]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/filemap.c
Merge tag 'nfsd-5.8' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-hirsute-kernel.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include "internal.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
48
49 /*
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53
54 #include <asm/mman.h>
55
56 /*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68 /*
69 * Lock ordering:
70 *
71 * ->i_mmap_rwsem (truncate_pagecache)
72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
73 * ->swap_lock (exclusive_swap_page, others)
74 * ->i_pages lock
75 *
76 * ->i_mutex
77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
78 *
79 * ->mmap_lock
80 * ->i_mmap_rwsem
81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
83 *
84 * ->mmap_lock
85 * ->lock_page (access_process_vm)
86 *
87 * ->i_mutex (generic_perform_write)
88 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
89 *
90 * bdi->wb.list_lock
91 * sb_lock (fs/fs-writeback.c)
92 * ->i_pages lock (__sync_single_inode)
93 *
94 * ->i_mmap_rwsem
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 *
100 * ->page_table_lock or pte_lock
101 * ->swap_lock (try_to_unmap_one)
102 * ->private_lock (try_to_unmap_one)
103 * ->i_pages lock (try_to_unmap_one)
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
106 * ->private_lock (page_remove_rmap->set_page_dirty)
107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
115 * ->i_mmap_rwsem
116 * ->tasklist_lock (memory_failure, collect_procs_ao)
117 */
118
119 static void page_cache_delete(struct address_space *mapping,
120 struct page *page, void *shadow)
121 {
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
124
125 mapping_set_update(&xas, mapping);
126
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
130 nr = compound_nr(page);
131 }
132
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
139
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
154 }
155
156 static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
158 {
159 int nr;
160
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
169 cleancache_invalidate_page(mapping, page);
170
171 VM_BUG_ON_PAGE(PageTail(page), page);
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
192 page_ref_sub(page, mapcount);
193 }
194 }
195
196 /* hugetlb pages do not participate in page cache accounting. */
197 if (PageHuge(page))
198 return;
199
200 nr = hpage_nr_pages(page);
201
202 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
203 if (PageSwapBacked(page)) {
204 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
209 filemap_nr_thps_dec(mapping);
210 }
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225
226 /*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
229 * is safe. The caller must hold the i_pages lock.
230 */
231 void __delete_from_page_cache(struct page *page, void *shadow)
232 {
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
238 page_cache_delete(mapping, page, shadow);
239 }
240
241 static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243 {
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256 }
257
258 /**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266 void delete_from_page_cache(struct page *page)
267 {
268 struct address_space *mapping = page_mapping(page);
269 unsigned long flags;
270
271 BUG_ON(!PageLocked(page));
272 xa_lock_irqsave(&mapping->i_pages, flags);
273 __delete_from_page_cache(page, NULL);
274 xa_unlock_irqrestore(&mapping->i_pages, flags);
275
276 page_cache_free_page(mapping, page);
277 }
278 EXPORT_SYMBOL(delete_from_page_cache);
279
280 /*
281 * page_cache_delete_batch - delete several pages from page cache
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
285 * The function walks over mapping->i_pages and removes pages passed in @pvec
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
288 * It tolerates holes in @pvec (mapping entries at those indices are not
289 * modified). The function expects only THP head pages to be present in the
290 * @pvec.
291 *
292 * The function expects the i_pages lock to be held.
293 */
294 static void page_cache_delete_batch(struct address_space *mapping,
295 struct pagevec *pvec)
296 {
297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298 int total_pages = 0;
299 int i = 0;
300 struct page *page;
301
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
304 if (i >= pagevec_count(pvec))
305 break;
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
308 if (xa_is_value(page))
309 continue;
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
326 page->mapping = NULL;
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
335 i++;
336 xas_store(&xas, NULL);
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340 }
341
342 void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344 {
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
351 xa_lock_irqsave(&mapping->i_pages, flags);
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
357 page_cache_delete_batch(mapping, pvec);
358 xa_unlock_irqrestore(&mapping->i_pages, flags);
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362 }
363
364 int filemap_check_errors(struct address_space *mapping)
365 {
366 int ret = 0;
367 /* Check for outstanding write errors */
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 ret = -ENOSPC;
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
373 ret = -EIO;
374 return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386 }
387
388 /**
389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
392 * @end: offset in bytes where the range ends (inclusive)
393 * @sync_mode: enable synchronous operation
394 *
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399 * opposed to a regular memory cleansing writeback. The difference between
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
402 *
403 * Return: %0 on success, negative error code otherwise.
404 */
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
407 {
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
411 .nr_to_write = LONG_MAX,
412 .range_start = start,
413 .range_end = end,
414 };
415
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418 return 0;
419
420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421 ret = do_writepages(mapping, &wbc);
422 wbc_detach_inode(&wbc);
423 return ret;
424 }
425
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428 {
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 loff_t end)
440 {
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
454 int filemap_flush(struct address_space *mapping)
455 {
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
471 */
472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474 {
475 struct page *page;
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
478
479 if (end_byte < start_byte)
480 return false;
481
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
498
499 return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
505 {
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
508 struct pagevec pvec;
509 int nr_pages;
510
511 if (end_byte < start_byte)
512 return;
513
514 pagevec_init(&pvec);
515 while (index <= end) {
516 unsigned i;
517
518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519 end, PAGECACHE_TAG_WRITEBACK);
520 if (!nr_pages)
521 break;
522
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
526 wait_on_page_writeback(page);
527 ClearPageError(page);
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
532 }
533
534 /**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
547 *
548 * Return: error status of the address space.
549 */
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552 {
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
555 }
556 EXPORT_SYMBOL(filemap_fdatawait_range);
557
558 /**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574 {
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577 }
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
580 /**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
595 */
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 {
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602 }
603 EXPORT_SYMBOL(file_fdatawait_range);
604
605 /**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
616 *
617 * Return: error status of the address space.
618 */
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 {
621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622 return filemap_check_and_keep_errors(mapping);
623 }
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
628 {
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
633 }
634
635 /**
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
640 *
641 * Write out and wait upon file offsets lstart->lend, inclusive.
642 *
643 * Note that @lend is inclusive (describes the last byte to be written) so
644 * that this function can be used to write to the very end-of-file (end = -1).
645 *
646 * Return: error status of the address space.
647 */
648 int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
650 {
651 int err = 0;
652
653 if (mapping_needs_writeback(mapping)) {
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 WB_SYNC_ALL);
656 /*
657 * Even if the above returned error, the pages may be
658 * written partially (e.g. -ENOSPC), so we wait for it.
659 * But the -EIO is special case, it may indicate the worst
660 * thing (e.g. bug) happened, so we avoid waiting for it.
661 */
662 if (err != -EIO) {
663 int err2 = filemap_fdatawait_range(mapping,
664 lstart, lend);
665 if (!err)
666 err = err2;
667 } else {
668 /* Clear any previously stored errors */
669 filemap_check_errors(mapping);
670 }
671 } else {
672 err = filemap_check_errors(mapping);
673 }
674 return err;
675 }
676 EXPORT_SYMBOL(filemap_write_and_wait_range);
677
678 void __filemap_set_wb_err(struct address_space *mapping, int err)
679 {
680 errseq_t eseq = errseq_set(&mapping->wb_err, err);
681
682 trace_filemap_set_wb_err(mapping, eseq);
683 }
684 EXPORT_SYMBOL(__filemap_set_wb_err);
685
686 /**
687 * file_check_and_advance_wb_err - report wb error (if any) that was previously
688 * and advance wb_err to current one
689 * @file: struct file on which the error is being reported
690 *
691 * When userland calls fsync (or something like nfsd does the equivalent), we
692 * want to report any writeback errors that occurred since the last fsync (or
693 * since the file was opened if there haven't been any).
694 *
695 * Grab the wb_err from the mapping. If it matches what we have in the file,
696 * then just quickly return 0. The file is all caught up.
697 *
698 * If it doesn't match, then take the mapping value, set the "seen" flag in
699 * it and try to swap it into place. If it works, or another task beat us
700 * to it with the new value, then update the f_wb_err and return the error
701 * portion. The error at this point must be reported via proper channels
702 * (a'la fsync, or NFS COMMIT operation, etc.).
703 *
704 * While we handle mapping->wb_err with atomic operations, the f_wb_err
705 * value is protected by the f_lock since we must ensure that it reflects
706 * the latest value swapped in for this file descriptor.
707 *
708 * Return: %0 on success, negative error code otherwise.
709 */
710 int file_check_and_advance_wb_err(struct file *file)
711 {
712 int err = 0;
713 errseq_t old = READ_ONCE(file->f_wb_err);
714 struct address_space *mapping = file->f_mapping;
715
716 /* Locklessly handle the common case where nothing has changed */
717 if (errseq_check(&mapping->wb_err, old)) {
718 /* Something changed, must use slow path */
719 spin_lock(&file->f_lock);
720 old = file->f_wb_err;
721 err = errseq_check_and_advance(&mapping->wb_err,
722 &file->f_wb_err);
723 trace_file_check_and_advance_wb_err(file, old);
724 spin_unlock(&file->f_lock);
725 }
726
727 /*
728 * We're mostly using this function as a drop in replacement for
729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 * that the legacy code would have had on these flags.
731 */
732 clear_bit(AS_EIO, &mapping->flags);
733 clear_bit(AS_ENOSPC, &mapping->flags);
734 return err;
735 }
736 EXPORT_SYMBOL(file_check_and_advance_wb_err);
737
738 /**
739 * file_write_and_wait_range - write out & wait on a file range
740 * @file: file pointing to address_space with pages
741 * @lstart: offset in bytes where the range starts
742 * @lend: offset in bytes where the range ends (inclusive)
743 *
744 * Write out and wait upon file offsets lstart->lend, inclusive.
745 *
746 * Note that @lend is inclusive (describes the last byte to be written) so
747 * that this function can be used to write to the very end-of-file (end = -1).
748 *
749 * After writing out and waiting on the data, we check and advance the
750 * f_wb_err cursor to the latest value, and return any errors detected there.
751 *
752 * Return: %0 on success, negative error code otherwise.
753 */
754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755 {
756 int err = 0, err2;
757 struct address_space *mapping = file->f_mapping;
758
759 if (mapping_needs_writeback(mapping)) {
760 err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 WB_SYNC_ALL);
762 /* See comment of filemap_write_and_wait() */
763 if (err != -EIO)
764 __filemap_fdatawait_range(mapping, lstart, lend);
765 }
766 err2 = file_check_and_advance_wb_err(file);
767 if (!err)
768 err = err2;
769 return err;
770 }
771 EXPORT_SYMBOL(file_write_and_wait_range);
772
773 /**
774 * replace_page_cache_page - replace a pagecache page with a new one
775 * @old: page to be replaced
776 * @new: page to replace with
777 * @gfp_mask: allocation mode
778 *
779 * This function replaces a page in the pagecache with a new one. On
780 * success it acquires the pagecache reference for the new page and
781 * drops it for the old page. Both the old and new pages must be
782 * locked. This function does not add the new page to the LRU, the
783 * caller must do that.
784 *
785 * The remove + add is atomic. This function cannot fail.
786 *
787 * Return: %0
788 */
789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790 {
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
796
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
800
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
804
805 mem_cgroup_migrate(old, new);
806
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
809
810 old->mapping = NULL;
811 /* hugetlb pages do not participate in page cache accounting. */
812 if (!PageHuge(old))
813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
814 if (!PageHuge(new))
815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
816 if (PageSwapBacked(old))
817 __dec_lruvec_page_state(old, NR_SHMEM);
818 if (PageSwapBacked(new))
819 __inc_lruvec_page_state(new, NR_SHMEM);
820 xas_unlock_irqrestore(&xas, flags);
821 if (freepage)
822 freepage(old);
823 put_page(old);
824
825 return 0;
826 }
827 EXPORT_SYMBOL_GPL(replace_page_cache_page);
828
829 static int __add_to_page_cache_locked(struct page *page,
830 struct address_space *mapping,
831 pgoff_t offset, gfp_t gfp_mask,
832 void **shadowp)
833 {
834 XA_STATE(xas, &mapping->i_pages, offset);
835 int huge = PageHuge(page);
836 int error;
837 void *old;
838
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841 mapping_set_update(&xas, mapping);
842
843 get_page(page);
844 page->mapping = mapping;
845 page->index = offset;
846
847 if (!huge) {
848 error = mem_cgroup_charge(page, current->mm, gfp_mask);
849 if (error)
850 goto error;
851 }
852
853 do {
854 xas_lock_irq(&xas);
855 old = xas_load(&xas);
856 if (old && !xa_is_value(old))
857 xas_set_err(&xas, -EEXIST);
858 xas_store(&xas, page);
859 if (xas_error(&xas))
860 goto unlock;
861
862 if (xa_is_value(old)) {
863 mapping->nrexceptional--;
864 if (shadowp)
865 *shadowp = old;
866 }
867 mapping->nrpages++;
868
869 /* hugetlb pages do not participate in page cache accounting */
870 if (!huge)
871 __inc_lruvec_page_state(page, NR_FILE_PAGES);
872 unlock:
873 xas_unlock_irq(&xas);
874 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
875
876 if (xas_error(&xas)) {
877 error = xas_error(&xas);
878 goto error;
879 }
880
881 trace_mm_filemap_add_to_page_cache(page);
882 return 0;
883 error:
884 page->mapping = NULL;
885 /* Leave page->index set: truncation relies upon it */
886 put_page(page);
887 return error;
888 }
889 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
890
891 /**
892 * add_to_page_cache_locked - add a locked page to the pagecache
893 * @page: page to add
894 * @mapping: the page's address_space
895 * @offset: page index
896 * @gfp_mask: page allocation mode
897 *
898 * This function is used to add a page to the pagecache. It must be locked.
899 * This function does not add the page to the LRU. The caller must do that.
900 *
901 * Return: %0 on success, negative error code otherwise.
902 */
903 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
904 pgoff_t offset, gfp_t gfp_mask)
905 {
906 return __add_to_page_cache_locked(page, mapping, offset,
907 gfp_mask, NULL);
908 }
909 EXPORT_SYMBOL(add_to_page_cache_locked);
910
911 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
912 pgoff_t offset, gfp_t gfp_mask)
913 {
914 void *shadow = NULL;
915 int ret;
916
917 __SetPageLocked(page);
918 ret = __add_to_page_cache_locked(page, mapping, offset,
919 gfp_mask, &shadow);
920 if (unlikely(ret))
921 __ClearPageLocked(page);
922 else {
923 /*
924 * The page might have been evicted from cache only
925 * recently, in which case it should be activated like
926 * any other repeatedly accessed page.
927 * The exception is pages getting rewritten; evicting other
928 * data from the working set, only to cache data that will
929 * get overwritten with something else, is a waste of memory.
930 */
931 WARN_ON_ONCE(PageActive(page));
932 if (!(gfp_mask & __GFP_WRITE) && shadow)
933 workingset_refault(page, shadow);
934 lru_cache_add(page);
935 }
936 return ret;
937 }
938 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
939
940 #ifdef CONFIG_NUMA
941 struct page *__page_cache_alloc(gfp_t gfp)
942 {
943 int n;
944 struct page *page;
945
946 if (cpuset_do_page_mem_spread()) {
947 unsigned int cpuset_mems_cookie;
948 do {
949 cpuset_mems_cookie = read_mems_allowed_begin();
950 n = cpuset_mem_spread_node();
951 page = __alloc_pages_node(n, gfp, 0);
952 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
953
954 return page;
955 }
956 return alloc_pages(gfp, 0);
957 }
958 EXPORT_SYMBOL(__page_cache_alloc);
959 #endif
960
961 /*
962 * In order to wait for pages to become available there must be
963 * waitqueues associated with pages. By using a hash table of
964 * waitqueues where the bucket discipline is to maintain all
965 * waiters on the same queue and wake all when any of the pages
966 * become available, and for the woken contexts to check to be
967 * sure the appropriate page became available, this saves space
968 * at a cost of "thundering herd" phenomena during rare hash
969 * collisions.
970 */
971 #define PAGE_WAIT_TABLE_BITS 8
972 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
973 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
974
975 static wait_queue_head_t *page_waitqueue(struct page *page)
976 {
977 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
978 }
979
980 void __init pagecache_init(void)
981 {
982 int i;
983
984 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
985 init_waitqueue_head(&page_wait_table[i]);
986
987 page_writeback_init();
988 }
989
990 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
991 struct wait_page_key {
992 struct page *page;
993 int bit_nr;
994 int page_match;
995 };
996
997 struct wait_page_queue {
998 struct page *page;
999 int bit_nr;
1000 wait_queue_entry_t wait;
1001 };
1002
1003 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1004 {
1005 struct wait_page_key *key = arg;
1006 struct wait_page_queue *wait_page
1007 = container_of(wait, struct wait_page_queue, wait);
1008
1009 if (wait_page->page != key->page)
1010 return 0;
1011 key->page_match = 1;
1012
1013 if (wait_page->bit_nr != key->bit_nr)
1014 return 0;
1015
1016 /*
1017 * Stop walking if it's locked.
1018 * Is this safe if put_and_wait_on_page_locked() is in use?
1019 * Yes: the waker must hold a reference to this page, and if PG_locked
1020 * has now already been set by another task, that task must also hold
1021 * a reference to the *same usage* of this page; so there is no need
1022 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1023 */
1024 if (test_bit(key->bit_nr, &key->page->flags))
1025 return -1;
1026
1027 return autoremove_wake_function(wait, mode, sync, key);
1028 }
1029
1030 static void wake_up_page_bit(struct page *page, int bit_nr)
1031 {
1032 wait_queue_head_t *q = page_waitqueue(page);
1033 struct wait_page_key key;
1034 unsigned long flags;
1035 wait_queue_entry_t bookmark;
1036
1037 key.page = page;
1038 key.bit_nr = bit_nr;
1039 key.page_match = 0;
1040
1041 bookmark.flags = 0;
1042 bookmark.private = NULL;
1043 bookmark.func = NULL;
1044 INIT_LIST_HEAD(&bookmark.entry);
1045
1046 spin_lock_irqsave(&q->lock, flags);
1047 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1048
1049 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1050 /*
1051 * Take a breather from holding the lock,
1052 * allow pages that finish wake up asynchronously
1053 * to acquire the lock and remove themselves
1054 * from wait queue
1055 */
1056 spin_unlock_irqrestore(&q->lock, flags);
1057 cpu_relax();
1058 spin_lock_irqsave(&q->lock, flags);
1059 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1060 }
1061
1062 /*
1063 * It is possible for other pages to have collided on the waitqueue
1064 * hash, so in that case check for a page match. That prevents a long-
1065 * term waiter
1066 *
1067 * It is still possible to miss a case here, when we woke page waiters
1068 * and removed them from the waitqueue, but there are still other
1069 * page waiters.
1070 */
1071 if (!waitqueue_active(q) || !key.page_match) {
1072 ClearPageWaiters(page);
1073 /*
1074 * It's possible to miss clearing Waiters here, when we woke
1075 * our page waiters, but the hashed waitqueue has waiters for
1076 * other pages on it.
1077 *
1078 * That's okay, it's a rare case. The next waker will clear it.
1079 */
1080 }
1081 spin_unlock_irqrestore(&q->lock, flags);
1082 }
1083
1084 static void wake_up_page(struct page *page, int bit)
1085 {
1086 if (!PageWaiters(page))
1087 return;
1088 wake_up_page_bit(page, bit);
1089 }
1090
1091 /*
1092 * A choice of three behaviors for wait_on_page_bit_common():
1093 */
1094 enum behavior {
1095 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1096 * __lock_page() waiting on then setting PG_locked.
1097 */
1098 SHARED, /* Hold ref to page and check the bit when woken, like
1099 * wait_on_page_writeback() waiting on PG_writeback.
1100 */
1101 DROP, /* Drop ref to page before wait, no check when woken,
1102 * like put_and_wait_on_page_locked() on PG_locked.
1103 */
1104 };
1105
1106 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1107 struct page *page, int bit_nr, int state, enum behavior behavior)
1108 {
1109 struct wait_page_queue wait_page;
1110 wait_queue_entry_t *wait = &wait_page.wait;
1111 bool bit_is_set;
1112 bool thrashing = false;
1113 bool delayacct = false;
1114 unsigned long pflags;
1115 int ret = 0;
1116
1117 if (bit_nr == PG_locked &&
1118 !PageUptodate(page) && PageWorkingset(page)) {
1119 if (!PageSwapBacked(page)) {
1120 delayacct_thrashing_start();
1121 delayacct = true;
1122 }
1123 psi_memstall_enter(&pflags);
1124 thrashing = true;
1125 }
1126
1127 init_wait(wait);
1128 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1129 wait->func = wake_page_function;
1130 wait_page.page = page;
1131 wait_page.bit_nr = bit_nr;
1132
1133 for (;;) {
1134 spin_lock_irq(&q->lock);
1135
1136 if (likely(list_empty(&wait->entry))) {
1137 __add_wait_queue_entry_tail(q, wait);
1138 SetPageWaiters(page);
1139 }
1140
1141 set_current_state(state);
1142
1143 spin_unlock_irq(&q->lock);
1144
1145 bit_is_set = test_bit(bit_nr, &page->flags);
1146 if (behavior == DROP)
1147 put_page(page);
1148
1149 if (likely(bit_is_set))
1150 io_schedule();
1151
1152 if (behavior == EXCLUSIVE) {
1153 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1154 break;
1155 } else if (behavior == SHARED) {
1156 if (!test_bit(bit_nr, &page->flags))
1157 break;
1158 }
1159
1160 if (signal_pending_state(state, current)) {
1161 ret = -EINTR;
1162 break;
1163 }
1164
1165 if (behavior == DROP) {
1166 /*
1167 * We can no longer safely access page->flags:
1168 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1169 * there is a risk of waiting forever on a page reused
1170 * for something that keeps it locked indefinitely.
1171 * But best check for -EINTR above before breaking.
1172 */
1173 break;
1174 }
1175 }
1176
1177 finish_wait(q, wait);
1178
1179 if (thrashing) {
1180 if (delayacct)
1181 delayacct_thrashing_end();
1182 psi_memstall_leave(&pflags);
1183 }
1184
1185 /*
1186 * A signal could leave PageWaiters set. Clearing it here if
1187 * !waitqueue_active would be possible (by open-coding finish_wait),
1188 * but still fail to catch it in the case of wait hash collision. We
1189 * already can fail to clear wait hash collision cases, so don't
1190 * bother with signals either.
1191 */
1192
1193 return ret;
1194 }
1195
1196 void wait_on_page_bit(struct page *page, int bit_nr)
1197 {
1198 wait_queue_head_t *q = page_waitqueue(page);
1199 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1200 }
1201 EXPORT_SYMBOL(wait_on_page_bit);
1202
1203 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1204 {
1205 wait_queue_head_t *q = page_waitqueue(page);
1206 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1207 }
1208 EXPORT_SYMBOL(wait_on_page_bit_killable);
1209
1210 /**
1211 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1212 * @page: The page to wait for.
1213 *
1214 * The caller should hold a reference on @page. They expect the page to
1215 * become unlocked relatively soon, but do not wish to hold up migration
1216 * (for example) by holding the reference while waiting for the page to
1217 * come unlocked. After this function returns, the caller should not
1218 * dereference @page.
1219 */
1220 void put_and_wait_on_page_locked(struct page *page)
1221 {
1222 wait_queue_head_t *q;
1223
1224 page = compound_head(page);
1225 q = page_waitqueue(page);
1226 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1227 }
1228
1229 /**
1230 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1231 * @page: Page defining the wait queue of interest
1232 * @waiter: Waiter to add to the queue
1233 *
1234 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1235 */
1236 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1237 {
1238 wait_queue_head_t *q = page_waitqueue(page);
1239 unsigned long flags;
1240
1241 spin_lock_irqsave(&q->lock, flags);
1242 __add_wait_queue_entry_tail(q, waiter);
1243 SetPageWaiters(page);
1244 spin_unlock_irqrestore(&q->lock, flags);
1245 }
1246 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1247
1248 #ifndef clear_bit_unlock_is_negative_byte
1249
1250 /*
1251 * PG_waiters is the high bit in the same byte as PG_lock.
1252 *
1253 * On x86 (and on many other architectures), we can clear PG_lock and
1254 * test the sign bit at the same time. But if the architecture does
1255 * not support that special operation, we just do this all by hand
1256 * instead.
1257 *
1258 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1259 * being cleared, but a memory barrier should be unnecessary since it is
1260 * in the same byte as PG_locked.
1261 */
1262 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1263 {
1264 clear_bit_unlock(nr, mem);
1265 /* smp_mb__after_atomic(); */
1266 return test_bit(PG_waiters, mem);
1267 }
1268
1269 #endif
1270
1271 /**
1272 * unlock_page - unlock a locked page
1273 * @page: the page
1274 *
1275 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1276 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1277 * mechanism between PageLocked pages and PageWriteback pages is shared.
1278 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1279 *
1280 * Note that this depends on PG_waiters being the sign bit in the byte
1281 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1282 * clear the PG_locked bit and test PG_waiters at the same time fairly
1283 * portably (architectures that do LL/SC can test any bit, while x86 can
1284 * test the sign bit).
1285 */
1286 void unlock_page(struct page *page)
1287 {
1288 BUILD_BUG_ON(PG_waiters != 7);
1289 page = compound_head(page);
1290 VM_BUG_ON_PAGE(!PageLocked(page), page);
1291 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1292 wake_up_page_bit(page, PG_locked);
1293 }
1294 EXPORT_SYMBOL(unlock_page);
1295
1296 /**
1297 * end_page_writeback - end writeback against a page
1298 * @page: the page
1299 */
1300 void end_page_writeback(struct page *page)
1301 {
1302 /*
1303 * TestClearPageReclaim could be used here but it is an atomic
1304 * operation and overkill in this particular case. Failing to
1305 * shuffle a page marked for immediate reclaim is too mild to
1306 * justify taking an atomic operation penalty at the end of
1307 * ever page writeback.
1308 */
1309 if (PageReclaim(page)) {
1310 ClearPageReclaim(page);
1311 rotate_reclaimable_page(page);
1312 }
1313
1314 if (!test_clear_page_writeback(page))
1315 BUG();
1316
1317 smp_mb__after_atomic();
1318 wake_up_page(page, PG_writeback);
1319 }
1320 EXPORT_SYMBOL(end_page_writeback);
1321
1322 /*
1323 * After completing I/O on a page, call this routine to update the page
1324 * flags appropriately
1325 */
1326 void page_endio(struct page *page, bool is_write, int err)
1327 {
1328 if (!is_write) {
1329 if (!err) {
1330 SetPageUptodate(page);
1331 } else {
1332 ClearPageUptodate(page);
1333 SetPageError(page);
1334 }
1335 unlock_page(page);
1336 } else {
1337 if (err) {
1338 struct address_space *mapping;
1339
1340 SetPageError(page);
1341 mapping = page_mapping(page);
1342 if (mapping)
1343 mapping_set_error(mapping, err);
1344 }
1345 end_page_writeback(page);
1346 }
1347 }
1348 EXPORT_SYMBOL_GPL(page_endio);
1349
1350 /**
1351 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1352 * @__page: the page to lock
1353 */
1354 void __lock_page(struct page *__page)
1355 {
1356 struct page *page = compound_head(__page);
1357 wait_queue_head_t *q = page_waitqueue(page);
1358 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1359 EXCLUSIVE);
1360 }
1361 EXPORT_SYMBOL(__lock_page);
1362
1363 int __lock_page_killable(struct page *__page)
1364 {
1365 struct page *page = compound_head(__page);
1366 wait_queue_head_t *q = page_waitqueue(page);
1367 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1368 EXCLUSIVE);
1369 }
1370 EXPORT_SYMBOL_GPL(__lock_page_killable);
1371
1372 /*
1373 * Return values:
1374 * 1 - page is locked; mmap_lock is still held.
1375 * 0 - page is not locked.
1376 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1377 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1378 * which case mmap_lock is still held.
1379 *
1380 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1381 * with the page locked and the mmap_lock unperturbed.
1382 */
1383 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1384 unsigned int flags)
1385 {
1386 if (fault_flag_allow_retry_first(flags)) {
1387 /*
1388 * CAUTION! In this case, mmap_lock is not released
1389 * even though return 0.
1390 */
1391 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1392 return 0;
1393
1394 mmap_read_unlock(mm);
1395 if (flags & FAULT_FLAG_KILLABLE)
1396 wait_on_page_locked_killable(page);
1397 else
1398 wait_on_page_locked(page);
1399 return 0;
1400 } else {
1401 if (flags & FAULT_FLAG_KILLABLE) {
1402 int ret;
1403
1404 ret = __lock_page_killable(page);
1405 if (ret) {
1406 mmap_read_unlock(mm);
1407 return 0;
1408 }
1409 } else
1410 __lock_page(page);
1411 return 1;
1412 }
1413 }
1414
1415 /**
1416 * page_cache_next_miss() - Find the next gap in the page cache.
1417 * @mapping: Mapping.
1418 * @index: Index.
1419 * @max_scan: Maximum range to search.
1420 *
1421 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1422 * gap with the lowest index.
1423 *
1424 * This function may be called under the rcu_read_lock. However, this will
1425 * not atomically search a snapshot of the cache at a single point in time.
1426 * For example, if a gap is created at index 5, then subsequently a gap is
1427 * created at index 10, page_cache_next_miss covering both indices may
1428 * return 10 if called under the rcu_read_lock.
1429 *
1430 * Return: The index of the gap if found, otherwise an index outside the
1431 * range specified (in which case 'return - index >= max_scan' will be true).
1432 * In the rare case of index wrap-around, 0 will be returned.
1433 */
1434 pgoff_t page_cache_next_miss(struct address_space *mapping,
1435 pgoff_t index, unsigned long max_scan)
1436 {
1437 XA_STATE(xas, &mapping->i_pages, index);
1438
1439 while (max_scan--) {
1440 void *entry = xas_next(&xas);
1441 if (!entry || xa_is_value(entry))
1442 break;
1443 if (xas.xa_index == 0)
1444 break;
1445 }
1446
1447 return xas.xa_index;
1448 }
1449 EXPORT_SYMBOL(page_cache_next_miss);
1450
1451 /**
1452 * page_cache_prev_miss() - Find the previous gap in the page cache.
1453 * @mapping: Mapping.
1454 * @index: Index.
1455 * @max_scan: Maximum range to search.
1456 *
1457 * Search the range [max(index - max_scan + 1, 0), index] for the
1458 * gap with the highest index.
1459 *
1460 * This function may be called under the rcu_read_lock. However, this will
1461 * not atomically search a snapshot of the cache at a single point in time.
1462 * For example, if a gap is created at index 10, then subsequently a gap is
1463 * created at index 5, page_cache_prev_miss() covering both indices may
1464 * return 5 if called under the rcu_read_lock.
1465 *
1466 * Return: The index of the gap if found, otherwise an index outside the
1467 * range specified (in which case 'index - return >= max_scan' will be true).
1468 * In the rare case of wrap-around, ULONG_MAX will be returned.
1469 */
1470 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1471 pgoff_t index, unsigned long max_scan)
1472 {
1473 XA_STATE(xas, &mapping->i_pages, index);
1474
1475 while (max_scan--) {
1476 void *entry = xas_prev(&xas);
1477 if (!entry || xa_is_value(entry))
1478 break;
1479 if (xas.xa_index == ULONG_MAX)
1480 break;
1481 }
1482
1483 return xas.xa_index;
1484 }
1485 EXPORT_SYMBOL(page_cache_prev_miss);
1486
1487 /**
1488 * find_get_entry - find and get a page cache entry
1489 * @mapping: the address_space to search
1490 * @offset: the page cache index
1491 *
1492 * Looks up the page cache slot at @mapping & @offset. If there is a
1493 * page cache page, it is returned with an increased refcount.
1494 *
1495 * If the slot holds a shadow entry of a previously evicted page, or a
1496 * swap entry from shmem/tmpfs, it is returned.
1497 *
1498 * Return: the found page or shadow entry, %NULL if nothing is found.
1499 */
1500 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1501 {
1502 XA_STATE(xas, &mapping->i_pages, offset);
1503 struct page *page;
1504
1505 rcu_read_lock();
1506 repeat:
1507 xas_reset(&xas);
1508 page = xas_load(&xas);
1509 if (xas_retry(&xas, page))
1510 goto repeat;
1511 /*
1512 * A shadow entry of a recently evicted page, or a swap entry from
1513 * shmem/tmpfs. Return it without attempting to raise page count.
1514 */
1515 if (!page || xa_is_value(page))
1516 goto out;
1517
1518 if (!page_cache_get_speculative(page))
1519 goto repeat;
1520
1521 /*
1522 * Has the page moved or been split?
1523 * This is part of the lockless pagecache protocol. See
1524 * include/linux/pagemap.h for details.
1525 */
1526 if (unlikely(page != xas_reload(&xas))) {
1527 put_page(page);
1528 goto repeat;
1529 }
1530 page = find_subpage(page, offset);
1531 out:
1532 rcu_read_unlock();
1533
1534 return page;
1535 }
1536
1537 /**
1538 * find_lock_entry - locate, pin and lock a page cache entry
1539 * @mapping: the address_space to search
1540 * @offset: the page cache index
1541 *
1542 * Looks up the page cache slot at @mapping & @offset. If there is a
1543 * page cache page, it is returned locked and with an increased
1544 * refcount.
1545 *
1546 * If the slot holds a shadow entry of a previously evicted page, or a
1547 * swap entry from shmem/tmpfs, it is returned.
1548 *
1549 * find_lock_entry() may sleep.
1550 *
1551 * Return: the found page or shadow entry, %NULL if nothing is found.
1552 */
1553 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1554 {
1555 struct page *page;
1556
1557 repeat:
1558 page = find_get_entry(mapping, offset);
1559 if (page && !xa_is_value(page)) {
1560 lock_page(page);
1561 /* Has the page been truncated? */
1562 if (unlikely(page_mapping(page) != mapping)) {
1563 unlock_page(page);
1564 put_page(page);
1565 goto repeat;
1566 }
1567 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1568 }
1569 return page;
1570 }
1571 EXPORT_SYMBOL(find_lock_entry);
1572
1573 /**
1574 * pagecache_get_page - Find and get a reference to a page.
1575 * @mapping: The address_space to search.
1576 * @index: The page index.
1577 * @fgp_flags: %FGP flags modify how the page is returned.
1578 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1579 *
1580 * Looks up the page cache entry at @mapping & @index.
1581 *
1582 * @fgp_flags can be zero or more of these flags:
1583 *
1584 * * %FGP_ACCESSED - The page will be marked accessed.
1585 * * %FGP_LOCK - The page is returned locked.
1586 * * %FGP_CREAT - If no page is present then a new page is allocated using
1587 * @gfp_mask and added to the page cache and the VM's LRU list.
1588 * The page is returned locked and with an increased refcount.
1589 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1590 * page is already in cache. If the page was allocated, unlock it before
1591 * returning so the caller can do the same dance.
1592 *
1593 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1594 * if the %GFP flags specified for %FGP_CREAT are atomic.
1595 *
1596 * If there is a page cache page, it is returned with an increased refcount.
1597 *
1598 * Return: The found page or %NULL otherwise.
1599 */
1600 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1601 int fgp_flags, gfp_t gfp_mask)
1602 {
1603 struct page *page;
1604
1605 repeat:
1606 page = find_get_entry(mapping, index);
1607 if (xa_is_value(page))
1608 page = NULL;
1609 if (!page)
1610 goto no_page;
1611
1612 if (fgp_flags & FGP_LOCK) {
1613 if (fgp_flags & FGP_NOWAIT) {
1614 if (!trylock_page(page)) {
1615 put_page(page);
1616 return NULL;
1617 }
1618 } else {
1619 lock_page(page);
1620 }
1621
1622 /* Has the page been truncated? */
1623 if (unlikely(compound_head(page)->mapping != mapping)) {
1624 unlock_page(page);
1625 put_page(page);
1626 goto repeat;
1627 }
1628 VM_BUG_ON_PAGE(page->index != index, page);
1629 }
1630
1631 if (fgp_flags & FGP_ACCESSED)
1632 mark_page_accessed(page);
1633
1634 no_page:
1635 if (!page && (fgp_flags & FGP_CREAT)) {
1636 int err;
1637 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1638 gfp_mask |= __GFP_WRITE;
1639 if (fgp_flags & FGP_NOFS)
1640 gfp_mask &= ~__GFP_FS;
1641
1642 page = __page_cache_alloc(gfp_mask);
1643 if (!page)
1644 return NULL;
1645
1646 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1647 fgp_flags |= FGP_LOCK;
1648
1649 /* Init accessed so avoid atomic mark_page_accessed later */
1650 if (fgp_flags & FGP_ACCESSED)
1651 __SetPageReferenced(page);
1652
1653 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1654 if (unlikely(err)) {
1655 put_page(page);
1656 page = NULL;
1657 if (err == -EEXIST)
1658 goto repeat;
1659 }
1660
1661 /*
1662 * add_to_page_cache_lru locks the page, and for mmap we expect
1663 * an unlocked page.
1664 */
1665 if (page && (fgp_flags & FGP_FOR_MMAP))
1666 unlock_page(page);
1667 }
1668
1669 return page;
1670 }
1671 EXPORT_SYMBOL(pagecache_get_page);
1672
1673 /**
1674 * find_get_entries - gang pagecache lookup
1675 * @mapping: The address_space to search
1676 * @start: The starting page cache index
1677 * @nr_entries: The maximum number of entries
1678 * @entries: Where the resulting entries are placed
1679 * @indices: The cache indices corresponding to the entries in @entries
1680 *
1681 * find_get_entries() will search for and return a group of up to
1682 * @nr_entries entries in the mapping. The entries are placed at
1683 * @entries. find_get_entries() takes a reference against any actual
1684 * pages it returns.
1685 *
1686 * The search returns a group of mapping-contiguous page cache entries
1687 * with ascending indexes. There may be holes in the indices due to
1688 * not-present pages.
1689 *
1690 * Any shadow entries of evicted pages, or swap entries from
1691 * shmem/tmpfs, are included in the returned array.
1692 *
1693 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1694 * stops at that page: the caller is likely to have a better way to handle
1695 * the compound page as a whole, and then skip its extent, than repeatedly
1696 * calling find_get_entries() to return all its tails.
1697 *
1698 * Return: the number of pages and shadow entries which were found.
1699 */
1700 unsigned find_get_entries(struct address_space *mapping,
1701 pgoff_t start, unsigned int nr_entries,
1702 struct page **entries, pgoff_t *indices)
1703 {
1704 XA_STATE(xas, &mapping->i_pages, start);
1705 struct page *page;
1706 unsigned int ret = 0;
1707
1708 if (!nr_entries)
1709 return 0;
1710
1711 rcu_read_lock();
1712 xas_for_each(&xas, page, ULONG_MAX) {
1713 if (xas_retry(&xas, page))
1714 continue;
1715 /*
1716 * A shadow entry of a recently evicted page, a swap
1717 * entry from shmem/tmpfs or a DAX entry. Return it
1718 * without attempting to raise page count.
1719 */
1720 if (xa_is_value(page))
1721 goto export;
1722
1723 if (!page_cache_get_speculative(page))
1724 goto retry;
1725
1726 /* Has the page moved or been split? */
1727 if (unlikely(page != xas_reload(&xas)))
1728 goto put_page;
1729
1730 /*
1731 * Terminate early on finding a THP, to allow the caller to
1732 * handle it all at once; but continue if this is hugetlbfs.
1733 */
1734 if (PageTransHuge(page) && !PageHuge(page)) {
1735 page = find_subpage(page, xas.xa_index);
1736 nr_entries = ret + 1;
1737 }
1738 export:
1739 indices[ret] = xas.xa_index;
1740 entries[ret] = page;
1741 if (++ret == nr_entries)
1742 break;
1743 continue;
1744 put_page:
1745 put_page(page);
1746 retry:
1747 xas_reset(&xas);
1748 }
1749 rcu_read_unlock();
1750 return ret;
1751 }
1752
1753 /**
1754 * find_get_pages_range - gang pagecache lookup
1755 * @mapping: The address_space to search
1756 * @start: The starting page index
1757 * @end: The final page index (inclusive)
1758 * @nr_pages: The maximum number of pages
1759 * @pages: Where the resulting pages are placed
1760 *
1761 * find_get_pages_range() will search for and return a group of up to @nr_pages
1762 * pages in the mapping starting at index @start and up to index @end
1763 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1764 * a reference against the returned pages.
1765 *
1766 * The search returns a group of mapping-contiguous pages with ascending
1767 * indexes. There may be holes in the indices due to not-present pages.
1768 * We also update @start to index the next page for the traversal.
1769 *
1770 * Return: the number of pages which were found. If this number is
1771 * smaller than @nr_pages, the end of specified range has been
1772 * reached.
1773 */
1774 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1775 pgoff_t end, unsigned int nr_pages,
1776 struct page **pages)
1777 {
1778 XA_STATE(xas, &mapping->i_pages, *start);
1779 struct page *page;
1780 unsigned ret = 0;
1781
1782 if (unlikely(!nr_pages))
1783 return 0;
1784
1785 rcu_read_lock();
1786 xas_for_each(&xas, page, end) {
1787 if (xas_retry(&xas, page))
1788 continue;
1789 /* Skip over shadow, swap and DAX entries */
1790 if (xa_is_value(page))
1791 continue;
1792
1793 if (!page_cache_get_speculative(page))
1794 goto retry;
1795
1796 /* Has the page moved or been split? */
1797 if (unlikely(page != xas_reload(&xas)))
1798 goto put_page;
1799
1800 pages[ret] = find_subpage(page, xas.xa_index);
1801 if (++ret == nr_pages) {
1802 *start = xas.xa_index + 1;
1803 goto out;
1804 }
1805 continue;
1806 put_page:
1807 put_page(page);
1808 retry:
1809 xas_reset(&xas);
1810 }
1811
1812 /*
1813 * We come here when there is no page beyond @end. We take care to not
1814 * overflow the index @start as it confuses some of the callers. This
1815 * breaks the iteration when there is a page at index -1 but that is
1816 * already broken anyway.
1817 */
1818 if (end == (pgoff_t)-1)
1819 *start = (pgoff_t)-1;
1820 else
1821 *start = end + 1;
1822 out:
1823 rcu_read_unlock();
1824
1825 return ret;
1826 }
1827
1828 /**
1829 * find_get_pages_contig - gang contiguous pagecache lookup
1830 * @mapping: The address_space to search
1831 * @index: The starting page index
1832 * @nr_pages: The maximum number of pages
1833 * @pages: Where the resulting pages are placed
1834 *
1835 * find_get_pages_contig() works exactly like find_get_pages(), except
1836 * that the returned number of pages are guaranteed to be contiguous.
1837 *
1838 * Return: the number of pages which were found.
1839 */
1840 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1841 unsigned int nr_pages, struct page **pages)
1842 {
1843 XA_STATE(xas, &mapping->i_pages, index);
1844 struct page *page;
1845 unsigned int ret = 0;
1846
1847 if (unlikely(!nr_pages))
1848 return 0;
1849
1850 rcu_read_lock();
1851 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1852 if (xas_retry(&xas, page))
1853 continue;
1854 /*
1855 * If the entry has been swapped out, we can stop looking.
1856 * No current caller is looking for DAX entries.
1857 */
1858 if (xa_is_value(page))
1859 break;
1860
1861 if (!page_cache_get_speculative(page))
1862 goto retry;
1863
1864 /* Has the page moved or been split? */
1865 if (unlikely(page != xas_reload(&xas)))
1866 goto put_page;
1867
1868 pages[ret] = find_subpage(page, xas.xa_index);
1869 if (++ret == nr_pages)
1870 break;
1871 continue;
1872 put_page:
1873 put_page(page);
1874 retry:
1875 xas_reset(&xas);
1876 }
1877 rcu_read_unlock();
1878 return ret;
1879 }
1880 EXPORT_SYMBOL(find_get_pages_contig);
1881
1882 /**
1883 * find_get_pages_range_tag - find and return pages in given range matching @tag
1884 * @mapping: the address_space to search
1885 * @index: the starting page index
1886 * @end: The final page index (inclusive)
1887 * @tag: the tag index
1888 * @nr_pages: the maximum number of pages
1889 * @pages: where the resulting pages are placed
1890 *
1891 * Like find_get_pages, except we only return pages which are tagged with
1892 * @tag. We update @index to index the next page for the traversal.
1893 *
1894 * Return: the number of pages which were found.
1895 */
1896 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1897 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1898 struct page **pages)
1899 {
1900 XA_STATE(xas, &mapping->i_pages, *index);
1901 struct page *page;
1902 unsigned ret = 0;
1903
1904 if (unlikely(!nr_pages))
1905 return 0;
1906
1907 rcu_read_lock();
1908 xas_for_each_marked(&xas, page, end, tag) {
1909 if (xas_retry(&xas, page))
1910 continue;
1911 /*
1912 * Shadow entries should never be tagged, but this iteration
1913 * is lockless so there is a window for page reclaim to evict
1914 * a page we saw tagged. Skip over it.
1915 */
1916 if (xa_is_value(page))
1917 continue;
1918
1919 if (!page_cache_get_speculative(page))
1920 goto retry;
1921
1922 /* Has the page moved or been split? */
1923 if (unlikely(page != xas_reload(&xas)))
1924 goto put_page;
1925
1926 pages[ret] = find_subpage(page, xas.xa_index);
1927 if (++ret == nr_pages) {
1928 *index = xas.xa_index + 1;
1929 goto out;
1930 }
1931 continue;
1932 put_page:
1933 put_page(page);
1934 retry:
1935 xas_reset(&xas);
1936 }
1937
1938 /*
1939 * We come here when we got to @end. We take care to not overflow the
1940 * index @index as it confuses some of the callers. This breaks the
1941 * iteration when there is a page at index -1 but that is already
1942 * broken anyway.
1943 */
1944 if (end == (pgoff_t)-1)
1945 *index = (pgoff_t)-1;
1946 else
1947 *index = end + 1;
1948 out:
1949 rcu_read_unlock();
1950
1951 return ret;
1952 }
1953 EXPORT_SYMBOL(find_get_pages_range_tag);
1954
1955 /*
1956 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1957 * a _large_ part of the i/o request. Imagine the worst scenario:
1958 *
1959 * ---R__________________________________________B__________
1960 * ^ reading here ^ bad block(assume 4k)
1961 *
1962 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1963 * => failing the whole request => read(R) => read(R+1) =>
1964 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1965 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1966 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1967 *
1968 * It is going insane. Fix it by quickly scaling down the readahead size.
1969 */
1970 static void shrink_readahead_size_eio(struct file_ra_state *ra)
1971 {
1972 ra->ra_pages /= 4;
1973 }
1974
1975 /**
1976 * generic_file_buffered_read - generic file read routine
1977 * @iocb: the iocb to read
1978 * @iter: data destination
1979 * @written: already copied
1980 *
1981 * This is a generic file read routine, and uses the
1982 * mapping->a_ops->readpage() function for the actual low-level stuff.
1983 *
1984 * This is really ugly. But the goto's actually try to clarify some
1985 * of the logic when it comes to error handling etc.
1986 *
1987 * Return:
1988 * * total number of bytes copied, including those the were already @written
1989 * * negative error code if nothing was copied
1990 */
1991 ssize_t generic_file_buffered_read(struct kiocb *iocb,
1992 struct iov_iter *iter, ssize_t written)
1993 {
1994 struct file *filp = iocb->ki_filp;
1995 struct address_space *mapping = filp->f_mapping;
1996 struct inode *inode = mapping->host;
1997 struct file_ra_state *ra = &filp->f_ra;
1998 loff_t *ppos = &iocb->ki_pos;
1999 pgoff_t index;
2000 pgoff_t last_index;
2001 pgoff_t prev_index;
2002 unsigned long offset; /* offset into pagecache page */
2003 unsigned int prev_offset;
2004 int error = 0;
2005
2006 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2007 return 0;
2008 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2009
2010 index = *ppos >> PAGE_SHIFT;
2011 prev_index = ra->prev_pos >> PAGE_SHIFT;
2012 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2013 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2014 offset = *ppos & ~PAGE_MASK;
2015
2016 for (;;) {
2017 struct page *page;
2018 pgoff_t end_index;
2019 loff_t isize;
2020 unsigned long nr, ret;
2021
2022 cond_resched();
2023 find_page:
2024 if (fatal_signal_pending(current)) {
2025 error = -EINTR;
2026 goto out;
2027 }
2028
2029 page = find_get_page(mapping, index);
2030 if (!page) {
2031 if (iocb->ki_flags & IOCB_NOWAIT)
2032 goto would_block;
2033 page_cache_sync_readahead(mapping,
2034 ra, filp,
2035 index, last_index - index);
2036 page = find_get_page(mapping, index);
2037 if (unlikely(page == NULL))
2038 goto no_cached_page;
2039 }
2040 if (PageReadahead(page)) {
2041 page_cache_async_readahead(mapping,
2042 ra, filp, page,
2043 index, last_index - index);
2044 }
2045 if (!PageUptodate(page)) {
2046 if (iocb->ki_flags & IOCB_NOWAIT) {
2047 put_page(page);
2048 goto would_block;
2049 }
2050
2051 /*
2052 * See comment in do_read_cache_page on why
2053 * wait_on_page_locked is used to avoid unnecessarily
2054 * serialisations and why it's safe.
2055 */
2056 error = wait_on_page_locked_killable(page);
2057 if (unlikely(error))
2058 goto readpage_error;
2059 if (PageUptodate(page))
2060 goto page_ok;
2061
2062 if (inode->i_blkbits == PAGE_SHIFT ||
2063 !mapping->a_ops->is_partially_uptodate)
2064 goto page_not_up_to_date;
2065 /* pipes can't handle partially uptodate pages */
2066 if (unlikely(iov_iter_is_pipe(iter)))
2067 goto page_not_up_to_date;
2068 if (!trylock_page(page))
2069 goto page_not_up_to_date;
2070 /* Did it get truncated before we got the lock? */
2071 if (!page->mapping)
2072 goto page_not_up_to_date_locked;
2073 if (!mapping->a_ops->is_partially_uptodate(page,
2074 offset, iter->count))
2075 goto page_not_up_to_date_locked;
2076 unlock_page(page);
2077 }
2078 page_ok:
2079 /*
2080 * i_size must be checked after we know the page is Uptodate.
2081 *
2082 * Checking i_size after the check allows us to calculate
2083 * the correct value for "nr", which means the zero-filled
2084 * part of the page is not copied back to userspace (unless
2085 * another truncate extends the file - this is desired though).
2086 */
2087
2088 isize = i_size_read(inode);
2089 end_index = (isize - 1) >> PAGE_SHIFT;
2090 if (unlikely(!isize || index > end_index)) {
2091 put_page(page);
2092 goto out;
2093 }
2094
2095 /* nr is the maximum number of bytes to copy from this page */
2096 nr = PAGE_SIZE;
2097 if (index == end_index) {
2098 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2099 if (nr <= offset) {
2100 put_page(page);
2101 goto out;
2102 }
2103 }
2104 nr = nr - offset;
2105
2106 /* If users can be writing to this page using arbitrary
2107 * virtual addresses, take care about potential aliasing
2108 * before reading the page on the kernel side.
2109 */
2110 if (mapping_writably_mapped(mapping))
2111 flush_dcache_page(page);
2112
2113 /*
2114 * When a sequential read accesses a page several times,
2115 * only mark it as accessed the first time.
2116 */
2117 if (prev_index != index || offset != prev_offset)
2118 mark_page_accessed(page);
2119 prev_index = index;
2120
2121 /*
2122 * Ok, we have the page, and it's up-to-date, so
2123 * now we can copy it to user space...
2124 */
2125
2126 ret = copy_page_to_iter(page, offset, nr, iter);
2127 offset += ret;
2128 index += offset >> PAGE_SHIFT;
2129 offset &= ~PAGE_MASK;
2130 prev_offset = offset;
2131
2132 put_page(page);
2133 written += ret;
2134 if (!iov_iter_count(iter))
2135 goto out;
2136 if (ret < nr) {
2137 error = -EFAULT;
2138 goto out;
2139 }
2140 continue;
2141
2142 page_not_up_to_date:
2143 /* Get exclusive access to the page ... */
2144 error = lock_page_killable(page);
2145 if (unlikely(error))
2146 goto readpage_error;
2147
2148 page_not_up_to_date_locked:
2149 /* Did it get truncated before we got the lock? */
2150 if (!page->mapping) {
2151 unlock_page(page);
2152 put_page(page);
2153 continue;
2154 }
2155
2156 /* Did somebody else fill it already? */
2157 if (PageUptodate(page)) {
2158 unlock_page(page);
2159 goto page_ok;
2160 }
2161
2162 readpage:
2163 /*
2164 * A previous I/O error may have been due to temporary
2165 * failures, eg. multipath errors.
2166 * PG_error will be set again if readpage fails.
2167 */
2168 ClearPageError(page);
2169 /* Start the actual read. The read will unlock the page. */
2170 error = mapping->a_ops->readpage(filp, page);
2171
2172 if (unlikely(error)) {
2173 if (error == AOP_TRUNCATED_PAGE) {
2174 put_page(page);
2175 error = 0;
2176 goto find_page;
2177 }
2178 goto readpage_error;
2179 }
2180
2181 if (!PageUptodate(page)) {
2182 error = lock_page_killable(page);
2183 if (unlikely(error))
2184 goto readpage_error;
2185 if (!PageUptodate(page)) {
2186 if (page->mapping == NULL) {
2187 /*
2188 * invalidate_mapping_pages got it
2189 */
2190 unlock_page(page);
2191 put_page(page);
2192 goto find_page;
2193 }
2194 unlock_page(page);
2195 shrink_readahead_size_eio(ra);
2196 error = -EIO;
2197 goto readpage_error;
2198 }
2199 unlock_page(page);
2200 }
2201
2202 goto page_ok;
2203
2204 readpage_error:
2205 /* UHHUH! A synchronous read error occurred. Report it */
2206 put_page(page);
2207 goto out;
2208
2209 no_cached_page:
2210 /*
2211 * Ok, it wasn't cached, so we need to create a new
2212 * page..
2213 */
2214 page = page_cache_alloc(mapping);
2215 if (!page) {
2216 error = -ENOMEM;
2217 goto out;
2218 }
2219 error = add_to_page_cache_lru(page, mapping, index,
2220 mapping_gfp_constraint(mapping, GFP_KERNEL));
2221 if (error) {
2222 put_page(page);
2223 if (error == -EEXIST) {
2224 error = 0;
2225 goto find_page;
2226 }
2227 goto out;
2228 }
2229 goto readpage;
2230 }
2231
2232 would_block:
2233 error = -EAGAIN;
2234 out:
2235 ra->prev_pos = prev_index;
2236 ra->prev_pos <<= PAGE_SHIFT;
2237 ra->prev_pos |= prev_offset;
2238
2239 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2240 file_accessed(filp);
2241 return written ? written : error;
2242 }
2243 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2244
2245 /**
2246 * generic_file_read_iter - generic filesystem read routine
2247 * @iocb: kernel I/O control block
2248 * @iter: destination for the data read
2249 *
2250 * This is the "read_iter()" routine for all filesystems
2251 * that can use the page cache directly.
2252 * Return:
2253 * * number of bytes copied, even for partial reads
2254 * * negative error code if nothing was read
2255 */
2256 ssize_t
2257 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2258 {
2259 size_t count = iov_iter_count(iter);
2260 ssize_t retval = 0;
2261
2262 if (!count)
2263 goto out; /* skip atime */
2264
2265 if (iocb->ki_flags & IOCB_DIRECT) {
2266 struct file *file = iocb->ki_filp;
2267 struct address_space *mapping = file->f_mapping;
2268 struct inode *inode = mapping->host;
2269 loff_t size;
2270
2271 size = i_size_read(inode);
2272 if (iocb->ki_flags & IOCB_NOWAIT) {
2273 if (filemap_range_has_page(mapping, iocb->ki_pos,
2274 iocb->ki_pos + count - 1))
2275 return -EAGAIN;
2276 } else {
2277 retval = filemap_write_and_wait_range(mapping,
2278 iocb->ki_pos,
2279 iocb->ki_pos + count - 1);
2280 if (retval < 0)
2281 goto out;
2282 }
2283
2284 file_accessed(file);
2285
2286 retval = mapping->a_ops->direct_IO(iocb, iter);
2287 if (retval >= 0) {
2288 iocb->ki_pos += retval;
2289 count -= retval;
2290 }
2291 iov_iter_revert(iter, count - iov_iter_count(iter));
2292
2293 /*
2294 * Btrfs can have a short DIO read if we encounter
2295 * compressed extents, so if there was an error, or if
2296 * we've already read everything we wanted to, or if
2297 * there was a short read because we hit EOF, go ahead
2298 * and return. Otherwise fallthrough to buffered io for
2299 * the rest of the read. Buffered reads will not work for
2300 * DAX files, so don't bother trying.
2301 */
2302 if (retval < 0 || !count || iocb->ki_pos >= size ||
2303 IS_DAX(inode))
2304 goto out;
2305 }
2306
2307 retval = generic_file_buffered_read(iocb, iter, retval);
2308 out:
2309 return retval;
2310 }
2311 EXPORT_SYMBOL(generic_file_read_iter);
2312
2313 #ifdef CONFIG_MMU
2314 #define MMAP_LOTSAMISS (100)
2315 /*
2316 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2317 * @vmf - the vm_fault for this fault.
2318 * @page - the page to lock.
2319 * @fpin - the pointer to the file we may pin (or is already pinned).
2320 *
2321 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2322 * It differs in that it actually returns the page locked if it returns 1 and 0
2323 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2324 * will point to the pinned file and needs to be fput()'ed at a later point.
2325 */
2326 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2327 struct file **fpin)
2328 {
2329 if (trylock_page(page))
2330 return 1;
2331
2332 /*
2333 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2334 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2335 * is supposed to work. We have way too many special cases..
2336 */
2337 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2338 return 0;
2339
2340 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2341 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2342 if (__lock_page_killable(page)) {
2343 /*
2344 * We didn't have the right flags to drop the mmap_lock,
2345 * but all fault_handlers only check for fatal signals
2346 * if we return VM_FAULT_RETRY, so we need to drop the
2347 * mmap_lock here and return 0 if we don't have a fpin.
2348 */
2349 if (*fpin == NULL)
2350 mmap_read_unlock(vmf->vma->vm_mm);
2351 return 0;
2352 }
2353 } else
2354 __lock_page(page);
2355 return 1;
2356 }
2357
2358
2359 /*
2360 * Synchronous readahead happens when we don't even find a page in the page
2361 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2362 * to drop the mmap sem we return the file that was pinned in order for us to do
2363 * that. If we didn't pin a file then we return NULL. The file that is
2364 * returned needs to be fput()'ed when we're done with it.
2365 */
2366 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2367 {
2368 struct file *file = vmf->vma->vm_file;
2369 struct file_ra_state *ra = &file->f_ra;
2370 struct address_space *mapping = file->f_mapping;
2371 struct file *fpin = NULL;
2372 pgoff_t offset = vmf->pgoff;
2373
2374 /* If we don't want any read-ahead, don't bother */
2375 if (vmf->vma->vm_flags & VM_RAND_READ)
2376 return fpin;
2377 if (!ra->ra_pages)
2378 return fpin;
2379
2380 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2381 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2382 page_cache_sync_readahead(mapping, ra, file, offset,
2383 ra->ra_pages);
2384 return fpin;
2385 }
2386
2387 /* Avoid banging the cache line if not needed */
2388 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2389 ra->mmap_miss++;
2390
2391 /*
2392 * Do we miss much more than hit in this file? If so,
2393 * stop bothering with read-ahead. It will only hurt.
2394 */
2395 if (ra->mmap_miss > MMAP_LOTSAMISS)
2396 return fpin;
2397
2398 /*
2399 * mmap read-around
2400 */
2401 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2402 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2403 ra->size = ra->ra_pages;
2404 ra->async_size = ra->ra_pages / 4;
2405 ra_submit(ra, mapping, file);
2406 return fpin;
2407 }
2408
2409 /*
2410 * Asynchronous readahead happens when we find the page and PG_readahead,
2411 * so we want to possibly extend the readahead further. We return the file that
2412 * was pinned if we have to drop the mmap_lock in order to do IO.
2413 */
2414 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2415 struct page *page)
2416 {
2417 struct file *file = vmf->vma->vm_file;
2418 struct file_ra_state *ra = &file->f_ra;
2419 struct address_space *mapping = file->f_mapping;
2420 struct file *fpin = NULL;
2421 pgoff_t offset = vmf->pgoff;
2422
2423 /* If we don't want any read-ahead, don't bother */
2424 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2425 return fpin;
2426 if (ra->mmap_miss > 0)
2427 ra->mmap_miss--;
2428 if (PageReadahead(page)) {
2429 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2430 page_cache_async_readahead(mapping, ra, file,
2431 page, offset, ra->ra_pages);
2432 }
2433 return fpin;
2434 }
2435
2436 /**
2437 * filemap_fault - read in file data for page fault handling
2438 * @vmf: struct vm_fault containing details of the fault
2439 *
2440 * filemap_fault() is invoked via the vma operations vector for a
2441 * mapped memory region to read in file data during a page fault.
2442 *
2443 * The goto's are kind of ugly, but this streamlines the normal case of having
2444 * it in the page cache, and handles the special cases reasonably without
2445 * having a lot of duplicated code.
2446 *
2447 * vma->vm_mm->mmap_lock must be held on entry.
2448 *
2449 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2450 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2451 *
2452 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2453 * has not been released.
2454 *
2455 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2456 *
2457 * Return: bitwise-OR of %VM_FAULT_ codes.
2458 */
2459 vm_fault_t filemap_fault(struct vm_fault *vmf)
2460 {
2461 int error;
2462 struct file *file = vmf->vma->vm_file;
2463 struct file *fpin = NULL;
2464 struct address_space *mapping = file->f_mapping;
2465 struct file_ra_state *ra = &file->f_ra;
2466 struct inode *inode = mapping->host;
2467 pgoff_t offset = vmf->pgoff;
2468 pgoff_t max_off;
2469 struct page *page;
2470 vm_fault_t ret = 0;
2471
2472 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2473 if (unlikely(offset >= max_off))
2474 return VM_FAULT_SIGBUS;
2475
2476 /*
2477 * Do we have something in the page cache already?
2478 */
2479 page = find_get_page(mapping, offset);
2480 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2481 /*
2482 * We found the page, so try async readahead before
2483 * waiting for the lock.
2484 */
2485 fpin = do_async_mmap_readahead(vmf, page);
2486 } else if (!page) {
2487 /* No page in the page cache at all */
2488 count_vm_event(PGMAJFAULT);
2489 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2490 ret = VM_FAULT_MAJOR;
2491 fpin = do_sync_mmap_readahead(vmf);
2492 retry_find:
2493 page = pagecache_get_page(mapping, offset,
2494 FGP_CREAT|FGP_FOR_MMAP,
2495 vmf->gfp_mask);
2496 if (!page) {
2497 if (fpin)
2498 goto out_retry;
2499 return VM_FAULT_OOM;
2500 }
2501 }
2502
2503 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2504 goto out_retry;
2505
2506 /* Did it get truncated? */
2507 if (unlikely(compound_head(page)->mapping != mapping)) {
2508 unlock_page(page);
2509 put_page(page);
2510 goto retry_find;
2511 }
2512 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2513
2514 /*
2515 * We have a locked page in the page cache, now we need to check
2516 * that it's up-to-date. If not, it is going to be due to an error.
2517 */
2518 if (unlikely(!PageUptodate(page)))
2519 goto page_not_uptodate;
2520
2521 /*
2522 * We've made it this far and we had to drop our mmap_lock, now is the
2523 * time to return to the upper layer and have it re-find the vma and
2524 * redo the fault.
2525 */
2526 if (fpin) {
2527 unlock_page(page);
2528 goto out_retry;
2529 }
2530
2531 /*
2532 * Found the page and have a reference on it.
2533 * We must recheck i_size under page lock.
2534 */
2535 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2536 if (unlikely(offset >= max_off)) {
2537 unlock_page(page);
2538 put_page(page);
2539 return VM_FAULT_SIGBUS;
2540 }
2541
2542 vmf->page = page;
2543 return ret | VM_FAULT_LOCKED;
2544
2545 page_not_uptodate:
2546 /*
2547 * Umm, take care of errors if the page isn't up-to-date.
2548 * Try to re-read it _once_. We do this synchronously,
2549 * because there really aren't any performance issues here
2550 * and we need to check for errors.
2551 */
2552 ClearPageError(page);
2553 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2554 error = mapping->a_ops->readpage(file, page);
2555 if (!error) {
2556 wait_on_page_locked(page);
2557 if (!PageUptodate(page))
2558 error = -EIO;
2559 }
2560 if (fpin)
2561 goto out_retry;
2562 put_page(page);
2563
2564 if (!error || error == AOP_TRUNCATED_PAGE)
2565 goto retry_find;
2566
2567 shrink_readahead_size_eio(ra);
2568 return VM_FAULT_SIGBUS;
2569
2570 out_retry:
2571 /*
2572 * We dropped the mmap_lock, we need to return to the fault handler to
2573 * re-find the vma and come back and find our hopefully still populated
2574 * page.
2575 */
2576 if (page)
2577 put_page(page);
2578 if (fpin)
2579 fput(fpin);
2580 return ret | VM_FAULT_RETRY;
2581 }
2582 EXPORT_SYMBOL(filemap_fault);
2583
2584 void filemap_map_pages(struct vm_fault *vmf,
2585 pgoff_t start_pgoff, pgoff_t end_pgoff)
2586 {
2587 struct file *file = vmf->vma->vm_file;
2588 struct address_space *mapping = file->f_mapping;
2589 pgoff_t last_pgoff = start_pgoff;
2590 unsigned long max_idx;
2591 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2592 struct page *page;
2593
2594 rcu_read_lock();
2595 xas_for_each(&xas, page, end_pgoff) {
2596 if (xas_retry(&xas, page))
2597 continue;
2598 if (xa_is_value(page))
2599 goto next;
2600
2601 /*
2602 * Check for a locked page first, as a speculative
2603 * reference may adversely influence page migration.
2604 */
2605 if (PageLocked(page))
2606 goto next;
2607 if (!page_cache_get_speculative(page))
2608 goto next;
2609
2610 /* Has the page moved or been split? */
2611 if (unlikely(page != xas_reload(&xas)))
2612 goto skip;
2613 page = find_subpage(page, xas.xa_index);
2614
2615 if (!PageUptodate(page) ||
2616 PageReadahead(page) ||
2617 PageHWPoison(page))
2618 goto skip;
2619 if (!trylock_page(page))
2620 goto skip;
2621
2622 if (page->mapping != mapping || !PageUptodate(page))
2623 goto unlock;
2624
2625 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2626 if (page->index >= max_idx)
2627 goto unlock;
2628
2629 if (file->f_ra.mmap_miss > 0)
2630 file->f_ra.mmap_miss--;
2631
2632 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2633 if (vmf->pte)
2634 vmf->pte += xas.xa_index - last_pgoff;
2635 last_pgoff = xas.xa_index;
2636 if (alloc_set_pte(vmf, page))
2637 goto unlock;
2638 unlock_page(page);
2639 goto next;
2640 unlock:
2641 unlock_page(page);
2642 skip:
2643 put_page(page);
2644 next:
2645 /* Huge page is mapped? No need to proceed. */
2646 if (pmd_trans_huge(*vmf->pmd))
2647 break;
2648 }
2649 rcu_read_unlock();
2650 }
2651 EXPORT_SYMBOL(filemap_map_pages);
2652
2653 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2654 {
2655 struct page *page = vmf->page;
2656 struct inode *inode = file_inode(vmf->vma->vm_file);
2657 vm_fault_t ret = VM_FAULT_LOCKED;
2658
2659 sb_start_pagefault(inode->i_sb);
2660 file_update_time(vmf->vma->vm_file);
2661 lock_page(page);
2662 if (page->mapping != inode->i_mapping) {
2663 unlock_page(page);
2664 ret = VM_FAULT_NOPAGE;
2665 goto out;
2666 }
2667 /*
2668 * We mark the page dirty already here so that when freeze is in
2669 * progress, we are guaranteed that writeback during freezing will
2670 * see the dirty page and writeprotect it again.
2671 */
2672 set_page_dirty(page);
2673 wait_for_stable_page(page);
2674 out:
2675 sb_end_pagefault(inode->i_sb);
2676 return ret;
2677 }
2678
2679 const struct vm_operations_struct generic_file_vm_ops = {
2680 .fault = filemap_fault,
2681 .map_pages = filemap_map_pages,
2682 .page_mkwrite = filemap_page_mkwrite,
2683 };
2684
2685 /* This is used for a general mmap of a disk file */
2686
2687 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2688 {
2689 struct address_space *mapping = file->f_mapping;
2690
2691 if (!mapping->a_ops->readpage)
2692 return -ENOEXEC;
2693 file_accessed(file);
2694 vma->vm_ops = &generic_file_vm_ops;
2695 return 0;
2696 }
2697
2698 /*
2699 * This is for filesystems which do not implement ->writepage.
2700 */
2701 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2702 {
2703 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2704 return -EINVAL;
2705 return generic_file_mmap(file, vma);
2706 }
2707 #else
2708 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2709 {
2710 return VM_FAULT_SIGBUS;
2711 }
2712 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2713 {
2714 return -ENOSYS;
2715 }
2716 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2717 {
2718 return -ENOSYS;
2719 }
2720 #endif /* CONFIG_MMU */
2721
2722 EXPORT_SYMBOL(filemap_page_mkwrite);
2723 EXPORT_SYMBOL(generic_file_mmap);
2724 EXPORT_SYMBOL(generic_file_readonly_mmap);
2725
2726 static struct page *wait_on_page_read(struct page *page)
2727 {
2728 if (!IS_ERR(page)) {
2729 wait_on_page_locked(page);
2730 if (!PageUptodate(page)) {
2731 put_page(page);
2732 page = ERR_PTR(-EIO);
2733 }
2734 }
2735 return page;
2736 }
2737
2738 static struct page *do_read_cache_page(struct address_space *mapping,
2739 pgoff_t index,
2740 int (*filler)(void *, struct page *),
2741 void *data,
2742 gfp_t gfp)
2743 {
2744 struct page *page;
2745 int err;
2746 repeat:
2747 page = find_get_page(mapping, index);
2748 if (!page) {
2749 page = __page_cache_alloc(gfp);
2750 if (!page)
2751 return ERR_PTR(-ENOMEM);
2752 err = add_to_page_cache_lru(page, mapping, index, gfp);
2753 if (unlikely(err)) {
2754 put_page(page);
2755 if (err == -EEXIST)
2756 goto repeat;
2757 /* Presumably ENOMEM for xarray node */
2758 return ERR_PTR(err);
2759 }
2760
2761 filler:
2762 if (filler)
2763 err = filler(data, page);
2764 else
2765 err = mapping->a_ops->readpage(data, page);
2766
2767 if (err < 0) {
2768 put_page(page);
2769 return ERR_PTR(err);
2770 }
2771
2772 page = wait_on_page_read(page);
2773 if (IS_ERR(page))
2774 return page;
2775 goto out;
2776 }
2777 if (PageUptodate(page))
2778 goto out;
2779
2780 /*
2781 * Page is not up to date and may be locked due one of the following
2782 * case a: Page is being filled and the page lock is held
2783 * case b: Read/write error clearing the page uptodate status
2784 * case c: Truncation in progress (page locked)
2785 * case d: Reclaim in progress
2786 *
2787 * Case a, the page will be up to date when the page is unlocked.
2788 * There is no need to serialise on the page lock here as the page
2789 * is pinned so the lock gives no additional protection. Even if the
2790 * the page is truncated, the data is still valid if PageUptodate as
2791 * it's a race vs truncate race.
2792 * Case b, the page will not be up to date
2793 * Case c, the page may be truncated but in itself, the data may still
2794 * be valid after IO completes as it's a read vs truncate race. The
2795 * operation must restart if the page is not uptodate on unlock but
2796 * otherwise serialising on page lock to stabilise the mapping gives
2797 * no additional guarantees to the caller as the page lock is
2798 * released before return.
2799 * Case d, similar to truncation. If reclaim holds the page lock, it
2800 * will be a race with remove_mapping that determines if the mapping
2801 * is valid on unlock but otherwise the data is valid and there is
2802 * no need to serialise with page lock.
2803 *
2804 * As the page lock gives no additional guarantee, we optimistically
2805 * wait on the page to be unlocked and check if it's up to date and
2806 * use the page if it is. Otherwise, the page lock is required to
2807 * distinguish between the different cases. The motivation is that we
2808 * avoid spurious serialisations and wakeups when multiple processes
2809 * wait on the same page for IO to complete.
2810 */
2811 wait_on_page_locked(page);
2812 if (PageUptodate(page))
2813 goto out;
2814
2815 /* Distinguish between all the cases under the safety of the lock */
2816 lock_page(page);
2817
2818 /* Case c or d, restart the operation */
2819 if (!page->mapping) {
2820 unlock_page(page);
2821 put_page(page);
2822 goto repeat;
2823 }
2824
2825 /* Someone else locked and filled the page in a very small window */
2826 if (PageUptodate(page)) {
2827 unlock_page(page);
2828 goto out;
2829 }
2830
2831 /*
2832 * A previous I/O error may have been due to temporary
2833 * failures.
2834 * Clear page error before actual read, PG_error will be
2835 * set again if read page fails.
2836 */
2837 ClearPageError(page);
2838 goto filler;
2839
2840 out:
2841 mark_page_accessed(page);
2842 return page;
2843 }
2844
2845 /**
2846 * read_cache_page - read into page cache, fill it if needed
2847 * @mapping: the page's address_space
2848 * @index: the page index
2849 * @filler: function to perform the read
2850 * @data: first arg to filler(data, page) function, often left as NULL
2851 *
2852 * Read into the page cache. If a page already exists, and PageUptodate() is
2853 * not set, try to fill the page and wait for it to become unlocked.
2854 *
2855 * If the page does not get brought uptodate, return -EIO.
2856 *
2857 * Return: up to date page on success, ERR_PTR() on failure.
2858 */
2859 struct page *read_cache_page(struct address_space *mapping,
2860 pgoff_t index,
2861 int (*filler)(void *, struct page *),
2862 void *data)
2863 {
2864 return do_read_cache_page(mapping, index, filler, data,
2865 mapping_gfp_mask(mapping));
2866 }
2867 EXPORT_SYMBOL(read_cache_page);
2868
2869 /**
2870 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2871 * @mapping: the page's address_space
2872 * @index: the page index
2873 * @gfp: the page allocator flags to use if allocating
2874 *
2875 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2876 * any new page allocations done using the specified allocation flags.
2877 *
2878 * If the page does not get brought uptodate, return -EIO.
2879 *
2880 * Return: up to date page on success, ERR_PTR() on failure.
2881 */
2882 struct page *read_cache_page_gfp(struct address_space *mapping,
2883 pgoff_t index,
2884 gfp_t gfp)
2885 {
2886 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2887 }
2888 EXPORT_SYMBOL(read_cache_page_gfp);
2889
2890 /*
2891 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2892 * LFS limits. If pos is under the limit it becomes a short access. If it
2893 * exceeds the limit we return -EFBIG.
2894 */
2895 static int generic_write_check_limits(struct file *file, loff_t pos,
2896 loff_t *count)
2897 {
2898 struct inode *inode = file->f_mapping->host;
2899 loff_t max_size = inode->i_sb->s_maxbytes;
2900 loff_t limit = rlimit(RLIMIT_FSIZE);
2901
2902 if (limit != RLIM_INFINITY) {
2903 if (pos >= limit) {
2904 send_sig(SIGXFSZ, current, 0);
2905 return -EFBIG;
2906 }
2907 *count = min(*count, limit - pos);
2908 }
2909
2910 if (!(file->f_flags & O_LARGEFILE))
2911 max_size = MAX_NON_LFS;
2912
2913 if (unlikely(pos >= max_size))
2914 return -EFBIG;
2915
2916 *count = min(*count, max_size - pos);
2917
2918 return 0;
2919 }
2920
2921 /*
2922 * Performs necessary checks before doing a write
2923 *
2924 * Can adjust writing position or amount of bytes to write.
2925 * Returns appropriate error code that caller should return or
2926 * zero in case that write should be allowed.
2927 */
2928 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2929 {
2930 struct file *file = iocb->ki_filp;
2931 struct inode *inode = file->f_mapping->host;
2932 loff_t count;
2933 int ret;
2934
2935 if (IS_SWAPFILE(inode))
2936 return -ETXTBSY;
2937
2938 if (!iov_iter_count(from))
2939 return 0;
2940
2941 /* FIXME: this is for backwards compatibility with 2.4 */
2942 if (iocb->ki_flags & IOCB_APPEND)
2943 iocb->ki_pos = i_size_read(inode);
2944
2945 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2946 return -EINVAL;
2947
2948 count = iov_iter_count(from);
2949 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2950 if (ret)
2951 return ret;
2952
2953 iov_iter_truncate(from, count);
2954 return iov_iter_count(from);
2955 }
2956 EXPORT_SYMBOL(generic_write_checks);
2957
2958 /*
2959 * Performs necessary checks before doing a clone.
2960 *
2961 * Can adjust amount of bytes to clone via @req_count argument.
2962 * Returns appropriate error code that caller should return or
2963 * zero in case the clone should be allowed.
2964 */
2965 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2966 struct file *file_out, loff_t pos_out,
2967 loff_t *req_count, unsigned int remap_flags)
2968 {
2969 struct inode *inode_in = file_in->f_mapping->host;
2970 struct inode *inode_out = file_out->f_mapping->host;
2971 uint64_t count = *req_count;
2972 uint64_t bcount;
2973 loff_t size_in, size_out;
2974 loff_t bs = inode_out->i_sb->s_blocksize;
2975 int ret;
2976
2977 /* The start of both ranges must be aligned to an fs block. */
2978 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2979 return -EINVAL;
2980
2981 /* Ensure offsets don't wrap. */
2982 if (pos_in + count < pos_in || pos_out + count < pos_out)
2983 return -EINVAL;
2984
2985 size_in = i_size_read(inode_in);
2986 size_out = i_size_read(inode_out);
2987
2988 /* Dedupe requires both ranges to be within EOF. */
2989 if ((remap_flags & REMAP_FILE_DEDUP) &&
2990 (pos_in >= size_in || pos_in + count > size_in ||
2991 pos_out >= size_out || pos_out + count > size_out))
2992 return -EINVAL;
2993
2994 /* Ensure the infile range is within the infile. */
2995 if (pos_in >= size_in)
2996 return -EINVAL;
2997 count = min(count, size_in - (uint64_t)pos_in);
2998
2999 ret = generic_write_check_limits(file_out, pos_out, &count);
3000 if (ret)
3001 return ret;
3002
3003 /*
3004 * If the user wanted us to link to the infile's EOF, round up to the
3005 * next block boundary for this check.
3006 *
3007 * Otherwise, make sure the count is also block-aligned, having
3008 * already confirmed the starting offsets' block alignment.
3009 */
3010 if (pos_in + count == size_in) {
3011 bcount = ALIGN(size_in, bs) - pos_in;
3012 } else {
3013 if (!IS_ALIGNED(count, bs))
3014 count = ALIGN_DOWN(count, bs);
3015 bcount = count;
3016 }
3017
3018 /* Don't allow overlapped cloning within the same file. */
3019 if (inode_in == inode_out &&
3020 pos_out + bcount > pos_in &&
3021 pos_out < pos_in + bcount)
3022 return -EINVAL;
3023
3024 /*
3025 * We shortened the request but the caller can't deal with that, so
3026 * bounce the request back to userspace.
3027 */
3028 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3029 return -EINVAL;
3030
3031 *req_count = count;
3032 return 0;
3033 }
3034
3035
3036 /*
3037 * Performs common checks before doing a file copy/clone
3038 * from @file_in to @file_out.
3039 */
3040 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3041 {
3042 struct inode *inode_in = file_inode(file_in);
3043 struct inode *inode_out = file_inode(file_out);
3044
3045 /* Don't copy dirs, pipes, sockets... */
3046 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3047 return -EISDIR;
3048 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3049 return -EINVAL;
3050
3051 if (!(file_in->f_mode & FMODE_READ) ||
3052 !(file_out->f_mode & FMODE_WRITE) ||
3053 (file_out->f_flags & O_APPEND))
3054 return -EBADF;
3055
3056 return 0;
3057 }
3058
3059 /*
3060 * Performs necessary checks before doing a file copy
3061 *
3062 * Can adjust amount of bytes to copy via @req_count argument.
3063 * Returns appropriate error code that caller should return or
3064 * zero in case the copy should be allowed.
3065 */
3066 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3067 struct file *file_out, loff_t pos_out,
3068 size_t *req_count, unsigned int flags)
3069 {
3070 struct inode *inode_in = file_inode(file_in);
3071 struct inode *inode_out = file_inode(file_out);
3072 uint64_t count = *req_count;
3073 loff_t size_in;
3074 int ret;
3075
3076 ret = generic_file_rw_checks(file_in, file_out);
3077 if (ret)
3078 return ret;
3079
3080 /* Don't touch certain kinds of inodes */
3081 if (IS_IMMUTABLE(inode_out))
3082 return -EPERM;
3083
3084 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3085 return -ETXTBSY;
3086
3087 /* Ensure offsets don't wrap. */
3088 if (pos_in + count < pos_in || pos_out + count < pos_out)
3089 return -EOVERFLOW;
3090
3091 /* Shorten the copy to EOF */
3092 size_in = i_size_read(inode_in);
3093 if (pos_in >= size_in)
3094 count = 0;
3095 else
3096 count = min(count, size_in - (uint64_t)pos_in);
3097
3098 ret = generic_write_check_limits(file_out, pos_out, &count);
3099 if (ret)
3100 return ret;
3101
3102 /* Don't allow overlapped copying within the same file. */
3103 if (inode_in == inode_out &&
3104 pos_out + count > pos_in &&
3105 pos_out < pos_in + count)
3106 return -EINVAL;
3107
3108 *req_count = count;
3109 return 0;
3110 }
3111
3112 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3113 loff_t pos, unsigned len, unsigned flags,
3114 struct page **pagep, void **fsdata)
3115 {
3116 const struct address_space_operations *aops = mapping->a_ops;
3117
3118 return aops->write_begin(file, mapping, pos, len, flags,
3119 pagep, fsdata);
3120 }
3121 EXPORT_SYMBOL(pagecache_write_begin);
3122
3123 int pagecache_write_end(struct file *file, struct address_space *mapping,
3124 loff_t pos, unsigned len, unsigned copied,
3125 struct page *page, void *fsdata)
3126 {
3127 const struct address_space_operations *aops = mapping->a_ops;
3128
3129 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3130 }
3131 EXPORT_SYMBOL(pagecache_write_end);
3132
3133 /*
3134 * Warn about a page cache invalidation failure during a direct I/O write.
3135 */
3136 void dio_warn_stale_pagecache(struct file *filp)
3137 {
3138 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3139 char pathname[128];
3140 struct inode *inode = file_inode(filp);
3141 char *path;
3142
3143 errseq_set(&inode->i_mapping->wb_err, -EIO);
3144 if (__ratelimit(&_rs)) {
3145 path = file_path(filp, pathname, sizeof(pathname));
3146 if (IS_ERR(path))
3147 path = "(unknown)";
3148 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3149 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3150 current->comm);
3151 }
3152 }
3153
3154 ssize_t
3155 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3156 {
3157 struct file *file = iocb->ki_filp;
3158 struct address_space *mapping = file->f_mapping;
3159 struct inode *inode = mapping->host;
3160 loff_t pos = iocb->ki_pos;
3161 ssize_t written;
3162 size_t write_len;
3163 pgoff_t end;
3164
3165 write_len = iov_iter_count(from);
3166 end = (pos + write_len - 1) >> PAGE_SHIFT;
3167
3168 if (iocb->ki_flags & IOCB_NOWAIT) {
3169 /* If there are pages to writeback, return */
3170 if (filemap_range_has_page(inode->i_mapping, pos,
3171 pos + write_len - 1))
3172 return -EAGAIN;
3173 } else {
3174 written = filemap_write_and_wait_range(mapping, pos,
3175 pos + write_len - 1);
3176 if (written)
3177 goto out;
3178 }
3179
3180 /*
3181 * After a write we want buffered reads to be sure to go to disk to get
3182 * the new data. We invalidate clean cached page from the region we're
3183 * about to write. We do this *before* the write so that we can return
3184 * without clobbering -EIOCBQUEUED from ->direct_IO().
3185 */
3186 written = invalidate_inode_pages2_range(mapping,
3187 pos >> PAGE_SHIFT, end);
3188 /*
3189 * If a page can not be invalidated, return 0 to fall back
3190 * to buffered write.
3191 */
3192 if (written) {
3193 if (written == -EBUSY)
3194 return 0;
3195 goto out;
3196 }
3197
3198 written = mapping->a_ops->direct_IO(iocb, from);
3199
3200 /*
3201 * Finally, try again to invalidate clean pages which might have been
3202 * cached by non-direct readahead, or faulted in by get_user_pages()
3203 * if the source of the write was an mmap'ed region of the file
3204 * we're writing. Either one is a pretty crazy thing to do,
3205 * so we don't support it 100%. If this invalidation
3206 * fails, tough, the write still worked...
3207 *
3208 * Most of the time we do not need this since dio_complete() will do
3209 * the invalidation for us. However there are some file systems that
3210 * do not end up with dio_complete() being called, so let's not break
3211 * them by removing it completely.
3212 *
3213 * Noticeable example is a blkdev_direct_IO().
3214 *
3215 * Skip invalidation for async writes or if mapping has no pages.
3216 */
3217 if (written > 0 && mapping->nrpages &&
3218 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3219 dio_warn_stale_pagecache(file);
3220
3221 if (written > 0) {
3222 pos += written;
3223 write_len -= written;
3224 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3225 i_size_write(inode, pos);
3226 mark_inode_dirty(inode);
3227 }
3228 iocb->ki_pos = pos;
3229 }
3230 iov_iter_revert(from, write_len - iov_iter_count(from));
3231 out:
3232 return written;
3233 }
3234 EXPORT_SYMBOL(generic_file_direct_write);
3235
3236 /*
3237 * Find or create a page at the given pagecache position. Return the locked
3238 * page. This function is specifically for buffered writes.
3239 */
3240 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3241 pgoff_t index, unsigned flags)
3242 {
3243 struct page *page;
3244 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3245
3246 if (flags & AOP_FLAG_NOFS)
3247 fgp_flags |= FGP_NOFS;
3248
3249 page = pagecache_get_page(mapping, index, fgp_flags,
3250 mapping_gfp_mask(mapping));
3251 if (page)
3252 wait_for_stable_page(page);
3253
3254 return page;
3255 }
3256 EXPORT_SYMBOL(grab_cache_page_write_begin);
3257
3258 ssize_t generic_perform_write(struct file *file,
3259 struct iov_iter *i, loff_t pos)
3260 {
3261 struct address_space *mapping = file->f_mapping;
3262 const struct address_space_operations *a_ops = mapping->a_ops;
3263 long status = 0;
3264 ssize_t written = 0;
3265 unsigned int flags = 0;
3266
3267 do {
3268 struct page *page;
3269 unsigned long offset; /* Offset into pagecache page */
3270 unsigned long bytes; /* Bytes to write to page */
3271 size_t copied; /* Bytes copied from user */
3272 void *fsdata;
3273
3274 offset = (pos & (PAGE_SIZE - 1));
3275 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3276 iov_iter_count(i));
3277
3278 again:
3279 /*
3280 * Bring in the user page that we will copy from _first_.
3281 * Otherwise there's a nasty deadlock on copying from the
3282 * same page as we're writing to, without it being marked
3283 * up-to-date.
3284 *
3285 * Not only is this an optimisation, but it is also required
3286 * to check that the address is actually valid, when atomic
3287 * usercopies are used, below.
3288 */
3289 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3290 status = -EFAULT;
3291 break;
3292 }
3293
3294 if (fatal_signal_pending(current)) {
3295 status = -EINTR;
3296 break;
3297 }
3298
3299 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3300 &page, &fsdata);
3301 if (unlikely(status < 0))
3302 break;
3303
3304 if (mapping_writably_mapped(mapping))
3305 flush_dcache_page(page);
3306
3307 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3308 flush_dcache_page(page);
3309
3310 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3311 page, fsdata);
3312 if (unlikely(status < 0))
3313 break;
3314 copied = status;
3315
3316 cond_resched();
3317
3318 iov_iter_advance(i, copied);
3319 if (unlikely(copied == 0)) {
3320 /*
3321 * If we were unable to copy any data at all, we must
3322 * fall back to a single segment length write.
3323 *
3324 * If we didn't fallback here, we could livelock
3325 * because not all segments in the iov can be copied at
3326 * once without a pagefault.
3327 */
3328 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3329 iov_iter_single_seg_count(i));
3330 goto again;
3331 }
3332 pos += copied;
3333 written += copied;
3334
3335 balance_dirty_pages_ratelimited(mapping);
3336 } while (iov_iter_count(i));
3337
3338 return written ? written : status;
3339 }
3340 EXPORT_SYMBOL(generic_perform_write);
3341
3342 /**
3343 * __generic_file_write_iter - write data to a file
3344 * @iocb: IO state structure (file, offset, etc.)
3345 * @from: iov_iter with data to write
3346 *
3347 * This function does all the work needed for actually writing data to a
3348 * file. It does all basic checks, removes SUID from the file, updates
3349 * modification times and calls proper subroutines depending on whether we
3350 * do direct IO or a standard buffered write.
3351 *
3352 * It expects i_mutex to be grabbed unless we work on a block device or similar
3353 * object which does not need locking at all.
3354 *
3355 * This function does *not* take care of syncing data in case of O_SYNC write.
3356 * A caller has to handle it. This is mainly due to the fact that we want to
3357 * avoid syncing under i_mutex.
3358 *
3359 * Return:
3360 * * number of bytes written, even for truncated writes
3361 * * negative error code if no data has been written at all
3362 */
3363 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3364 {
3365 struct file *file = iocb->ki_filp;
3366 struct address_space * mapping = file->f_mapping;
3367 struct inode *inode = mapping->host;
3368 ssize_t written = 0;
3369 ssize_t err;
3370 ssize_t status;
3371
3372 /* We can write back this queue in page reclaim */
3373 current->backing_dev_info = inode_to_bdi(inode);
3374 err = file_remove_privs(file);
3375 if (err)
3376 goto out;
3377
3378 err = file_update_time(file);
3379 if (err)
3380 goto out;
3381
3382 if (iocb->ki_flags & IOCB_DIRECT) {
3383 loff_t pos, endbyte;
3384
3385 written = generic_file_direct_write(iocb, from);
3386 /*
3387 * If the write stopped short of completing, fall back to
3388 * buffered writes. Some filesystems do this for writes to
3389 * holes, for example. For DAX files, a buffered write will
3390 * not succeed (even if it did, DAX does not handle dirty
3391 * page-cache pages correctly).
3392 */
3393 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3394 goto out;
3395
3396 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3397 /*
3398 * If generic_perform_write() returned a synchronous error
3399 * then we want to return the number of bytes which were
3400 * direct-written, or the error code if that was zero. Note
3401 * that this differs from normal direct-io semantics, which
3402 * will return -EFOO even if some bytes were written.
3403 */
3404 if (unlikely(status < 0)) {
3405 err = status;
3406 goto out;
3407 }
3408 /*
3409 * We need to ensure that the page cache pages are written to
3410 * disk and invalidated to preserve the expected O_DIRECT
3411 * semantics.
3412 */
3413 endbyte = pos + status - 1;
3414 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3415 if (err == 0) {
3416 iocb->ki_pos = endbyte + 1;
3417 written += status;
3418 invalidate_mapping_pages(mapping,
3419 pos >> PAGE_SHIFT,
3420 endbyte >> PAGE_SHIFT);
3421 } else {
3422 /*
3423 * We don't know how much we wrote, so just return
3424 * the number of bytes which were direct-written
3425 */
3426 }
3427 } else {
3428 written = generic_perform_write(file, from, iocb->ki_pos);
3429 if (likely(written > 0))
3430 iocb->ki_pos += written;
3431 }
3432 out:
3433 current->backing_dev_info = NULL;
3434 return written ? written : err;
3435 }
3436 EXPORT_SYMBOL(__generic_file_write_iter);
3437
3438 /**
3439 * generic_file_write_iter - write data to a file
3440 * @iocb: IO state structure
3441 * @from: iov_iter with data to write
3442 *
3443 * This is a wrapper around __generic_file_write_iter() to be used by most
3444 * filesystems. It takes care of syncing the file in case of O_SYNC file
3445 * and acquires i_mutex as needed.
3446 * Return:
3447 * * negative error code if no data has been written at all of
3448 * vfs_fsync_range() failed for a synchronous write
3449 * * number of bytes written, even for truncated writes
3450 */
3451 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3452 {
3453 struct file *file = iocb->ki_filp;
3454 struct inode *inode = file->f_mapping->host;
3455 ssize_t ret;
3456
3457 inode_lock(inode);
3458 ret = generic_write_checks(iocb, from);
3459 if (ret > 0)
3460 ret = __generic_file_write_iter(iocb, from);
3461 inode_unlock(inode);
3462
3463 if (ret > 0)
3464 ret = generic_write_sync(iocb, ret);
3465 return ret;
3466 }
3467 EXPORT_SYMBOL(generic_file_write_iter);
3468
3469 /**
3470 * try_to_release_page() - release old fs-specific metadata on a page
3471 *
3472 * @page: the page which the kernel is trying to free
3473 * @gfp_mask: memory allocation flags (and I/O mode)
3474 *
3475 * The address_space is to try to release any data against the page
3476 * (presumably at page->private).
3477 *
3478 * This may also be called if PG_fscache is set on a page, indicating that the
3479 * page is known to the local caching routines.
3480 *
3481 * The @gfp_mask argument specifies whether I/O may be performed to release
3482 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3483 *
3484 * Return: %1 if the release was successful, otherwise return zero.
3485 */
3486 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3487 {
3488 struct address_space * const mapping = page->mapping;
3489
3490 BUG_ON(!PageLocked(page));
3491 if (PageWriteback(page))
3492 return 0;
3493
3494 if (mapping && mapping->a_ops->releasepage)
3495 return mapping->a_ops->releasepage(page, gfp_mask);
3496 return try_to_free_buffers(page);
3497 }
3498
3499 EXPORT_SYMBOL(try_to_release_page);