]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/filemap.c
Merge branches 'clk-samsung', 'clk-formatting', 'clk-si5341' and 'clk-socfpga' into...
[mirror_ubuntu-hirsute-kernel.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include "internal.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
48
49 /*
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53
54 #include <asm/mman.h>
55
56 /*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68 /*
69 * Lock ordering:
70 *
71 * ->i_mmap_rwsem (truncate_pagecache)
72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
73 * ->swap_lock (exclusive_swap_page, others)
74 * ->i_pages lock
75 *
76 * ->i_mutex
77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
78 *
79 * ->mmap_sem
80 * ->i_mmap_rwsem
81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
83 *
84 * ->mmap_sem
85 * ->lock_page (access_process_vm)
86 *
87 * ->i_mutex (generic_perform_write)
88 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
89 *
90 * bdi->wb.list_lock
91 * sb_lock (fs/fs-writeback.c)
92 * ->i_pages lock (__sync_single_inode)
93 *
94 * ->i_mmap_rwsem
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 *
100 * ->page_table_lock or pte_lock
101 * ->swap_lock (try_to_unmap_one)
102 * ->private_lock (try_to_unmap_one)
103 * ->i_pages lock (try_to_unmap_one)
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
106 * ->private_lock (page_remove_rmap->set_page_dirty)
107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
115 * ->i_mmap_rwsem
116 * ->tasklist_lock (memory_failure, collect_procs_ao)
117 */
118
119 static void page_cache_delete(struct address_space *mapping,
120 struct page *page, void *shadow)
121 {
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
124
125 mapping_set_update(&xas, mapping);
126
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
130 nr = compound_nr(page);
131 }
132
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
139
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
154 }
155
156 static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
158 {
159 int nr;
160
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
169 cleancache_invalidate_page(mapping, page);
170
171 VM_BUG_ON_PAGE(PageTail(page), page);
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
192 page_ref_sub(page, mapcount);
193 }
194 }
195
196 /* hugetlb pages do not participate in page cache accounting. */
197 if (PageHuge(page))
198 return;
199
200 nr = hpage_nr_pages(page);
201
202 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203 if (PageSwapBacked(page)) {
204 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
209 filemap_nr_thps_dec(mapping);
210 }
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225
226 /*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
229 * is safe. The caller must hold the i_pages lock.
230 */
231 void __delete_from_page_cache(struct page *page, void *shadow)
232 {
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
238 page_cache_delete(mapping, page, shadow);
239 }
240
241 static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243 {
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256 }
257
258 /**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266 void delete_from_page_cache(struct page *page)
267 {
268 struct address_space *mapping = page_mapping(page);
269 unsigned long flags;
270
271 BUG_ON(!PageLocked(page));
272 xa_lock_irqsave(&mapping->i_pages, flags);
273 __delete_from_page_cache(page, NULL);
274 xa_unlock_irqrestore(&mapping->i_pages, flags);
275
276 page_cache_free_page(mapping, page);
277 }
278 EXPORT_SYMBOL(delete_from_page_cache);
279
280 /*
281 * page_cache_delete_batch - delete several pages from page cache
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
285 * The function walks over mapping->i_pages and removes pages passed in @pvec
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
288 * It tolerates holes in @pvec (mapping entries at those indices are not
289 * modified). The function expects only THP head pages to be present in the
290 * @pvec.
291 *
292 * The function expects the i_pages lock to be held.
293 */
294 static void page_cache_delete_batch(struct address_space *mapping,
295 struct pagevec *pvec)
296 {
297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298 int total_pages = 0;
299 int i = 0;
300 struct page *page;
301
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
304 if (i >= pagevec_count(pvec))
305 break;
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
308 if (xa_is_value(page))
309 continue;
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
326 page->mapping = NULL;
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
335 i++;
336 xas_store(&xas, NULL);
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340 }
341
342 void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344 {
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
351 xa_lock_irqsave(&mapping->i_pages, flags);
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
357 page_cache_delete_batch(mapping, pvec);
358 xa_unlock_irqrestore(&mapping->i_pages, flags);
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362 }
363
364 int filemap_check_errors(struct address_space *mapping)
365 {
366 int ret = 0;
367 /* Check for outstanding write errors */
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 ret = -ENOSPC;
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
373 ret = -EIO;
374 return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386 }
387
388 /**
389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
392 * @end: offset in bytes where the range ends (inclusive)
393 * @sync_mode: enable synchronous operation
394 *
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399 * opposed to a regular memory cleansing writeback. The difference between
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
402 *
403 * Return: %0 on success, negative error code otherwise.
404 */
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
407 {
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
411 .nr_to_write = LONG_MAX,
412 .range_start = start,
413 .range_end = end,
414 };
415
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418 return 0;
419
420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421 ret = do_writepages(mapping, &wbc);
422 wbc_detach_inode(&wbc);
423 return ret;
424 }
425
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428 {
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 loff_t end)
440 {
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
454 int filemap_flush(struct address_space *mapping)
455 {
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
471 */
472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474 {
475 struct page *page;
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
478
479 if (end_byte < start_byte)
480 return false;
481
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
498
499 return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
505 {
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
508 struct pagevec pvec;
509 int nr_pages;
510
511 if (end_byte < start_byte)
512 return;
513
514 pagevec_init(&pvec);
515 while (index <= end) {
516 unsigned i;
517
518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519 end, PAGECACHE_TAG_WRITEBACK);
520 if (!nr_pages)
521 break;
522
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
526 wait_on_page_writeback(page);
527 ClearPageError(page);
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
532 }
533
534 /**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
547 *
548 * Return: error status of the address space.
549 */
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552 {
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
555 }
556 EXPORT_SYMBOL(filemap_fdatawait_range);
557
558 /**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574 {
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577 }
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
580 /**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
595 */
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 {
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602 }
603 EXPORT_SYMBOL(file_fdatawait_range);
604
605 /**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
616 *
617 * Return: error status of the address space.
618 */
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 {
621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622 return filemap_check_and_keep_errors(mapping);
623 }
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
628 {
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
633 }
634
635 /**
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
640 *
641 * Write out and wait upon file offsets lstart->lend, inclusive.
642 *
643 * Note that @lend is inclusive (describes the last byte to be written) so
644 * that this function can be used to write to the very end-of-file (end = -1).
645 *
646 * Return: error status of the address space.
647 */
648 int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
650 {
651 int err = 0;
652
653 if (mapping_needs_writeback(mapping)) {
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 WB_SYNC_ALL);
656 /*
657 * Even if the above returned error, the pages may be
658 * written partially (e.g. -ENOSPC), so we wait for it.
659 * But the -EIO is special case, it may indicate the worst
660 * thing (e.g. bug) happened, so we avoid waiting for it.
661 */
662 if (err != -EIO) {
663 int err2 = filemap_fdatawait_range(mapping,
664 lstart, lend);
665 if (!err)
666 err = err2;
667 } else {
668 /* Clear any previously stored errors */
669 filemap_check_errors(mapping);
670 }
671 } else {
672 err = filemap_check_errors(mapping);
673 }
674 return err;
675 }
676 EXPORT_SYMBOL(filemap_write_and_wait_range);
677
678 void __filemap_set_wb_err(struct address_space *mapping, int err)
679 {
680 errseq_t eseq = errseq_set(&mapping->wb_err, err);
681
682 trace_filemap_set_wb_err(mapping, eseq);
683 }
684 EXPORT_SYMBOL(__filemap_set_wb_err);
685
686 /**
687 * file_check_and_advance_wb_err - report wb error (if any) that was previously
688 * and advance wb_err to current one
689 * @file: struct file on which the error is being reported
690 *
691 * When userland calls fsync (or something like nfsd does the equivalent), we
692 * want to report any writeback errors that occurred since the last fsync (or
693 * since the file was opened if there haven't been any).
694 *
695 * Grab the wb_err from the mapping. If it matches what we have in the file,
696 * then just quickly return 0. The file is all caught up.
697 *
698 * If it doesn't match, then take the mapping value, set the "seen" flag in
699 * it and try to swap it into place. If it works, or another task beat us
700 * to it with the new value, then update the f_wb_err and return the error
701 * portion. The error at this point must be reported via proper channels
702 * (a'la fsync, or NFS COMMIT operation, etc.).
703 *
704 * While we handle mapping->wb_err with atomic operations, the f_wb_err
705 * value is protected by the f_lock since we must ensure that it reflects
706 * the latest value swapped in for this file descriptor.
707 *
708 * Return: %0 on success, negative error code otherwise.
709 */
710 int file_check_and_advance_wb_err(struct file *file)
711 {
712 int err = 0;
713 errseq_t old = READ_ONCE(file->f_wb_err);
714 struct address_space *mapping = file->f_mapping;
715
716 /* Locklessly handle the common case where nothing has changed */
717 if (errseq_check(&mapping->wb_err, old)) {
718 /* Something changed, must use slow path */
719 spin_lock(&file->f_lock);
720 old = file->f_wb_err;
721 err = errseq_check_and_advance(&mapping->wb_err,
722 &file->f_wb_err);
723 trace_file_check_and_advance_wb_err(file, old);
724 spin_unlock(&file->f_lock);
725 }
726
727 /*
728 * We're mostly using this function as a drop in replacement for
729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 * that the legacy code would have had on these flags.
731 */
732 clear_bit(AS_EIO, &mapping->flags);
733 clear_bit(AS_ENOSPC, &mapping->flags);
734 return err;
735 }
736 EXPORT_SYMBOL(file_check_and_advance_wb_err);
737
738 /**
739 * file_write_and_wait_range - write out & wait on a file range
740 * @file: file pointing to address_space with pages
741 * @lstart: offset in bytes where the range starts
742 * @lend: offset in bytes where the range ends (inclusive)
743 *
744 * Write out and wait upon file offsets lstart->lend, inclusive.
745 *
746 * Note that @lend is inclusive (describes the last byte to be written) so
747 * that this function can be used to write to the very end-of-file (end = -1).
748 *
749 * After writing out and waiting on the data, we check and advance the
750 * f_wb_err cursor to the latest value, and return any errors detected there.
751 *
752 * Return: %0 on success, negative error code otherwise.
753 */
754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755 {
756 int err = 0, err2;
757 struct address_space *mapping = file->f_mapping;
758
759 if (mapping_needs_writeback(mapping)) {
760 err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 WB_SYNC_ALL);
762 /* See comment of filemap_write_and_wait() */
763 if (err != -EIO)
764 __filemap_fdatawait_range(mapping, lstart, lend);
765 }
766 err2 = file_check_and_advance_wb_err(file);
767 if (!err)
768 err = err2;
769 return err;
770 }
771 EXPORT_SYMBOL(file_write_and_wait_range);
772
773 /**
774 * replace_page_cache_page - replace a pagecache page with a new one
775 * @old: page to be replaced
776 * @new: page to replace with
777 * @gfp_mask: allocation mode
778 *
779 * This function replaces a page in the pagecache with a new one. On
780 * success it acquires the pagecache reference for the new page and
781 * drops it for the old page. Both the old and new pages must be
782 * locked. This function does not add the new page to the LRU, the
783 * caller must do that.
784 *
785 * The remove + add is atomic. This function cannot fail.
786 *
787 * Return: %0
788 */
789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790 {
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
796
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
800
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
804
805 xas_lock_irqsave(&xas, flags);
806 xas_store(&xas, new);
807
808 old->mapping = NULL;
809 /* hugetlb pages do not participate in page cache accounting. */
810 if (!PageHuge(old))
811 __dec_node_page_state(new, NR_FILE_PAGES);
812 if (!PageHuge(new))
813 __inc_node_page_state(new, NR_FILE_PAGES);
814 if (PageSwapBacked(old))
815 __dec_node_page_state(new, NR_SHMEM);
816 if (PageSwapBacked(new))
817 __inc_node_page_state(new, NR_SHMEM);
818 xas_unlock_irqrestore(&xas, flags);
819 mem_cgroup_migrate(old, new);
820 if (freepage)
821 freepage(old);
822 put_page(old);
823
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(replace_page_cache_page);
827
828 static int __add_to_page_cache_locked(struct page *page,
829 struct address_space *mapping,
830 pgoff_t offset, gfp_t gfp_mask,
831 void **shadowp)
832 {
833 XA_STATE(xas, &mapping->i_pages, offset);
834 int huge = PageHuge(page);
835 struct mem_cgroup *memcg;
836 int error;
837 void *old;
838
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841 mapping_set_update(&xas, mapping);
842
843 if (!huge) {
844 error = mem_cgroup_try_charge(page, current->mm,
845 gfp_mask, &memcg, false);
846 if (error)
847 return error;
848 }
849
850 get_page(page);
851 page->mapping = mapping;
852 page->index = offset;
853
854 do {
855 xas_lock_irq(&xas);
856 old = xas_load(&xas);
857 if (old && !xa_is_value(old))
858 xas_set_err(&xas, -EEXIST);
859 xas_store(&xas, page);
860 if (xas_error(&xas))
861 goto unlock;
862
863 if (xa_is_value(old)) {
864 mapping->nrexceptional--;
865 if (shadowp)
866 *shadowp = old;
867 }
868 mapping->nrpages++;
869
870 /* hugetlb pages do not participate in page cache accounting */
871 if (!huge)
872 __inc_node_page_state(page, NR_FILE_PAGES);
873 unlock:
874 xas_unlock_irq(&xas);
875 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876
877 if (xas_error(&xas))
878 goto error;
879
880 if (!huge)
881 mem_cgroup_commit_charge(page, memcg, false, false);
882 trace_mm_filemap_add_to_page_cache(page);
883 return 0;
884 error:
885 page->mapping = NULL;
886 /* Leave page->index set: truncation relies upon it */
887 if (!huge)
888 mem_cgroup_cancel_charge(page, memcg, false);
889 put_page(page);
890 return xas_error(&xas);
891 }
892 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
893
894 /**
895 * add_to_page_cache_locked - add a locked page to the pagecache
896 * @page: page to add
897 * @mapping: the page's address_space
898 * @offset: page index
899 * @gfp_mask: page allocation mode
900 *
901 * This function is used to add a page to the pagecache. It must be locked.
902 * This function does not add the page to the LRU. The caller must do that.
903 *
904 * Return: %0 on success, negative error code otherwise.
905 */
906 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
907 pgoff_t offset, gfp_t gfp_mask)
908 {
909 return __add_to_page_cache_locked(page, mapping, offset,
910 gfp_mask, NULL);
911 }
912 EXPORT_SYMBOL(add_to_page_cache_locked);
913
914 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
915 pgoff_t offset, gfp_t gfp_mask)
916 {
917 void *shadow = NULL;
918 int ret;
919
920 __SetPageLocked(page);
921 ret = __add_to_page_cache_locked(page, mapping, offset,
922 gfp_mask, &shadow);
923 if (unlikely(ret))
924 __ClearPageLocked(page);
925 else {
926 /*
927 * The page might have been evicted from cache only
928 * recently, in which case it should be activated like
929 * any other repeatedly accessed page.
930 * The exception is pages getting rewritten; evicting other
931 * data from the working set, only to cache data that will
932 * get overwritten with something else, is a waste of memory.
933 */
934 WARN_ON_ONCE(PageActive(page));
935 if (!(gfp_mask & __GFP_WRITE) && shadow)
936 workingset_refault(page, shadow);
937 lru_cache_add(page);
938 }
939 return ret;
940 }
941 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
942
943 #ifdef CONFIG_NUMA
944 struct page *__page_cache_alloc(gfp_t gfp)
945 {
946 int n;
947 struct page *page;
948
949 if (cpuset_do_page_mem_spread()) {
950 unsigned int cpuset_mems_cookie;
951 do {
952 cpuset_mems_cookie = read_mems_allowed_begin();
953 n = cpuset_mem_spread_node();
954 page = __alloc_pages_node(n, gfp, 0);
955 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
956
957 return page;
958 }
959 return alloc_pages(gfp, 0);
960 }
961 EXPORT_SYMBOL(__page_cache_alloc);
962 #endif
963
964 /*
965 * In order to wait for pages to become available there must be
966 * waitqueues associated with pages. By using a hash table of
967 * waitqueues where the bucket discipline is to maintain all
968 * waiters on the same queue and wake all when any of the pages
969 * become available, and for the woken contexts to check to be
970 * sure the appropriate page became available, this saves space
971 * at a cost of "thundering herd" phenomena during rare hash
972 * collisions.
973 */
974 #define PAGE_WAIT_TABLE_BITS 8
975 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
976 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
977
978 static wait_queue_head_t *page_waitqueue(struct page *page)
979 {
980 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
981 }
982
983 void __init pagecache_init(void)
984 {
985 int i;
986
987 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
988 init_waitqueue_head(&page_wait_table[i]);
989
990 page_writeback_init();
991 }
992
993 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
994 struct wait_page_key {
995 struct page *page;
996 int bit_nr;
997 int page_match;
998 };
999
1000 struct wait_page_queue {
1001 struct page *page;
1002 int bit_nr;
1003 wait_queue_entry_t wait;
1004 };
1005
1006 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1007 {
1008 struct wait_page_key *key = arg;
1009 struct wait_page_queue *wait_page
1010 = container_of(wait, struct wait_page_queue, wait);
1011
1012 if (wait_page->page != key->page)
1013 return 0;
1014 key->page_match = 1;
1015
1016 if (wait_page->bit_nr != key->bit_nr)
1017 return 0;
1018
1019 /*
1020 * Stop walking if it's locked.
1021 * Is this safe if put_and_wait_on_page_locked() is in use?
1022 * Yes: the waker must hold a reference to this page, and if PG_locked
1023 * has now already been set by another task, that task must also hold
1024 * a reference to the *same usage* of this page; so there is no need
1025 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1026 */
1027 if (test_bit(key->bit_nr, &key->page->flags))
1028 return -1;
1029
1030 return autoremove_wake_function(wait, mode, sync, key);
1031 }
1032
1033 static void wake_up_page_bit(struct page *page, int bit_nr)
1034 {
1035 wait_queue_head_t *q = page_waitqueue(page);
1036 struct wait_page_key key;
1037 unsigned long flags;
1038 wait_queue_entry_t bookmark;
1039
1040 key.page = page;
1041 key.bit_nr = bit_nr;
1042 key.page_match = 0;
1043
1044 bookmark.flags = 0;
1045 bookmark.private = NULL;
1046 bookmark.func = NULL;
1047 INIT_LIST_HEAD(&bookmark.entry);
1048
1049 spin_lock_irqsave(&q->lock, flags);
1050 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1051
1052 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1053 /*
1054 * Take a breather from holding the lock,
1055 * allow pages that finish wake up asynchronously
1056 * to acquire the lock and remove themselves
1057 * from wait queue
1058 */
1059 spin_unlock_irqrestore(&q->lock, flags);
1060 cpu_relax();
1061 spin_lock_irqsave(&q->lock, flags);
1062 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1063 }
1064
1065 /*
1066 * It is possible for other pages to have collided on the waitqueue
1067 * hash, so in that case check for a page match. That prevents a long-
1068 * term waiter
1069 *
1070 * It is still possible to miss a case here, when we woke page waiters
1071 * and removed them from the waitqueue, but there are still other
1072 * page waiters.
1073 */
1074 if (!waitqueue_active(q) || !key.page_match) {
1075 ClearPageWaiters(page);
1076 /*
1077 * It's possible to miss clearing Waiters here, when we woke
1078 * our page waiters, but the hashed waitqueue has waiters for
1079 * other pages on it.
1080 *
1081 * That's okay, it's a rare case. The next waker will clear it.
1082 */
1083 }
1084 spin_unlock_irqrestore(&q->lock, flags);
1085 }
1086
1087 static void wake_up_page(struct page *page, int bit)
1088 {
1089 if (!PageWaiters(page))
1090 return;
1091 wake_up_page_bit(page, bit);
1092 }
1093
1094 /*
1095 * A choice of three behaviors for wait_on_page_bit_common():
1096 */
1097 enum behavior {
1098 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1099 * __lock_page() waiting on then setting PG_locked.
1100 */
1101 SHARED, /* Hold ref to page and check the bit when woken, like
1102 * wait_on_page_writeback() waiting on PG_writeback.
1103 */
1104 DROP, /* Drop ref to page before wait, no check when woken,
1105 * like put_and_wait_on_page_locked() on PG_locked.
1106 */
1107 };
1108
1109 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1110 struct page *page, int bit_nr, int state, enum behavior behavior)
1111 {
1112 struct wait_page_queue wait_page;
1113 wait_queue_entry_t *wait = &wait_page.wait;
1114 bool bit_is_set;
1115 bool thrashing = false;
1116 bool delayacct = false;
1117 unsigned long pflags;
1118 int ret = 0;
1119
1120 if (bit_nr == PG_locked &&
1121 !PageUptodate(page) && PageWorkingset(page)) {
1122 if (!PageSwapBacked(page)) {
1123 delayacct_thrashing_start();
1124 delayacct = true;
1125 }
1126 psi_memstall_enter(&pflags);
1127 thrashing = true;
1128 }
1129
1130 init_wait(wait);
1131 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1132 wait->func = wake_page_function;
1133 wait_page.page = page;
1134 wait_page.bit_nr = bit_nr;
1135
1136 for (;;) {
1137 spin_lock_irq(&q->lock);
1138
1139 if (likely(list_empty(&wait->entry))) {
1140 __add_wait_queue_entry_tail(q, wait);
1141 SetPageWaiters(page);
1142 }
1143
1144 set_current_state(state);
1145
1146 spin_unlock_irq(&q->lock);
1147
1148 bit_is_set = test_bit(bit_nr, &page->flags);
1149 if (behavior == DROP)
1150 put_page(page);
1151
1152 if (likely(bit_is_set))
1153 io_schedule();
1154
1155 if (behavior == EXCLUSIVE) {
1156 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1157 break;
1158 } else if (behavior == SHARED) {
1159 if (!test_bit(bit_nr, &page->flags))
1160 break;
1161 }
1162
1163 if (signal_pending_state(state, current)) {
1164 ret = -EINTR;
1165 break;
1166 }
1167
1168 if (behavior == DROP) {
1169 /*
1170 * We can no longer safely access page->flags:
1171 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1172 * there is a risk of waiting forever on a page reused
1173 * for something that keeps it locked indefinitely.
1174 * But best check for -EINTR above before breaking.
1175 */
1176 break;
1177 }
1178 }
1179
1180 finish_wait(q, wait);
1181
1182 if (thrashing) {
1183 if (delayacct)
1184 delayacct_thrashing_end();
1185 psi_memstall_leave(&pflags);
1186 }
1187
1188 /*
1189 * A signal could leave PageWaiters set. Clearing it here if
1190 * !waitqueue_active would be possible (by open-coding finish_wait),
1191 * but still fail to catch it in the case of wait hash collision. We
1192 * already can fail to clear wait hash collision cases, so don't
1193 * bother with signals either.
1194 */
1195
1196 return ret;
1197 }
1198
1199 void wait_on_page_bit(struct page *page, int bit_nr)
1200 {
1201 wait_queue_head_t *q = page_waitqueue(page);
1202 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1203 }
1204 EXPORT_SYMBOL(wait_on_page_bit);
1205
1206 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1207 {
1208 wait_queue_head_t *q = page_waitqueue(page);
1209 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1210 }
1211 EXPORT_SYMBOL(wait_on_page_bit_killable);
1212
1213 /**
1214 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1215 * @page: The page to wait for.
1216 *
1217 * The caller should hold a reference on @page. They expect the page to
1218 * become unlocked relatively soon, but do not wish to hold up migration
1219 * (for example) by holding the reference while waiting for the page to
1220 * come unlocked. After this function returns, the caller should not
1221 * dereference @page.
1222 */
1223 void put_and_wait_on_page_locked(struct page *page)
1224 {
1225 wait_queue_head_t *q;
1226
1227 page = compound_head(page);
1228 q = page_waitqueue(page);
1229 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1230 }
1231
1232 /**
1233 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1234 * @page: Page defining the wait queue of interest
1235 * @waiter: Waiter to add to the queue
1236 *
1237 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1238 */
1239 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1240 {
1241 wait_queue_head_t *q = page_waitqueue(page);
1242 unsigned long flags;
1243
1244 spin_lock_irqsave(&q->lock, flags);
1245 __add_wait_queue_entry_tail(q, waiter);
1246 SetPageWaiters(page);
1247 spin_unlock_irqrestore(&q->lock, flags);
1248 }
1249 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1250
1251 #ifndef clear_bit_unlock_is_negative_byte
1252
1253 /*
1254 * PG_waiters is the high bit in the same byte as PG_lock.
1255 *
1256 * On x86 (and on many other architectures), we can clear PG_lock and
1257 * test the sign bit at the same time. But if the architecture does
1258 * not support that special operation, we just do this all by hand
1259 * instead.
1260 *
1261 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1262 * being cleared, but a memory barrier should be unneccssary since it is
1263 * in the same byte as PG_locked.
1264 */
1265 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1266 {
1267 clear_bit_unlock(nr, mem);
1268 /* smp_mb__after_atomic(); */
1269 return test_bit(PG_waiters, mem);
1270 }
1271
1272 #endif
1273
1274 /**
1275 * unlock_page - unlock a locked page
1276 * @page: the page
1277 *
1278 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1279 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1280 * mechanism between PageLocked pages and PageWriteback pages is shared.
1281 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1282 *
1283 * Note that this depends on PG_waiters being the sign bit in the byte
1284 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1285 * clear the PG_locked bit and test PG_waiters at the same time fairly
1286 * portably (architectures that do LL/SC can test any bit, while x86 can
1287 * test the sign bit).
1288 */
1289 void unlock_page(struct page *page)
1290 {
1291 BUILD_BUG_ON(PG_waiters != 7);
1292 page = compound_head(page);
1293 VM_BUG_ON_PAGE(!PageLocked(page), page);
1294 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1295 wake_up_page_bit(page, PG_locked);
1296 }
1297 EXPORT_SYMBOL(unlock_page);
1298
1299 /**
1300 * end_page_writeback - end writeback against a page
1301 * @page: the page
1302 */
1303 void end_page_writeback(struct page *page)
1304 {
1305 /*
1306 * TestClearPageReclaim could be used here but it is an atomic
1307 * operation and overkill in this particular case. Failing to
1308 * shuffle a page marked for immediate reclaim is too mild to
1309 * justify taking an atomic operation penalty at the end of
1310 * ever page writeback.
1311 */
1312 if (PageReclaim(page)) {
1313 ClearPageReclaim(page);
1314 rotate_reclaimable_page(page);
1315 }
1316
1317 if (!test_clear_page_writeback(page))
1318 BUG();
1319
1320 smp_mb__after_atomic();
1321 wake_up_page(page, PG_writeback);
1322 }
1323 EXPORT_SYMBOL(end_page_writeback);
1324
1325 /*
1326 * After completing I/O on a page, call this routine to update the page
1327 * flags appropriately
1328 */
1329 void page_endio(struct page *page, bool is_write, int err)
1330 {
1331 if (!is_write) {
1332 if (!err) {
1333 SetPageUptodate(page);
1334 } else {
1335 ClearPageUptodate(page);
1336 SetPageError(page);
1337 }
1338 unlock_page(page);
1339 } else {
1340 if (err) {
1341 struct address_space *mapping;
1342
1343 SetPageError(page);
1344 mapping = page_mapping(page);
1345 if (mapping)
1346 mapping_set_error(mapping, err);
1347 }
1348 end_page_writeback(page);
1349 }
1350 }
1351 EXPORT_SYMBOL_GPL(page_endio);
1352
1353 /**
1354 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1355 * @__page: the page to lock
1356 */
1357 void __lock_page(struct page *__page)
1358 {
1359 struct page *page = compound_head(__page);
1360 wait_queue_head_t *q = page_waitqueue(page);
1361 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1362 EXCLUSIVE);
1363 }
1364 EXPORT_SYMBOL(__lock_page);
1365
1366 int __lock_page_killable(struct page *__page)
1367 {
1368 struct page *page = compound_head(__page);
1369 wait_queue_head_t *q = page_waitqueue(page);
1370 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1371 EXCLUSIVE);
1372 }
1373 EXPORT_SYMBOL_GPL(__lock_page_killable);
1374
1375 /*
1376 * Return values:
1377 * 1 - page is locked; mmap_sem is still held.
1378 * 0 - page is not locked.
1379 * mmap_sem has been released (up_read()), unless flags had both
1380 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1381 * which case mmap_sem is still held.
1382 *
1383 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1384 * with the page locked and the mmap_sem unperturbed.
1385 */
1386 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1387 unsigned int flags)
1388 {
1389 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1390 /*
1391 * CAUTION! In this case, mmap_sem is not released
1392 * even though return 0.
1393 */
1394 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1395 return 0;
1396
1397 up_read(&mm->mmap_sem);
1398 if (flags & FAULT_FLAG_KILLABLE)
1399 wait_on_page_locked_killable(page);
1400 else
1401 wait_on_page_locked(page);
1402 return 0;
1403 } else {
1404 if (flags & FAULT_FLAG_KILLABLE) {
1405 int ret;
1406
1407 ret = __lock_page_killable(page);
1408 if (ret) {
1409 up_read(&mm->mmap_sem);
1410 return 0;
1411 }
1412 } else
1413 __lock_page(page);
1414 return 1;
1415 }
1416 }
1417
1418 /**
1419 * page_cache_next_miss() - Find the next gap in the page cache.
1420 * @mapping: Mapping.
1421 * @index: Index.
1422 * @max_scan: Maximum range to search.
1423 *
1424 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1425 * gap with the lowest index.
1426 *
1427 * This function may be called under the rcu_read_lock. However, this will
1428 * not atomically search a snapshot of the cache at a single point in time.
1429 * For example, if a gap is created at index 5, then subsequently a gap is
1430 * created at index 10, page_cache_next_miss covering both indices may
1431 * return 10 if called under the rcu_read_lock.
1432 *
1433 * Return: The index of the gap if found, otherwise an index outside the
1434 * range specified (in which case 'return - index >= max_scan' will be true).
1435 * In the rare case of index wrap-around, 0 will be returned.
1436 */
1437 pgoff_t page_cache_next_miss(struct address_space *mapping,
1438 pgoff_t index, unsigned long max_scan)
1439 {
1440 XA_STATE(xas, &mapping->i_pages, index);
1441
1442 while (max_scan--) {
1443 void *entry = xas_next(&xas);
1444 if (!entry || xa_is_value(entry))
1445 break;
1446 if (xas.xa_index == 0)
1447 break;
1448 }
1449
1450 return xas.xa_index;
1451 }
1452 EXPORT_SYMBOL(page_cache_next_miss);
1453
1454 /**
1455 * page_cache_prev_miss() - Find the previous gap in the page cache.
1456 * @mapping: Mapping.
1457 * @index: Index.
1458 * @max_scan: Maximum range to search.
1459 *
1460 * Search the range [max(index - max_scan + 1, 0), index] for the
1461 * gap with the highest index.
1462 *
1463 * This function may be called under the rcu_read_lock. However, this will
1464 * not atomically search a snapshot of the cache at a single point in time.
1465 * For example, if a gap is created at index 10, then subsequently a gap is
1466 * created at index 5, page_cache_prev_miss() covering both indices may
1467 * return 5 if called under the rcu_read_lock.
1468 *
1469 * Return: The index of the gap if found, otherwise an index outside the
1470 * range specified (in which case 'index - return >= max_scan' will be true).
1471 * In the rare case of wrap-around, ULONG_MAX will be returned.
1472 */
1473 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1474 pgoff_t index, unsigned long max_scan)
1475 {
1476 XA_STATE(xas, &mapping->i_pages, index);
1477
1478 while (max_scan--) {
1479 void *entry = xas_prev(&xas);
1480 if (!entry || xa_is_value(entry))
1481 break;
1482 if (xas.xa_index == ULONG_MAX)
1483 break;
1484 }
1485
1486 return xas.xa_index;
1487 }
1488 EXPORT_SYMBOL(page_cache_prev_miss);
1489
1490 /**
1491 * find_get_entry - find and get a page cache entry
1492 * @mapping: the address_space to search
1493 * @offset: the page cache index
1494 *
1495 * Looks up the page cache slot at @mapping & @offset. If there is a
1496 * page cache page, it is returned with an increased refcount.
1497 *
1498 * If the slot holds a shadow entry of a previously evicted page, or a
1499 * swap entry from shmem/tmpfs, it is returned.
1500 *
1501 * Return: the found page or shadow entry, %NULL if nothing is found.
1502 */
1503 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1504 {
1505 XA_STATE(xas, &mapping->i_pages, offset);
1506 struct page *page;
1507
1508 rcu_read_lock();
1509 repeat:
1510 xas_reset(&xas);
1511 page = xas_load(&xas);
1512 if (xas_retry(&xas, page))
1513 goto repeat;
1514 /*
1515 * A shadow entry of a recently evicted page, or a swap entry from
1516 * shmem/tmpfs. Return it without attempting to raise page count.
1517 */
1518 if (!page || xa_is_value(page))
1519 goto out;
1520
1521 if (!page_cache_get_speculative(page))
1522 goto repeat;
1523
1524 /*
1525 * Has the page moved or been split?
1526 * This is part of the lockless pagecache protocol. See
1527 * include/linux/pagemap.h for details.
1528 */
1529 if (unlikely(page != xas_reload(&xas))) {
1530 put_page(page);
1531 goto repeat;
1532 }
1533 page = find_subpage(page, offset);
1534 out:
1535 rcu_read_unlock();
1536
1537 return page;
1538 }
1539 EXPORT_SYMBOL(find_get_entry);
1540
1541 /**
1542 * find_lock_entry - locate, pin and lock a page cache entry
1543 * @mapping: the address_space to search
1544 * @offset: the page cache index
1545 *
1546 * Looks up the page cache slot at @mapping & @offset. If there is a
1547 * page cache page, it is returned locked and with an increased
1548 * refcount.
1549 *
1550 * If the slot holds a shadow entry of a previously evicted page, or a
1551 * swap entry from shmem/tmpfs, it is returned.
1552 *
1553 * find_lock_entry() may sleep.
1554 *
1555 * Return: the found page or shadow entry, %NULL if nothing is found.
1556 */
1557 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1558 {
1559 struct page *page;
1560
1561 repeat:
1562 page = find_get_entry(mapping, offset);
1563 if (page && !xa_is_value(page)) {
1564 lock_page(page);
1565 /* Has the page been truncated? */
1566 if (unlikely(page_mapping(page) != mapping)) {
1567 unlock_page(page);
1568 put_page(page);
1569 goto repeat;
1570 }
1571 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1572 }
1573 return page;
1574 }
1575 EXPORT_SYMBOL(find_lock_entry);
1576
1577 /**
1578 * pagecache_get_page - find and get a page reference
1579 * @mapping: the address_space to search
1580 * @offset: the page index
1581 * @fgp_flags: PCG flags
1582 * @gfp_mask: gfp mask to use for the page cache data page allocation
1583 *
1584 * Looks up the page cache slot at @mapping & @offset.
1585 *
1586 * PCG flags modify how the page is returned.
1587 *
1588 * @fgp_flags can be:
1589 *
1590 * - FGP_ACCESSED: the page will be marked accessed
1591 * - FGP_LOCK: Page is return locked
1592 * - FGP_CREAT: If page is not present then a new page is allocated using
1593 * @gfp_mask and added to the page cache and the VM's LRU
1594 * list. The page is returned locked and with an increased
1595 * refcount.
1596 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1597 * its own locking dance if the page is already in cache, or unlock the page
1598 * before returning if we had to add the page to pagecache.
1599 *
1600 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1601 * if the GFP flags specified for FGP_CREAT are atomic.
1602 *
1603 * If there is a page cache page, it is returned with an increased refcount.
1604 *
1605 * Return: the found page or %NULL otherwise.
1606 */
1607 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1608 int fgp_flags, gfp_t gfp_mask)
1609 {
1610 struct page *page;
1611
1612 repeat:
1613 page = find_get_entry(mapping, offset);
1614 if (xa_is_value(page))
1615 page = NULL;
1616 if (!page)
1617 goto no_page;
1618
1619 if (fgp_flags & FGP_LOCK) {
1620 if (fgp_flags & FGP_NOWAIT) {
1621 if (!trylock_page(page)) {
1622 put_page(page);
1623 return NULL;
1624 }
1625 } else {
1626 lock_page(page);
1627 }
1628
1629 /* Has the page been truncated? */
1630 if (unlikely(compound_head(page)->mapping != mapping)) {
1631 unlock_page(page);
1632 put_page(page);
1633 goto repeat;
1634 }
1635 VM_BUG_ON_PAGE(page->index != offset, page);
1636 }
1637
1638 if (fgp_flags & FGP_ACCESSED)
1639 mark_page_accessed(page);
1640
1641 no_page:
1642 if (!page && (fgp_flags & FGP_CREAT)) {
1643 int err;
1644 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1645 gfp_mask |= __GFP_WRITE;
1646 if (fgp_flags & FGP_NOFS)
1647 gfp_mask &= ~__GFP_FS;
1648
1649 page = __page_cache_alloc(gfp_mask);
1650 if (!page)
1651 return NULL;
1652
1653 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1654 fgp_flags |= FGP_LOCK;
1655
1656 /* Init accessed so avoid atomic mark_page_accessed later */
1657 if (fgp_flags & FGP_ACCESSED)
1658 __SetPageReferenced(page);
1659
1660 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1661 if (unlikely(err)) {
1662 put_page(page);
1663 page = NULL;
1664 if (err == -EEXIST)
1665 goto repeat;
1666 }
1667
1668 /*
1669 * add_to_page_cache_lru locks the page, and for mmap we expect
1670 * an unlocked page.
1671 */
1672 if (page && (fgp_flags & FGP_FOR_MMAP))
1673 unlock_page(page);
1674 }
1675
1676 return page;
1677 }
1678 EXPORT_SYMBOL(pagecache_get_page);
1679
1680 /**
1681 * find_get_entries - gang pagecache lookup
1682 * @mapping: The address_space to search
1683 * @start: The starting page cache index
1684 * @nr_entries: The maximum number of entries
1685 * @entries: Where the resulting entries are placed
1686 * @indices: The cache indices corresponding to the entries in @entries
1687 *
1688 * find_get_entries() will search for and return a group of up to
1689 * @nr_entries entries in the mapping. The entries are placed at
1690 * @entries. find_get_entries() takes a reference against any actual
1691 * pages it returns.
1692 *
1693 * The search returns a group of mapping-contiguous page cache entries
1694 * with ascending indexes. There may be holes in the indices due to
1695 * not-present pages.
1696 *
1697 * Any shadow entries of evicted pages, or swap entries from
1698 * shmem/tmpfs, are included in the returned array.
1699 *
1700 * Return: the number of pages and shadow entries which were found.
1701 */
1702 unsigned find_get_entries(struct address_space *mapping,
1703 pgoff_t start, unsigned int nr_entries,
1704 struct page **entries, pgoff_t *indices)
1705 {
1706 XA_STATE(xas, &mapping->i_pages, start);
1707 struct page *page;
1708 unsigned int ret = 0;
1709
1710 if (!nr_entries)
1711 return 0;
1712
1713 rcu_read_lock();
1714 xas_for_each(&xas, page, ULONG_MAX) {
1715 if (xas_retry(&xas, page))
1716 continue;
1717 /*
1718 * A shadow entry of a recently evicted page, a swap
1719 * entry from shmem/tmpfs or a DAX entry. Return it
1720 * without attempting to raise page count.
1721 */
1722 if (xa_is_value(page))
1723 goto export;
1724
1725 if (!page_cache_get_speculative(page))
1726 goto retry;
1727
1728 /* Has the page moved or been split? */
1729 if (unlikely(page != xas_reload(&xas)))
1730 goto put_page;
1731 page = find_subpage(page, xas.xa_index);
1732
1733 export:
1734 indices[ret] = xas.xa_index;
1735 entries[ret] = page;
1736 if (++ret == nr_entries)
1737 break;
1738 continue;
1739 put_page:
1740 put_page(page);
1741 retry:
1742 xas_reset(&xas);
1743 }
1744 rcu_read_unlock();
1745 return ret;
1746 }
1747
1748 /**
1749 * find_get_pages_range - gang pagecache lookup
1750 * @mapping: The address_space to search
1751 * @start: The starting page index
1752 * @end: The final page index (inclusive)
1753 * @nr_pages: The maximum number of pages
1754 * @pages: Where the resulting pages are placed
1755 *
1756 * find_get_pages_range() will search for and return a group of up to @nr_pages
1757 * pages in the mapping starting at index @start and up to index @end
1758 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1759 * a reference against the returned pages.
1760 *
1761 * The search returns a group of mapping-contiguous pages with ascending
1762 * indexes. There may be holes in the indices due to not-present pages.
1763 * We also update @start to index the next page for the traversal.
1764 *
1765 * Return: the number of pages which were found. If this number is
1766 * smaller than @nr_pages, the end of specified range has been
1767 * reached.
1768 */
1769 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1770 pgoff_t end, unsigned int nr_pages,
1771 struct page **pages)
1772 {
1773 XA_STATE(xas, &mapping->i_pages, *start);
1774 struct page *page;
1775 unsigned ret = 0;
1776
1777 if (unlikely(!nr_pages))
1778 return 0;
1779
1780 rcu_read_lock();
1781 xas_for_each(&xas, page, end) {
1782 if (xas_retry(&xas, page))
1783 continue;
1784 /* Skip over shadow, swap and DAX entries */
1785 if (xa_is_value(page))
1786 continue;
1787
1788 if (!page_cache_get_speculative(page))
1789 goto retry;
1790
1791 /* Has the page moved or been split? */
1792 if (unlikely(page != xas_reload(&xas)))
1793 goto put_page;
1794
1795 pages[ret] = find_subpage(page, xas.xa_index);
1796 if (++ret == nr_pages) {
1797 *start = xas.xa_index + 1;
1798 goto out;
1799 }
1800 continue;
1801 put_page:
1802 put_page(page);
1803 retry:
1804 xas_reset(&xas);
1805 }
1806
1807 /*
1808 * We come here when there is no page beyond @end. We take care to not
1809 * overflow the index @start as it confuses some of the callers. This
1810 * breaks the iteration when there is a page at index -1 but that is
1811 * already broken anyway.
1812 */
1813 if (end == (pgoff_t)-1)
1814 *start = (pgoff_t)-1;
1815 else
1816 *start = end + 1;
1817 out:
1818 rcu_read_unlock();
1819
1820 return ret;
1821 }
1822
1823 /**
1824 * find_get_pages_contig - gang contiguous pagecache lookup
1825 * @mapping: The address_space to search
1826 * @index: The starting page index
1827 * @nr_pages: The maximum number of pages
1828 * @pages: Where the resulting pages are placed
1829 *
1830 * find_get_pages_contig() works exactly like find_get_pages(), except
1831 * that the returned number of pages are guaranteed to be contiguous.
1832 *
1833 * Return: the number of pages which were found.
1834 */
1835 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1836 unsigned int nr_pages, struct page **pages)
1837 {
1838 XA_STATE(xas, &mapping->i_pages, index);
1839 struct page *page;
1840 unsigned int ret = 0;
1841
1842 if (unlikely(!nr_pages))
1843 return 0;
1844
1845 rcu_read_lock();
1846 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1847 if (xas_retry(&xas, page))
1848 continue;
1849 /*
1850 * If the entry has been swapped out, we can stop looking.
1851 * No current caller is looking for DAX entries.
1852 */
1853 if (xa_is_value(page))
1854 break;
1855
1856 if (!page_cache_get_speculative(page))
1857 goto retry;
1858
1859 /* Has the page moved or been split? */
1860 if (unlikely(page != xas_reload(&xas)))
1861 goto put_page;
1862
1863 pages[ret] = find_subpage(page, xas.xa_index);
1864 if (++ret == nr_pages)
1865 break;
1866 continue;
1867 put_page:
1868 put_page(page);
1869 retry:
1870 xas_reset(&xas);
1871 }
1872 rcu_read_unlock();
1873 return ret;
1874 }
1875 EXPORT_SYMBOL(find_get_pages_contig);
1876
1877 /**
1878 * find_get_pages_range_tag - find and return pages in given range matching @tag
1879 * @mapping: the address_space to search
1880 * @index: the starting page index
1881 * @end: The final page index (inclusive)
1882 * @tag: the tag index
1883 * @nr_pages: the maximum number of pages
1884 * @pages: where the resulting pages are placed
1885 *
1886 * Like find_get_pages, except we only return pages which are tagged with
1887 * @tag. We update @index to index the next page for the traversal.
1888 *
1889 * Return: the number of pages which were found.
1890 */
1891 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1892 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1893 struct page **pages)
1894 {
1895 XA_STATE(xas, &mapping->i_pages, *index);
1896 struct page *page;
1897 unsigned ret = 0;
1898
1899 if (unlikely(!nr_pages))
1900 return 0;
1901
1902 rcu_read_lock();
1903 xas_for_each_marked(&xas, page, end, tag) {
1904 if (xas_retry(&xas, page))
1905 continue;
1906 /*
1907 * Shadow entries should never be tagged, but this iteration
1908 * is lockless so there is a window for page reclaim to evict
1909 * a page we saw tagged. Skip over it.
1910 */
1911 if (xa_is_value(page))
1912 continue;
1913
1914 if (!page_cache_get_speculative(page))
1915 goto retry;
1916
1917 /* Has the page moved or been split? */
1918 if (unlikely(page != xas_reload(&xas)))
1919 goto put_page;
1920
1921 pages[ret] = find_subpage(page, xas.xa_index);
1922 if (++ret == nr_pages) {
1923 *index = xas.xa_index + 1;
1924 goto out;
1925 }
1926 continue;
1927 put_page:
1928 put_page(page);
1929 retry:
1930 xas_reset(&xas);
1931 }
1932
1933 /*
1934 * We come here when we got to @end. We take care to not overflow the
1935 * index @index as it confuses some of the callers. This breaks the
1936 * iteration when there is a page at index -1 but that is already
1937 * broken anyway.
1938 */
1939 if (end == (pgoff_t)-1)
1940 *index = (pgoff_t)-1;
1941 else
1942 *index = end + 1;
1943 out:
1944 rcu_read_unlock();
1945
1946 return ret;
1947 }
1948 EXPORT_SYMBOL(find_get_pages_range_tag);
1949
1950 /*
1951 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1952 * a _large_ part of the i/o request. Imagine the worst scenario:
1953 *
1954 * ---R__________________________________________B__________
1955 * ^ reading here ^ bad block(assume 4k)
1956 *
1957 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1958 * => failing the whole request => read(R) => read(R+1) =>
1959 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1960 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1961 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1962 *
1963 * It is going insane. Fix it by quickly scaling down the readahead size.
1964 */
1965 static void shrink_readahead_size_eio(struct file *filp,
1966 struct file_ra_state *ra)
1967 {
1968 ra->ra_pages /= 4;
1969 }
1970
1971 /**
1972 * generic_file_buffered_read - generic file read routine
1973 * @iocb: the iocb to read
1974 * @iter: data destination
1975 * @written: already copied
1976 *
1977 * This is a generic file read routine, and uses the
1978 * mapping->a_ops->readpage() function for the actual low-level stuff.
1979 *
1980 * This is really ugly. But the goto's actually try to clarify some
1981 * of the logic when it comes to error handling etc.
1982 *
1983 * Return:
1984 * * total number of bytes copied, including those the were already @written
1985 * * negative error code if nothing was copied
1986 */
1987 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1988 struct iov_iter *iter, ssize_t written)
1989 {
1990 struct file *filp = iocb->ki_filp;
1991 struct address_space *mapping = filp->f_mapping;
1992 struct inode *inode = mapping->host;
1993 struct file_ra_state *ra = &filp->f_ra;
1994 loff_t *ppos = &iocb->ki_pos;
1995 pgoff_t index;
1996 pgoff_t last_index;
1997 pgoff_t prev_index;
1998 unsigned long offset; /* offset into pagecache page */
1999 unsigned int prev_offset;
2000 int error = 0;
2001
2002 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2003 return 0;
2004 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2005
2006 index = *ppos >> PAGE_SHIFT;
2007 prev_index = ra->prev_pos >> PAGE_SHIFT;
2008 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2009 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2010 offset = *ppos & ~PAGE_MASK;
2011
2012 for (;;) {
2013 struct page *page;
2014 pgoff_t end_index;
2015 loff_t isize;
2016 unsigned long nr, ret;
2017
2018 cond_resched();
2019 find_page:
2020 if (fatal_signal_pending(current)) {
2021 error = -EINTR;
2022 goto out;
2023 }
2024
2025 page = find_get_page(mapping, index);
2026 if (!page) {
2027 if (iocb->ki_flags & IOCB_NOWAIT)
2028 goto would_block;
2029 page_cache_sync_readahead(mapping,
2030 ra, filp,
2031 index, last_index - index);
2032 page = find_get_page(mapping, index);
2033 if (unlikely(page == NULL))
2034 goto no_cached_page;
2035 }
2036 if (PageReadahead(page)) {
2037 page_cache_async_readahead(mapping,
2038 ra, filp, page,
2039 index, last_index - index);
2040 }
2041 if (!PageUptodate(page)) {
2042 if (iocb->ki_flags & IOCB_NOWAIT) {
2043 put_page(page);
2044 goto would_block;
2045 }
2046
2047 /*
2048 * See comment in do_read_cache_page on why
2049 * wait_on_page_locked is used to avoid unnecessarily
2050 * serialisations and why it's safe.
2051 */
2052 error = wait_on_page_locked_killable(page);
2053 if (unlikely(error))
2054 goto readpage_error;
2055 if (PageUptodate(page))
2056 goto page_ok;
2057
2058 if (inode->i_blkbits == PAGE_SHIFT ||
2059 !mapping->a_ops->is_partially_uptodate)
2060 goto page_not_up_to_date;
2061 /* pipes can't handle partially uptodate pages */
2062 if (unlikely(iov_iter_is_pipe(iter)))
2063 goto page_not_up_to_date;
2064 if (!trylock_page(page))
2065 goto page_not_up_to_date;
2066 /* Did it get truncated before we got the lock? */
2067 if (!page->mapping)
2068 goto page_not_up_to_date_locked;
2069 if (!mapping->a_ops->is_partially_uptodate(page,
2070 offset, iter->count))
2071 goto page_not_up_to_date_locked;
2072 unlock_page(page);
2073 }
2074 page_ok:
2075 /*
2076 * i_size must be checked after we know the page is Uptodate.
2077 *
2078 * Checking i_size after the check allows us to calculate
2079 * the correct value for "nr", which means the zero-filled
2080 * part of the page is not copied back to userspace (unless
2081 * another truncate extends the file - this is desired though).
2082 */
2083
2084 isize = i_size_read(inode);
2085 end_index = (isize - 1) >> PAGE_SHIFT;
2086 if (unlikely(!isize || index > end_index)) {
2087 put_page(page);
2088 goto out;
2089 }
2090
2091 /* nr is the maximum number of bytes to copy from this page */
2092 nr = PAGE_SIZE;
2093 if (index == end_index) {
2094 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2095 if (nr <= offset) {
2096 put_page(page);
2097 goto out;
2098 }
2099 }
2100 nr = nr - offset;
2101
2102 /* If users can be writing to this page using arbitrary
2103 * virtual addresses, take care about potential aliasing
2104 * before reading the page on the kernel side.
2105 */
2106 if (mapping_writably_mapped(mapping))
2107 flush_dcache_page(page);
2108
2109 /*
2110 * When a sequential read accesses a page several times,
2111 * only mark it as accessed the first time.
2112 */
2113 if (prev_index != index || offset != prev_offset)
2114 mark_page_accessed(page);
2115 prev_index = index;
2116
2117 /*
2118 * Ok, we have the page, and it's up-to-date, so
2119 * now we can copy it to user space...
2120 */
2121
2122 ret = copy_page_to_iter(page, offset, nr, iter);
2123 offset += ret;
2124 index += offset >> PAGE_SHIFT;
2125 offset &= ~PAGE_MASK;
2126 prev_offset = offset;
2127
2128 put_page(page);
2129 written += ret;
2130 if (!iov_iter_count(iter))
2131 goto out;
2132 if (ret < nr) {
2133 error = -EFAULT;
2134 goto out;
2135 }
2136 continue;
2137
2138 page_not_up_to_date:
2139 /* Get exclusive access to the page ... */
2140 error = lock_page_killable(page);
2141 if (unlikely(error))
2142 goto readpage_error;
2143
2144 page_not_up_to_date_locked:
2145 /* Did it get truncated before we got the lock? */
2146 if (!page->mapping) {
2147 unlock_page(page);
2148 put_page(page);
2149 continue;
2150 }
2151
2152 /* Did somebody else fill it already? */
2153 if (PageUptodate(page)) {
2154 unlock_page(page);
2155 goto page_ok;
2156 }
2157
2158 readpage:
2159 /*
2160 * A previous I/O error may have been due to temporary
2161 * failures, eg. multipath errors.
2162 * PG_error will be set again if readpage fails.
2163 */
2164 ClearPageError(page);
2165 /* Start the actual read. The read will unlock the page. */
2166 error = mapping->a_ops->readpage(filp, page);
2167
2168 if (unlikely(error)) {
2169 if (error == AOP_TRUNCATED_PAGE) {
2170 put_page(page);
2171 error = 0;
2172 goto find_page;
2173 }
2174 goto readpage_error;
2175 }
2176
2177 if (!PageUptodate(page)) {
2178 error = lock_page_killable(page);
2179 if (unlikely(error))
2180 goto readpage_error;
2181 if (!PageUptodate(page)) {
2182 if (page->mapping == NULL) {
2183 /*
2184 * invalidate_mapping_pages got it
2185 */
2186 unlock_page(page);
2187 put_page(page);
2188 goto find_page;
2189 }
2190 unlock_page(page);
2191 shrink_readahead_size_eio(filp, ra);
2192 error = -EIO;
2193 goto readpage_error;
2194 }
2195 unlock_page(page);
2196 }
2197
2198 goto page_ok;
2199
2200 readpage_error:
2201 /* UHHUH! A synchronous read error occurred. Report it */
2202 put_page(page);
2203 goto out;
2204
2205 no_cached_page:
2206 /*
2207 * Ok, it wasn't cached, so we need to create a new
2208 * page..
2209 */
2210 page = page_cache_alloc(mapping);
2211 if (!page) {
2212 error = -ENOMEM;
2213 goto out;
2214 }
2215 error = add_to_page_cache_lru(page, mapping, index,
2216 mapping_gfp_constraint(mapping, GFP_KERNEL));
2217 if (error) {
2218 put_page(page);
2219 if (error == -EEXIST) {
2220 error = 0;
2221 goto find_page;
2222 }
2223 goto out;
2224 }
2225 goto readpage;
2226 }
2227
2228 would_block:
2229 error = -EAGAIN;
2230 out:
2231 ra->prev_pos = prev_index;
2232 ra->prev_pos <<= PAGE_SHIFT;
2233 ra->prev_pos |= prev_offset;
2234
2235 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2236 file_accessed(filp);
2237 return written ? written : error;
2238 }
2239
2240 /**
2241 * generic_file_read_iter - generic filesystem read routine
2242 * @iocb: kernel I/O control block
2243 * @iter: destination for the data read
2244 *
2245 * This is the "read_iter()" routine for all filesystems
2246 * that can use the page cache directly.
2247 * Return:
2248 * * number of bytes copied, even for partial reads
2249 * * negative error code if nothing was read
2250 */
2251 ssize_t
2252 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2253 {
2254 size_t count = iov_iter_count(iter);
2255 ssize_t retval = 0;
2256
2257 if (!count)
2258 goto out; /* skip atime */
2259
2260 if (iocb->ki_flags & IOCB_DIRECT) {
2261 struct file *file = iocb->ki_filp;
2262 struct address_space *mapping = file->f_mapping;
2263 struct inode *inode = mapping->host;
2264 loff_t size;
2265
2266 size = i_size_read(inode);
2267 if (iocb->ki_flags & IOCB_NOWAIT) {
2268 if (filemap_range_has_page(mapping, iocb->ki_pos,
2269 iocb->ki_pos + count - 1))
2270 return -EAGAIN;
2271 } else {
2272 retval = filemap_write_and_wait_range(mapping,
2273 iocb->ki_pos,
2274 iocb->ki_pos + count - 1);
2275 if (retval < 0)
2276 goto out;
2277 }
2278
2279 file_accessed(file);
2280
2281 retval = mapping->a_ops->direct_IO(iocb, iter);
2282 if (retval >= 0) {
2283 iocb->ki_pos += retval;
2284 count -= retval;
2285 }
2286 iov_iter_revert(iter, count - iov_iter_count(iter));
2287
2288 /*
2289 * Btrfs can have a short DIO read if we encounter
2290 * compressed extents, so if there was an error, or if
2291 * we've already read everything we wanted to, or if
2292 * there was a short read because we hit EOF, go ahead
2293 * and return. Otherwise fallthrough to buffered io for
2294 * the rest of the read. Buffered reads will not work for
2295 * DAX files, so don't bother trying.
2296 */
2297 if (retval < 0 || !count || iocb->ki_pos >= size ||
2298 IS_DAX(inode))
2299 goto out;
2300 }
2301
2302 retval = generic_file_buffered_read(iocb, iter, retval);
2303 out:
2304 return retval;
2305 }
2306 EXPORT_SYMBOL(generic_file_read_iter);
2307
2308 #ifdef CONFIG_MMU
2309 #define MMAP_LOTSAMISS (100)
2310 /*
2311 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2312 * @vmf - the vm_fault for this fault.
2313 * @page - the page to lock.
2314 * @fpin - the pointer to the file we may pin (or is already pinned).
2315 *
2316 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2317 * It differs in that it actually returns the page locked if it returns 1 and 0
2318 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2319 * will point to the pinned file and needs to be fput()'ed at a later point.
2320 */
2321 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2322 struct file **fpin)
2323 {
2324 if (trylock_page(page))
2325 return 1;
2326
2327 /*
2328 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2329 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2330 * is supposed to work. We have way too many special cases..
2331 */
2332 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2333 return 0;
2334
2335 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2336 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2337 if (__lock_page_killable(page)) {
2338 /*
2339 * We didn't have the right flags to drop the mmap_sem,
2340 * but all fault_handlers only check for fatal signals
2341 * if we return VM_FAULT_RETRY, so we need to drop the
2342 * mmap_sem here and return 0 if we don't have a fpin.
2343 */
2344 if (*fpin == NULL)
2345 up_read(&vmf->vma->vm_mm->mmap_sem);
2346 return 0;
2347 }
2348 } else
2349 __lock_page(page);
2350 return 1;
2351 }
2352
2353
2354 /*
2355 * Synchronous readahead happens when we don't even find a page in the page
2356 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2357 * to drop the mmap sem we return the file that was pinned in order for us to do
2358 * that. If we didn't pin a file then we return NULL. The file that is
2359 * returned needs to be fput()'ed when we're done with it.
2360 */
2361 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2362 {
2363 struct file *file = vmf->vma->vm_file;
2364 struct file_ra_state *ra = &file->f_ra;
2365 struct address_space *mapping = file->f_mapping;
2366 struct file *fpin = NULL;
2367 pgoff_t offset = vmf->pgoff;
2368
2369 /* If we don't want any read-ahead, don't bother */
2370 if (vmf->vma->vm_flags & VM_RAND_READ)
2371 return fpin;
2372 if (!ra->ra_pages)
2373 return fpin;
2374
2375 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2376 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2377 page_cache_sync_readahead(mapping, ra, file, offset,
2378 ra->ra_pages);
2379 return fpin;
2380 }
2381
2382 /* Avoid banging the cache line if not needed */
2383 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2384 ra->mmap_miss++;
2385
2386 /*
2387 * Do we miss much more than hit in this file? If so,
2388 * stop bothering with read-ahead. It will only hurt.
2389 */
2390 if (ra->mmap_miss > MMAP_LOTSAMISS)
2391 return fpin;
2392
2393 /*
2394 * mmap read-around
2395 */
2396 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2397 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2398 ra->size = ra->ra_pages;
2399 ra->async_size = ra->ra_pages / 4;
2400 ra_submit(ra, mapping, file);
2401 return fpin;
2402 }
2403
2404 /*
2405 * Asynchronous readahead happens when we find the page and PG_readahead,
2406 * so we want to possibly extend the readahead further. We return the file that
2407 * was pinned if we have to drop the mmap_sem in order to do IO.
2408 */
2409 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2410 struct page *page)
2411 {
2412 struct file *file = vmf->vma->vm_file;
2413 struct file_ra_state *ra = &file->f_ra;
2414 struct address_space *mapping = file->f_mapping;
2415 struct file *fpin = NULL;
2416 pgoff_t offset = vmf->pgoff;
2417
2418 /* If we don't want any read-ahead, don't bother */
2419 if (vmf->vma->vm_flags & VM_RAND_READ)
2420 return fpin;
2421 if (ra->mmap_miss > 0)
2422 ra->mmap_miss--;
2423 if (PageReadahead(page)) {
2424 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2425 page_cache_async_readahead(mapping, ra, file,
2426 page, offset, ra->ra_pages);
2427 }
2428 return fpin;
2429 }
2430
2431 /**
2432 * filemap_fault - read in file data for page fault handling
2433 * @vmf: struct vm_fault containing details of the fault
2434 *
2435 * filemap_fault() is invoked via the vma operations vector for a
2436 * mapped memory region to read in file data during a page fault.
2437 *
2438 * The goto's are kind of ugly, but this streamlines the normal case of having
2439 * it in the page cache, and handles the special cases reasonably without
2440 * having a lot of duplicated code.
2441 *
2442 * vma->vm_mm->mmap_sem must be held on entry.
2443 *
2444 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2445 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2446 *
2447 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2448 * has not been released.
2449 *
2450 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2451 *
2452 * Return: bitwise-OR of %VM_FAULT_ codes.
2453 */
2454 vm_fault_t filemap_fault(struct vm_fault *vmf)
2455 {
2456 int error;
2457 struct file *file = vmf->vma->vm_file;
2458 struct file *fpin = NULL;
2459 struct address_space *mapping = file->f_mapping;
2460 struct file_ra_state *ra = &file->f_ra;
2461 struct inode *inode = mapping->host;
2462 pgoff_t offset = vmf->pgoff;
2463 pgoff_t max_off;
2464 struct page *page;
2465 vm_fault_t ret = 0;
2466
2467 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2468 if (unlikely(offset >= max_off))
2469 return VM_FAULT_SIGBUS;
2470
2471 /*
2472 * Do we have something in the page cache already?
2473 */
2474 page = find_get_page(mapping, offset);
2475 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2476 /*
2477 * We found the page, so try async readahead before
2478 * waiting for the lock.
2479 */
2480 fpin = do_async_mmap_readahead(vmf, page);
2481 } else if (!page) {
2482 /* No page in the page cache at all */
2483 count_vm_event(PGMAJFAULT);
2484 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2485 ret = VM_FAULT_MAJOR;
2486 fpin = do_sync_mmap_readahead(vmf);
2487 retry_find:
2488 page = pagecache_get_page(mapping, offset,
2489 FGP_CREAT|FGP_FOR_MMAP,
2490 vmf->gfp_mask);
2491 if (!page) {
2492 if (fpin)
2493 goto out_retry;
2494 return vmf_error(-ENOMEM);
2495 }
2496 }
2497
2498 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2499 goto out_retry;
2500
2501 /* Did it get truncated? */
2502 if (unlikely(compound_head(page)->mapping != mapping)) {
2503 unlock_page(page);
2504 put_page(page);
2505 goto retry_find;
2506 }
2507 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2508
2509 /*
2510 * We have a locked page in the page cache, now we need to check
2511 * that it's up-to-date. If not, it is going to be due to an error.
2512 */
2513 if (unlikely(!PageUptodate(page)))
2514 goto page_not_uptodate;
2515
2516 /*
2517 * We've made it this far and we had to drop our mmap_sem, now is the
2518 * time to return to the upper layer and have it re-find the vma and
2519 * redo the fault.
2520 */
2521 if (fpin) {
2522 unlock_page(page);
2523 goto out_retry;
2524 }
2525
2526 /*
2527 * Found the page and have a reference on it.
2528 * We must recheck i_size under page lock.
2529 */
2530 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2531 if (unlikely(offset >= max_off)) {
2532 unlock_page(page);
2533 put_page(page);
2534 return VM_FAULT_SIGBUS;
2535 }
2536
2537 vmf->page = page;
2538 return ret | VM_FAULT_LOCKED;
2539
2540 page_not_uptodate:
2541 /*
2542 * Umm, take care of errors if the page isn't up-to-date.
2543 * Try to re-read it _once_. We do this synchronously,
2544 * because there really aren't any performance issues here
2545 * and we need to check for errors.
2546 */
2547 ClearPageError(page);
2548 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2549 error = mapping->a_ops->readpage(file, page);
2550 if (!error) {
2551 wait_on_page_locked(page);
2552 if (!PageUptodate(page))
2553 error = -EIO;
2554 }
2555 if (fpin)
2556 goto out_retry;
2557 put_page(page);
2558
2559 if (!error || error == AOP_TRUNCATED_PAGE)
2560 goto retry_find;
2561
2562 /* Things didn't work out. Return zero to tell the mm layer so. */
2563 shrink_readahead_size_eio(file, ra);
2564 return VM_FAULT_SIGBUS;
2565
2566 out_retry:
2567 /*
2568 * We dropped the mmap_sem, we need to return to the fault handler to
2569 * re-find the vma and come back and find our hopefully still populated
2570 * page.
2571 */
2572 if (page)
2573 put_page(page);
2574 if (fpin)
2575 fput(fpin);
2576 return ret | VM_FAULT_RETRY;
2577 }
2578 EXPORT_SYMBOL(filemap_fault);
2579
2580 void filemap_map_pages(struct vm_fault *vmf,
2581 pgoff_t start_pgoff, pgoff_t end_pgoff)
2582 {
2583 struct file *file = vmf->vma->vm_file;
2584 struct address_space *mapping = file->f_mapping;
2585 pgoff_t last_pgoff = start_pgoff;
2586 unsigned long max_idx;
2587 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2588 struct page *page;
2589
2590 rcu_read_lock();
2591 xas_for_each(&xas, page, end_pgoff) {
2592 if (xas_retry(&xas, page))
2593 continue;
2594 if (xa_is_value(page))
2595 goto next;
2596
2597 /*
2598 * Check for a locked page first, as a speculative
2599 * reference may adversely influence page migration.
2600 */
2601 if (PageLocked(page))
2602 goto next;
2603 if (!page_cache_get_speculative(page))
2604 goto next;
2605
2606 /* Has the page moved or been split? */
2607 if (unlikely(page != xas_reload(&xas)))
2608 goto skip;
2609 page = find_subpage(page, xas.xa_index);
2610
2611 if (!PageUptodate(page) ||
2612 PageReadahead(page) ||
2613 PageHWPoison(page))
2614 goto skip;
2615 if (!trylock_page(page))
2616 goto skip;
2617
2618 if (page->mapping != mapping || !PageUptodate(page))
2619 goto unlock;
2620
2621 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2622 if (page->index >= max_idx)
2623 goto unlock;
2624
2625 if (file->f_ra.mmap_miss > 0)
2626 file->f_ra.mmap_miss--;
2627
2628 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2629 if (vmf->pte)
2630 vmf->pte += xas.xa_index - last_pgoff;
2631 last_pgoff = xas.xa_index;
2632 if (alloc_set_pte(vmf, NULL, page))
2633 goto unlock;
2634 unlock_page(page);
2635 goto next;
2636 unlock:
2637 unlock_page(page);
2638 skip:
2639 put_page(page);
2640 next:
2641 /* Huge page is mapped? No need to proceed. */
2642 if (pmd_trans_huge(*vmf->pmd))
2643 break;
2644 }
2645 rcu_read_unlock();
2646 }
2647 EXPORT_SYMBOL(filemap_map_pages);
2648
2649 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2650 {
2651 struct page *page = vmf->page;
2652 struct inode *inode = file_inode(vmf->vma->vm_file);
2653 vm_fault_t ret = VM_FAULT_LOCKED;
2654
2655 sb_start_pagefault(inode->i_sb);
2656 file_update_time(vmf->vma->vm_file);
2657 lock_page(page);
2658 if (page->mapping != inode->i_mapping) {
2659 unlock_page(page);
2660 ret = VM_FAULT_NOPAGE;
2661 goto out;
2662 }
2663 /*
2664 * We mark the page dirty already here so that when freeze is in
2665 * progress, we are guaranteed that writeback during freezing will
2666 * see the dirty page and writeprotect it again.
2667 */
2668 set_page_dirty(page);
2669 wait_for_stable_page(page);
2670 out:
2671 sb_end_pagefault(inode->i_sb);
2672 return ret;
2673 }
2674
2675 const struct vm_operations_struct generic_file_vm_ops = {
2676 .fault = filemap_fault,
2677 .map_pages = filemap_map_pages,
2678 .page_mkwrite = filemap_page_mkwrite,
2679 };
2680
2681 /* This is used for a general mmap of a disk file */
2682
2683 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2684 {
2685 struct address_space *mapping = file->f_mapping;
2686
2687 if (!mapping->a_ops->readpage)
2688 return -ENOEXEC;
2689 file_accessed(file);
2690 vma->vm_ops = &generic_file_vm_ops;
2691 return 0;
2692 }
2693
2694 /*
2695 * This is for filesystems which do not implement ->writepage.
2696 */
2697 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2698 {
2699 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2700 return -EINVAL;
2701 return generic_file_mmap(file, vma);
2702 }
2703 #else
2704 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2705 {
2706 return VM_FAULT_SIGBUS;
2707 }
2708 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2709 {
2710 return -ENOSYS;
2711 }
2712 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2713 {
2714 return -ENOSYS;
2715 }
2716 #endif /* CONFIG_MMU */
2717
2718 EXPORT_SYMBOL(filemap_page_mkwrite);
2719 EXPORT_SYMBOL(generic_file_mmap);
2720 EXPORT_SYMBOL(generic_file_readonly_mmap);
2721
2722 static struct page *wait_on_page_read(struct page *page)
2723 {
2724 if (!IS_ERR(page)) {
2725 wait_on_page_locked(page);
2726 if (!PageUptodate(page)) {
2727 put_page(page);
2728 page = ERR_PTR(-EIO);
2729 }
2730 }
2731 return page;
2732 }
2733
2734 static struct page *do_read_cache_page(struct address_space *mapping,
2735 pgoff_t index,
2736 int (*filler)(void *, struct page *),
2737 void *data,
2738 gfp_t gfp)
2739 {
2740 struct page *page;
2741 int err;
2742 repeat:
2743 page = find_get_page(mapping, index);
2744 if (!page) {
2745 page = __page_cache_alloc(gfp);
2746 if (!page)
2747 return ERR_PTR(-ENOMEM);
2748 err = add_to_page_cache_lru(page, mapping, index, gfp);
2749 if (unlikely(err)) {
2750 put_page(page);
2751 if (err == -EEXIST)
2752 goto repeat;
2753 /* Presumably ENOMEM for xarray node */
2754 return ERR_PTR(err);
2755 }
2756
2757 filler:
2758 if (filler)
2759 err = filler(data, page);
2760 else
2761 err = mapping->a_ops->readpage(data, page);
2762
2763 if (err < 0) {
2764 put_page(page);
2765 return ERR_PTR(err);
2766 }
2767
2768 page = wait_on_page_read(page);
2769 if (IS_ERR(page))
2770 return page;
2771 goto out;
2772 }
2773 if (PageUptodate(page))
2774 goto out;
2775
2776 /*
2777 * Page is not up to date and may be locked due one of the following
2778 * case a: Page is being filled and the page lock is held
2779 * case b: Read/write error clearing the page uptodate status
2780 * case c: Truncation in progress (page locked)
2781 * case d: Reclaim in progress
2782 *
2783 * Case a, the page will be up to date when the page is unlocked.
2784 * There is no need to serialise on the page lock here as the page
2785 * is pinned so the lock gives no additional protection. Even if the
2786 * the page is truncated, the data is still valid if PageUptodate as
2787 * it's a race vs truncate race.
2788 * Case b, the page will not be up to date
2789 * Case c, the page may be truncated but in itself, the data may still
2790 * be valid after IO completes as it's a read vs truncate race. The
2791 * operation must restart if the page is not uptodate on unlock but
2792 * otherwise serialising on page lock to stabilise the mapping gives
2793 * no additional guarantees to the caller as the page lock is
2794 * released before return.
2795 * Case d, similar to truncation. If reclaim holds the page lock, it
2796 * will be a race with remove_mapping that determines if the mapping
2797 * is valid on unlock but otherwise the data is valid and there is
2798 * no need to serialise with page lock.
2799 *
2800 * As the page lock gives no additional guarantee, we optimistically
2801 * wait on the page to be unlocked and check if it's up to date and
2802 * use the page if it is. Otherwise, the page lock is required to
2803 * distinguish between the different cases. The motivation is that we
2804 * avoid spurious serialisations and wakeups when multiple processes
2805 * wait on the same page for IO to complete.
2806 */
2807 wait_on_page_locked(page);
2808 if (PageUptodate(page))
2809 goto out;
2810
2811 /* Distinguish between all the cases under the safety of the lock */
2812 lock_page(page);
2813
2814 /* Case c or d, restart the operation */
2815 if (!page->mapping) {
2816 unlock_page(page);
2817 put_page(page);
2818 goto repeat;
2819 }
2820
2821 /* Someone else locked and filled the page in a very small window */
2822 if (PageUptodate(page)) {
2823 unlock_page(page);
2824 goto out;
2825 }
2826 goto filler;
2827
2828 out:
2829 mark_page_accessed(page);
2830 return page;
2831 }
2832
2833 /**
2834 * read_cache_page - read into page cache, fill it if needed
2835 * @mapping: the page's address_space
2836 * @index: the page index
2837 * @filler: function to perform the read
2838 * @data: first arg to filler(data, page) function, often left as NULL
2839 *
2840 * Read into the page cache. If a page already exists, and PageUptodate() is
2841 * not set, try to fill the page and wait for it to become unlocked.
2842 *
2843 * If the page does not get brought uptodate, return -EIO.
2844 *
2845 * Return: up to date page on success, ERR_PTR() on failure.
2846 */
2847 struct page *read_cache_page(struct address_space *mapping,
2848 pgoff_t index,
2849 int (*filler)(void *, struct page *),
2850 void *data)
2851 {
2852 return do_read_cache_page(mapping, index, filler, data,
2853 mapping_gfp_mask(mapping));
2854 }
2855 EXPORT_SYMBOL(read_cache_page);
2856
2857 /**
2858 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2859 * @mapping: the page's address_space
2860 * @index: the page index
2861 * @gfp: the page allocator flags to use if allocating
2862 *
2863 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2864 * any new page allocations done using the specified allocation flags.
2865 *
2866 * If the page does not get brought uptodate, return -EIO.
2867 *
2868 * Return: up to date page on success, ERR_PTR() on failure.
2869 */
2870 struct page *read_cache_page_gfp(struct address_space *mapping,
2871 pgoff_t index,
2872 gfp_t gfp)
2873 {
2874 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2875 }
2876 EXPORT_SYMBOL(read_cache_page_gfp);
2877
2878 /*
2879 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2880 * LFS limits. If pos is under the limit it becomes a short access. If it
2881 * exceeds the limit we return -EFBIG.
2882 */
2883 static int generic_write_check_limits(struct file *file, loff_t pos,
2884 loff_t *count)
2885 {
2886 struct inode *inode = file->f_mapping->host;
2887 loff_t max_size = inode->i_sb->s_maxbytes;
2888 loff_t limit = rlimit(RLIMIT_FSIZE);
2889
2890 if (limit != RLIM_INFINITY) {
2891 if (pos >= limit) {
2892 send_sig(SIGXFSZ, current, 0);
2893 return -EFBIG;
2894 }
2895 *count = min(*count, limit - pos);
2896 }
2897
2898 if (!(file->f_flags & O_LARGEFILE))
2899 max_size = MAX_NON_LFS;
2900
2901 if (unlikely(pos >= max_size))
2902 return -EFBIG;
2903
2904 *count = min(*count, max_size - pos);
2905
2906 return 0;
2907 }
2908
2909 /*
2910 * Performs necessary checks before doing a write
2911 *
2912 * Can adjust writing position or amount of bytes to write.
2913 * Returns appropriate error code that caller should return or
2914 * zero in case that write should be allowed.
2915 */
2916 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2917 {
2918 struct file *file = iocb->ki_filp;
2919 struct inode *inode = file->f_mapping->host;
2920 loff_t count;
2921 int ret;
2922
2923 if (IS_SWAPFILE(inode))
2924 return -ETXTBSY;
2925
2926 if (!iov_iter_count(from))
2927 return 0;
2928
2929 /* FIXME: this is for backwards compatibility with 2.4 */
2930 if (iocb->ki_flags & IOCB_APPEND)
2931 iocb->ki_pos = i_size_read(inode);
2932
2933 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2934 return -EINVAL;
2935
2936 count = iov_iter_count(from);
2937 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2938 if (ret)
2939 return ret;
2940
2941 iov_iter_truncate(from, count);
2942 return iov_iter_count(from);
2943 }
2944 EXPORT_SYMBOL(generic_write_checks);
2945
2946 /*
2947 * Performs necessary checks before doing a clone.
2948 *
2949 * Can adjust amount of bytes to clone via @req_count argument.
2950 * Returns appropriate error code that caller should return or
2951 * zero in case the clone should be allowed.
2952 */
2953 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2954 struct file *file_out, loff_t pos_out,
2955 loff_t *req_count, unsigned int remap_flags)
2956 {
2957 struct inode *inode_in = file_in->f_mapping->host;
2958 struct inode *inode_out = file_out->f_mapping->host;
2959 uint64_t count = *req_count;
2960 uint64_t bcount;
2961 loff_t size_in, size_out;
2962 loff_t bs = inode_out->i_sb->s_blocksize;
2963 int ret;
2964
2965 /* The start of both ranges must be aligned to an fs block. */
2966 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2967 return -EINVAL;
2968
2969 /* Ensure offsets don't wrap. */
2970 if (pos_in + count < pos_in || pos_out + count < pos_out)
2971 return -EINVAL;
2972
2973 size_in = i_size_read(inode_in);
2974 size_out = i_size_read(inode_out);
2975
2976 /* Dedupe requires both ranges to be within EOF. */
2977 if ((remap_flags & REMAP_FILE_DEDUP) &&
2978 (pos_in >= size_in || pos_in + count > size_in ||
2979 pos_out >= size_out || pos_out + count > size_out))
2980 return -EINVAL;
2981
2982 /* Ensure the infile range is within the infile. */
2983 if (pos_in >= size_in)
2984 return -EINVAL;
2985 count = min(count, size_in - (uint64_t)pos_in);
2986
2987 ret = generic_write_check_limits(file_out, pos_out, &count);
2988 if (ret)
2989 return ret;
2990
2991 /*
2992 * If the user wanted us to link to the infile's EOF, round up to the
2993 * next block boundary for this check.
2994 *
2995 * Otherwise, make sure the count is also block-aligned, having
2996 * already confirmed the starting offsets' block alignment.
2997 */
2998 if (pos_in + count == size_in) {
2999 bcount = ALIGN(size_in, bs) - pos_in;
3000 } else {
3001 if (!IS_ALIGNED(count, bs))
3002 count = ALIGN_DOWN(count, bs);
3003 bcount = count;
3004 }
3005
3006 /* Don't allow overlapped cloning within the same file. */
3007 if (inode_in == inode_out &&
3008 pos_out + bcount > pos_in &&
3009 pos_out < pos_in + bcount)
3010 return -EINVAL;
3011
3012 /*
3013 * We shortened the request but the caller can't deal with that, so
3014 * bounce the request back to userspace.
3015 */
3016 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3017 return -EINVAL;
3018
3019 *req_count = count;
3020 return 0;
3021 }
3022
3023
3024 /*
3025 * Performs common checks before doing a file copy/clone
3026 * from @file_in to @file_out.
3027 */
3028 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3029 {
3030 struct inode *inode_in = file_inode(file_in);
3031 struct inode *inode_out = file_inode(file_out);
3032
3033 /* Don't copy dirs, pipes, sockets... */
3034 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3035 return -EISDIR;
3036 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3037 return -EINVAL;
3038
3039 if (!(file_in->f_mode & FMODE_READ) ||
3040 !(file_out->f_mode & FMODE_WRITE) ||
3041 (file_out->f_flags & O_APPEND))
3042 return -EBADF;
3043
3044 return 0;
3045 }
3046
3047 /*
3048 * Performs necessary checks before doing a file copy
3049 *
3050 * Can adjust amount of bytes to copy via @req_count argument.
3051 * Returns appropriate error code that caller should return or
3052 * zero in case the copy should be allowed.
3053 */
3054 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3055 struct file *file_out, loff_t pos_out,
3056 size_t *req_count, unsigned int flags)
3057 {
3058 struct inode *inode_in = file_inode(file_in);
3059 struct inode *inode_out = file_inode(file_out);
3060 uint64_t count = *req_count;
3061 loff_t size_in;
3062 int ret;
3063
3064 ret = generic_file_rw_checks(file_in, file_out);
3065 if (ret)
3066 return ret;
3067
3068 /* Don't touch certain kinds of inodes */
3069 if (IS_IMMUTABLE(inode_out))
3070 return -EPERM;
3071
3072 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3073 return -ETXTBSY;
3074
3075 /* Ensure offsets don't wrap. */
3076 if (pos_in + count < pos_in || pos_out + count < pos_out)
3077 return -EOVERFLOW;
3078
3079 /* Shorten the copy to EOF */
3080 size_in = i_size_read(inode_in);
3081 if (pos_in >= size_in)
3082 count = 0;
3083 else
3084 count = min(count, size_in - (uint64_t)pos_in);
3085
3086 ret = generic_write_check_limits(file_out, pos_out, &count);
3087 if (ret)
3088 return ret;
3089
3090 /* Don't allow overlapped copying within the same file. */
3091 if (inode_in == inode_out &&
3092 pos_out + count > pos_in &&
3093 pos_out < pos_in + count)
3094 return -EINVAL;
3095
3096 *req_count = count;
3097 return 0;
3098 }
3099
3100 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3101 loff_t pos, unsigned len, unsigned flags,
3102 struct page **pagep, void **fsdata)
3103 {
3104 const struct address_space_operations *aops = mapping->a_ops;
3105
3106 return aops->write_begin(file, mapping, pos, len, flags,
3107 pagep, fsdata);
3108 }
3109 EXPORT_SYMBOL(pagecache_write_begin);
3110
3111 int pagecache_write_end(struct file *file, struct address_space *mapping,
3112 loff_t pos, unsigned len, unsigned copied,
3113 struct page *page, void *fsdata)
3114 {
3115 const struct address_space_operations *aops = mapping->a_ops;
3116
3117 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3118 }
3119 EXPORT_SYMBOL(pagecache_write_end);
3120
3121 /*
3122 * Warn about a page cache invalidation failure during a direct I/O write.
3123 */
3124 void dio_warn_stale_pagecache(struct file *filp)
3125 {
3126 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3127 char pathname[128];
3128 struct inode *inode = file_inode(filp);
3129 char *path;
3130
3131 errseq_set(&inode->i_mapping->wb_err, -EIO);
3132 if (__ratelimit(&_rs)) {
3133 path = file_path(filp, pathname, sizeof(pathname));
3134 if (IS_ERR(path))
3135 path = "(unknown)";
3136 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3137 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3138 current->comm);
3139 }
3140 }
3141
3142 ssize_t
3143 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3144 {
3145 struct file *file = iocb->ki_filp;
3146 struct address_space *mapping = file->f_mapping;
3147 struct inode *inode = mapping->host;
3148 loff_t pos = iocb->ki_pos;
3149 ssize_t written;
3150 size_t write_len;
3151 pgoff_t end;
3152
3153 write_len = iov_iter_count(from);
3154 end = (pos + write_len - 1) >> PAGE_SHIFT;
3155
3156 if (iocb->ki_flags & IOCB_NOWAIT) {
3157 /* If there are pages to writeback, return */
3158 if (filemap_range_has_page(inode->i_mapping, pos,
3159 pos + write_len - 1))
3160 return -EAGAIN;
3161 } else {
3162 written = filemap_write_and_wait_range(mapping, pos,
3163 pos + write_len - 1);
3164 if (written)
3165 goto out;
3166 }
3167
3168 /*
3169 * After a write we want buffered reads to be sure to go to disk to get
3170 * the new data. We invalidate clean cached page from the region we're
3171 * about to write. We do this *before* the write so that we can return
3172 * without clobbering -EIOCBQUEUED from ->direct_IO().
3173 */
3174 written = invalidate_inode_pages2_range(mapping,
3175 pos >> PAGE_SHIFT, end);
3176 /*
3177 * If a page can not be invalidated, return 0 to fall back
3178 * to buffered write.
3179 */
3180 if (written) {
3181 if (written == -EBUSY)
3182 return 0;
3183 goto out;
3184 }
3185
3186 written = mapping->a_ops->direct_IO(iocb, from);
3187
3188 /*
3189 * Finally, try again to invalidate clean pages which might have been
3190 * cached by non-direct readahead, or faulted in by get_user_pages()
3191 * if the source of the write was an mmap'ed region of the file
3192 * we're writing. Either one is a pretty crazy thing to do,
3193 * so we don't support it 100%. If this invalidation
3194 * fails, tough, the write still worked...
3195 *
3196 * Most of the time we do not need this since dio_complete() will do
3197 * the invalidation for us. However there are some file systems that
3198 * do not end up with dio_complete() being called, so let's not break
3199 * them by removing it completely.
3200 *
3201 * Noticeable example is a blkdev_direct_IO().
3202 *
3203 * Skip invalidation for async writes or if mapping has no pages.
3204 */
3205 if (written > 0 && mapping->nrpages &&
3206 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3207 dio_warn_stale_pagecache(file);
3208
3209 if (written > 0) {
3210 pos += written;
3211 write_len -= written;
3212 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3213 i_size_write(inode, pos);
3214 mark_inode_dirty(inode);
3215 }
3216 iocb->ki_pos = pos;
3217 }
3218 iov_iter_revert(from, write_len - iov_iter_count(from));
3219 out:
3220 return written;
3221 }
3222 EXPORT_SYMBOL(generic_file_direct_write);
3223
3224 /*
3225 * Find or create a page at the given pagecache position. Return the locked
3226 * page. This function is specifically for buffered writes.
3227 */
3228 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3229 pgoff_t index, unsigned flags)
3230 {
3231 struct page *page;
3232 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3233
3234 if (flags & AOP_FLAG_NOFS)
3235 fgp_flags |= FGP_NOFS;
3236
3237 page = pagecache_get_page(mapping, index, fgp_flags,
3238 mapping_gfp_mask(mapping));
3239 if (page)
3240 wait_for_stable_page(page);
3241
3242 return page;
3243 }
3244 EXPORT_SYMBOL(grab_cache_page_write_begin);
3245
3246 ssize_t generic_perform_write(struct file *file,
3247 struct iov_iter *i, loff_t pos)
3248 {
3249 struct address_space *mapping = file->f_mapping;
3250 const struct address_space_operations *a_ops = mapping->a_ops;
3251 long status = 0;
3252 ssize_t written = 0;
3253 unsigned int flags = 0;
3254
3255 do {
3256 struct page *page;
3257 unsigned long offset; /* Offset into pagecache page */
3258 unsigned long bytes; /* Bytes to write to page */
3259 size_t copied; /* Bytes copied from user */
3260 void *fsdata;
3261
3262 offset = (pos & (PAGE_SIZE - 1));
3263 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3264 iov_iter_count(i));
3265
3266 again:
3267 /*
3268 * Bring in the user page that we will copy from _first_.
3269 * Otherwise there's a nasty deadlock on copying from the
3270 * same page as we're writing to, without it being marked
3271 * up-to-date.
3272 *
3273 * Not only is this an optimisation, but it is also required
3274 * to check that the address is actually valid, when atomic
3275 * usercopies are used, below.
3276 */
3277 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3278 status = -EFAULT;
3279 break;
3280 }
3281
3282 if (fatal_signal_pending(current)) {
3283 status = -EINTR;
3284 break;
3285 }
3286
3287 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3288 &page, &fsdata);
3289 if (unlikely(status < 0))
3290 break;
3291
3292 if (mapping_writably_mapped(mapping))
3293 flush_dcache_page(page);
3294
3295 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3296 flush_dcache_page(page);
3297
3298 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3299 page, fsdata);
3300 if (unlikely(status < 0))
3301 break;
3302 copied = status;
3303
3304 cond_resched();
3305
3306 iov_iter_advance(i, copied);
3307 if (unlikely(copied == 0)) {
3308 /*
3309 * If we were unable to copy any data at all, we must
3310 * fall back to a single segment length write.
3311 *
3312 * If we didn't fallback here, we could livelock
3313 * because not all segments in the iov can be copied at
3314 * once without a pagefault.
3315 */
3316 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3317 iov_iter_single_seg_count(i));
3318 goto again;
3319 }
3320 pos += copied;
3321 written += copied;
3322
3323 balance_dirty_pages_ratelimited(mapping);
3324 } while (iov_iter_count(i));
3325
3326 return written ? written : status;
3327 }
3328 EXPORT_SYMBOL(generic_perform_write);
3329
3330 /**
3331 * __generic_file_write_iter - write data to a file
3332 * @iocb: IO state structure (file, offset, etc.)
3333 * @from: iov_iter with data to write
3334 *
3335 * This function does all the work needed for actually writing data to a
3336 * file. It does all basic checks, removes SUID from the file, updates
3337 * modification times and calls proper subroutines depending on whether we
3338 * do direct IO or a standard buffered write.
3339 *
3340 * It expects i_mutex to be grabbed unless we work on a block device or similar
3341 * object which does not need locking at all.
3342 *
3343 * This function does *not* take care of syncing data in case of O_SYNC write.
3344 * A caller has to handle it. This is mainly due to the fact that we want to
3345 * avoid syncing under i_mutex.
3346 *
3347 * Return:
3348 * * number of bytes written, even for truncated writes
3349 * * negative error code if no data has been written at all
3350 */
3351 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3352 {
3353 struct file *file = iocb->ki_filp;
3354 struct address_space * mapping = file->f_mapping;
3355 struct inode *inode = mapping->host;
3356 ssize_t written = 0;
3357 ssize_t err;
3358 ssize_t status;
3359
3360 /* We can write back this queue in page reclaim */
3361 current->backing_dev_info = inode_to_bdi(inode);
3362 err = file_remove_privs(file);
3363 if (err)
3364 goto out;
3365
3366 err = file_update_time(file);
3367 if (err)
3368 goto out;
3369
3370 if (iocb->ki_flags & IOCB_DIRECT) {
3371 loff_t pos, endbyte;
3372
3373 written = generic_file_direct_write(iocb, from);
3374 /*
3375 * If the write stopped short of completing, fall back to
3376 * buffered writes. Some filesystems do this for writes to
3377 * holes, for example. For DAX files, a buffered write will
3378 * not succeed (even if it did, DAX does not handle dirty
3379 * page-cache pages correctly).
3380 */
3381 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3382 goto out;
3383
3384 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3385 /*
3386 * If generic_perform_write() returned a synchronous error
3387 * then we want to return the number of bytes which were
3388 * direct-written, or the error code if that was zero. Note
3389 * that this differs from normal direct-io semantics, which
3390 * will return -EFOO even if some bytes were written.
3391 */
3392 if (unlikely(status < 0)) {
3393 err = status;
3394 goto out;
3395 }
3396 /*
3397 * We need to ensure that the page cache pages are written to
3398 * disk and invalidated to preserve the expected O_DIRECT
3399 * semantics.
3400 */
3401 endbyte = pos + status - 1;
3402 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3403 if (err == 0) {
3404 iocb->ki_pos = endbyte + 1;
3405 written += status;
3406 invalidate_mapping_pages(mapping,
3407 pos >> PAGE_SHIFT,
3408 endbyte >> PAGE_SHIFT);
3409 } else {
3410 /*
3411 * We don't know how much we wrote, so just return
3412 * the number of bytes which were direct-written
3413 */
3414 }
3415 } else {
3416 written = generic_perform_write(file, from, iocb->ki_pos);
3417 if (likely(written > 0))
3418 iocb->ki_pos += written;
3419 }
3420 out:
3421 current->backing_dev_info = NULL;
3422 return written ? written : err;
3423 }
3424 EXPORT_SYMBOL(__generic_file_write_iter);
3425
3426 /**
3427 * generic_file_write_iter - write data to a file
3428 * @iocb: IO state structure
3429 * @from: iov_iter with data to write
3430 *
3431 * This is a wrapper around __generic_file_write_iter() to be used by most
3432 * filesystems. It takes care of syncing the file in case of O_SYNC file
3433 * and acquires i_mutex as needed.
3434 * Return:
3435 * * negative error code if no data has been written at all of
3436 * vfs_fsync_range() failed for a synchronous write
3437 * * number of bytes written, even for truncated writes
3438 */
3439 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3440 {
3441 struct file *file = iocb->ki_filp;
3442 struct inode *inode = file->f_mapping->host;
3443 ssize_t ret;
3444
3445 inode_lock(inode);
3446 ret = generic_write_checks(iocb, from);
3447 if (ret > 0)
3448 ret = __generic_file_write_iter(iocb, from);
3449 inode_unlock(inode);
3450
3451 if (ret > 0)
3452 ret = generic_write_sync(iocb, ret);
3453 return ret;
3454 }
3455 EXPORT_SYMBOL(generic_file_write_iter);
3456
3457 /**
3458 * try_to_release_page() - release old fs-specific metadata on a page
3459 *
3460 * @page: the page which the kernel is trying to free
3461 * @gfp_mask: memory allocation flags (and I/O mode)
3462 *
3463 * The address_space is to try to release any data against the page
3464 * (presumably at page->private).
3465 *
3466 * This may also be called if PG_fscache is set on a page, indicating that the
3467 * page is known to the local caching routines.
3468 *
3469 * The @gfp_mask argument specifies whether I/O may be performed to release
3470 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3471 *
3472 * Return: %1 if the release was successful, otherwise return zero.
3473 */
3474 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3475 {
3476 struct address_space * const mapping = page->mapping;
3477
3478 BUG_ON(!PageLocked(page));
3479 if (PageWriteback(page))
3480 return 0;
3481
3482 if (mapping && mapping->a_ops->releasepage)
3483 return mapping->a_ops->releasepage(page, gfp_mask);
3484 return try_to_free_buffers(page);
3485 }
3486
3487 EXPORT_SYMBOL(try_to_release_page);