size_t count; /* after file limit checks */
2361 struct inode *inode = mapping->host;
2362 loff_t pos;
2363 ssize_t written;
2364 ssize_t err;
2365
2366 ocount = 0;
2367 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2368 if (err)
2369 return err;
2370
2371 count = ocount;
2372 pos = *ppos;
2373
2374 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2375
2376 /* We can write back this queue in page reclaim */
2377 current->backing_dev_info = mapping->backing_dev_info;
2378 written = 0;
2379
2380 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2381 if (err)
2382 goto out;
2383
2384 if (count == 0)
2385 goto out;
2386
2387 err = file_remove_suid(file);
2388 if (err)
2389 goto out;
2390
2391 file_update_time(file);
2392
2393 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2394 if (unlikely(file->f_flags & O_DIRECT)) {
2395 loff_t endbyte;
2396 ssize_t written_buffered;
2397
2398 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2399 ppos, count, ocount);
2400 if (written < 0 || written == count)
2401 goto out;
2402 /*
2403 * direct-io write to a hole: fall through to buffered I/O
2404 * for completing the rest of the request.
2405 */
2406 pos += written;
2407 count -= written;
2408 written_buffered = generic_file_buffered_write(iocb, iov,
2409 nr_segs, pos, ppos, count,
2410 written);
2411 /*
2412 * If generic_file_buffered_write() retuned a synchronous error
2413 * then we want to return the number of bytes which were
2414 * direct-written, or the error code if that was zero. Note
2415 * that this differs from normal direct-io semantics, which
2416 * will return -EFOO even if some bytes were written.
2417 */
2418 if (written_buffered < 0) {
2419 err = written_buffered;
2420 goto out;
2421 }
2422
2423 /*
2424 * We need to ensure that the page cache pages are written to
2425 * disk and invalidated to preserve the expected O_DIRECT
2426 * semantics.
2427 */
2428 endbyte = pos + written_buffered - written - 1;
2429 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2430 if (err == 0) {
2431 written = written_buffered;
2432 invalidate_mapping_pages(mapping,
2433 pos >> PAGE_CACHE_SHIFT,
2434 endbyte >> PAGE_CACHE_SHIFT);
2435 } else {
2436 /*
2437 * We don't know how much we wrote, so just return
2438 * the number of bytes which were direct-written
2439 */
2440 }
2441 } else {
2442 written = generic_file_buffered_write(iocb, iov, nr_segs,
2443 pos, ppos, count, written);
2444 }
2445 out:
2446 current->backing_dev_info = NULL;
2447 return written ? written : err;
2448 }
2449 EXPORT_SYMBOL(__generic_file_aio_write);
2450
2451 /**
2452 * generic_file_aio_write - write data to a file
2453 * @iocb: IO state structure
2454 * @iov: vector with data to write
2455 * @nr_segs: number of segments in the vector
2456 * @pos: position in file where to write
2457 *
2458 * This is a wrapper around __generic_file_aio_write() to be used by most
2459 * filesystems. It takes care of syncing the file in case of O_SYNC file
2460 * and acquires i_mutex as needed.
2461 */
2462 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2463 unsigned long nr_segs, loff_t pos)
2464 {
2465 struct file *file = iocb->ki_filp;
2466 struct inode *inode = file->f_mapping->host;
2467 ssize_t ret;
2468
2469 BUG_ON(iocb->ki_pos != pos);
2470
2471 mutex_lock(&inode->i_mutex);
2472 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2473 mutex_unlock(&inode->i_mutex);
2474
2475 if (ret > 0 || ret == -EIOCBQUEUED) {
2476 ssize_t err;
2477
2478 err = generic_write_sync(file, pos, ret);
2479 if (err < 0 && ret > 0)
2480 ret = err;
2481 }
2482 return ret;
2483 }
2484 EXPORT_SYMBOL(generic_file_aio_write);
2485
2486 /**
2487 * try_to_release_page() - release old fs-specific metadata on a page
2488 *
2489 * @page: the page which the kernel is trying to free
2490 * @gfp_mask: memory allocation flags (and I/O mode)
2491 *
2492 * The address_space is to try to release any data against the page
2493 * (presumably at page->private). If the release was successful, return `1'.
2494 * Otherwise return zero.
2495 *
2496 * This may also be called if PG_fscache is set on a page, indicating that the
2497 * page is known to the local caching routines.
2498 *
2499 * The @gfp_mask argument specifies whether I/O may be performed to release
2500 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2501 *
2502 */
2503 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2504 {
2505 struct address_space * const mapping = page->mapping;
2506
2507 BUG_ON(!PageLocked(page));
2508 if (PageWriteback(page))
2509 return 0;
2510
2511 if (mapping && mapping->a_ops->releasepage)
2512 return mapping->a_ops->releasepage(page, gfp_mask);
2513 return try_to_free_buffers(page);
2514 }
2515
2516 EXPORT_SYMBOL(try_to_release_page);