]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/filemap.c
readahead: record mmap read-around states in file_ra_state
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43
44 #include <asm/mman.h>
45
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 *
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 *
81 * ->i_mutex
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
124
125 /*
126 * Some filesystems seem to re-dirty the page even after
127 * the VM has canceled the dirty bit (eg ext3 journaling).
128 *
129 * Fix it up by doing a final dirty accounting check after
130 * having removed the page entirely.
131 */
132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 dec_zone_page_state(page, NR_FILE_DIRTY);
134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
135 }
136 }
137
138 void remove_from_page_cache(struct page *page)
139 {
140 struct address_space *mapping = page->mapping;
141
142 BUG_ON(!PageLocked(page));
143
144 spin_lock_irq(&mapping->tree_lock);
145 __remove_from_page_cache(page);
146 spin_unlock_irq(&mapping->tree_lock);
147 mem_cgroup_uncharge_cache_page(page);
148 }
149
150 static int sync_page(void *word)
151 {
152 struct address_space *mapping;
153 struct page *page;
154
155 page = container_of((unsigned long *)word, struct page, flags);
156
157 /*
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
177 */
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
184 }
185
186 static int sync_page_killable(void *word)
187 {
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191
192 /**
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
198 *
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
209 {
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
215 .range_end = end,
216 };
217
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
220
221 ret = do_writepages(mapping, &wbc);
222 return ret;
223 }
224
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
227 {
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
239 {
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244 /**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
247 *
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251 int filemap_flush(struct address_space *mapping)
252 {
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256
257 /**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
262 *
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
268 {
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
273
274 if (end < start)
275 return 0;
276
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
284
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
287
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
291
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
295 }
296 pagevec_release(&pvec);
297 cond_resched();
298 }
299
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
305
306 return ret;
307 }
308
309 /**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
315 *
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
319 *
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
322 */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
325 {
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
329
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
337 }
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343
344 /**
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
350 *
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
357 {
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
361
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372
373 /**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 int err = 0;
395
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
398 /*
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
403 */
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
408 }
409 }
410 return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413
414 /**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
419 *
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
427 {
428 int err = 0;
429
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
440 }
441 }
442 return err;
443 }
444 EXPORT_SYMBOL(filemap_write_and_wait_range);
445
446 /**
447 * add_to_page_cache_locked - add a locked page to the pagecache
448 * @page: page to add
449 * @mapping: the page's address_space
450 * @offset: page index
451 * @gfp_mask: page allocation mode
452 *
453 * This function is used to add a page to the pagecache. It must be locked.
454 * This function does not add the page to the LRU. The caller must do that.
455 */
456 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
457 pgoff_t offset, gfp_t gfp_mask)
458 {
459 int error;
460
461 VM_BUG_ON(!PageLocked(page));
462
463 error = mem_cgroup_cache_charge(page, current->mm,
464 gfp_mask & GFP_RECLAIM_MASK);
465 if (error)
466 goto out;
467
468 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
469 if (error == 0) {
470 page_cache_get(page);
471 page->mapping = mapping;
472 page->index = offset;
473
474 spin_lock_irq(&mapping->tree_lock);
475 error = radix_tree_insert(&mapping->page_tree, offset, page);
476 if (likely(!error)) {
477 mapping->nrpages++;
478 __inc_zone_page_state(page, NR_FILE_PAGES);
479 spin_unlock_irq(&mapping->tree_lock);
480 } else {
481 page->mapping = NULL;
482 spin_unlock_irq(&mapping->tree_lock);
483 mem_cgroup_uncharge_cache_page(page);
484 page_cache_release(page);
485 }
486 radix_tree_preload_end();
487 } else
488 mem_cgroup_uncharge_cache_page(page);
489 out:
490 return error;
491 }
492 EXPORT_SYMBOL(add_to_page_cache_locked);
493
494 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
495 pgoff_t offset, gfp_t gfp_mask)
496 {
497 int ret;
498
499 /*
500 * Splice_read and readahead add shmem/tmpfs pages into the page cache
501 * before shmem_readpage has a chance to mark them as SwapBacked: they
502 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
503 * (called in add_to_page_cache) needs to know where they're going too.
504 */
505 if (mapping_cap_swap_backed(mapping))
506 SetPageSwapBacked(page);
507
508 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
509 if (ret == 0) {
510 if (page_is_file_cache(page))
511 lru_cache_add_file(page);
512 else
513 lru_cache_add_active_anon(page);
514 }
515 return ret;
516 }
517 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
518
519 #ifdef CONFIG_NUMA
520 struct page *__page_cache_alloc(gfp_t gfp)
521 {
522 if (cpuset_do_page_mem_spread()) {
523 int n = cpuset_mem_spread_node();
524 return alloc_pages_node(n, gfp, 0);
525 }
526 return alloc_pages(gfp, 0);
527 }
528 EXPORT_SYMBOL(__page_cache_alloc);
529 #endif
530
531 static int __sleep_on_page_lock(void *word)
532 {
533 io_schedule();
534 return 0;
535 }
536
537 /*
538 * In order to wait for pages to become available there must be
539 * waitqueues associated with pages. By using a hash table of
540 * waitqueues where the bucket discipline is to maintain all
541 * waiters on the same queue and wake all when any of the pages
542 * become available, and for the woken contexts to check to be
543 * sure the appropriate page became available, this saves space
544 * at a cost of "thundering herd" phenomena during rare hash
545 * collisions.
546 */
547 static wait_queue_head_t *page_waitqueue(struct page *page)
548 {
549 const struct zone *zone = page_zone(page);
550
551 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
552 }
553
554 static inline void wake_up_page(struct page *page, int bit)
555 {
556 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
557 }
558
559 void wait_on_page_bit(struct page *page, int bit_nr)
560 {
561 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
562
563 if (test_bit(bit_nr, &page->flags))
564 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
565 TASK_UNINTERRUPTIBLE);
566 }
567 EXPORT_SYMBOL(wait_on_page_bit);
568
569 /**
570 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
571 * @page: Page defining the wait queue of interest
572 * @waiter: Waiter to add to the queue
573 *
574 * Add an arbitrary @waiter to the wait queue for the nominated @page.
575 */
576 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
577 {
578 wait_queue_head_t *q = page_waitqueue(page);
579 unsigned long flags;
580
581 spin_lock_irqsave(&q->lock, flags);
582 __add_wait_queue(q, waiter);
583 spin_unlock_irqrestore(&q->lock, flags);
584 }
585 EXPORT_SYMBOL_GPL(add_page_wait_queue);
586
587 /**
588 * unlock_page - unlock a locked page
589 * @page: the page
590 *
591 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
592 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
593 * mechananism between PageLocked pages and PageWriteback pages is shared.
594 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
595 *
596 * The mb is necessary to enforce ordering between the clear_bit and the read
597 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
598 */
599 void unlock_page(struct page *page)
600 {
601 VM_BUG_ON(!PageLocked(page));
602 clear_bit_unlock(PG_locked, &page->flags);
603 smp_mb__after_clear_bit();
604 wake_up_page(page, PG_locked);
605 }
606 EXPORT_SYMBOL(unlock_page);
607
608 /**
609 * end_page_writeback - end writeback against a page
610 * @page: the page
611 */
612 void end_page_writeback(struct page *page)
613 {
614 if (TestClearPageReclaim(page))
615 rotate_reclaimable_page(page);
616
617 if (!test_clear_page_writeback(page))
618 BUG();
619
620 smp_mb__after_clear_bit();
621 wake_up_page(page, PG_writeback);
622 }
623 EXPORT_SYMBOL(end_page_writeback);
624
625 /**
626 * __lock_page - get a lock on the page, assuming we need to sleep to get it
627 * @page: the page to lock
628 *
629 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
630 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
631 * chances are that on the second loop, the block layer's plug list is empty,
632 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
633 */
634 void __lock_page(struct page *page)
635 {
636 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
637
638 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
639 TASK_UNINTERRUPTIBLE);
640 }
641 EXPORT_SYMBOL(__lock_page);
642
643 int __lock_page_killable(struct page *page)
644 {
645 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
646
647 return __wait_on_bit_lock(page_waitqueue(page), &wait,
648 sync_page_killable, TASK_KILLABLE);
649 }
650 EXPORT_SYMBOL_GPL(__lock_page_killable);
651
652 /**
653 * __lock_page_nosync - get a lock on the page, without calling sync_page()
654 * @page: the page to lock
655 *
656 * Variant of lock_page that does not require the caller to hold a reference
657 * on the page's mapping.
658 */
659 void __lock_page_nosync(struct page *page)
660 {
661 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
662 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
663 TASK_UNINTERRUPTIBLE);
664 }
665
666 /**
667 * find_get_page - find and get a page reference
668 * @mapping: the address_space to search
669 * @offset: the page index
670 *
671 * Is there a pagecache struct page at the given (mapping, offset) tuple?
672 * If yes, increment its refcount and return it; if no, return NULL.
673 */
674 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
675 {
676 void **pagep;
677 struct page *page;
678
679 rcu_read_lock();
680 repeat:
681 page = NULL;
682 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
683 if (pagep) {
684 page = radix_tree_deref_slot(pagep);
685 if (unlikely(!page || page == RADIX_TREE_RETRY))
686 goto repeat;
687
688 if (!page_cache_get_speculative(page))
689 goto repeat;
690
691 /*
692 * Has the page moved?
693 * This is part of the lockless pagecache protocol. See
694 * include/linux/pagemap.h for details.
695 */
696 if (unlikely(page != *pagep)) {
697 page_cache_release(page);
698 goto repeat;
699 }
700 }
701 rcu_read_unlock();
702
703 return page;
704 }
705 EXPORT_SYMBOL(find_get_page);
706
707 /**
708 * find_lock_page - locate, pin and lock a pagecache page
709 * @mapping: the address_space to search
710 * @offset: the page index
711 *
712 * Locates the desired pagecache page, locks it, increments its reference
713 * count and returns its address.
714 *
715 * Returns zero if the page was not present. find_lock_page() may sleep.
716 */
717 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
718 {
719 struct page *page;
720
721 repeat:
722 page = find_get_page(mapping, offset);
723 if (page) {
724 lock_page(page);
725 /* Has the page been truncated? */
726 if (unlikely(page->mapping != mapping)) {
727 unlock_page(page);
728 page_cache_release(page);
729 goto repeat;
730 }
731 VM_BUG_ON(page->index != offset);
732 }
733 return page;
734 }
735 EXPORT_SYMBOL(find_lock_page);
736
737 /**
738 * find_or_create_page - locate or add a pagecache page
739 * @mapping: the page's address_space
740 * @index: the page's index into the mapping
741 * @gfp_mask: page allocation mode
742 *
743 * Locates a page in the pagecache. If the page is not present, a new page
744 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
745 * LRU list. The returned page is locked and has its reference count
746 * incremented.
747 *
748 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
749 * allocation!
750 *
751 * find_or_create_page() returns the desired page's address, or zero on
752 * memory exhaustion.
753 */
754 struct page *find_or_create_page(struct address_space *mapping,
755 pgoff_t index, gfp_t gfp_mask)
756 {
757 struct page *page;
758 int err;
759 repeat:
760 page = find_lock_page(mapping, index);
761 if (!page) {
762 page = __page_cache_alloc(gfp_mask);
763 if (!page)
764 return NULL;
765 /*
766 * We want a regular kernel memory (not highmem or DMA etc)
767 * allocation for the radix tree nodes, but we need to honour
768 * the context-specific requirements the caller has asked for.
769 * GFP_RECLAIM_MASK collects those requirements.
770 */
771 err = add_to_page_cache_lru(page, mapping, index,
772 (gfp_mask & GFP_RECLAIM_MASK));
773 if (unlikely(err)) {
774 page_cache_release(page);
775 page = NULL;
776 if (err == -EEXIST)
777 goto repeat;
778 }
779 }
780 return page;
781 }
782 EXPORT_SYMBOL(find_or_create_page);
783
784 /**
785 * find_get_pages - gang pagecache lookup
786 * @mapping: The address_space to search
787 * @start: The starting page index
788 * @nr_pages: The maximum number of pages
789 * @pages: Where the resulting pages are placed
790 *
791 * find_get_pages() will search for and return a group of up to
792 * @nr_pages pages in the mapping. The pages are placed at @pages.
793 * find_get_pages() takes a reference against the returned pages.
794 *
795 * The search returns a group of mapping-contiguous pages with ascending
796 * indexes. There may be holes in the indices due to not-present pages.
797 *
798 * find_get_pages() returns the number of pages which were found.
799 */
800 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
801 unsigned int nr_pages, struct page **pages)
802 {
803 unsigned int i;
804 unsigned int ret;
805 unsigned int nr_found;
806
807 rcu_read_lock();
808 restart:
809 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
810 (void ***)pages, start, nr_pages);
811 ret = 0;
812 for (i = 0; i < nr_found; i++) {
813 struct page *page;
814 repeat:
815 page = radix_tree_deref_slot((void **)pages[i]);
816 if (unlikely(!page))
817 continue;
818 /*
819 * this can only trigger if nr_found == 1, making livelock
820 * a non issue.
821 */
822 if (unlikely(page == RADIX_TREE_RETRY))
823 goto restart;
824
825 if (!page_cache_get_speculative(page))
826 goto repeat;
827
828 /* Has the page moved? */
829 if (unlikely(page != *((void **)pages[i]))) {
830 page_cache_release(page);
831 goto repeat;
832 }
833
834 pages[ret] = page;
835 ret++;
836 }
837 rcu_read_unlock();
838 return ret;
839 }
840
841 /**
842 * find_get_pages_contig - gang contiguous pagecache lookup
843 * @mapping: The address_space to search
844 * @index: The starting page index
845 * @nr_pages: The maximum number of pages
846 * @pages: Where the resulting pages are placed
847 *
848 * find_get_pages_contig() works exactly like find_get_pages(), except
849 * that the returned number of pages are guaranteed to be contiguous.
850 *
851 * find_get_pages_contig() returns the number of pages which were found.
852 */
853 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
854 unsigned int nr_pages, struct page **pages)
855 {
856 unsigned int i;
857 unsigned int ret;
858 unsigned int nr_found;
859
860 rcu_read_lock();
861 restart:
862 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
863 (void ***)pages, index, nr_pages);
864 ret = 0;
865 for (i = 0; i < nr_found; i++) {
866 struct page *page;
867 repeat:
868 page = radix_tree_deref_slot((void **)pages[i]);
869 if (unlikely(!page))
870 continue;
871 /*
872 * this can only trigger if nr_found == 1, making livelock
873 * a non issue.
874 */
875 if (unlikely(page == RADIX_TREE_RETRY))
876 goto restart;
877
878 if (page->mapping == NULL || page->index != index)
879 break;
880
881 if (!page_cache_get_speculative(page))
882 goto repeat;
883
884 /* Has the page moved? */
885 if (unlikely(page != *((void **)pages[i]))) {
886 page_cache_release(page);
887 goto repeat;
888 }
889
890 pages[ret] = page;
891 ret++;
892 index++;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(find_get_pages_contig);
898
899 /**
900 * find_get_pages_tag - find and return pages that match @tag
901 * @mapping: the address_space to search
902 * @index: the starting page index
903 * @tag: the tag index
904 * @nr_pages: the maximum number of pages
905 * @pages: where the resulting pages are placed
906 *
907 * Like find_get_pages, except we only return pages which are tagged with
908 * @tag. We update @index to index the next page for the traversal.
909 */
910 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
911 int tag, unsigned int nr_pages, struct page **pages)
912 {
913 unsigned int i;
914 unsigned int ret;
915 unsigned int nr_found;
916
917 rcu_read_lock();
918 restart:
919 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
920 (void ***)pages, *index, nr_pages, tag);
921 ret = 0;
922 for (i = 0; i < nr_found; i++) {
923 struct page *page;
924 repeat:
925 page = radix_tree_deref_slot((void **)pages[i]);
926 if (unlikely(!page))
927 continue;
928 /*
929 * this can only trigger if nr_found == 1, making livelock
930 * a non issue.
931 */
932 if (unlikely(page == RADIX_TREE_RETRY))
933 goto restart;
934
935 if (!page_cache_get_speculative(page))
936 goto repeat;
937
938 /* Has the page moved? */
939 if (unlikely(page != *((void **)pages[i]))) {
940 page_cache_release(page);
941 goto repeat;
942 }
943
944 pages[ret] = page;
945 ret++;
946 }
947 rcu_read_unlock();
948
949 if (ret)
950 *index = pages[ret - 1]->index + 1;
951
952 return ret;
953 }
954 EXPORT_SYMBOL(find_get_pages_tag);
955
956 /**
957 * grab_cache_page_nowait - returns locked page at given index in given cache
958 * @mapping: target address_space
959 * @index: the page index
960 *
961 * Same as grab_cache_page(), but do not wait if the page is unavailable.
962 * This is intended for speculative data generators, where the data can
963 * be regenerated if the page couldn't be grabbed. This routine should
964 * be safe to call while holding the lock for another page.
965 *
966 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
967 * and deadlock against the caller's locked page.
968 */
969 struct page *
970 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
971 {
972 struct page *page = find_get_page(mapping, index);
973
974 if (page) {
975 if (trylock_page(page))
976 return page;
977 page_cache_release(page);
978 return NULL;
979 }
980 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
981 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
982 page_cache_release(page);
983 page = NULL;
984 }
985 return page;
986 }
987 EXPORT_SYMBOL(grab_cache_page_nowait);
988
989 /*
990 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
991 * a _large_ part of the i/o request. Imagine the worst scenario:
992 *
993 * ---R__________________________________________B__________
994 * ^ reading here ^ bad block(assume 4k)
995 *
996 * read(R) => miss => readahead(R...B) => media error => frustrating retries
997 * => failing the whole request => read(R) => read(R+1) =>
998 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
999 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1000 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1001 *
1002 * It is going insane. Fix it by quickly scaling down the readahead size.
1003 */
1004 static void shrink_readahead_size_eio(struct file *filp,
1005 struct file_ra_state *ra)
1006 {
1007 if (!ra->ra_pages)
1008 return;
1009
1010 ra->ra_pages /= 4;
1011 }
1012
1013 /**
1014 * do_generic_file_read - generic file read routine
1015 * @filp: the file to read
1016 * @ppos: current file position
1017 * @desc: read_descriptor
1018 * @actor: read method
1019 *
1020 * This is a generic file read routine, and uses the
1021 * mapping->a_ops->readpage() function for the actual low-level stuff.
1022 *
1023 * This is really ugly. But the goto's actually try to clarify some
1024 * of the logic when it comes to error handling etc.
1025 */
1026 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1027 read_descriptor_t *desc, read_actor_t actor)
1028 {
1029 struct address_space *mapping = filp->f_mapping;
1030 struct inode *inode = mapping->host;
1031 struct file_ra_state *ra = &filp->f_ra;
1032 pgoff_t index;
1033 pgoff_t last_index;
1034 pgoff_t prev_index;
1035 unsigned long offset; /* offset into pagecache page */
1036 unsigned int prev_offset;
1037 int error;
1038
1039 index = *ppos >> PAGE_CACHE_SHIFT;
1040 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1041 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1042 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1043 offset = *ppos & ~PAGE_CACHE_MASK;
1044
1045 for (;;) {
1046 struct page *page;
1047 pgoff_t end_index;
1048 loff_t isize;
1049 unsigned long nr, ret;
1050
1051 cond_resched();
1052 find_page:
1053 page = find_get_page(mapping, index);
1054 if (!page) {
1055 page_cache_sync_readahead(mapping,
1056 ra, filp,
1057 index, last_index - index);
1058 page = find_get_page(mapping, index);
1059 if (unlikely(page == NULL))
1060 goto no_cached_page;
1061 }
1062 if (PageReadahead(page)) {
1063 page_cache_async_readahead(mapping,
1064 ra, filp, page,
1065 index, last_index - index);
1066 }
1067 if (!PageUptodate(page)) {
1068 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1069 !mapping->a_ops->is_partially_uptodate)
1070 goto page_not_up_to_date;
1071 if (!trylock_page(page))
1072 goto page_not_up_to_date;
1073 if (!mapping->a_ops->is_partially_uptodate(page,
1074 desc, offset))
1075 goto page_not_up_to_date_locked;
1076 unlock_page(page);
1077 }
1078 page_ok:
1079 /*
1080 * i_size must be checked after we know the page is Uptodate.
1081 *
1082 * Checking i_size after the check allows us to calculate
1083 * the correct value for "nr", which means the zero-filled
1084 * part of the page is not copied back to userspace (unless
1085 * another truncate extends the file - this is desired though).
1086 */
1087
1088 isize = i_size_read(inode);
1089 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1090 if (unlikely(!isize || index > end_index)) {
1091 page_cache_release(page);
1092 goto out;
1093 }
1094
1095 /* nr is the maximum number of bytes to copy from this page */
1096 nr = PAGE_CACHE_SIZE;
1097 if (index == end_index) {
1098 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1099 if (nr <= offset) {
1100 page_cache_release(page);
1101 goto out;
1102 }
1103 }
1104 nr = nr - offset;
1105
1106 /* If users can be writing to this page using arbitrary
1107 * virtual addresses, take care about potential aliasing
1108 * before reading the page on the kernel side.
1109 */
1110 if (mapping_writably_mapped(mapping))
1111 flush_dcache_page(page);
1112
1113 /*
1114 * When a sequential read accesses a page several times,
1115 * only mark it as accessed the first time.
1116 */
1117 if (prev_index != index || offset != prev_offset)
1118 mark_page_accessed(page);
1119 prev_index = index;
1120
1121 /*
1122 * Ok, we have the page, and it's up-to-date, so
1123 * now we can copy it to user space...
1124 *
1125 * The actor routine returns how many bytes were actually used..
1126 * NOTE! This may not be the same as how much of a user buffer
1127 * we filled up (we may be padding etc), so we can only update
1128 * "pos" here (the actor routine has to update the user buffer
1129 * pointers and the remaining count).
1130 */
1131 ret = actor(desc, page, offset, nr);
1132 offset += ret;
1133 index += offset >> PAGE_CACHE_SHIFT;
1134 offset &= ~PAGE_CACHE_MASK;
1135 prev_offset = offset;
1136
1137 page_cache_release(page);
1138 if (ret == nr && desc->count)
1139 continue;
1140 goto out;
1141
1142 page_not_up_to_date:
1143 /* Get exclusive access to the page ... */
1144 error = lock_page_killable(page);
1145 if (unlikely(error))
1146 goto readpage_error;
1147
1148 page_not_up_to_date_locked:
1149 /* Did it get truncated before we got the lock? */
1150 if (!page->mapping) {
1151 unlock_page(page);
1152 page_cache_release(page);
1153 continue;
1154 }
1155
1156 /* Did somebody else fill it already? */
1157 if (PageUptodate(page)) {
1158 unlock_page(page);
1159 goto page_ok;
1160 }
1161
1162 readpage:
1163 /* Start the actual read. The read will unlock the page. */
1164 error = mapping->a_ops->readpage(filp, page);
1165
1166 if (unlikely(error)) {
1167 if (error == AOP_TRUNCATED_PAGE) {
1168 page_cache_release(page);
1169 goto find_page;
1170 }
1171 goto readpage_error;
1172 }
1173
1174 if (!PageUptodate(page)) {
1175 error = lock_page_killable(page);
1176 if (unlikely(error))
1177 goto readpage_error;
1178 if (!PageUptodate(page)) {
1179 if (page->mapping == NULL) {
1180 /*
1181 * invalidate_inode_pages got it
1182 */
1183 unlock_page(page);
1184 page_cache_release(page);
1185 goto find_page;
1186 }
1187 unlock_page(page);
1188 shrink_readahead_size_eio(filp, ra);
1189 error = -EIO;
1190 goto readpage_error;
1191 }
1192 unlock_page(page);
1193 }
1194
1195 goto page_ok;
1196
1197 readpage_error:
1198 /* UHHUH! A synchronous read error occurred. Report it */
1199 desc->error = error;
1200 page_cache_release(page);
1201 goto out;
1202
1203 no_cached_page:
1204 /*
1205 * Ok, it wasn't cached, so we need to create a new
1206 * page..
1207 */
1208 page = page_cache_alloc_cold(mapping);
1209 if (!page) {
1210 desc->error = -ENOMEM;
1211 goto out;
1212 }
1213 error = add_to_page_cache_lru(page, mapping,
1214 index, GFP_KERNEL);
1215 if (error) {
1216 page_cache_release(page);
1217 if (error == -EEXIST)
1218 goto find_page;
1219 desc->error = error;
1220 goto out;
1221 }
1222 goto readpage;
1223 }
1224
1225 out:
1226 ra->prev_pos = prev_index;
1227 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1228 ra->prev_pos |= prev_offset;
1229
1230 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1231 file_accessed(filp);
1232 }
1233
1234 int file_read_actor(read_descriptor_t *desc, struct page *page,
1235 unsigned long offset, unsigned long size)
1236 {
1237 char *kaddr;
1238 unsigned long left, count = desc->count;
1239
1240 if (size > count)
1241 size = count;
1242
1243 /*
1244 * Faults on the destination of a read are common, so do it before
1245 * taking the kmap.
1246 */
1247 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1248 kaddr = kmap_atomic(page, KM_USER0);
1249 left = __copy_to_user_inatomic(desc->arg.buf,
1250 kaddr + offset, size);
1251 kunmap_atomic(kaddr, KM_USER0);
1252 if (left == 0)
1253 goto success;
1254 }
1255
1256 /* Do it the slow way */
1257 kaddr = kmap(page);
1258 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1259 kunmap(page);
1260
1261 if (left) {
1262 size -= left;
1263 desc->error = -EFAULT;
1264 }
1265 success:
1266 desc->count = count - size;
1267 desc->written += size;
1268 desc->arg.buf += size;
1269 return size;
1270 }
1271
1272 /*
1273 * Performs necessary checks before doing a write
1274 * @iov: io vector request
1275 * @nr_segs: number of segments in the iovec
1276 * @count: number of bytes to write
1277 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1278 *
1279 * Adjust number of segments and amount of bytes to write (nr_segs should be
1280 * properly initialized first). Returns appropriate error code that caller
1281 * should return or zero in case that write should be allowed.
1282 */
1283 int generic_segment_checks(const struct iovec *iov,
1284 unsigned long *nr_segs, size_t *count, int access_flags)
1285 {
1286 unsigned long seg;
1287 size_t cnt = 0;
1288 for (seg = 0; seg < *nr_segs; seg++) {
1289 const struct iovec *iv = &iov[seg];
1290
1291 /*
1292 * If any segment has a negative length, or the cumulative
1293 * length ever wraps negative then return -EINVAL.
1294 */
1295 cnt += iv->iov_len;
1296 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1297 return -EINVAL;
1298 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1299 continue;
1300 if (seg == 0)
1301 return -EFAULT;
1302 *nr_segs = seg;
1303 cnt -= iv->iov_len; /* This segment is no good */
1304 break;
1305 }
1306 *count = cnt;
1307 return 0;
1308 }
1309 EXPORT_SYMBOL(generic_segment_checks);
1310
1311 /**
1312 * generic_file_aio_read - generic filesystem read routine
1313 * @iocb: kernel I/O control block
1314 * @iov: io vector request
1315 * @nr_segs: number of segments in the iovec
1316 * @pos: current file position
1317 *
1318 * This is the "read()" routine for all filesystems
1319 * that can use the page cache directly.
1320 */
1321 ssize_t
1322 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1323 unsigned long nr_segs, loff_t pos)
1324 {
1325 struct file *filp = iocb->ki_filp;
1326 ssize_t retval;
1327 unsigned long seg;
1328 size_t count;
1329 loff_t *ppos = &iocb->ki_pos;
1330
1331 count = 0;
1332 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1333 if (retval)
1334 return retval;
1335
1336 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1337 if (filp->f_flags & O_DIRECT) {
1338 loff_t size;
1339 struct address_space *mapping;
1340 struct inode *inode;
1341
1342 mapping = filp->f_mapping;
1343 inode = mapping->host;
1344 if (!count)
1345 goto out; /* skip atime */
1346 size = i_size_read(inode);
1347 if (pos < size) {
1348 retval = filemap_write_and_wait_range(mapping, pos,
1349 pos + iov_length(iov, nr_segs) - 1);
1350 if (!retval) {
1351 retval = mapping->a_ops->direct_IO(READ, iocb,
1352 iov, pos, nr_segs);
1353 }
1354 if (retval > 0)
1355 *ppos = pos + retval;
1356 if (retval) {
1357 file_accessed(filp);
1358 goto out;
1359 }
1360 }
1361 }
1362
1363 for (seg = 0; seg < nr_segs; seg++) {
1364 read_descriptor_t desc;
1365
1366 desc.written = 0;
1367 desc.arg.buf = iov[seg].iov_base;
1368 desc.count = iov[seg].iov_len;
1369 if (desc.count == 0)
1370 continue;
1371 desc.error = 0;
1372 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1373 retval += desc.written;
1374 if (desc.error) {
1375 retval = retval ?: desc.error;
1376 break;
1377 }
1378 if (desc.count > 0)
1379 break;
1380 }
1381 out:
1382 return retval;
1383 }
1384 EXPORT_SYMBOL(generic_file_aio_read);
1385
1386 static ssize_t
1387 do_readahead(struct address_space *mapping, struct file *filp,
1388 pgoff_t index, unsigned long nr)
1389 {
1390 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1391 return -EINVAL;
1392
1393 force_page_cache_readahead(mapping, filp, index, nr);
1394 return 0;
1395 }
1396
1397 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1398 {
1399 ssize_t ret;
1400 struct file *file;
1401
1402 ret = -EBADF;
1403 file = fget(fd);
1404 if (file) {
1405 if (file->f_mode & FMODE_READ) {
1406 struct address_space *mapping = file->f_mapping;
1407 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1408 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1409 unsigned long len = end - start + 1;
1410 ret = do_readahead(mapping, file, start, len);
1411 }
1412 fput(file);
1413 }
1414 return ret;
1415 }
1416 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1417 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1418 {
1419 return SYSC_readahead((int) fd, offset, (size_t) count);
1420 }
1421 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1422 #endif
1423
1424 #ifdef CONFIG_MMU
1425 /**
1426 * page_cache_read - adds requested page to the page cache if not already there
1427 * @file: file to read
1428 * @offset: page index
1429 *
1430 * This adds the requested page to the page cache if it isn't already there,
1431 * and schedules an I/O to read in its contents from disk.
1432 */
1433 static int page_cache_read(struct file *file, pgoff_t offset)
1434 {
1435 struct address_space *mapping = file->f_mapping;
1436 struct page *page;
1437 int ret;
1438
1439 do {
1440 page = page_cache_alloc_cold(mapping);
1441 if (!page)
1442 return -ENOMEM;
1443
1444 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1445 if (ret == 0)
1446 ret = mapping->a_ops->readpage(file, page);
1447 else if (ret == -EEXIST)
1448 ret = 0; /* losing race to add is OK */
1449
1450 page_cache_release(page);
1451
1452 } while (ret == AOP_TRUNCATED_PAGE);
1453
1454 return ret;
1455 }
1456
1457 #define MMAP_LOTSAMISS (100)
1458
1459 /*
1460 * Synchronous readahead happens when we don't even find
1461 * a page in the page cache at all.
1462 */
1463 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1464 struct file_ra_state *ra,
1465 struct file *file,
1466 pgoff_t offset)
1467 {
1468 unsigned long ra_pages;
1469 struct address_space *mapping = file->f_mapping;
1470
1471 /* If we don't want any read-ahead, don't bother */
1472 if (VM_RandomReadHint(vma))
1473 return;
1474
1475 if (VM_SequentialReadHint(vma) ||
1476 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1477 page_cache_sync_readahead(mapping, ra, file, offset, 1);
1478 return;
1479 }
1480
1481 if (ra->mmap_miss < INT_MAX)
1482 ra->mmap_miss++;
1483
1484 /*
1485 * Do we miss much more than hit in this file? If so,
1486 * stop bothering with read-ahead. It will only hurt.
1487 */
1488 if (ra->mmap_miss > MMAP_LOTSAMISS)
1489 return;
1490
1491 /*
1492 * mmap read-around
1493 */
1494 ra_pages = max_sane_readahead(ra->ra_pages);
1495 if (ra_pages) {
1496 ra->start = max_t(long, 0, offset - ra_pages/2);
1497 ra->size = ra_pages;
1498 ra->async_size = 0;
1499 ra_submit(ra, mapping, file);
1500 }
1501 }
1502
1503 /*
1504 * Asynchronous readahead happens when we find the page and PG_readahead,
1505 * so we want to possibly extend the readahead further..
1506 */
1507 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1508 struct file_ra_state *ra,
1509 struct file *file,
1510 struct page *page,
1511 pgoff_t offset)
1512 {
1513 struct address_space *mapping = file->f_mapping;
1514
1515 /* If we don't want any read-ahead, don't bother */
1516 if (VM_RandomReadHint(vma))
1517 return;
1518 if (ra->mmap_miss > 0)
1519 ra->mmap_miss--;
1520 if (PageReadahead(page))
1521 page_cache_async_readahead(mapping, ra, file,
1522 page, offset, ra->ra_pages);
1523 }
1524
1525 /**
1526 * filemap_fault - read in file data for page fault handling
1527 * @vma: vma in which the fault was taken
1528 * @vmf: struct vm_fault containing details of the fault
1529 *
1530 * filemap_fault() is invoked via the vma operations vector for a
1531 * mapped memory region to read in file data during a page fault.
1532 *
1533 * The goto's are kind of ugly, but this streamlines the normal case of having
1534 * it in the page cache, and handles the special cases reasonably without
1535 * having a lot of duplicated code.
1536 */
1537 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1538 {
1539 int error;
1540 struct file *file = vma->vm_file;
1541 struct address_space *mapping = file->f_mapping;
1542 struct file_ra_state *ra = &file->f_ra;
1543 struct inode *inode = mapping->host;
1544 pgoff_t offset = vmf->pgoff;
1545 struct page *page;
1546 pgoff_t size;
1547 int ret = 0;
1548
1549 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1550 if (offset >= size)
1551 return VM_FAULT_SIGBUS;
1552
1553 /*
1554 * Do we have something in the page cache already?
1555 */
1556 page = find_get_page(mapping, offset);
1557 if (likely(page)) {
1558 /*
1559 * We found the page, so try async readahead before
1560 * waiting for the lock.
1561 */
1562 do_async_mmap_readahead(vma, ra, file, page, offset);
1563 lock_page(page);
1564
1565 /* Did it get truncated? */
1566 if (unlikely(page->mapping != mapping)) {
1567 unlock_page(page);
1568 put_page(page);
1569 goto no_cached_page;
1570 }
1571 } else {
1572 /* No page in the page cache at all */
1573 do_sync_mmap_readahead(vma, ra, file, offset);
1574 count_vm_event(PGMAJFAULT);
1575 ret = VM_FAULT_MAJOR;
1576 retry_find:
1577 page = find_lock_page(mapping, offset);
1578 if (!page)
1579 goto no_cached_page;
1580 }
1581
1582 /*
1583 * We have a locked page in the page cache, now we need to check
1584 * that it's up-to-date. If not, it is going to be due to an error.
1585 */
1586 if (unlikely(!PageUptodate(page)))
1587 goto page_not_uptodate;
1588
1589 /*
1590 * Found the page and have a reference on it.
1591 * We must recheck i_size under page lock.
1592 */
1593 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1594 if (unlikely(offset >= size)) {
1595 unlock_page(page);
1596 page_cache_release(page);
1597 return VM_FAULT_SIGBUS;
1598 }
1599
1600 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1601 vmf->page = page;
1602 return ret | VM_FAULT_LOCKED;
1603
1604 no_cached_page:
1605 /*
1606 * We're only likely to ever get here if MADV_RANDOM is in
1607 * effect.
1608 */
1609 error = page_cache_read(file, offset);
1610
1611 /*
1612 * The page we want has now been added to the page cache.
1613 * In the unlikely event that someone removed it in the
1614 * meantime, we'll just come back here and read it again.
1615 */
1616 if (error >= 0)
1617 goto retry_find;
1618
1619 /*
1620 * An error return from page_cache_read can result if the
1621 * system is low on memory, or a problem occurs while trying
1622 * to schedule I/O.
1623 */
1624 if (error == -ENOMEM)
1625 return VM_FAULT_OOM;
1626 return VM_FAULT_SIGBUS;
1627
1628 page_not_uptodate:
1629 /*
1630 * Umm, take care of errors if the page isn't up-to-date.
1631 * Try to re-read it _once_. We do this synchronously,
1632 * because there really aren't any performance issues here
1633 * and we need to check for errors.
1634 */
1635 ClearPageError(page);
1636 error = mapping->a_ops->readpage(file, page);
1637 if (!error) {
1638 wait_on_page_locked(page);
1639 if (!PageUptodate(page))
1640 error = -EIO;
1641 }
1642 page_cache_release(page);
1643
1644 if (!error || error == AOP_TRUNCATED_PAGE)
1645 goto retry_find;
1646
1647 /* Things didn't work out. Return zero to tell the mm layer so. */
1648 shrink_readahead_size_eio(file, ra);
1649 return VM_FAULT_SIGBUS;
1650 }
1651 EXPORT_SYMBOL(filemap_fault);
1652
1653 struct vm_operations_struct generic_file_vm_ops = {
1654 .fault = filemap_fault,
1655 };
1656
1657 /* This is used for a general mmap of a disk file */
1658
1659 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1660 {
1661 struct address_space *mapping = file->f_mapping;
1662
1663 if (!mapping->a_ops->readpage)
1664 return -ENOEXEC;
1665 file_accessed(file);
1666 vma->vm_ops = &generic_file_vm_ops;
1667 vma->vm_flags |= VM_CAN_NONLINEAR;
1668 return 0;
1669 }
1670
1671 /*
1672 * This is for filesystems which do not implement ->writepage.
1673 */
1674 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1675 {
1676 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1677 return -EINVAL;
1678 return generic_file_mmap(file, vma);
1679 }
1680 #else
1681 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1682 {
1683 return -ENOSYS;
1684 }
1685 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1686 {
1687 return -ENOSYS;
1688 }
1689 #endif /* CONFIG_MMU */
1690
1691 EXPORT_SYMBOL(generic_file_mmap);
1692 EXPORT_SYMBOL(generic_file_readonly_mmap);
1693
1694 static struct page *__read_cache_page(struct address_space *mapping,
1695 pgoff_t index,
1696 int (*filler)(void *,struct page*),
1697 void *data)
1698 {
1699 struct page *page;
1700 int err;
1701 repeat:
1702 page = find_get_page(mapping, index);
1703 if (!page) {
1704 page = page_cache_alloc_cold(mapping);
1705 if (!page)
1706 return ERR_PTR(-ENOMEM);
1707 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1708 if (unlikely(err)) {
1709 page_cache_release(page);
1710 if (err == -EEXIST)
1711 goto repeat;
1712 /* Presumably ENOMEM for radix tree node */
1713 return ERR_PTR(err);
1714 }
1715 err = filler(data, page);
1716 if (err < 0) {
1717 page_cache_release(page);
1718 page = ERR_PTR(err);
1719 }
1720 }
1721 return page;
1722 }
1723
1724 /**
1725 * read_cache_page_async - read into page cache, fill it if needed
1726 * @mapping: the page's address_space
1727 * @index: the page index
1728 * @filler: function to perform the read
1729 * @data: destination for read data
1730 *
1731 * Same as read_cache_page, but don't wait for page to become unlocked
1732 * after submitting it to the filler.
1733 *
1734 * Read into the page cache. If a page already exists, and PageUptodate() is
1735 * not set, try to fill the page but don't wait for it to become unlocked.
1736 *
1737 * If the page does not get brought uptodate, return -EIO.
1738 */
1739 struct page *read_cache_page_async(struct address_space *mapping,
1740 pgoff_t index,
1741 int (*filler)(void *,struct page*),
1742 void *data)
1743 {
1744 struct page *page;
1745 int err;
1746
1747 retry:
1748 page = __read_cache_page(mapping, index, filler, data);
1749 if (IS_ERR(page))
1750 return page;
1751 if (PageUptodate(page))
1752 goto out;
1753
1754 lock_page(page);
1755 if (!page->mapping) {
1756 unlock_page(page);
1757 page_cache_release(page);
1758 goto retry;
1759 }
1760 if (PageUptodate(page)) {
1761 unlock_page(page);
1762 goto out;
1763 }
1764 err = filler(data, page);
1765 if (err < 0) {
1766 page_cache_release(page);
1767 return ERR_PTR(err);
1768 }
1769 out:
1770 mark_page_accessed(page);
1771 return page;
1772 }
1773 EXPORT_SYMBOL(read_cache_page_async);
1774
1775 /**
1776 * read_cache_page - read into page cache, fill it if needed
1777 * @mapping: the page's address_space
1778 * @index: the page index
1779 * @filler: function to perform the read
1780 * @data: destination for read data
1781 *
1782 * Read into the page cache. If a page already exists, and PageUptodate() is
1783 * not set, try to fill the page then wait for it to become unlocked.
1784 *
1785 * If the page does not get brought uptodate, return -EIO.
1786 */
1787 struct page *read_cache_page(struct address_space *mapping,
1788 pgoff_t index,
1789 int (*filler)(void *,struct page*),
1790 void *data)
1791 {
1792 struct page *page;
1793
1794 page = read_cache_page_async(mapping, index, filler, data);
1795 if (IS_ERR(page))
1796 goto out;
1797 wait_on_page_locked(page);
1798 if (!PageUptodate(page)) {
1799 page_cache_release(page);
1800 page = ERR_PTR(-EIO);
1801 }
1802 out:
1803 return page;
1804 }
1805 EXPORT_SYMBOL(read_cache_page);
1806
1807 /*
1808 * The logic we want is
1809 *
1810 * if suid or (sgid and xgrp)
1811 * remove privs
1812 */
1813 int should_remove_suid(struct dentry *dentry)
1814 {
1815 mode_t mode = dentry->d_inode->i_mode;
1816 int kill = 0;
1817
1818 /* suid always must be killed */
1819 if (unlikely(mode & S_ISUID))
1820 kill = ATTR_KILL_SUID;
1821
1822 /*
1823 * sgid without any exec bits is just a mandatory locking mark; leave
1824 * it alone. If some exec bits are set, it's a real sgid; kill it.
1825 */
1826 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1827 kill |= ATTR_KILL_SGID;
1828
1829 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1830 return kill;
1831
1832 return 0;
1833 }
1834 EXPORT_SYMBOL(should_remove_suid);
1835
1836 static int __remove_suid(struct dentry *dentry, int kill)
1837 {
1838 struct iattr newattrs;
1839
1840 newattrs.ia_valid = ATTR_FORCE | kill;
1841 return notify_change(dentry, &newattrs);
1842 }
1843
1844 int file_remove_suid(struct file *file)
1845 {
1846 struct dentry *dentry = file->f_path.dentry;
1847 int killsuid = should_remove_suid(dentry);
1848 int killpriv = security_inode_need_killpriv(dentry);
1849 int error = 0;
1850
1851 if (killpriv < 0)
1852 return killpriv;
1853 if (killpriv)
1854 error = security_inode_killpriv(dentry);
1855 if (!error && killsuid)
1856 error = __remove_suid(dentry, killsuid);
1857
1858 return error;
1859 }
1860 EXPORT_SYMBOL(file_remove_suid);
1861
1862 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1863 const struct iovec *iov, size_t base, size_t bytes)
1864 {
1865 size_t copied = 0, left = 0;
1866
1867 while (bytes) {
1868 char __user *buf = iov->iov_base + base;
1869 int copy = min(bytes, iov->iov_len - base);
1870
1871 base = 0;
1872 left = __copy_from_user_inatomic(vaddr, buf, copy);
1873 copied += copy;
1874 bytes -= copy;
1875 vaddr += copy;
1876 iov++;
1877
1878 if (unlikely(left))
1879 break;
1880 }
1881 return copied - left;
1882 }
1883
1884 /*
1885 * Copy as much as we can into the page and return the number of bytes which
1886 * were sucessfully copied. If a fault is encountered then return the number of
1887 * bytes which were copied.
1888 */
1889 size_t iov_iter_copy_from_user_atomic(struct page *page,
1890 struct iov_iter *i, unsigned long offset, size_t bytes)
1891 {
1892 char *kaddr;
1893 size_t copied;
1894
1895 BUG_ON(!in_atomic());
1896 kaddr = kmap_atomic(page, KM_USER0);
1897 if (likely(i->nr_segs == 1)) {
1898 int left;
1899 char __user *buf = i->iov->iov_base + i->iov_offset;
1900 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1901 copied = bytes - left;
1902 } else {
1903 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1904 i->iov, i->iov_offset, bytes);
1905 }
1906 kunmap_atomic(kaddr, KM_USER0);
1907
1908 return copied;
1909 }
1910 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1911
1912 /*
1913 * This has the same sideeffects and return value as
1914 * iov_iter_copy_from_user_atomic().
1915 * The difference is that it attempts to resolve faults.
1916 * Page must not be locked.
1917 */
1918 size_t iov_iter_copy_from_user(struct page *page,
1919 struct iov_iter *i, unsigned long offset, size_t bytes)
1920 {
1921 char *kaddr;
1922 size_t copied;
1923
1924 kaddr = kmap(page);
1925 if (likely(i->nr_segs == 1)) {
1926 int left;
1927 char __user *buf = i->iov->iov_base + i->iov_offset;
1928 left = __copy_from_user(kaddr + offset, buf, bytes);
1929 copied = bytes - left;
1930 } else {
1931 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1932 i->iov, i->iov_offset, bytes);
1933 }
1934 kunmap(page);
1935 return copied;
1936 }
1937 EXPORT_SYMBOL(iov_iter_copy_from_user);
1938
1939 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1940 {
1941 BUG_ON(i->count < bytes);
1942
1943 if (likely(i->nr_segs == 1)) {
1944 i->iov_offset += bytes;
1945 i->count -= bytes;
1946 } else {
1947 const struct iovec *iov = i->iov;
1948 size_t base = i->iov_offset;
1949
1950 /*
1951 * The !iov->iov_len check ensures we skip over unlikely
1952 * zero-length segments (without overruning the iovec).
1953 */
1954 while (bytes || unlikely(i->count && !iov->iov_len)) {
1955 int copy;
1956
1957 copy = min(bytes, iov->iov_len - base);
1958 BUG_ON(!i->count || i->count < copy);
1959 i->count -= copy;
1960 bytes -= copy;
1961 base += copy;
1962 if (iov->iov_len == base) {
1963 iov++;
1964 base = 0;
1965 }
1966 }
1967 i->iov = iov;
1968 i->iov_offset = base;
1969 }
1970 }
1971 EXPORT_SYMBOL(iov_iter_advance);
1972
1973 /*
1974 * Fault in the first iovec of the given iov_iter, to a maximum length
1975 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1976 * accessed (ie. because it is an invalid address).
1977 *
1978 * writev-intensive code may want this to prefault several iovecs -- that
1979 * would be possible (callers must not rely on the fact that _only_ the
1980 * first iovec will be faulted with the current implementation).
1981 */
1982 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1983 {
1984 char __user *buf = i->iov->iov_base + i->iov_offset;
1985 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1986 return fault_in_pages_readable(buf, bytes);
1987 }
1988 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1989
1990 /*
1991 * Return the count of just the current iov_iter segment.
1992 */
1993 size_t iov_iter_single_seg_count(struct iov_iter *i)
1994 {
1995 const struct iovec *iov = i->iov;
1996 if (i->nr_segs == 1)
1997 return i->count;
1998 else
1999 return min(i->count, iov->iov_len - i->iov_offset);
2000 }
2001 EXPORT_SYMBOL(iov_iter_single_seg_count);
2002
2003 /*
2004 * Performs necessary checks before doing a write
2005 *
2006 * Can adjust writing position or amount of bytes to write.
2007 * Returns appropriate error code that caller should return or
2008 * zero in case that write should be allowed.
2009 */
2010 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2011 {
2012 struct inode *inode = file->f_mapping->host;
2013 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2014
2015 if (unlikely(*pos < 0))
2016 return -EINVAL;
2017
2018 if (!isblk) {
2019 /* FIXME: this is for backwards compatibility with 2.4 */
2020 if (file->f_flags & O_APPEND)
2021 *pos = i_size_read(inode);
2022
2023 if (limit != RLIM_INFINITY) {
2024 if (*pos >= limit) {
2025 send_sig(SIGXFSZ, current, 0);
2026 return -EFBIG;
2027 }
2028 if (*count > limit - (typeof(limit))*pos) {
2029 *count = limit - (typeof(limit))*pos;
2030 }
2031 }
2032 }
2033
2034 /*
2035 * LFS rule
2036 */
2037 if (unlikely(*pos + *count > MAX_NON_LFS &&
2038 !(file->f_flags & O_LARGEFILE))) {
2039 if (*pos >= MAX_NON_LFS) {
2040 return -EFBIG;
2041 }
2042 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2043 *count = MAX_NON_LFS - (unsigned long)*pos;
2044 }
2045 }
2046
2047 /*
2048 * Are we about to exceed the fs block limit ?
2049 *
2050 * If we have written data it becomes a short write. If we have
2051 * exceeded without writing data we send a signal and return EFBIG.
2052 * Linus frestrict idea will clean these up nicely..
2053 */
2054 if (likely(!isblk)) {
2055 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2056 if (*count || *pos > inode->i_sb->s_maxbytes) {
2057 return -EFBIG;
2058 }
2059 /* zero-length writes at ->s_maxbytes are OK */
2060 }
2061
2062 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2063 *count = inode->i_sb->s_maxbytes - *pos;
2064 } else {
2065 #ifdef CONFIG_BLOCK
2066 loff_t isize;
2067 if (bdev_read_only(I_BDEV(inode)))
2068 return -EPERM;
2069 isize = i_size_read(inode);
2070 if (*pos >= isize) {
2071 if (*count || *pos > isize)
2072 return -ENOSPC;
2073 }
2074
2075 if (*pos + *count > isize)
2076 *count = isize - *pos;
2077 #else
2078 return -EPERM;
2079 #endif
2080 }
2081 return 0;
2082 }
2083 EXPORT_SYMBOL(generic_write_checks);
2084
2085 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2086 loff_t pos, unsigned len, unsigned flags,
2087 struct page **pagep, void **fsdata)
2088 {
2089 const struct address_space_operations *aops = mapping->a_ops;
2090
2091 return aops->write_begin(file, mapping, pos, len, flags,
2092 pagep, fsdata);
2093 }
2094 EXPORT_SYMBOL(pagecache_write_begin);
2095
2096 int pagecache_write_end(struct file *file, struct address_space *mapping,
2097 loff_t pos, unsigned len, unsigned copied,
2098 struct page *page, void *fsdata)
2099 {
2100 const struct address_space_operations *aops = mapping->a_ops;
2101
2102 mark_page_accessed(page);
2103 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2104 }
2105 EXPORT_SYMBOL(pagecache_write_end);
2106
2107 ssize_t
2108 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2109 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2110 size_t count, size_t ocount)
2111 {
2112 struct file *file = iocb->ki_filp;
2113 struct address_space *mapping = file->f_mapping;
2114 struct inode *inode = mapping->host;
2115 ssize_t written;
2116 size_t write_len;
2117 pgoff_t end;
2118
2119 if (count != ocount)
2120 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2121
2122 write_len = iov_length(iov, *nr_segs);
2123 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2124
2125 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2126 if (written)
2127 goto out;
2128
2129 /*
2130 * After a write we want buffered reads to be sure to go to disk to get
2131 * the new data. We invalidate clean cached page from the region we're
2132 * about to write. We do this *before* the write so that we can return
2133 * without clobbering -EIOCBQUEUED from ->direct_IO().
2134 */
2135 if (mapping->nrpages) {
2136 written = invalidate_inode_pages2_range(mapping,
2137 pos >> PAGE_CACHE_SHIFT, end);
2138 /*
2139 * If a page can not be invalidated, return 0 to fall back
2140 * to buffered write.
2141 */
2142 if (written) {
2143 if (written == -EBUSY)
2144 return 0;
2145 goto out;
2146 }
2147 }
2148
2149 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2150
2151 /*
2152 * Finally, try again to invalidate clean pages which might have been
2153 * cached by non-direct readahead, or faulted in by get_user_pages()
2154 * if the source of the write was an mmap'ed region of the file
2155 * we're writing. Either one is a pretty crazy thing to do,
2156 * so we don't support it 100%. If this invalidation
2157 * fails, tough, the write still worked...
2158 */
2159 if (mapping->nrpages) {
2160 invalidate_inode_pages2_range(mapping,
2161 pos >> PAGE_CACHE_SHIFT, end);
2162 }
2163
2164 if (written > 0) {
2165 loff_t end = pos + written;
2166 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2167 i_size_write(inode, end);
2168 mark_inode_dirty(inode);
2169 }
2170 *ppos = end;
2171 }
2172
2173 /*
2174 * Sync the fs metadata but not the minor inode changes and
2175 * of course not the data as we did direct DMA for the IO.
2176 * i_mutex is held, which protects generic_osync_inode() from
2177 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2178 */
2179 out:
2180 if ((written >= 0 || written == -EIOCBQUEUED) &&
2181 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2182 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2183 if (err < 0)
2184 written = err;
2185 }
2186 return written;
2187 }
2188 EXPORT_SYMBOL(generic_file_direct_write);
2189
2190 /*
2191 * Find or create a page at the given pagecache position. Return the locked
2192 * page. This function is specifically for buffered writes.
2193 */
2194 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2195 pgoff_t index, unsigned flags)
2196 {
2197 int status;
2198 struct page *page;
2199 gfp_t gfp_notmask = 0;
2200 if (flags & AOP_FLAG_NOFS)
2201 gfp_notmask = __GFP_FS;
2202 repeat:
2203 page = find_lock_page(mapping, index);
2204 if (likely(page))
2205 return page;
2206
2207 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2208 if (!page)
2209 return NULL;
2210 status = add_to_page_cache_lru(page, mapping, index,
2211 GFP_KERNEL & ~gfp_notmask);
2212 if (unlikely(status)) {
2213 page_cache_release(page);
2214 if (status == -EEXIST)
2215 goto repeat;
2216 return NULL;
2217 }
2218 return page;
2219 }
2220 EXPORT_SYMBOL(grab_cache_page_write_begin);
2221
2222 static ssize_t generic_perform_write(struct file *file,
2223 struct iov_iter *i, loff_t pos)
2224 {
2225 struct address_space *mapping = file->f_mapping;
2226 const struct address_space_operations *a_ops = mapping->a_ops;
2227 long status = 0;
2228 ssize_t written = 0;
2229 unsigned int flags = 0;
2230
2231 /*
2232 * Copies from kernel address space cannot fail (NFSD is a big user).
2233 */
2234 if (segment_eq(get_fs(), KERNEL_DS))
2235 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2236
2237 do {
2238 struct page *page;
2239 pgoff_t index; /* Pagecache index for current page */
2240 unsigned long offset; /* Offset into pagecache page */
2241 unsigned long bytes; /* Bytes to write to page */
2242 size_t copied; /* Bytes copied from user */
2243 void *fsdata;
2244
2245 offset = (pos & (PAGE_CACHE_SIZE - 1));
2246 index = pos >> PAGE_CACHE_SHIFT;
2247 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2248 iov_iter_count(i));
2249
2250 again:
2251
2252 /*
2253 * Bring in the user page that we will copy from _first_.
2254 * Otherwise there's a nasty deadlock on copying from the
2255 * same page as we're writing to, without it being marked
2256 * up-to-date.
2257 *
2258 * Not only is this an optimisation, but it is also required
2259 * to check that the address is actually valid, when atomic
2260 * usercopies are used, below.
2261 */
2262 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2263 status = -EFAULT;
2264 break;
2265 }
2266
2267 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2268 &page, &fsdata);
2269 if (unlikely(status))
2270 break;
2271
2272 pagefault_disable();
2273 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2274 pagefault_enable();
2275 flush_dcache_page(page);
2276
2277 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2278 page, fsdata);
2279 if (unlikely(status < 0))
2280 break;
2281 copied = status;
2282
2283 cond_resched();
2284
2285 iov_iter_advance(i, copied);
2286 if (unlikely(copied == 0)) {
2287 /*
2288 * If we were unable to copy any data at all, we must
2289 * fall back to a single segment length write.
2290 *
2291 * If we didn't fallback here, we could livelock
2292 * because not all segments in the iov can be copied at
2293 * once without a pagefault.
2294 */
2295 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2296 iov_iter_single_seg_count(i));
2297 goto again;
2298 }
2299 pos += copied;
2300 written += copied;
2301
2302 balance_dirty_pages_ratelimited(mapping);
2303
2304 } while (iov_iter_count(i));
2305
2306 return written ? written : status;
2307 }
2308
2309 ssize_t
2310 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2311 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2312 size_t count, ssize_t written)
2313 {
2314 struct file *file = iocb->ki_filp;
2315 struct address_space *mapping = file->f_mapping;
2316 const struct address_space_operations *a_ops = mapping->a_ops;
2317 struct inode *inode = mapping->host;
2318 ssize_t status;
2319 struct iov_iter i;
2320
2321 iov_iter_init(&i, iov, nr_segs, count, written);
2322 status = generic_perform_write(file, &i, pos);
2323
2324 if (likely(status >= 0)) {
2325 written += status;
2326 *ppos = pos + status;
2327
2328 /*
2329 * For now, when the user asks for O_SYNC, we'll actually give
2330 * O_DSYNC
2331 */
2332 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2333 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2334 status = generic_osync_inode(inode, mapping,
2335 OSYNC_METADATA|OSYNC_DATA);
2336 }
2337 }
2338
2339 /*
2340 * If we get here for O_DIRECT writes then we must have fallen through
2341 * to buffered writes (block instantiation inside i_size). So we sync
2342 * the file data here, to try to honour O_DIRECT expectations.
2343 */
2344 if (unlikely(file->f_flags & O_DIRECT) && written)
2345 status = filemap_write_and_wait_range(mapping,
2346 pos, pos + written - 1);
2347
2348 return written ? written : status;
2349 }
2350 EXPORT_SYMBOL(generic_file_buffered_write);
2351
2352 static ssize_t
2353 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2354 unsigned long nr_segs, loff_t *ppos)
2355 {
2356 struct file *file = iocb->ki_filp;
2357 struct address_space * mapping = file->f_mapping;
2358 size_t ocount; /* original count */
2359 size_t count; /* after file limit checks */
2360 struct inode *inode = mapping->host;
2361 loff_t pos;
2362 ssize_t written;
2363 ssize_t err;
2364
2365 ocount = 0;
2366 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2367 if (err)
2368 return err;
2369
2370 count = ocount;
2371 pos = *ppos;
2372
2373 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2374
2375 /* We can write back this queue in page reclaim */
2376 current->backing_dev_info = mapping->backing_dev_info;
2377 written = 0;
2378
2379 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2380 if (err)
2381 goto out;
2382
2383 if (count == 0)
2384 goto out;
2385
2386 err = file_remove_suid(file);
2387 if (err)
2388 goto out;
2389
2390 file_update_time(file);
2391
2392 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2393 if (unlikely(file->f_flags & O_DIRECT)) {
2394 loff_t endbyte;
2395 ssize_t written_buffered;
2396
2397 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2398 ppos, count, ocount);
2399 if (written < 0 || written == count)
2400 goto out;
2401 /*
2402 * direct-io write to a hole: fall through to buffered I/O
2403 * for completing the rest of the request.
2404 */
2405 pos += written;
2406 count -= written;
2407 written_buffered = generic_file_buffered_write(iocb, iov,
2408 nr_segs, pos, ppos, count,
2409 written);
2410 /*
2411 * If generic_file_buffered_write() retuned a synchronous error
2412 * then we want to return the number of bytes which were
2413 * direct-written, or the error code if that was zero. Note
2414 * that this differs from normal direct-io semantics, which
2415 * will return -EFOO even if some bytes were written.
2416 */
2417 if (written_buffered < 0) {
2418 err = written_buffered;
2419 goto out;
2420 }
2421
2422 /*
2423 * We need to ensure that the page cache pages are written to
2424 * disk and invalidated to preserve the expected O_DIRECT
2425 * semantics.
2426 */
2427 endbyte = pos + written_buffered - written - 1;
2428 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2429 SYNC_FILE_RANGE_WAIT_BEFORE|
2430 SYNC_FILE_RANGE_WRITE|
2431 SYNC_FILE_RANGE_WAIT_AFTER);
2432 if (err == 0) {
2433 written = written_buffered;
2434 invalidate_mapping_pages(mapping,
2435 pos >> PAGE_CACHE_SHIFT,
2436 endbyte >> PAGE_CACHE_SHIFT);
2437 } else {
2438 /*
2439 * We don't know how much we wrote, so just return
2440 * the number of bytes which were direct-written
2441 */
2442 }
2443 } else {
2444 written = generic_file_buffered_write(iocb, iov, nr_segs,
2445 pos, ppos, count, written);
2446 }
2447 out:
2448 current->backing_dev_info = NULL;
2449 return written ? written : err;
2450 }
2451
2452 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2453 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2454 {
2455 struct file *file = iocb->ki_filp;
2456 struct address_space *mapping = file->f_mapping;
2457 struct inode *inode = mapping->host;
2458 ssize_t ret;
2459
2460 BUG_ON(iocb->ki_pos != pos);
2461
2462 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2463 &iocb->ki_pos);
2464
2465 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2466 ssize_t err;
2467
2468 err = sync_page_range_nolock(inode, mapping, pos, ret);
2469 if (err < 0)
2470 ret = err;
2471 }
2472 return ret;
2473 }
2474 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2475
2476 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2477 unsigned long nr_segs, loff_t pos)
2478 {
2479 struct file *file = iocb->ki_filp;
2480 struct address_space *mapping = file->f_mapping;
2481 struct inode *inode = mapping->host;
2482 ssize_t ret;
2483
2484 BUG_ON(iocb->ki_pos != pos);
2485
2486 mutex_lock(&inode->i_mutex);
2487 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2488 &iocb->ki_pos);
2489 mutex_unlock(&inode->i_mutex);
2490
2491 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2492 ssize_t err;
2493
2494 err = sync_page_range(inode, mapping, pos, ret);
2495 if (err < 0)
2496 ret = err;
2497 }
2498 return ret;
2499 }
2500 EXPORT_SYMBOL(generic_file_aio_write);
2501
2502 /**
2503 * try_to_release_page() - release old fs-specific metadata on a page
2504 *
2505 * @page: the page which the kernel is trying to free
2506 * @gfp_mask: memory allocation flags (and I/O mode)
2507 *
2508 * The address_space is to try to release any data against the page
2509 * (presumably at page->private). If the release was successful, return `1'.
2510 * Otherwise return zero.
2511 *
2512 * This may also be called if PG_fscache is set on a page, indicating that the
2513 * page is known to the local caching routines.
2514 *
2515 * The @gfp_mask argument specifies whether I/O may be performed to release
2516 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2517 *
2518 */
2519 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2520 {
2521 struct address_space * const mapping = page->mapping;
2522
2523 BUG_ON(!PageLocked(page));
2524 if (PageWriteback(page))
2525 return 0;
2526
2527 if (mapping && mapping->a_ops->releasepage)
2528 return mapping->a_ops->releasepage(page, gfp_mask);
2529 return try_to_free_buffers(page);
2530 }
2531
2532 EXPORT_SYMBOL(try_to_release_page);