]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/filemap.c
mm: filemap: don't plant shadow entries without radix tree node
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115 {
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 if (node)
136 workingset_node_shadows_dec(node);
137 } else {
138 /* DAX can replace empty locked entry with a hole */
139 WARN_ON_ONCE(p !=
140 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 RADIX_DAX_ENTRY_LOCK));
142 /* DAX accounts exceptional entries as normal pages */
143 if (node)
144 workingset_node_pages_dec(node);
145 /* Wakeup waiters for exceptional entry lock */
146 dax_wake_mapping_entry_waiter(mapping, page->index,
147 false);
148 }
149 }
150 radix_tree_replace_slot(slot, page);
151 mapping->nrpages++;
152 if (node) {
153 workingset_node_pages_inc(node);
154 /*
155 * Don't track node that contains actual pages.
156 *
157 * Avoid acquiring the list_lru lock if already
158 * untracked. The list_empty() test is safe as
159 * node->private_list is protected by
160 * mapping->tree_lock.
161 */
162 if (!list_empty(&node->private_list))
163 list_lru_del(&workingset_shadow_nodes,
164 &node->private_list);
165 }
166 return 0;
167 }
168
169 static void page_cache_tree_delete(struct address_space *mapping,
170 struct page *page, void *shadow)
171 {
172 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173
174 VM_BUG_ON_PAGE(!PageLocked(page), page);
175 VM_BUG_ON_PAGE(PageTail(page), page);
176 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177
178 for (i = 0; i < nr; i++) {
179 struct radix_tree_node *node;
180 void **slot;
181
182 __radix_tree_lookup(&mapping->page_tree, page->index + i,
183 &node, &slot);
184
185 radix_tree_clear_tags(&mapping->page_tree, node, slot);
186
187 if (!node) {
188 VM_BUG_ON_PAGE(nr != 1, page);
189 /*
190 * We need a node to properly account shadow
191 * entries. Don't plant any without. XXX
192 */
193 shadow = NULL;
194 }
195
196 radix_tree_replace_slot(slot, shadow);
197
198 if (!node)
199 break;
200
201 workingset_node_pages_dec(node);
202 if (shadow)
203 workingset_node_shadows_inc(node);
204 else
205 if (__radix_tree_delete_node(&mapping->page_tree, node))
206 continue;
207
208 /*
209 * Track node that only contains shadow entries. DAX mappings
210 * contain no shadow entries and may contain other exceptional
211 * entries so skip those.
212 *
213 * Avoid acquiring the list_lru lock if already tracked.
214 * The list_empty() test is safe as node->private_list is
215 * protected by mapping->tree_lock.
216 */
217 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218 list_empty(&node->private_list)) {
219 node->private_data = mapping;
220 list_lru_add(&workingset_shadow_nodes,
221 &node->private_list);
222 }
223 }
224
225 if (shadow) {
226 mapping->nrexceptional += nr;
227 /*
228 * Make sure the nrexceptional update is committed before
229 * the nrpages update so that final truncate racing
230 * with reclaim does not see both counters 0 at the
231 * same time and miss a shadow entry.
232 */
233 smp_wmb();
234 }
235 mapping->nrpages -= nr;
236 }
237
238 /*
239 * Delete a page from the page cache and free it. Caller has to make
240 * sure the page is locked and that nobody else uses it - or that usage
241 * is safe. The caller must hold the mapping's tree_lock.
242 */
243 void __delete_from_page_cache(struct page *page, void *shadow)
244 {
245 struct address_space *mapping = page->mapping;
246 int nr = hpage_nr_pages(page);
247
248 trace_mm_filemap_delete_from_page_cache(page);
249 /*
250 * if we're uptodate, flush out into the cleancache, otherwise
251 * invalidate any existing cleancache entries. We can't leave
252 * stale data around in the cleancache once our page is gone
253 */
254 if (PageUptodate(page) && PageMappedToDisk(page))
255 cleancache_put_page(page);
256 else
257 cleancache_invalidate_page(mapping, page);
258
259 VM_BUG_ON_PAGE(PageTail(page), page);
260 VM_BUG_ON_PAGE(page_mapped(page), page);
261 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262 int mapcount;
263
264 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 dump_page(page, "still mapped when deleted");
267 dump_stack();
268 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269
270 mapcount = page_mapcount(page);
271 if (mapping_exiting(mapping) &&
272 page_count(page) >= mapcount + 2) {
273 /*
274 * All vmas have already been torn down, so it's
275 * a good bet that actually the page is unmapped,
276 * and we'd prefer not to leak it: if we're wrong,
277 * some other bad page check should catch it later.
278 */
279 page_mapcount_reset(page);
280 page_ref_sub(page, mapcount);
281 }
282 }
283
284 page_cache_tree_delete(mapping, page, shadow);
285
286 page->mapping = NULL;
287 /* Leave page->index set: truncation lookup relies upon it */
288
289 /* hugetlb pages do not participate in page cache accounting. */
290 if (!PageHuge(page))
291 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292 if (PageSwapBacked(page)) {
293 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294 if (PageTransHuge(page))
295 __dec_node_page_state(page, NR_SHMEM_THPS);
296 } else {
297 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298 }
299
300 /*
301 * At this point page must be either written or cleaned by truncate.
302 * Dirty page here signals a bug and loss of unwritten data.
303 *
304 * This fixes dirty accounting after removing the page entirely but
305 * leaves PageDirty set: it has no effect for truncated page and
306 * anyway will be cleared before returning page into buddy allocator.
307 */
308 if (WARN_ON_ONCE(PageDirty(page)))
309 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310 }
311
312 /**
313 * delete_from_page_cache - delete page from page cache
314 * @page: the page which the kernel is trying to remove from page cache
315 *
316 * This must be called only on pages that have been verified to be in the page
317 * cache and locked. It will never put the page into the free list, the caller
318 * has a reference on the page.
319 */
320 void delete_from_page_cache(struct page *page)
321 {
322 struct address_space *mapping = page_mapping(page);
323 unsigned long flags;
324 void (*freepage)(struct page *);
325
326 BUG_ON(!PageLocked(page));
327
328 freepage = mapping->a_ops->freepage;
329
330 spin_lock_irqsave(&mapping->tree_lock, flags);
331 __delete_from_page_cache(page, NULL);
332 spin_unlock_irqrestore(&mapping->tree_lock, flags);
333
334 if (freepage)
335 freepage(page);
336
337 if (PageTransHuge(page) && !PageHuge(page)) {
338 page_ref_sub(page, HPAGE_PMD_NR);
339 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340 } else {
341 put_page(page);
342 }
343 }
344 EXPORT_SYMBOL(delete_from_page_cache);
345
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
360 /**
361 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362 * @mapping: address space structure to write
363 * @start: offset in bytes where the range starts
364 * @end: offset in bytes where the range ends (inclusive)
365 * @sync_mode: enable synchronous operation
366 *
367 * Start writeback against all of a mapping's dirty pages that lie
368 * within the byte offsets <start, end> inclusive.
369 *
370 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371 * opposed to a regular memory cleansing writeback. The difference between
372 * these two operations is that if a dirty page/buffer is encountered, it must
373 * be waited upon, and not just skipped over.
374 */
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376 loff_t end, int sync_mode)
377 {
378 int ret;
379 struct writeback_control wbc = {
380 .sync_mode = sync_mode,
381 .nr_to_write = LONG_MAX,
382 .range_start = start,
383 .range_end = end,
384 };
385
386 if (!mapping_cap_writeback_dirty(mapping))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390 ret = do_writepages(mapping, &wbc);
391 wbc_detach_inode(&wbc);
392 return ret;
393 }
394
395 static inline int __filemap_fdatawrite(struct address_space *mapping,
396 int sync_mode)
397 {
398 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
399 }
400
401 int filemap_fdatawrite(struct address_space *mapping)
402 {
403 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
404 }
405 EXPORT_SYMBOL(filemap_fdatawrite);
406
407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 loff_t end)
409 {
410 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
411 }
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
413
414 /**
415 * filemap_flush - mostly a non-blocking flush
416 * @mapping: target address_space
417 *
418 * This is a mostly non-blocking flush. Not suitable for data-integrity
419 * purposes - I/O may not be started against all dirty pages.
420 */
421 int filemap_flush(struct address_space *mapping)
422 {
423 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
424 }
425 EXPORT_SYMBOL(filemap_flush);
426
427 static int __filemap_fdatawait_range(struct address_space *mapping,
428 loff_t start_byte, loff_t end_byte)
429 {
430 pgoff_t index = start_byte >> PAGE_SHIFT;
431 pgoff_t end = end_byte >> PAGE_SHIFT;
432 struct pagevec pvec;
433 int nr_pages;
434 int ret = 0;
435
436 if (end_byte < start_byte)
437 goto out;
438
439 pagevec_init(&pvec, 0);
440 while ((index <= end) &&
441 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442 PAGECACHE_TAG_WRITEBACK,
443 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444 unsigned i;
445
446 for (i = 0; i < nr_pages; i++) {
447 struct page *page = pvec.pages[i];
448
449 /* until radix tree lookup accepts end_index */
450 if (page->index > end)
451 continue;
452
453 wait_on_page_writeback(page);
454 if (TestClearPageError(page))
455 ret = -EIO;
456 }
457 pagevec_release(&pvec);
458 cond_resched();
459 }
460 out:
461 return ret;
462 }
463
464 /**
465 * filemap_fdatawait_range - wait for writeback to complete
466 * @mapping: address space structure to wait for
467 * @start_byte: offset in bytes where the range starts
468 * @end_byte: offset in bytes where the range ends (inclusive)
469 *
470 * Walk the list of under-writeback pages of the given address space
471 * in the given range and wait for all of them. Check error status of
472 * the address space and return it.
473 *
474 * Since the error status of the address space is cleared by this function,
475 * callers are responsible for checking the return value and handling and/or
476 * reporting the error.
477 */
478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479 loff_t end_byte)
480 {
481 int ret, ret2;
482
483 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484 ret2 = filemap_check_errors(mapping);
485 if (!ret)
486 ret = ret2;
487
488 return ret;
489 }
490 EXPORT_SYMBOL(filemap_fdatawait_range);
491
492 /**
493 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494 * @mapping: address space structure to wait for
495 *
496 * Walk the list of under-writeback pages of the given address space
497 * and wait for all of them. Unlike filemap_fdatawait(), this function
498 * does not clear error status of the address space.
499 *
500 * Use this function if callers don't handle errors themselves. Expected
501 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502 * fsfreeze(8)
503 */
504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
505 {
506 loff_t i_size = i_size_read(mapping->host);
507
508 if (i_size == 0)
509 return;
510
511 __filemap_fdatawait_range(mapping, 0, i_size - 1);
512 }
513
514 /**
515 * filemap_fdatawait - wait for all under-writeback pages to complete
516 * @mapping: address space structure to wait for
517 *
518 * Walk the list of under-writeback pages of the given address space
519 * and wait for all of them. Check error status of the address space
520 * and return it.
521 *
522 * Since the error status of the address space is cleared by this function,
523 * callers are responsible for checking the return value and handling and/or
524 * reporting the error.
525 */
526 int filemap_fdatawait(struct address_space *mapping)
527 {
528 loff_t i_size = i_size_read(mapping->host);
529
530 if (i_size == 0)
531 return 0;
532
533 return filemap_fdatawait_range(mapping, 0, i_size - 1);
534 }
535 EXPORT_SYMBOL(filemap_fdatawait);
536
537 int filemap_write_and_wait(struct address_space *mapping)
538 {
539 int err = 0;
540
541 if ((!dax_mapping(mapping) && mapping->nrpages) ||
542 (dax_mapping(mapping) && mapping->nrexceptional)) {
543 err = filemap_fdatawrite(mapping);
544 /*
545 * Even if the above returned error, the pages may be
546 * written partially (e.g. -ENOSPC), so we wait for it.
547 * But the -EIO is special case, it may indicate the worst
548 * thing (e.g. bug) happened, so we avoid waiting for it.
549 */
550 if (err != -EIO) {
551 int err2 = filemap_fdatawait(mapping);
552 if (!err)
553 err = err2;
554 }
555 } else {
556 err = filemap_check_errors(mapping);
557 }
558 return err;
559 }
560 EXPORT_SYMBOL(filemap_write_and_wait);
561
562 /**
563 * filemap_write_and_wait_range - write out & wait on a file range
564 * @mapping: the address_space for the pages
565 * @lstart: offset in bytes where the range starts
566 * @lend: offset in bytes where the range ends (inclusive)
567 *
568 * Write out and wait upon file offsets lstart->lend, inclusive.
569 *
570 * Note that `lend' is inclusive (describes the last byte to be written) so
571 * that this function can be used to write to the very end-of-file (end = -1).
572 */
573 int filemap_write_and_wait_range(struct address_space *mapping,
574 loff_t lstart, loff_t lend)
575 {
576 int err = 0;
577
578 if ((!dax_mapping(mapping) && mapping->nrpages) ||
579 (dax_mapping(mapping) && mapping->nrexceptional)) {
580 err = __filemap_fdatawrite_range(mapping, lstart, lend,
581 WB_SYNC_ALL);
582 /* See comment of filemap_write_and_wait() */
583 if (err != -EIO) {
584 int err2 = filemap_fdatawait_range(mapping,
585 lstart, lend);
586 if (!err)
587 err = err2;
588 }
589 } else {
590 err = filemap_check_errors(mapping);
591 }
592 return err;
593 }
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
595
596 /**
597 * replace_page_cache_page - replace a pagecache page with a new one
598 * @old: page to be replaced
599 * @new: page to replace with
600 * @gfp_mask: allocation mode
601 *
602 * This function replaces a page in the pagecache with a new one. On
603 * success it acquires the pagecache reference for the new page and
604 * drops it for the old page. Both the old and new pages must be
605 * locked. This function does not add the new page to the LRU, the
606 * caller must do that.
607 *
608 * The remove + add is atomic. The only way this function can fail is
609 * memory allocation failure.
610 */
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
612 {
613 int error;
614
615 VM_BUG_ON_PAGE(!PageLocked(old), old);
616 VM_BUG_ON_PAGE(!PageLocked(new), new);
617 VM_BUG_ON_PAGE(new->mapping, new);
618
619 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
620 if (!error) {
621 struct address_space *mapping = old->mapping;
622 void (*freepage)(struct page *);
623 unsigned long flags;
624
625 pgoff_t offset = old->index;
626 freepage = mapping->a_ops->freepage;
627
628 get_page(new);
629 new->mapping = mapping;
630 new->index = offset;
631
632 spin_lock_irqsave(&mapping->tree_lock, flags);
633 __delete_from_page_cache(old, NULL);
634 error = page_cache_tree_insert(mapping, new, NULL);
635 BUG_ON(error);
636 mapping->nrpages++;
637
638 /*
639 * hugetlb pages do not participate in page cache accounting.
640 */
641 if (!PageHuge(new))
642 __inc_node_page_state(new, NR_FILE_PAGES);
643 if (PageSwapBacked(new))
644 __inc_node_page_state(new, NR_SHMEM);
645 spin_unlock_irqrestore(&mapping->tree_lock, flags);
646 mem_cgroup_migrate(old, new);
647 radix_tree_preload_end();
648 if (freepage)
649 freepage(old);
650 put_page(old);
651 }
652
653 return error;
654 }
655 EXPORT_SYMBOL_GPL(replace_page_cache_page);
656
657 static int __add_to_page_cache_locked(struct page *page,
658 struct address_space *mapping,
659 pgoff_t offset, gfp_t gfp_mask,
660 void **shadowp)
661 {
662 int huge = PageHuge(page);
663 struct mem_cgroup *memcg;
664 int error;
665
666 VM_BUG_ON_PAGE(!PageLocked(page), page);
667 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
668
669 if (!huge) {
670 error = mem_cgroup_try_charge(page, current->mm,
671 gfp_mask, &memcg, false);
672 if (error)
673 return error;
674 }
675
676 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
677 if (error) {
678 if (!huge)
679 mem_cgroup_cancel_charge(page, memcg, false);
680 return error;
681 }
682
683 get_page(page);
684 page->mapping = mapping;
685 page->index = offset;
686
687 spin_lock_irq(&mapping->tree_lock);
688 error = page_cache_tree_insert(mapping, page, shadowp);
689 radix_tree_preload_end();
690 if (unlikely(error))
691 goto err_insert;
692
693 /* hugetlb pages do not participate in page cache accounting. */
694 if (!huge)
695 __inc_node_page_state(page, NR_FILE_PAGES);
696 spin_unlock_irq(&mapping->tree_lock);
697 if (!huge)
698 mem_cgroup_commit_charge(page, memcg, false, false);
699 trace_mm_filemap_add_to_page_cache(page);
700 return 0;
701 err_insert:
702 page->mapping = NULL;
703 /* Leave page->index set: truncation relies upon it */
704 spin_unlock_irq(&mapping->tree_lock);
705 if (!huge)
706 mem_cgroup_cancel_charge(page, memcg, false);
707 put_page(page);
708 return error;
709 }
710
711 /**
712 * add_to_page_cache_locked - add a locked page to the pagecache
713 * @page: page to add
714 * @mapping: the page's address_space
715 * @offset: page index
716 * @gfp_mask: page allocation mode
717 *
718 * This function is used to add a page to the pagecache. It must be locked.
719 * This function does not add the page to the LRU. The caller must do that.
720 */
721 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
722 pgoff_t offset, gfp_t gfp_mask)
723 {
724 return __add_to_page_cache_locked(page, mapping, offset,
725 gfp_mask, NULL);
726 }
727 EXPORT_SYMBOL(add_to_page_cache_locked);
728
729 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
730 pgoff_t offset, gfp_t gfp_mask)
731 {
732 void *shadow = NULL;
733 int ret;
734
735 __SetPageLocked(page);
736 ret = __add_to_page_cache_locked(page, mapping, offset,
737 gfp_mask, &shadow);
738 if (unlikely(ret))
739 __ClearPageLocked(page);
740 else {
741 /*
742 * The page might have been evicted from cache only
743 * recently, in which case it should be activated like
744 * any other repeatedly accessed page.
745 * The exception is pages getting rewritten; evicting other
746 * data from the working set, only to cache data that will
747 * get overwritten with something else, is a waste of memory.
748 */
749 if (!(gfp_mask & __GFP_WRITE) &&
750 shadow && workingset_refault(shadow)) {
751 SetPageActive(page);
752 workingset_activation(page);
753 } else
754 ClearPageActive(page);
755 lru_cache_add(page);
756 }
757 return ret;
758 }
759 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
760
761 #ifdef CONFIG_NUMA
762 struct page *__page_cache_alloc(gfp_t gfp)
763 {
764 int n;
765 struct page *page;
766
767 if (cpuset_do_page_mem_spread()) {
768 unsigned int cpuset_mems_cookie;
769 do {
770 cpuset_mems_cookie = read_mems_allowed_begin();
771 n = cpuset_mem_spread_node();
772 page = __alloc_pages_node(n, gfp, 0);
773 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
774
775 return page;
776 }
777 return alloc_pages(gfp, 0);
778 }
779 EXPORT_SYMBOL(__page_cache_alloc);
780 #endif
781
782 /*
783 * In order to wait for pages to become available there must be
784 * waitqueues associated with pages. By using a hash table of
785 * waitqueues where the bucket discipline is to maintain all
786 * waiters on the same queue and wake all when any of the pages
787 * become available, and for the woken contexts to check to be
788 * sure the appropriate page became available, this saves space
789 * at a cost of "thundering herd" phenomena during rare hash
790 * collisions.
791 */
792 wait_queue_head_t *page_waitqueue(struct page *page)
793 {
794 const struct zone *zone = page_zone(page);
795
796 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
797 }
798 EXPORT_SYMBOL(page_waitqueue);
799
800 void wait_on_page_bit(struct page *page, int bit_nr)
801 {
802 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
803
804 if (test_bit(bit_nr, &page->flags))
805 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
806 TASK_UNINTERRUPTIBLE);
807 }
808 EXPORT_SYMBOL(wait_on_page_bit);
809
810 int wait_on_page_bit_killable(struct page *page, int bit_nr)
811 {
812 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
813
814 if (!test_bit(bit_nr, &page->flags))
815 return 0;
816
817 return __wait_on_bit(page_waitqueue(page), &wait,
818 bit_wait_io, TASK_KILLABLE);
819 }
820
821 int wait_on_page_bit_killable_timeout(struct page *page,
822 int bit_nr, unsigned long timeout)
823 {
824 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
825
826 wait.key.timeout = jiffies + timeout;
827 if (!test_bit(bit_nr, &page->flags))
828 return 0;
829 return __wait_on_bit(page_waitqueue(page), &wait,
830 bit_wait_io_timeout, TASK_KILLABLE);
831 }
832 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
833
834 /**
835 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
836 * @page: Page defining the wait queue of interest
837 * @waiter: Waiter to add to the queue
838 *
839 * Add an arbitrary @waiter to the wait queue for the nominated @page.
840 */
841 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
842 {
843 wait_queue_head_t *q = page_waitqueue(page);
844 unsigned long flags;
845
846 spin_lock_irqsave(&q->lock, flags);
847 __add_wait_queue(q, waiter);
848 spin_unlock_irqrestore(&q->lock, flags);
849 }
850 EXPORT_SYMBOL_GPL(add_page_wait_queue);
851
852 /**
853 * unlock_page - unlock a locked page
854 * @page: the page
855 *
856 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
857 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
858 * mechanism between PageLocked pages and PageWriteback pages is shared.
859 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
860 *
861 * The mb is necessary to enforce ordering between the clear_bit and the read
862 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
863 */
864 void unlock_page(struct page *page)
865 {
866 page = compound_head(page);
867 VM_BUG_ON_PAGE(!PageLocked(page), page);
868 clear_bit_unlock(PG_locked, &page->flags);
869 smp_mb__after_atomic();
870 wake_up_page(page, PG_locked);
871 }
872 EXPORT_SYMBOL(unlock_page);
873
874 /**
875 * end_page_writeback - end writeback against a page
876 * @page: the page
877 */
878 void end_page_writeback(struct page *page)
879 {
880 /*
881 * TestClearPageReclaim could be used here but it is an atomic
882 * operation and overkill in this particular case. Failing to
883 * shuffle a page marked for immediate reclaim is too mild to
884 * justify taking an atomic operation penalty at the end of
885 * ever page writeback.
886 */
887 if (PageReclaim(page)) {
888 ClearPageReclaim(page);
889 rotate_reclaimable_page(page);
890 }
891
892 if (!test_clear_page_writeback(page))
893 BUG();
894
895 smp_mb__after_atomic();
896 wake_up_page(page, PG_writeback);
897 }
898 EXPORT_SYMBOL(end_page_writeback);
899
900 /*
901 * After completing I/O on a page, call this routine to update the page
902 * flags appropriately
903 */
904 void page_endio(struct page *page, bool is_write, int err)
905 {
906 if (!is_write) {
907 if (!err) {
908 SetPageUptodate(page);
909 } else {
910 ClearPageUptodate(page);
911 SetPageError(page);
912 }
913 unlock_page(page);
914 } else {
915 if (err) {
916 SetPageError(page);
917 if (page->mapping)
918 mapping_set_error(page->mapping, err);
919 }
920 end_page_writeback(page);
921 }
922 }
923 EXPORT_SYMBOL_GPL(page_endio);
924
925 /**
926 * __lock_page - get a lock on the page, assuming we need to sleep to get it
927 * @page: the page to lock
928 */
929 void __lock_page(struct page *page)
930 {
931 struct page *page_head = compound_head(page);
932 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
933
934 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
935 TASK_UNINTERRUPTIBLE);
936 }
937 EXPORT_SYMBOL(__lock_page);
938
939 int __lock_page_killable(struct page *page)
940 {
941 struct page *page_head = compound_head(page);
942 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
943
944 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
945 bit_wait_io, TASK_KILLABLE);
946 }
947 EXPORT_SYMBOL_GPL(__lock_page_killable);
948
949 /*
950 * Return values:
951 * 1 - page is locked; mmap_sem is still held.
952 * 0 - page is not locked.
953 * mmap_sem has been released (up_read()), unless flags had both
954 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
955 * which case mmap_sem is still held.
956 *
957 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
958 * with the page locked and the mmap_sem unperturbed.
959 */
960 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
961 unsigned int flags)
962 {
963 if (flags & FAULT_FLAG_ALLOW_RETRY) {
964 /*
965 * CAUTION! In this case, mmap_sem is not released
966 * even though return 0.
967 */
968 if (flags & FAULT_FLAG_RETRY_NOWAIT)
969 return 0;
970
971 up_read(&mm->mmap_sem);
972 if (flags & FAULT_FLAG_KILLABLE)
973 wait_on_page_locked_killable(page);
974 else
975 wait_on_page_locked(page);
976 return 0;
977 } else {
978 if (flags & FAULT_FLAG_KILLABLE) {
979 int ret;
980
981 ret = __lock_page_killable(page);
982 if (ret) {
983 up_read(&mm->mmap_sem);
984 return 0;
985 }
986 } else
987 __lock_page(page);
988 return 1;
989 }
990 }
991
992 /**
993 * page_cache_next_hole - find the next hole (not-present entry)
994 * @mapping: mapping
995 * @index: index
996 * @max_scan: maximum range to search
997 *
998 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
999 * lowest indexed hole.
1000 *
1001 * Returns: the index of the hole if found, otherwise returns an index
1002 * outside of the set specified (in which case 'return - index >=
1003 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1004 * be returned.
1005 *
1006 * page_cache_next_hole may be called under rcu_read_lock. However,
1007 * like radix_tree_gang_lookup, this will not atomically search a
1008 * snapshot of the tree at a single point in time. For example, if a
1009 * hole is created at index 5, then subsequently a hole is created at
1010 * index 10, page_cache_next_hole covering both indexes may return 10
1011 * if called under rcu_read_lock.
1012 */
1013 pgoff_t page_cache_next_hole(struct address_space *mapping,
1014 pgoff_t index, unsigned long max_scan)
1015 {
1016 unsigned long i;
1017
1018 for (i = 0; i < max_scan; i++) {
1019 struct page *page;
1020
1021 page = radix_tree_lookup(&mapping->page_tree, index);
1022 if (!page || radix_tree_exceptional_entry(page))
1023 break;
1024 index++;
1025 if (index == 0)
1026 break;
1027 }
1028
1029 return index;
1030 }
1031 EXPORT_SYMBOL(page_cache_next_hole);
1032
1033 /**
1034 * page_cache_prev_hole - find the prev hole (not-present entry)
1035 * @mapping: mapping
1036 * @index: index
1037 * @max_scan: maximum range to search
1038 *
1039 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1040 * the first hole.
1041 *
1042 * Returns: the index of the hole if found, otherwise returns an index
1043 * outside of the set specified (in which case 'index - return >=
1044 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1045 * will be returned.
1046 *
1047 * page_cache_prev_hole may be called under rcu_read_lock. However,
1048 * like radix_tree_gang_lookup, this will not atomically search a
1049 * snapshot of the tree at a single point in time. For example, if a
1050 * hole is created at index 10, then subsequently a hole is created at
1051 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1052 * called under rcu_read_lock.
1053 */
1054 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1055 pgoff_t index, unsigned long max_scan)
1056 {
1057 unsigned long i;
1058
1059 for (i = 0; i < max_scan; i++) {
1060 struct page *page;
1061
1062 page = radix_tree_lookup(&mapping->page_tree, index);
1063 if (!page || radix_tree_exceptional_entry(page))
1064 break;
1065 index--;
1066 if (index == ULONG_MAX)
1067 break;
1068 }
1069
1070 return index;
1071 }
1072 EXPORT_SYMBOL(page_cache_prev_hole);
1073
1074 /**
1075 * find_get_entry - find and get a page cache entry
1076 * @mapping: the address_space to search
1077 * @offset: the page cache index
1078 *
1079 * Looks up the page cache slot at @mapping & @offset. If there is a
1080 * page cache page, it is returned with an increased refcount.
1081 *
1082 * If the slot holds a shadow entry of a previously evicted page, or a
1083 * swap entry from shmem/tmpfs, it is returned.
1084 *
1085 * Otherwise, %NULL is returned.
1086 */
1087 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1088 {
1089 void **pagep;
1090 struct page *head, *page;
1091
1092 rcu_read_lock();
1093 repeat:
1094 page = NULL;
1095 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1096 if (pagep) {
1097 page = radix_tree_deref_slot(pagep);
1098 if (unlikely(!page))
1099 goto out;
1100 if (radix_tree_exception(page)) {
1101 if (radix_tree_deref_retry(page))
1102 goto repeat;
1103 /*
1104 * A shadow entry of a recently evicted page,
1105 * or a swap entry from shmem/tmpfs. Return
1106 * it without attempting to raise page count.
1107 */
1108 goto out;
1109 }
1110
1111 head = compound_head(page);
1112 if (!page_cache_get_speculative(head))
1113 goto repeat;
1114
1115 /* The page was split under us? */
1116 if (compound_head(page) != head) {
1117 put_page(head);
1118 goto repeat;
1119 }
1120
1121 /*
1122 * Has the page moved?
1123 * This is part of the lockless pagecache protocol. See
1124 * include/linux/pagemap.h for details.
1125 */
1126 if (unlikely(page != *pagep)) {
1127 put_page(head);
1128 goto repeat;
1129 }
1130 }
1131 out:
1132 rcu_read_unlock();
1133
1134 return page;
1135 }
1136 EXPORT_SYMBOL(find_get_entry);
1137
1138 /**
1139 * find_lock_entry - locate, pin and lock a page cache entry
1140 * @mapping: the address_space to search
1141 * @offset: the page cache index
1142 *
1143 * Looks up the page cache slot at @mapping & @offset. If there is a
1144 * page cache page, it is returned locked and with an increased
1145 * refcount.
1146 *
1147 * If the slot holds a shadow entry of a previously evicted page, or a
1148 * swap entry from shmem/tmpfs, it is returned.
1149 *
1150 * Otherwise, %NULL is returned.
1151 *
1152 * find_lock_entry() may sleep.
1153 */
1154 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1155 {
1156 struct page *page;
1157
1158 repeat:
1159 page = find_get_entry(mapping, offset);
1160 if (page && !radix_tree_exception(page)) {
1161 lock_page(page);
1162 /* Has the page been truncated? */
1163 if (unlikely(page_mapping(page) != mapping)) {
1164 unlock_page(page);
1165 put_page(page);
1166 goto repeat;
1167 }
1168 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1169 }
1170 return page;
1171 }
1172 EXPORT_SYMBOL(find_lock_entry);
1173
1174 /**
1175 * pagecache_get_page - find and get a page reference
1176 * @mapping: the address_space to search
1177 * @offset: the page index
1178 * @fgp_flags: PCG flags
1179 * @gfp_mask: gfp mask to use for the page cache data page allocation
1180 *
1181 * Looks up the page cache slot at @mapping & @offset.
1182 *
1183 * PCG flags modify how the page is returned.
1184 *
1185 * FGP_ACCESSED: the page will be marked accessed
1186 * FGP_LOCK: Page is return locked
1187 * FGP_CREAT: If page is not present then a new page is allocated using
1188 * @gfp_mask and added to the page cache and the VM's LRU
1189 * list. The page is returned locked and with an increased
1190 * refcount. Otherwise, %NULL is returned.
1191 *
1192 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1193 * if the GFP flags specified for FGP_CREAT are atomic.
1194 *
1195 * If there is a page cache page, it is returned with an increased refcount.
1196 */
1197 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1198 int fgp_flags, gfp_t gfp_mask)
1199 {
1200 struct page *page;
1201
1202 repeat:
1203 page = find_get_entry(mapping, offset);
1204 if (radix_tree_exceptional_entry(page))
1205 page = NULL;
1206 if (!page)
1207 goto no_page;
1208
1209 if (fgp_flags & FGP_LOCK) {
1210 if (fgp_flags & FGP_NOWAIT) {
1211 if (!trylock_page(page)) {
1212 put_page(page);
1213 return NULL;
1214 }
1215 } else {
1216 lock_page(page);
1217 }
1218
1219 /* Has the page been truncated? */
1220 if (unlikely(page->mapping != mapping)) {
1221 unlock_page(page);
1222 put_page(page);
1223 goto repeat;
1224 }
1225 VM_BUG_ON_PAGE(page->index != offset, page);
1226 }
1227
1228 if (page && (fgp_flags & FGP_ACCESSED))
1229 mark_page_accessed(page);
1230
1231 no_page:
1232 if (!page && (fgp_flags & FGP_CREAT)) {
1233 int err;
1234 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1235 gfp_mask |= __GFP_WRITE;
1236 if (fgp_flags & FGP_NOFS)
1237 gfp_mask &= ~__GFP_FS;
1238
1239 page = __page_cache_alloc(gfp_mask);
1240 if (!page)
1241 return NULL;
1242
1243 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1244 fgp_flags |= FGP_LOCK;
1245
1246 /* Init accessed so avoid atomic mark_page_accessed later */
1247 if (fgp_flags & FGP_ACCESSED)
1248 __SetPageReferenced(page);
1249
1250 err = add_to_page_cache_lru(page, mapping, offset,
1251 gfp_mask & GFP_RECLAIM_MASK);
1252 if (unlikely(err)) {
1253 put_page(page);
1254 page = NULL;
1255 if (err == -EEXIST)
1256 goto repeat;
1257 }
1258 }
1259
1260 return page;
1261 }
1262 EXPORT_SYMBOL(pagecache_get_page);
1263
1264 /**
1265 * find_get_entries - gang pagecache lookup
1266 * @mapping: The address_space to search
1267 * @start: The starting page cache index
1268 * @nr_entries: The maximum number of entries
1269 * @entries: Where the resulting entries are placed
1270 * @indices: The cache indices corresponding to the entries in @entries
1271 *
1272 * find_get_entries() will search for and return a group of up to
1273 * @nr_entries entries in the mapping. The entries are placed at
1274 * @entries. find_get_entries() takes a reference against any actual
1275 * pages it returns.
1276 *
1277 * The search returns a group of mapping-contiguous page cache entries
1278 * with ascending indexes. There may be holes in the indices due to
1279 * not-present pages.
1280 *
1281 * Any shadow entries of evicted pages, or swap entries from
1282 * shmem/tmpfs, are included in the returned array.
1283 *
1284 * find_get_entries() returns the number of pages and shadow entries
1285 * which were found.
1286 */
1287 unsigned find_get_entries(struct address_space *mapping,
1288 pgoff_t start, unsigned int nr_entries,
1289 struct page **entries, pgoff_t *indices)
1290 {
1291 void **slot;
1292 unsigned int ret = 0;
1293 struct radix_tree_iter iter;
1294
1295 if (!nr_entries)
1296 return 0;
1297
1298 rcu_read_lock();
1299 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1300 struct page *head, *page;
1301 repeat:
1302 page = radix_tree_deref_slot(slot);
1303 if (unlikely(!page))
1304 continue;
1305 if (radix_tree_exception(page)) {
1306 if (radix_tree_deref_retry(page)) {
1307 slot = radix_tree_iter_retry(&iter);
1308 continue;
1309 }
1310 /*
1311 * A shadow entry of a recently evicted page, a swap
1312 * entry from shmem/tmpfs or a DAX entry. Return it
1313 * without attempting to raise page count.
1314 */
1315 goto export;
1316 }
1317
1318 head = compound_head(page);
1319 if (!page_cache_get_speculative(head))
1320 goto repeat;
1321
1322 /* The page was split under us? */
1323 if (compound_head(page) != head) {
1324 put_page(head);
1325 goto repeat;
1326 }
1327
1328 /* Has the page moved? */
1329 if (unlikely(page != *slot)) {
1330 put_page(head);
1331 goto repeat;
1332 }
1333 export:
1334 indices[ret] = iter.index;
1335 entries[ret] = page;
1336 if (++ret == nr_entries)
1337 break;
1338 }
1339 rcu_read_unlock();
1340 return ret;
1341 }
1342
1343 /**
1344 * find_get_pages - gang pagecache lookup
1345 * @mapping: The address_space to search
1346 * @start: The starting page index
1347 * @nr_pages: The maximum number of pages
1348 * @pages: Where the resulting pages are placed
1349 *
1350 * find_get_pages() will search for and return a group of up to
1351 * @nr_pages pages in the mapping. The pages are placed at @pages.
1352 * find_get_pages() takes a reference against the returned pages.
1353 *
1354 * The search returns a group of mapping-contiguous pages with ascending
1355 * indexes. There may be holes in the indices due to not-present pages.
1356 *
1357 * find_get_pages() returns the number of pages which were found.
1358 */
1359 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1360 unsigned int nr_pages, struct page **pages)
1361 {
1362 struct radix_tree_iter iter;
1363 void **slot;
1364 unsigned ret = 0;
1365
1366 if (unlikely(!nr_pages))
1367 return 0;
1368
1369 rcu_read_lock();
1370 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1371 struct page *head, *page;
1372 repeat:
1373 page = radix_tree_deref_slot(slot);
1374 if (unlikely(!page))
1375 continue;
1376
1377 if (radix_tree_exception(page)) {
1378 if (radix_tree_deref_retry(page)) {
1379 slot = radix_tree_iter_retry(&iter);
1380 continue;
1381 }
1382 /*
1383 * A shadow entry of a recently evicted page,
1384 * or a swap entry from shmem/tmpfs. Skip
1385 * over it.
1386 */
1387 continue;
1388 }
1389
1390 head = compound_head(page);
1391 if (!page_cache_get_speculative(head))
1392 goto repeat;
1393
1394 /* The page was split under us? */
1395 if (compound_head(page) != head) {
1396 put_page(head);
1397 goto repeat;
1398 }
1399
1400 /* Has the page moved? */
1401 if (unlikely(page != *slot)) {
1402 put_page(head);
1403 goto repeat;
1404 }
1405
1406 pages[ret] = page;
1407 if (++ret == nr_pages)
1408 break;
1409 }
1410
1411 rcu_read_unlock();
1412 return ret;
1413 }
1414
1415 /**
1416 * find_get_pages_contig - gang contiguous pagecache lookup
1417 * @mapping: The address_space to search
1418 * @index: The starting page index
1419 * @nr_pages: The maximum number of pages
1420 * @pages: Where the resulting pages are placed
1421 *
1422 * find_get_pages_contig() works exactly like find_get_pages(), except
1423 * that the returned number of pages are guaranteed to be contiguous.
1424 *
1425 * find_get_pages_contig() returns the number of pages which were found.
1426 */
1427 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1428 unsigned int nr_pages, struct page **pages)
1429 {
1430 struct radix_tree_iter iter;
1431 void **slot;
1432 unsigned int ret = 0;
1433
1434 if (unlikely(!nr_pages))
1435 return 0;
1436
1437 rcu_read_lock();
1438 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1439 struct page *head, *page;
1440 repeat:
1441 page = radix_tree_deref_slot(slot);
1442 /* The hole, there no reason to continue */
1443 if (unlikely(!page))
1444 break;
1445
1446 if (radix_tree_exception(page)) {
1447 if (radix_tree_deref_retry(page)) {
1448 slot = radix_tree_iter_retry(&iter);
1449 continue;
1450 }
1451 /*
1452 * A shadow entry of a recently evicted page,
1453 * or a swap entry from shmem/tmpfs. Stop
1454 * looking for contiguous pages.
1455 */
1456 break;
1457 }
1458
1459 head = compound_head(page);
1460 if (!page_cache_get_speculative(head))
1461 goto repeat;
1462
1463 /* The page was split under us? */
1464 if (compound_head(page) != head) {
1465 put_page(head);
1466 goto repeat;
1467 }
1468
1469 /* Has the page moved? */
1470 if (unlikely(page != *slot)) {
1471 put_page(head);
1472 goto repeat;
1473 }
1474
1475 /*
1476 * must check mapping and index after taking the ref.
1477 * otherwise we can get both false positives and false
1478 * negatives, which is just confusing to the caller.
1479 */
1480 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1481 put_page(page);
1482 break;
1483 }
1484
1485 pages[ret] = page;
1486 if (++ret == nr_pages)
1487 break;
1488 }
1489 rcu_read_unlock();
1490 return ret;
1491 }
1492 EXPORT_SYMBOL(find_get_pages_contig);
1493
1494 /**
1495 * find_get_pages_tag - find and return pages that match @tag
1496 * @mapping: the address_space to search
1497 * @index: the starting page index
1498 * @tag: the tag index
1499 * @nr_pages: the maximum number of pages
1500 * @pages: where the resulting pages are placed
1501 *
1502 * Like find_get_pages, except we only return pages which are tagged with
1503 * @tag. We update @index to index the next page for the traversal.
1504 */
1505 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1506 int tag, unsigned int nr_pages, struct page **pages)
1507 {
1508 struct radix_tree_iter iter;
1509 void **slot;
1510 unsigned ret = 0;
1511
1512 if (unlikely(!nr_pages))
1513 return 0;
1514
1515 rcu_read_lock();
1516 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1517 &iter, *index, tag) {
1518 struct page *head, *page;
1519 repeat:
1520 page = radix_tree_deref_slot(slot);
1521 if (unlikely(!page))
1522 continue;
1523
1524 if (radix_tree_exception(page)) {
1525 if (radix_tree_deref_retry(page)) {
1526 slot = radix_tree_iter_retry(&iter);
1527 continue;
1528 }
1529 /*
1530 * A shadow entry of a recently evicted page.
1531 *
1532 * Those entries should never be tagged, but
1533 * this tree walk is lockless and the tags are
1534 * looked up in bulk, one radix tree node at a
1535 * time, so there is a sizable window for page
1536 * reclaim to evict a page we saw tagged.
1537 *
1538 * Skip over it.
1539 */
1540 continue;
1541 }
1542
1543 head = compound_head(page);
1544 if (!page_cache_get_speculative(head))
1545 goto repeat;
1546
1547 /* The page was split under us? */
1548 if (compound_head(page) != head) {
1549 put_page(head);
1550 goto repeat;
1551 }
1552
1553 /* Has the page moved? */
1554 if (unlikely(page != *slot)) {
1555 put_page(head);
1556 goto repeat;
1557 }
1558
1559 pages[ret] = page;
1560 if (++ret == nr_pages)
1561 break;
1562 }
1563
1564 rcu_read_unlock();
1565
1566 if (ret)
1567 *index = pages[ret - 1]->index + 1;
1568
1569 return ret;
1570 }
1571 EXPORT_SYMBOL(find_get_pages_tag);
1572
1573 /**
1574 * find_get_entries_tag - find and return entries that match @tag
1575 * @mapping: the address_space to search
1576 * @start: the starting page cache index
1577 * @tag: the tag index
1578 * @nr_entries: the maximum number of entries
1579 * @entries: where the resulting entries are placed
1580 * @indices: the cache indices corresponding to the entries in @entries
1581 *
1582 * Like find_get_entries, except we only return entries which are tagged with
1583 * @tag.
1584 */
1585 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1586 int tag, unsigned int nr_entries,
1587 struct page **entries, pgoff_t *indices)
1588 {
1589 void **slot;
1590 unsigned int ret = 0;
1591 struct radix_tree_iter iter;
1592
1593 if (!nr_entries)
1594 return 0;
1595
1596 rcu_read_lock();
1597 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1598 &iter, start, tag) {
1599 struct page *head, *page;
1600 repeat:
1601 page = radix_tree_deref_slot(slot);
1602 if (unlikely(!page))
1603 continue;
1604 if (radix_tree_exception(page)) {
1605 if (radix_tree_deref_retry(page)) {
1606 slot = radix_tree_iter_retry(&iter);
1607 continue;
1608 }
1609
1610 /*
1611 * A shadow entry of a recently evicted page, a swap
1612 * entry from shmem/tmpfs or a DAX entry. Return it
1613 * without attempting to raise page count.
1614 */
1615 goto export;
1616 }
1617
1618 head = compound_head(page);
1619 if (!page_cache_get_speculative(head))
1620 goto repeat;
1621
1622 /* The page was split under us? */
1623 if (compound_head(page) != head) {
1624 put_page(head);
1625 goto repeat;
1626 }
1627
1628 /* Has the page moved? */
1629 if (unlikely(page != *slot)) {
1630 put_page(head);
1631 goto repeat;
1632 }
1633 export:
1634 indices[ret] = iter.index;
1635 entries[ret] = page;
1636 if (++ret == nr_entries)
1637 break;
1638 }
1639 rcu_read_unlock();
1640 return ret;
1641 }
1642 EXPORT_SYMBOL(find_get_entries_tag);
1643
1644 /*
1645 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1646 * a _large_ part of the i/o request. Imagine the worst scenario:
1647 *
1648 * ---R__________________________________________B__________
1649 * ^ reading here ^ bad block(assume 4k)
1650 *
1651 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1652 * => failing the whole request => read(R) => read(R+1) =>
1653 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1654 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1655 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1656 *
1657 * It is going insane. Fix it by quickly scaling down the readahead size.
1658 */
1659 static void shrink_readahead_size_eio(struct file *filp,
1660 struct file_ra_state *ra)
1661 {
1662 ra->ra_pages /= 4;
1663 }
1664
1665 /**
1666 * do_generic_file_read - generic file read routine
1667 * @filp: the file to read
1668 * @ppos: current file position
1669 * @iter: data destination
1670 * @written: already copied
1671 *
1672 * This is a generic file read routine, and uses the
1673 * mapping->a_ops->readpage() function for the actual low-level stuff.
1674 *
1675 * This is really ugly. But the goto's actually try to clarify some
1676 * of the logic when it comes to error handling etc.
1677 */
1678 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1679 struct iov_iter *iter, ssize_t written)
1680 {
1681 struct address_space *mapping = filp->f_mapping;
1682 struct inode *inode = mapping->host;
1683 struct file_ra_state *ra = &filp->f_ra;
1684 pgoff_t index;
1685 pgoff_t last_index;
1686 pgoff_t prev_index;
1687 unsigned long offset; /* offset into pagecache page */
1688 unsigned int prev_offset;
1689 int error = 0;
1690
1691 index = *ppos >> PAGE_SHIFT;
1692 prev_index = ra->prev_pos >> PAGE_SHIFT;
1693 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1694 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1695 offset = *ppos & ~PAGE_MASK;
1696
1697 for (;;) {
1698 struct page *page;
1699 pgoff_t end_index;
1700 loff_t isize;
1701 unsigned long nr, ret;
1702
1703 cond_resched();
1704 find_page:
1705 page = find_get_page(mapping, index);
1706 if (!page) {
1707 page_cache_sync_readahead(mapping,
1708 ra, filp,
1709 index, last_index - index);
1710 page = find_get_page(mapping, index);
1711 if (unlikely(page == NULL))
1712 goto no_cached_page;
1713 }
1714 if (PageReadahead(page)) {
1715 page_cache_async_readahead(mapping,
1716 ra, filp, page,
1717 index, last_index - index);
1718 }
1719 if (!PageUptodate(page)) {
1720 /*
1721 * See comment in do_read_cache_page on why
1722 * wait_on_page_locked is used to avoid unnecessarily
1723 * serialisations and why it's safe.
1724 */
1725 wait_on_page_locked_killable(page);
1726 if (PageUptodate(page))
1727 goto page_ok;
1728
1729 if (inode->i_blkbits == PAGE_SHIFT ||
1730 !mapping->a_ops->is_partially_uptodate)
1731 goto page_not_up_to_date;
1732 if (!trylock_page(page))
1733 goto page_not_up_to_date;
1734 /* Did it get truncated before we got the lock? */
1735 if (!page->mapping)
1736 goto page_not_up_to_date_locked;
1737 if (!mapping->a_ops->is_partially_uptodate(page,
1738 offset, iter->count))
1739 goto page_not_up_to_date_locked;
1740 unlock_page(page);
1741 }
1742 page_ok:
1743 /*
1744 * i_size must be checked after we know the page is Uptodate.
1745 *
1746 * Checking i_size after the check allows us to calculate
1747 * the correct value for "nr", which means the zero-filled
1748 * part of the page is not copied back to userspace (unless
1749 * another truncate extends the file - this is desired though).
1750 */
1751
1752 isize = i_size_read(inode);
1753 end_index = (isize - 1) >> PAGE_SHIFT;
1754 if (unlikely(!isize || index > end_index)) {
1755 put_page(page);
1756 goto out;
1757 }
1758
1759 /* nr is the maximum number of bytes to copy from this page */
1760 nr = PAGE_SIZE;
1761 if (index == end_index) {
1762 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1763 if (nr <= offset) {
1764 put_page(page);
1765 goto out;
1766 }
1767 }
1768 nr = nr - offset;
1769
1770 /* If users can be writing to this page using arbitrary
1771 * virtual addresses, take care about potential aliasing
1772 * before reading the page on the kernel side.
1773 */
1774 if (mapping_writably_mapped(mapping))
1775 flush_dcache_page(page);
1776
1777 /*
1778 * When a sequential read accesses a page several times,
1779 * only mark it as accessed the first time.
1780 */
1781 if (prev_index != index || offset != prev_offset)
1782 mark_page_accessed(page);
1783 prev_index = index;
1784
1785 /*
1786 * Ok, we have the page, and it's up-to-date, so
1787 * now we can copy it to user space...
1788 */
1789
1790 ret = copy_page_to_iter(page, offset, nr, iter);
1791 offset += ret;
1792 index += offset >> PAGE_SHIFT;
1793 offset &= ~PAGE_MASK;
1794 prev_offset = offset;
1795
1796 put_page(page);
1797 written += ret;
1798 if (!iov_iter_count(iter))
1799 goto out;
1800 if (ret < nr) {
1801 error = -EFAULT;
1802 goto out;
1803 }
1804 continue;
1805
1806 page_not_up_to_date:
1807 /* Get exclusive access to the page ... */
1808 error = lock_page_killable(page);
1809 if (unlikely(error))
1810 goto readpage_error;
1811
1812 page_not_up_to_date_locked:
1813 /* Did it get truncated before we got the lock? */
1814 if (!page->mapping) {
1815 unlock_page(page);
1816 put_page(page);
1817 continue;
1818 }
1819
1820 /* Did somebody else fill it already? */
1821 if (PageUptodate(page)) {
1822 unlock_page(page);
1823 goto page_ok;
1824 }
1825
1826 readpage:
1827 /*
1828 * A previous I/O error may have been due to temporary
1829 * failures, eg. multipath errors.
1830 * PG_error will be set again if readpage fails.
1831 */
1832 ClearPageError(page);
1833 /* Start the actual read. The read will unlock the page. */
1834 error = mapping->a_ops->readpage(filp, page);
1835
1836 if (unlikely(error)) {
1837 if (error == AOP_TRUNCATED_PAGE) {
1838 put_page(page);
1839 error = 0;
1840 goto find_page;
1841 }
1842 goto readpage_error;
1843 }
1844
1845 if (!PageUptodate(page)) {
1846 error = lock_page_killable(page);
1847 if (unlikely(error))
1848 goto readpage_error;
1849 if (!PageUptodate(page)) {
1850 if (page->mapping == NULL) {
1851 /*
1852 * invalidate_mapping_pages got it
1853 */
1854 unlock_page(page);
1855 put_page(page);
1856 goto find_page;
1857 }
1858 unlock_page(page);
1859 shrink_readahead_size_eio(filp, ra);
1860 error = -EIO;
1861 goto readpage_error;
1862 }
1863 unlock_page(page);
1864 }
1865
1866 goto page_ok;
1867
1868 readpage_error:
1869 /* UHHUH! A synchronous read error occurred. Report it */
1870 put_page(page);
1871 goto out;
1872
1873 no_cached_page:
1874 /*
1875 * Ok, it wasn't cached, so we need to create a new
1876 * page..
1877 */
1878 page = page_cache_alloc_cold(mapping);
1879 if (!page) {
1880 error = -ENOMEM;
1881 goto out;
1882 }
1883 error = add_to_page_cache_lru(page, mapping, index,
1884 mapping_gfp_constraint(mapping, GFP_KERNEL));
1885 if (error) {
1886 put_page(page);
1887 if (error == -EEXIST) {
1888 error = 0;
1889 goto find_page;
1890 }
1891 goto out;
1892 }
1893 goto readpage;
1894 }
1895
1896 out:
1897 ra->prev_pos = prev_index;
1898 ra->prev_pos <<= PAGE_SHIFT;
1899 ra->prev_pos |= prev_offset;
1900
1901 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1902 file_accessed(filp);
1903 return written ? written : error;
1904 }
1905
1906 /**
1907 * generic_file_read_iter - generic filesystem read routine
1908 * @iocb: kernel I/O control block
1909 * @iter: destination for the data read
1910 *
1911 * This is the "read_iter()" routine for all filesystems
1912 * that can use the page cache directly.
1913 */
1914 ssize_t
1915 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1916 {
1917 struct file *file = iocb->ki_filp;
1918 ssize_t retval = 0;
1919 size_t count = iov_iter_count(iter);
1920
1921 if (!count)
1922 goto out; /* skip atime */
1923
1924 if (iocb->ki_flags & IOCB_DIRECT) {
1925 struct address_space *mapping = file->f_mapping;
1926 struct inode *inode = mapping->host;
1927 loff_t size;
1928
1929 size = i_size_read(inode);
1930 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1931 iocb->ki_pos + count - 1);
1932 if (!retval) {
1933 struct iov_iter data = *iter;
1934 retval = mapping->a_ops->direct_IO(iocb, &data);
1935 }
1936
1937 if (retval > 0) {
1938 iocb->ki_pos += retval;
1939 iov_iter_advance(iter, retval);
1940 }
1941
1942 /*
1943 * Btrfs can have a short DIO read if we encounter
1944 * compressed extents, so if there was an error, or if
1945 * we've already read everything we wanted to, or if
1946 * there was a short read because we hit EOF, go ahead
1947 * and return. Otherwise fallthrough to buffered io for
1948 * the rest of the read. Buffered reads will not work for
1949 * DAX files, so don't bother trying.
1950 */
1951 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1952 IS_DAX(inode)) {
1953 file_accessed(file);
1954 goto out;
1955 }
1956 }
1957
1958 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1959 out:
1960 return retval;
1961 }
1962 EXPORT_SYMBOL(generic_file_read_iter);
1963
1964 #ifdef CONFIG_MMU
1965 /**
1966 * page_cache_read - adds requested page to the page cache if not already there
1967 * @file: file to read
1968 * @offset: page index
1969 * @gfp_mask: memory allocation flags
1970 *
1971 * This adds the requested page to the page cache if it isn't already there,
1972 * and schedules an I/O to read in its contents from disk.
1973 */
1974 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1975 {
1976 struct address_space *mapping = file->f_mapping;
1977 struct page *page;
1978 int ret;
1979
1980 do {
1981 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1982 if (!page)
1983 return -ENOMEM;
1984
1985 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1986 if (ret == 0)
1987 ret = mapping->a_ops->readpage(file, page);
1988 else if (ret == -EEXIST)
1989 ret = 0; /* losing race to add is OK */
1990
1991 put_page(page);
1992
1993 } while (ret == AOP_TRUNCATED_PAGE);
1994
1995 return ret;
1996 }
1997
1998 #define MMAP_LOTSAMISS (100)
1999
2000 /*
2001 * Synchronous readahead happens when we don't even find
2002 * a page in the page cache at all.
2003 */
2004 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2005 struct file_ra_state *ra,
2006 struct file *file,
2007 pgoff_t offset)
2008 {
2009 struct address_space *mapping = file->f_mapping;
2010
2011 /* If we don't want any read-ahead, don't bother */
2012 if (vma->vm_flags & VM_RAND_READ)
2013 return;
2014 if (!ra->ra_pages)
2015 return;
2016
2017 if (vma->vm_flags & VM_SEQ_READ) {
2018 page_cache_sync_readahead(mapping, ra, file, offset,
2019 ra->ra_pages);
2020 return;
2021 }
2022
2023 /* Avoid banging the cache line if not needed */
2024 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2025 ra->mmap_miss++;
2026
2027 /*
2028 * Do we miss much more than hit in this file? If so,
2029 * stop bothering with read-ahead. It will only hurt.
2030 */
2031 if (ra->mmap_miss > MMAP_LOTSAMISS)
2032 return;
2033
2034 /*
2035 * mmap read-around
2036 */
2037 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2038 ra->size = ra->ra_pages;
2039 ra->async_size = ra->ra_pages / 4;
2040 ra_submit(ra, mapping, file);
2041 }
2042
2043 /*
2044 * Asynchronous readahead happens when we find the page and PG_readahead,
2045 * so we want to possibly extend the readahead further..
2046 */
2047 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2048 struct file_ra_state *ra,
2049 struct file *file,
2050 struct page *page,
2051 pgoff_t offset)
2052 {
2053 struct address_space *mapping = file->f_mapping;
2054
2055 /* If we don't want any read-ahead, don't bother */
2056 if (vma->vm_flags & VM_RAND_READ)
2057 return;
2058 if (ra->mmap_miss > 0)
2059 ra->mmap_miss--;
2060 if (PageReadahead(page))
2061 page_cache_async_readahead(mapping, ra, file,
2062 page, offset, ra->ra_pages);
2063 }
2064
2065 /**
2066 * filemap_fault - read in file data for page fault handling
2067 * @vma: vma in which the fault was taken
2068 * @vmf: struct vm_fault containing details of the fault
2069 *
2070 * filemap_fault() is invoked via the vma operations vector for a
2071 * mapped memory region to read in file data during a page fault.
2072 *
2073 * The goto's are kind of ugly, but this streamlines the normal case of having
2074 * it in the page cache, and handles the special cases reasonably without
2075 * having a lot of duplicated code.
2076 *
2077 * vma->vm_mm->mmap_sem must be held on entry.
2078 *
2079 * If our return value has VM_FAULT_RETRY set, it's because
2080 * lock_page_or_retry() returned 0.
2081 * The mmap_sem has usually been released in this case.
2082 * See __lock_page_or_retry() for the exception.
2083 *
2084 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2085 * has not been released.
2086 *
2087 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2088 */
2089 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2090 {
2091 int error;
2092 struct file *file = vma->vm_file;
2093 struct address_space *mapping = file->f_mapping;
2094 struct file_ra_state *ra = &file->f_ra;
2095 struct inode *inode = mapping->host;
2096 pgoff_t offset = vmf->pgoff;
2097 struct page *page;
2098 loff_t size;
2099 int ret = 0;
2100
2101 size = round_up(i_size_read(inode), PAGE_SIZE);
2102 if (offset >= size >> PAGE_SHIFT)
2103 return VM_FAULT_SIGBUS;
2104
2105 /*
2106 * Do we have something in the page cache already?
2107 */
2108 page = find_get_page(mapping, offset);
2109 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2110 /*
2111 * We found the page, so try async readahead before
2112 * waiting for the lock.
2113 */
2114 do_async_mmap_readahead(vma, ra, file, page, offset);
2115 } else if (!page) {
2116 /* No page in the page cache at all */
2117 do_sync_mmap_readahead(vma, ra, file, offset);
2118 count_vm_event(PGMAJFAULT);
2119 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2120 ret = VM_FAULT_MAJOR;
2121 retry_find:
2122 page = find_get_page(mapping, offset);
2123 if (!page)
2124 goto no_cached_page;
2125 }
2126
2127 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2128 put_page(page);
2129 return ret | VM_FAULT_RETRY;
2130 }
2131
2132 /* Did it get truncated? */
2133 if (unlikely(page->mapping != mapping)) {
2134 unlock_page(page);
2135 put_page(page);
2136 goto retry_find;
2137 }
2138 VM_BUG_ON_PAGE(page->index != offset, page);
2139
2140 /*
2141 * We have a locked page in the page cache, now we need to check
2142 * that it's up-to-date. If not, it is going to be due to an error.
2143 */
2144 if (unlikely(!PageUptodate(page)))
2145 goto page_not_uptodate;
2146
2147 /*
2148 * Found the page and have a reference on it.
2149 * We must recheck i_size under page lock.
2150 */
2151 size = round_up(i_size_read(inode), PAGE_SIZE);
2152 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2153 unlock_page(page);
2154 put_page(page);
2155 return VM_FAULT_SIGBUS;
2156 }
2157
2158 vmf->page = page;
2159 return ret | VM_FAULT_LOCKED;
2160
2161 no_cached_page:
2162 /*
2163 * We're only likely to ever get here if MADV_RANDOM is in
2164 * effect.
2165 */
2166 error = page_cache_read(file, offset, vmf->gfp_mask);
2167
2168 /*
2169 * The page we want has now been added to the page cache.
2170 * In the unlikely event that someone removed it in the
2171 * meantime, we'll just come back here and read it again.
2172 */
2173 if (error >= 0)
2174 goto retry_find;
2175
2176 /*
2177 * An error return from page_cache_read can result if the
2178 * system is low on memory, or a problem occurs while trying
2179 * to schedule I/O.
2180 */
2181 if (error == -ENOMEM)
2182 return VM_FAULT_OOM;
2183 return VM_FAULT_SIGBUS;
2184
2185 page_not_uptodate:
2186 /*
2187 * Umm, take care of errors if the page isn't up-to-date.
2188 * Try to re-read it _once_. We do this synchronously,
2189 * because there really aren't any performance issues here
2190 * and we need to check for errors.
2191 */
2192 ClearPageError(page);
2193 error = mapping->a_ops->readpage(file, page);
2194 if (!error) {
2195 wait_on_page_locked(page);
2196 if (!PageUptodate(page))
2197 error = -EIO;
2198 }
2199 put_page(page);
2200
2201 if (!error || error == AOP_TRUNCATED_PAGE)
2202 goto retry_find;
2203
2204 /* Things didn't work out. Return zero to tell the mm layer so. */
2205 shrink_readahead_size_eio(file, ra);
2206 return VM_FAULT_SIGBUS;
2207 }
2208 EXPORT_SYMBOL(filemap_fault);
2209
2210 void filemap_map_pages(struct fault_env *fe,
2211 pgoff_t start_pgoff, pgoff_t end_pgoff)
2212 {
2213 struct radix_tree_iter iter;
2214 void **slot;
2215 struct file *file = fe->vma->vm_file;
2216 struct address_space *mapping = file->f_mapping;
2217 pgoff_t last_pgoff = start_pgoff;
2218 loff_t size;
2219 struct page *head, *page;
2220
2221 rcu_read_lock();
2222 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2223 start_pgoff) {
2224 if (iter.index > end_pgoff)
2225 break;
2226 repeat:
2227 page = radix_tree_deref_slot(slot);
2228 if (unlikely(!page))
2229 goto next;
2230 if (radix_tree_exception(page)) {
2231 if (radix_tree_deref_retry(page)) {
2232 slot = radix_tree_iter_retry(&iter);
2233 continue;
2234 }
2235 goto next;
2236 }
2237
2238 head = compound_head(page);
2239 if (!page_cache_get_speculative(head))
2240 goto repeat;
2241
2242 /* The page was split under us? */
2243 if (compound_head(page) != head) {
2244 put_page(head);
2245 goto repeat;
2246 }
2247
2248 /* Has the page moved? */
2249 if (unlikely(page != *slot)) {
2250 put_page(head);
2251 goto repeat;
2252 }
2253
2254 if (!PageUptodate(page) ||
2255 PageReadahead(page) ||
2256 PageHWPoison(page))
2257 goto skip;
2258 if (!trylock_page(page))
2259 goto skip;
2260
2261 if (page->mapping != mapping || !PageUptodate(page))
2262 goto unlock;
2263
2264 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2265 if (page->index >= size >> PAGE_SHIFT)
2266 goto unlock;
2267
2268 if (file->f_ra.mmap_miss > 0)
2269 file->f_ra.mmap_miss--;
2270
2271 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2272 if (fe->pte)
2273 fe->pte += iter.index - last_pgoff;
2274 last_pgoff = iter.index;
2275 if (alloc_set_pte(fe, NULL, page))
2276 goto unlock;
2277 unlock_page(page);
2278 goto next;
2279 unlock:
2280 unlock_page(page);
2281 skip:
2282 put_page(page);
2283 next:
2284 /* Huge page is mapped? No need to proceed. */
2285 if (pmd_trans_huge(*fe->pmd))
2286 break;
2287 if (iter.index == end_pgoff)
2288 break;
2289 }
2290 rcu_read_unlock();
2291 }
2292 EXPORT_SYMBOL(filemap_map_pages);
2293
2294 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2295 {
2296 struct page *page = vmf->page;
2297 struct inode *inode = file_inode(vma->vm_file);
2298 int ret = VM_FAULT_LOCKED;
2299
2300 sb_start_pagefault(inode->i_sb);
2301 file_update_time(vma->vm_file);
2302 lock_page(page);
2303 if (page->mapping != inode->i_mapping) {
2304 unlock_page(page);
2305 ret = VM_FAULT_NOPAGE;
2306 goto out;
2307 }
2308 /*
2309 * We mark the page dirty already here so that when freeze is in
2310 * progress, we are guaranteed that writeback during freezing will
2311 * see the dirty page and writeprotect it again.
2312 */
2313 set_page_dirty(page);
2314 wait_for_stable_page(page);
2315 out:
2316 sb_end_pagefault(inode->i_sb);
2317 return ret;
2318 }
2319 EXPORT_SYMBOL(filemap_page_mkwrite);
2320
2321 const struct vm_operations_struct generic_file_vm_ops = {
2322 .fault = filemap_fault,
2323 .map_pages = filemap_map_pages,
2324 .page_mkwrite = filemap_page_mkwrite,
2325 };
2326
2327 /* This is used for a general mmap of a disk file */
2328
2329 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2330 {
2331 struct address_space *mapping = file->f_mapping;
2332
2333 if (!mapping->a_ops->readpage)
2334 return -ENOEXEC;
2335 file_accessed(file);
2336 vma->vm_ops = &generic_file_vm_ops;
2337 return 0;
2338 }
2339
2340 /*
2341 * This is for filesystems which do not implement ->writepage.
2342 */
2343 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2344 {
2345 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2346 return -EINVAL;
2347 return generic_file_mmap(file, vma);
2348 }
2349 #else
2350 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2351 {
2352 return -ENOSYS;
2353 }
2354 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2355 {
2356 return -ENOSYS;
2357 }
2358 #endif /* CONFIG_MMU */
2359
2360 EXPORT_SYMBOL(generic_file_mmap);
2361 EXPORT_SYMBOL(generic_file_readonly_mmap);
2362
2363 static struct page *wait_on_page_read(struct page *page)
2364 {
2365 if (!IS_ERR(page)) {
2366 wait_on_page_locked(page);
2367 if (!PageUptodate(page)) {
2368 put_page(page);
2369 page = ERR_PTR(-EIO);
2370 }
2371 }
2372 return page;
2373 }
2374
2375 static struct page *do_read_cache_page(struct address_space *mapping,
2376 pgoff_t index,
2377 int (*filler)(void *, struct page *),
2378 void *data,
2379 gfp_t gfp)
2380 {
2381 struct page *page;
2382 int err;
2383 repeat:
2384 page = find_get_page(mapping, index);
2385 if (!page) {
2386 page = __page_cache_alloc(gfp | __GFP_COLD);
2387 if (!page)
2388 return ERR_PTR(-ENOMEM);
2389 err = add_to_page_cache_lru(page, mapping, index, gfp);
2390 if (unlikely(err)) {
2391 put_page(page);
2392 if (err == -EEXIST)
2393 goto repeat;
2394 /* Presumably ENOMEM for radix tree node */
2395 return ERR_PTR(err);
2396 }
2397
2398 filler:
2399 err = filler(data, page);
2400 if (err < 0) {
2401 put_page(page);
2402 return ERR_PTR(err);
2403 }
2404
2405 page = wait_on_page_read(page);
2406 if (IS_ERR(page))
2407 return page;
2408 goto out;
2409 }
2410 if (PageUptodate(page))
2411 goto out;
2412
2413 /*
2414 * Page is not up to date and may be locked due one of the following
2415 * case a: Page is being filled and the page lock is held
2416 * case b: Read/write error clearing the page uptodate status
2417 * case c: Truncation in progress (page locked)
2418 * case d: Reclaim in progress
2419 *
2420 * Case a, the page will be up to date when the page is unlocked.
2421 * There is no need to serialise on the page lock here as the page
2422 * is pinned so the lock gives no additional protection. Even if the
2423 * the page is truncated, the data is still valid if PageUptodate as
2424 * it's a race vs truncate race.
2425 * Case b, the page will not be up to date
2426 * Case c, the page may be truncated but in itself, the data may still
2427 * be valid after IO completes as it's a read vs truncate race. The
2428 * operation must restart if the page is not uptodate on unlock but
2429 * otherwise serialising on page lock to stabilise the mapping gives
2430 * no additional guarantees to the caller as the page lock is
2431 * released before return.
2432 * Case d, similar to truncation. If reclaim holds the page lock, it
2433 * will be a race with remove_mapping that determines if the mapping
2434 * is valid on unlock but otherwise the data is valid and there is
2435 * no need to serialise with page lock.
2436 *
2437 * As the page lock gives no additional guarantee, we optimistically
2438 * wait on the page to be unlocked and check if it's up to date and
2439 * use the page if it is. Otherwise, the page lock is required to
2440 * distinguish between the different cases. The motivation is that we
2441 * avoid spurious serialisations and wakeups when multiple processes
2442 * wait on the same page for IO to complete.
2443 */
2444 wait_on_page_locked(page);
2445 if (PageUptodate(page))
2446 goto out;
2447
2448 /* Distinguish between all the cases under the safety of the lock */
2449 lock_page(page);
2450
2451 /* Case c or d, restart the operation */
2452 if (!page->mapping) {
2453 unlock_page(page);
2454 put_page(page);
2455 goto repeat;
2456 }
2457
2458 /* Someone else locked and filled the page in a very small window */
2459 if (PageUptodate(page)) {
2460 unlock_page(page);
2461 goto out;
2462 }
2463 goto filler;
2464
2465 out:
2466 mark_page_accessed(page);
2467 return page;
2468 }
2469
2470 /**
2471 * read_cache_page - read into page cache, fill it if needed
2472 * @mapping: the page's address_space
2473 * @index: the page index
2474 * @filler: function to perform the read
2475 * @data: first arg to filler(data, page) function, often left as NULL
2476 *
2477 * Read into the page cache. If a page already exists, and PageUptodate() is
2478 * not set, try to fill the page and wait for it to become unlocked.
2479 *
2480 * If the page does not get brought uptodate, return -EIO.
2481 */
2482 struct page *read_cache_page(struct address_space *mapping,
2483 pgoff_t index,
2484 int (*filler)(void *, struct page *),
2485 void *data)
2486 {
2487 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2488 }
2489 EXPORT_SYMBOL(read_cache_page);
2490
2491 /**
2492 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2493 * @mapping: the page's address_space
2494 * @index: the page index
2495 * @gfp: the page allocator flags to use if allocating
2496 *
2497 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2498 * any new page allocations done using the specified allocation flags.
2499 *
2500 * If the page does not get brought uptodate, return -EIO.
2501 */
2502 struct page *read_cache_page_gfp(struct address_space *mapping,
2503 pgoff_t index,
2504 gfp_t gfp)
2505 {
2506 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2507
2508 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2509 }
2510 EXPORT_SYMBOL(read_cache_page_gfp);
2511
2512 /*
2513 * Performs necessary checks before doing a write
2514 *
2515 * Can adjust writing position or amount of bytes to write.
2516 * Returns appropriate error code that caller should return or
2517 * zero in case that write should be allowed.
2518 */
2519 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2520 {
2521 struct file *file = iocb->ki_filp;
2522 struct inode *inode = file->f_mapping->host;
2523 unsigned long limit = rlimit(RLIMIT_FSIZE);
2524 loff_t pos;
2525
2526 if (!iov_iter_count(from))
2527 return 0;
2528
2529 /* FIXME: this is for backwards compatibility with 2.4 */
2530 if (iocb->ki_flags & IOCB_APPEND)
2531 iocb->ki_pos = i_size_read(inode);
2532
2533 pos = iocb->ki_pos;
2534
2535 if (limit != RLIM_INFINITY) {
2536 if (iocb->ki_pos >= limit) {
2537 send_sig(SIGXFSZ, current, 0);
2538 return -EFBIG;
2539 }
2540 iov_iter_truncate(from, limit - (unsigned long)pos);
2541 }
2542
2543 /*
2544 * LFS rule
2545 */
2546 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2547 !(file->f_flags & O_LARGEFILE))) {
2548 if (pos >= MAX_NON_LFS)
2549 return -EFBIG;
2550 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2551 }
2552
2553 /*
2554 * Are we about to exceed the fs block limit ?
2555 *
2556 * If we have written data it becomes a short write. If we have
2557 * exceeded without writing data we send a signal and return EFBIG.
2558 * Linus frestrict idea will clean these up nicely..
2559 */
2560 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2561 return -EFBIG;
2562
2563 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2564 return iov_iter_count(from);
2565 }
2566 EXPORT_SYMBOL(generic_write_checks);
2567
2568 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2569 loff_t pos, unsigned len, unsigned flags,
2570 struct page **pagep, void **fsdata)
2571 {
2572 const struct address_space_operations *aops = mapping->a_ops;
2573
2574 return aops->write_begin(file, mapping, pos, len, flags,
2575 pagep, fsdata);
2576 }
2577 EXPORT_SYMBOL(pagecache_write_begin);
2578
2579 int pagecache_write_end(struct file *file, struct address_space *mapping,
2580 loff_t pos, unsigned len, unsigned copied,
2581 struct page *page, void *fsdata)
2582 {
2583 const struct address_space_operations *aops = mapping->a_ops;
2584
2585 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2586 }
2587 EXPORT_SYMBOL(pagecache_write_end);
2588
2589 ssize_t
2590 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2591 {
2592 struct file *file = iocb->ki_filp;
2593 struct address_space *mapping = file->f_mapping;
2594 struct inode *inode = mapping->host;
2595 loff_t pos = iocb->ki_pos;
2596 ssize_t written;
2597 size_t write_len;
2598 pgoff_t end;
2599 struct iov_iter data;
2600
2601 write_len = iov_iter_count(from);
2602 end = (pos + write_len - 1) >> PAGE_SHIFT;
2603
2604 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2605 if (written)
2606 goto out;
2607
2608 /*
2609 * After a write we want buffered reads to be sure to go to disk to get
2610 * the new data. We invalidate clean cached page from the region we're
2611 * about to write. We do this *before* the write so that we can return
2612 * without clobbering -EIOCBQUEUED from ->direct_IO().
2613 */
2614 if (mapping->nrpages) {
2615 written = invalidate_inode_pages2_range(mapping,
2616 pos >> PAGE_SHIFT, end);
2617 /*
2618 * If a page can not be invalidated, return 0 to fall back
2619 * to buffered write.
2620 */
2621 if (written) {
2622 if (written == -EBUSY)
2623 return 0;
2624 goto out;
2625 }
2626 }
2627
2628 data = *from;
2629 written = mapping->a_ops->direct_IO(iocb, &data);
2630
2631 /*
2632 * Finally, try again to invalidate clean pages which might have been
2633 * cached by non-direct readahead, or faulted in by get_user_pages()
2634 * if the source of the write was an mmap'ed region of the file
2635 * we're writing. Either one is a pretty crazy thing to do,
2636 * so we don't support it 100%. If this invalidation
2637 * fails, tough, the write still worked...
2638 */
2639 if (mapping->nrpages) {
2640 invalidate_inode_pages2_range(mapping,
2641 pos >> PAGE_SHIFT, end);
2642 }
2643
2644 if (written > 0) {
2645 pos += written;
2646 iov_iter_advance(from, written);
2647 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2648 i_size_write(inode, pos);
2649 mark_inode_dirty(inode);
2650 }
2651 iocb->ki_pos = pos;
2652 }
2653 out:
2654 return written;
2655 }
2656 EXPORT_SYMBOL(generic_file_direct_write);
2657
2658 /*
2659 * Find or create a page at the given pagecache position. Return the locked
2660 * page. This function is specifically for buffered writes.
2661 */
2662 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2663 pgoff_t index, unsigned flags)
2664 {
2665 struct page *page;
2666 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2667
2668 if (flags & AOP_FLAG_NOFS)
2669 fgp_flags |= FGP_NOFS;
2670
2671 page = pagecache_get_page(mapping, index, fgp_flags,
2672 mapping_gfp_mask(mapping));
2673 if (page)
2674 wait_for_stable_page(page);
2675
2676 return page;
2677 }
2678 EXPORT_SYMBOL(grab_cache_page_write_begin);
2679
2680 ssize_t generic_perform_write(struct file *file,
2681 struct iov_iter *i, loff_t pos)
2682 {
2683 struct address_space *mapping = file->f_mapping;
2684 const struct address_space_operations *a_ops = mapping->a_ops;
2685 long status = 0;
2686 ssize_t written = 0;
2687 unsigned int flags = 0;
2688
2689 /*
2690 * Copies from kernel address space cannot fail (NFSD is a big user).
2691 */
2692 if (!iter_is_iovec(i))
2693 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2694
2695 do {
2696 struct page *page;
2697 unsigned long offset; /* Offset into pagecache page */
2698 unsigned long bytes; /* Bytes to write to page */
2699 size_t copied; /* Bytes copied from user */
2700 void *fsdata;
2701
2702 offset = (pos & (PAGE_SIZE - 1));
2703 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2704 iov_iter_count(i));
2705
2706 again:
2707 /*
2708 * Bring in the user page that we will copy from _first_.
2709 * Otherwise there's a nasty deadlock on copying from the
2710 * same page as we're writing to, without it being marked
2711 * up-to-date.
2712 *
2713 * Not only is this an optimisation, but it is also required
2714 * to check that the address is actually valid, when atomic
2715 * usercopies are used, below.
2716 */
2717 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2718 status = -EFAULT;
2719 break;
2720 }
2721
2722 if (fatal_signal_pending(current)) {
2723 status = -EINTR;
2724 break;
2725 }
2726
2727 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2728 &page, &fsdata);
2729 if (unlikely(status < 0))
2730 break;
2731
2732 if (mapping_writably_mapped(mapping))
2733 flush_dcache_page(page);
2734
2735 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2736 flush_dcache_page(page);
2737
2738 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2739 page, fsdata);
2740 if (unlikely(status < 0))
2741 break;
2742 copied = status;
2743
2744 cond_resched();
2745
2746 iov_iter_advance(i, copied);
2747 if (unlikely(copied == 0)) {
2748 /*
2749 * If we were unable to copy any data at all, we must
2750 * fall back to a single segment length write.
2751 *
2752 * If we didn't fallback here, we could livelock
2753 * because not all segments in the iov can be copied at
2754 * once without a pagefault.
2755 */
2756 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2757 iov_iter_single_seg_count(i));
2758 goto again;
2759 }
2760 pos += copied;
2761 written += copied;
2762
2763 balance_dirty_pages_ratelimited(mapping);
2764 } while (iov_iter_count(i));
2765
2766 return written ? written : status;
2767 }
2768 EXPORT_SYMBOL(generic_perform_write);
2769
2770 /**
2771 * __generic_file_write_iter - write data to a file
2772 * @iocb: IO state structure (file, offset, etc.)
2773 * @from: iov_iter with data to write
2774 *
2775 * This function does all the work needed for actually writing data to a
2776 * file. It does all basic checks, removes SUID from the file, updates
2777 * modification times and calls proper subroutines depending on whether we
2778 * do direct IO or a standard buffered write.
2779 *
2780 * It expects i_mutex to be grabbed unless we work on a block device or similar
2781 * object which does not need locking at all.
2782 *
2783 * This function does *not* take care of syncing data in case of O_SYNC write.
2784 * A caller has to handle it. This is mainly due to the fact that we want to
2785 * avoid syncing under i_mutex.
2786 */
2787 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2788 {
2789 struct file *file = iocb->ki_filp;
2790 struct address_space * mapping = file->f_mapping;
2791 struct inode *inode = mapping->host;
2792 ssize_t written = 0;
2793 ssize_t err;
2794 ssize_t status;
2795
2796 /* We can write back this queue in page reclaim */
2797 current->backing_dev_info = inode_to_bdi(inode);
2798 err = file_remove_privs(file);
2799 if (err)
2800 goto out;
2801
2802 err = file_update_time(file);
2803 if (err)
2804 goto out;
2805
2806 if (iocb->ki_flags & IOCB_DIRECT) {
2807 loff_t pos, endbyte;
2808
2809 written = generic_file_direct_write(iocb, from);
2810 /*
2811 * If the write stopped short of completing, fall back to
2812 * buffered writes. Some filesystems do this for writes to
2813 * holes, for example. For DAX files, a buffered write will
2814 * not succeed (even if it did, DAX does not handle dirty
2815 * page-cache pages correctly).
2816 */
2817 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2818 goto out;
2819
2820 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2821 /*
2822 * If generic_perform_write() returned a synchronous error
2823 * then we want to return the number of bytes which were
2824 * direct-written, or the error code if that was zero. Note
2825 * that this differs from normal direct-io semantics, which
2826 * will return -EFOO even if some bytes were written.
2827 */
2828 if (unlikely(status < 0)) {
2829 err = status;
2830 goto out;
2831 }
2832 /*
2833 * We need to ensure that the page cache pages are written to
2834 * disk and invalidated to preserve the expected O_DIRECT
2835 * semantics.
2836 */
2837 endbyte = pos + status - 1;
2838 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2839 if (err == 0) {
2840 iocb->ki_pos = endbyte + 1;
2841 written += status;
2842 invalidate_mapping_pages(mapping,
2843 pos >> PAGE_SHIFT,
2844 endbyte >> PAGE_SHIFT);
2845 } else {
2846 /*
2847 * We don't know how much we wrote, so just return
2848 * the number of bytes which were direct-written
2849 */
2850 }
2851 } else {
2852 written = generic_perform_write(file, from, iocb->ki_pos);
2853 if (likely(written > 0))
2854 iocb->ki_pos += written;
2855 }
2856 out:
2857 current->backing_dev_info = NULL;
2858 return written ? written : err;
2859 }
2860 EXPORT_SYMBOL(__generic_file_write_iter);
2861
2862 /**
2863 * generic_file_write_iter - write data to a file
2864 * @iocb: IO state structure
2865 * @from: iov_iter with data to write
2866 *
2867 * This is a wrapper around __generic_file_write_iter() to be used by most
2868 * filesystems. It takes care of syncing the file in case of O_SYNC file
2869 * and acquires i_mutex as needed.
2870 */
2871 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2872 {
2873 struct file *file = iocb->ki_filp;
2874 struct inode *inode = file->f_mapping->host;
2875 ssize_t ret;
2876
2877 inode_lock(inode);
2878 ret = generic_write_checks(iocb, from);
2879 if (ret > 0)
2880 ret = __generic_file_write_iter(iocb, from);
2881 inode_unlock(inode);
2882
2883 if (ret > 0)
2884 ret = generic_write_sync(iocb, ret);
2885 return ret;
2886 }
2887 EXPORT_SYMBOL(generic_file_write_iter);
2888
2889 /**
2890 * try_to_release_page() - release old fs-specific metadata on a page
2891 *
2892 * @page: the page which the kernel is trying to free
2893 * @gfp_mask: memory allocation flags (and I/O mode)
2894 *
2895 * The address_space is to try to release any data against the page
2896 * (presumably at page->private). If the release was successful, return `1'.
2897 * Otherwise return zero.
2898 *
2899 * This may also be called if PG_fscache is set on a page, indicating that the
2900 * page is known to the local caching routines.
2901 *
2902 * The @gfp_mask argument specifies whether I/O may be performed to release
2903 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2904 *
2905 */
2906 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2907 {
2908 struct address_space * const mapping = page->mapping;
2909
2910 BUG_ON(!PageLocked(page));
2911 if (PageWriteback(page))
2912 return 0;
2913
2914 if (mapping && mapping->a_ops->releasepage)
2915 return mapping->a_ops->releasepage(page, gfp_mask);
2916 return try_to_free_buffers(page);
2917 }
2918
2919 EXPORT_SYMBOL(try_to_release_page);