]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - mm/gup.c
UBUNTU: Ubuntu-5.13.0-12.12
[mirror_ubuntu-impish-kernel.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23
24 #include "internal.h"
25
26 struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29 };
30
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37 }
38
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45 }
46
47 /*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60 }
61
62 /*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
81 __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs, unsigned int flags)
83 {
84 if (flags & FOLL_GET)
85 return try_get_compound_head(page, refs);
86 else if (flags & FOLL_PIN) {
87 int orig_refs = refs;
88
89 /*
90 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
91 * right zone, so fail and let the caller fall back to the slow
92 * path.
93 */
94 if (unlikely((flags & FOLL_LONGTERM) &&
95 !is_pinnable_page(page)))
96 return NULL;
97
98 /*
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
102 *
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
105 */
106 if (!hpage_pincount_available(page))
107 refs *= GUP_PIN_COUNTING_BIAS;
108
109 page = try_get_compound_head(page, refs);
110 if (!page)
111 return NULL;
112
113 if (hpage_pincount_available(page))
114 hpage_pincount_add(page, refs);
115
116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 orig_refs);
118
119 return page;
120 }
121
122 WARN_ON_ONCE(1);
123 return NULL;
124 }
125
126 static void put_compound_head(struct page *page, int refs, unsigned int flags)
127 {
128 if (flags & FOLL_PIN) {
129 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
130 refs);
131
132 if (hpage_pincount_available(page))
133 hpage_pincount_sub(page, refs);
134 else
135 refs *= GUP_PIN_COUNTING_BIAS;
136 }
137
138 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
139 /*
140 * Calling put_page() for each ref is unnecessarily slow. Only the last
141 * ref needs a put_page().
142 */
143 if (refs > 1)
144 page_ref_sub(page, refs - 1);
145 put_page(page);
146 }
147
148 /**
149 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
150 *
151 * This might not do anything at all, depending on the flags argument.
152 *
153 * "grab" names in this file mean, "look at flags to decide whether to use
154 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
155 *
156 * @page: pointer to page to be grabbed
157 * @flags: gup flags: these are the FOLL_* flag values.
158 *
159 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
160 * time. Cases:
161 *
162 * FOLL_GET: page's refcount will be incremented by 1.
163 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
164 *
165 * Return: true for success, or if no action was required (if neither FOLL_PIN
166 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
167 * FOLL_PIN was set, but the page could not be grabbed.
168 */
169 bool __must_check try_grab_page(struct page *page, unsigned int flags)
170 {
171 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
172
173 if (flags & FOLL_GET)
174 return try_get_page(page);
175 else if (flags & FOLL_PIN) {
176 int refs = 1;
177
178 page = compound_head(page);
179
180 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
181 return false;
182
183 if (hpage_pincount_available(page))
184 hpage_pincount_add(page, 1);
185 else
186 refs = GUP_PIN_COUNTING_BIAS;
187
188 /*
189 * Similar to try_grab_compound_head(): even if using the
190 * hpage_pincount_add/_sub() routines, be sure to
191 * *also* increment the normal page refcount field at least
192 * once, so that the page really is pinned.
193 */
194 page_ref_add(page, refs);
195
196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
197 }
198
199 return true;
200 }
201
202 /**
203 * unpin_user_page() - release a dma-pinned page
204 * @page: pointer to page to be released
205 *
206 * Pages that were pinned via pin_user_pages*() must be released via either
207 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
208 * that such pages can be separately tracked and uniquely handled. In
209 * particular, interactions with RDMA and filesystems need special handling.
210 */
211 void unpin_user_page(struct page *page)
212 {
213 put_compound_head(compound_head(page), 1, FOLL_PIN);
214 }
215 EXPORT_SYMBOL(unpin_user_page);
216
217 static inline void compound_range_next(unsigned long i, unsigned long npages,
218 struct page **list, struct page **head,
219 unsigned int *ntails)
220 {
221 struct page *next, *page;
222 unsigned int nr = 1;
223
224 if (i >= npages)
225 return;
226
227 next = *list + i;
228 page = compound_head(next);
229 if (PageCompound(page) && compound_order(page) >= 1)
230 nr = min_t(unsigned int,
231 page + compound_nr(page) - next, npages - i);
232
233 *head = page;
234 *ntails = nr;
235 }
236
237 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
238 for (__i = 0, \
239 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
240 __i < __npages; __i += __ntails, \
241 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
242
243 static inline void compound_next(unsigned long i, unsigned long npages,
244 struct page **list, struct page **head,
245 unsigned int *ntails)
246 {
247 struct page *page;
248 unsigned int nr;
249
250 if (i >= npages)
251 return;
252
253 page = compound_head(list[i]);
254 for (nr = i + 1; nr < npages; nr++) {
255 if (compound_head(list[nr]) != page)
256 break;
257 }
258
259 *head = page;
260 *ntails = nr - i;
261 }
262
263 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
264 for (__i = 0, \
265 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
266 __i < __npages; __i += __ntails, \
267 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
268
269 /**
270 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
271 * @pages: array of pages to be maybe marked dirty, and definitely released.
272 * @npages: number of pages in the @pages array.
273 * @make_dirty: whether to mark the pages dirty
274 *
275 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
276 * variants called on that page.
277 *
278 * For each page in the @pages array, make that page (or its head page, if a
279 * compound page) dirty, if @make_dirty is true, and if the page was previously
280 * listed as clean. In any case, releases all pages using unpin_user_page(),
281 * possibly via unpin_user_pages(), for the non-dirty case.
282 *
283 * Please see the unpin_user_page() documentation for details.
284 *
285 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
286 * required, then the caller should a) verify that this is really correct,
287 * because _lock() is usually required, and b) hand code it:
288 * set_page_dirty_lock(), unpin_user_page().
289 *
290 */
291 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
292 bool make_dirty)
293 {
294 unsigned long index;
295 struct page *head;
296 unsigned int ntails;
297
298 if (!make_dirty) {
299 unpin_user_pages(pages, npages);
300 return;
301 }
302
303 for_each_compound_head(index, pages, npages, head, ntails) {
304 /*
305 * Checking PageDirty at this point may race with
306 * clear_page_dirty_for_io(), but that's OK. Two key
307 * cases:
308 *
309 * 1) This code sees the page as already dirty, so it
310 * skips the call to set_page_dirty(). That could happen
311 * because clear_page_dirty_for_io() called
312 * page_mkclean(), followed by set_page_dirty().
313 * However, now the page is going to get written back,
314 * which meets the original intention of setting it
315 * dirty, so all is well: clear_page_dirty_for_io() goes
316 * on to call TestClearPageDirty(), and write the page
317 * back.
318 *
319 * 2) This code sees the page as clean, so it calls
320 * set_page_dirty(). The page stays dirty, despite being
321 * written back, so it gets written back again in the
322 * next writeback cycle. This is harmless.
323 */
324 if (!PageDirty(head))
325 set_page_dirty_lock(head);
326 put_compound_head(head, ntails, FOLL_PIN);
327 }
328 }
329 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
330
331 /**
332 * unpin_user_page_range_dirty_lock() - release and optionally dirty
333 * gup-pinned page range
334 *
335 * @page: the starting page of a range maybe marked dirty, and definitely released.
336 * @npages: number of consecutive pages to release.
337 * @make_dirty: whether to mark the pages dirty
338 *
339 * "gup-pinned page range" refers to a range of pages that has had one of the
340 * pin_user_pages() variants called on that page.
341 *
342 * For the page ranges defined by [page .. page+npages], make that range (or
343 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
344 * page range was previously listed as clean.
345 *
346 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
347 * required, then the caller should a) verify that this is really correct,
348 * because _lock() is usually required, and b) hand code it:
349 * set_page_dirty_lock(), unpin_user_page().
350 *
351 */
352 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
353 bool make_dirty)
354 {
355 unsigned long index;
356 struct page *head;
357 unsigned int ntails;
358
359 for_each_compound_range(index, &page, npages, head, ntails) {
360 if (make_dirty && !PageDirty(head))
361 set_page_dirty_lock(head);
362 put_compound_head(head, ntails, FOLL_PIN);
363 }
364 }
365 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
366
367 /**
368 * unpin_user_pages() - release an array of gup-pinned pages.
369 * @pages: array of pages to be marked dirty and released.
370 * @npages: number of pages in the @pages array.
371 *
372 * For each page in the @pages array, release the page using unpin_user_page().
373 *
374 * Please see the unpin_user_page() documentation for details.
375 */
376 void unpin_user_pages(struct page **pages, unsigned long npages)
377 {
378 unsigned long index;
379 struct page *head;
380 unsigned int ntails;
381
382 /*
383 * If this WARN_ON() fires, then the system *might* be leaking pages (by
384 * leaving them pinned), but probably not. More likely, gup/pup returned
385 * a hard -ERRNO error to the caller, who erroneously passed it here.
386 */
387 if (WARN_ON(IS_ERR_VALUE(npages)))
388 return;
389
390 for_each_compound_head(index, pages, npages, head, ntails)
391 put_compound_head(head, ntails, FOLL_PIN);
392 }
393 EXPORT_SYMBOL(unpin_user_pages);
394
395 #ifdef CONFIG_MMU
396 static struct page *no_page_table(struct vm_area_struct *vma,
397 unsigned int flags)
398 {
399 /*
400 * When core dumping an enormous anonymous area that nobody
401 * has touched so far, we don't want to allocate unnecessary pages or
402 * page tables. Return error instead of NULL to skip handle_mm_fault,
403 * then get_dump_page() will return NULL to leave a hole in the dump.
404 * But we can only make this optimization where a hole would surely
405 * be zero-filled if handle_mm_fault() actually did handle it.
406 */
407 if ((flags & FOLL_DUMP) &&
408 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
409 return ERR_PTR(-EFAULT);
410 return NULL;
411 }
412
413 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
414 pte_t *pte, unsigned int flags)
415 {
416 /* No page to get reference */
417 if (flags & FOLL_GET)
418 return -EFAULT;
419
420 if (flags & FOLL_TOUCH) {
421 pte_t entry = *pte;
422
423 if (flags & FOLL_WRITE)
424 entry = pte_mkdirty(entry);
425 entry = pte_mkyoung(entry);
426
427 if (!pte_same(*pte, entry)) {
428 set_pte_at(vma->vm_mm, address, pte, entry);
429 update_mmu_cache(vma, address, pte);
430 }
431 }
432
433 /* Proper page table entry exists, but no corresponding struct page */
434 return -EEXIST;
435 }
436
437 /*
438 * FOLL_FORCE can write to even unwritable pte's, but only
439 * after we've gone through a COW cycle and they are dirty.
440 */
441 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
442 {
443 return pte_write(pte) ||
444 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
445 }
446
447 static struct page *follow_page_pte(struct vm_area_struct *vma,
448 unsigned long address, pmd_t *pmd, unsigned int flags,
449 struct dev_pagemap **pgmap)
450 {
451 struct mm_struct *mm = vma->vm_mm;
452 struct page *page;
453 spinlock_t *ptl;
454 pte_t *ptep, pte;
455 int ret;
456
457 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
458 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
459 (FOLL_PIN | FOLL_GET)))
460 return ERR_PTR(-EINVAL);
461 retry:
462 if (unlikely(pmd_bad(*pmd)))
463 return no_page_table(vma, flags);
464
465 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
466 pte = *ptep;
467 if (!pte_present(pte)) {
468 swp_entry_t entry;
469 /*
470 * KSM's break_ksm() relies upon recognizing a ksm page
471 * even while it is being migrated, so for that case we
472 * need migration_entry_wait().
473 */
474 if (likely(!(flags & FOLL_MIGRATION)))
475 goto no_page;
476 if (pte_none(pte))
477 goto no_page;
478 entry = pte_to_swp_entry(pte);
479 if (!is_migration_entry(entry))
480 goto no_page;
481 pte_unmap_unlock(ptep, ptl);
482 migration_entry_wait(mm, pmd, address);
483 goto retry;
484 }
485 if ((flags & FOLL_NUMA) && pte_protnone(pte))
486 goto no_page;
487 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
488 pte_unmap_unlock(ptep, ptl);
489 return NULL;
490 }
491
492 page = vm_normal_page(vma, address, pte);
493 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
494 /*
495 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
496 * case since they are only valid while holding the pgmap
497 * reference.
498 */
499 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
500 if (*pgmap)
501 page = pte_page(pte);
502 else
503 goto no_page;
504 } else if (unlikely(!page)) {
505 if (flags & FOLL_DUMP) {
506 /* Avoid special (like zero) pages in core dumps */
507 page = ERR_PTR(-EFAULT);
508 goto out;
509 }
510
511 if (is_zero_pfn(pte_pfn(pte))) {
512 page = pte_page(pte);
513 } else {
514 ret = follow_pfn_pte(vma, address, ptep, flags);
515 page = ERR_PTR(ret);
516 goto out;
517 }
518 }
519
520 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
521 if (unlikely(!try_grab_page(page, flags))) {
522 page = ERR_PTR(-ENOMEM);
523 goto out;
524 }
525 /*
526 * We need to make the page accessible if and only if we are going
527 * to access its content (the FOLL_PIN case). Please see
528 * Documentation/core-api/pin_user_pages.rst for details.
529 */
530 if (flags & FOLL_PIN) {
531 ret = arch_make_page_accessible(page);
532 if (ret) {
533 unpin_user_page(page);
534 page = ERR_PTR(ret);
535 goto out;
536 }
537 }
538 if (flags & FOLL_TOUCH) {
539 if ((flags & FOLL_WRITE) &&
540 !pte_dirty(pte) && !PageDirty(page))
541 set_page_dirty(page);
542 /*
543 * pte_mkyoung() would be more correct here, but atomic care
544 * is needed to avoid losing the dirty bit: it is easier to use
545 * mark_page_accessed().
546 */
547 mark_page_accessed(page);
548 }
549 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
550 /* Do not mlock pte-mapped THP */
551 if (PageTransCompound(page))
552 goto out;
553
554 /*
555 * The preliminary mapping check is mainly to avoid the
556 * pointless overhead of lock_page on the ZERO_PAGE
557 * which might bounce very badly if there is contention.
558 *
559 * If the page is already locked, we don't need to
560 * handle it now - vmscan will handle it later if and
561 * when it attempts to reclaim the page.
562 */
563 if (page->mapping && trylock_page(page)) {
564 lru_add_drain(); /* push cached pages to LRU */
565 /*
566 * Because we lock page here, and migration is
567 * blocked by the pte's page reference, and we
568 * know the page is still mapped, we don't even
569 * need to check for file-cache page truncation.
570 */
571 mlock_vma_page(page);
572 unlock_page(page);
573 }
574 }
575 out:
576 pte_unmap_unlock(ptep, ptl);
577 return page;
578 no_page:
579 pte_unmap_unlock(ptep, ptl);
580 if (!pte_none(pte))
581 return NULL;
582 return no_page_table(vma, flags);
583 }
584
585 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
586 unsigned long address, pud_t *pudp,
587 unsigned int flags,
588 struct follow_page_context *ctx)
589 {
590 pmd_t *pmd, pmdval;
591 spinlock_t *ptl;
592 struct page *page;
593 struct mm_struct *mm = vma->vm_mm;
594
595 pmd = pmd_offset(pudp, address);
596 /*
597 * The READ_ONCE() will stabilize the pmdval in a register or
598 * on the stack so that it will stop changing under the code.
599 */
600 pmdval = READ_ONCE(*pmd);
601 if (pmd_none(pmdval))
602 return no_page_table(vma, flags);
603 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
604 page = follow_huge_pmd(mm, address, pmd, flags);
605 if (page)
606 return page;
607 return no_page_table(vma, flags);
608 }
609 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
610 page = follow_huge_pd(vma, address,
611 __hugepd(pmd_val(pmdval)), flags,
612 PMD_SHIFT);
613 if (page)
614 return page;
615 return no_page_table(vma, flags);
616 }
617 retry:
618 if (!pmd_present(pmdval)) {
619 if (likely(!(flags & FOLL_MIGRATION)))
620 return no_page_table(vma, flags);
621 VM_BUG_ON(thp_migration_supported() &&
622 !is_pmd_migration_entry(pmdval));
623 if (is_pmd_migration_entry(pmdval))
624 pmd_migration_entry_wait(mm, pmd);
625 pmdval = READ_ONCE(*pmd);
626 /*
627 * MADV_DONTNEED may convert the pmd to null because
628 * mmap_lock is held in read mode
629 */
630 if (pmd_none(pmdval))
631 return no_page_table(vma, flags);
632 goto retry;
633 }
634 if (pmd_devmap(pmdval)) {
635 ptl = pmd_lock(mm, pmd);
636 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
637 spin_unlock(ptl);
638 if (page)
639 return page;
640 }
641 if (likely(!pmd_trans_huge(pmdval)))
642 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
643
644 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
645 return no_page_table(vma, flags);
646
647 retry_locked:
648 ptl = pmd_lock(mm, pmd);
649 if (unlikely(pmd_none(*pmd))) {
650 spin_unlock(ptl);
651 return no_page_table(vma, flags);
652 }
653 if (unlikely(!pmd_present(*pmd))) {
654 spin_unlock(ptl);
655 if (likely(!(flags & FOLL_MIGRATION)))
656 return no_page_table(vma, flags);
657 pmd_migration_entry_wait(mm, pmd);
658 goto retry_locked;
659 }
660 if (unlikely(!pmd_trans_huge(*pmd))) {
661 spin_unlock(ptl);
662 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
663 }
664 if (flags & FOLL_SPLIT_PMD) {
665 int ret;
666 page = pmd_page(*pmd);
667 if (is_huge_zero_page(page)) {
668 spin_unlock(ptl);
669 ret = 0;
670 split_huge_pmd(vma, pmd, address);
671 if (pmd_trans_unstable(pmd))
672 ret = -EBUSY;
673 } else {
674 spin_unlock(ptl);
675 split_huge_pmd(vma, pmd, address);
676 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
677 }
678
679 return ret ? ERR_PTR(ret) :
680 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
681 }
682 page = follow_trans_huge_pmd(vma, address, pmd, flags);
683 spin_unlock(ptl);
684 ctx->page_mask = HPAGE_PMD_NR - 1;
685 return page;
686 }
687
688 static struct page *follow_pud_mask(struct vm_area_struct *vma,
689 unsigned long address, p4d_t *p4dp,
690 unsigned int flags,
691 struct follow_page_context *ctx)
692 {
693 pud_t *pud;
694 spinlock_t *ptl;
695 struct page *page;
696 struct mm_struct *mm = vma->vm_mm;
697
698 pud = pud_offset(p4dp, address);
699 if (pud_none(*pud))
700 return no_page_table(vma, flags);
701 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
702 page = follow_huge_pud(mm, address, pud, flags);
703 if (page)
704 return page;
705 return no_page_table(vma, flags);
706 }
707 if (is_hugepd(__hugepd(pud_val(*pud)))) {
708 page = follow_huge_pd(vma, address,
709 __hugepd(pud_val(*pud)), flags,
710 PUD_SHIFT);
711 if (page)
712 return page;
713 return no_page_table(vma, flags);
714 }
715 if (pud_devmap(*pud)) {
716 ptl = pud_lock(mm, pud);
717 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
718 spin_unlock(ptl);
719 if (page)
720 return page;
721 }
722 if (unlikely(pud_bad(*pud)))
723 return no_page_table(vma, flags);
724
725 return follow_pmd_mask(vma, address, pud, flags, ctx);
726 }
727
728 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
729 unsigned long address, pgd_t *pgdp,
730 unsigned int flags,
731 struct follow_page_context *ctx)
732 {
733 p4d_t *p4d;
734 struct page *page;
735
736 p4d = p4d_offset(pgdp, address);
737 if (p4d_none(*p4d))
738 return no_page_table(vma, flags);
739 BUILD_BUG_ON(p4d_huge(*p4d));
740 if (unlikely(p4d_bad(*p4d)))
741 return no_page_table(vma, flags);
742
743 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
744 page = follow_huge_pd(vma, address,
745 __hugepd(p4d_val(*p4d)), flags,
746 P4D_SHIFT);
747 if (page)
748 return page;
749 return no_page_table(vma, flags);
750 }
751 return follow_pud_mask(vma, address, p4d, flags, ctx);
752 }
753
754 /**
755 * follow_page_mask - look up a page descriptor from a user-virtual address
756 * @vma: vm_area_struct mapping @address
757 * @address: virtual address to look up
758 * @flags: flags modifying lookup behaviour
759 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
760 * pointer to output page_mask
761 *
762 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
763 *
764 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
765 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
766 *
767 * On output, the @ctx->page_mask is set according to the size of the page.
768 *
769 * Return: the mapped (struct page *), %NULL if no mapping exists, or
770 * an error pointer if there is a mapping to something not represented
771 * by a page descriptor (see also vm_normal_page()).
772 */
773 static struct page *follow_page_mask(struct vm_area_struct *vma,
774 unsigned long address, unsigned int flags,
775 struct follow_page_context *ctx)
776 {
777 pgd_t *pgd;
778 struct page *page;
779 struct mm_struct *mm = vma->vm_mm;
780
781 ctx->page_mask = 0;
782
783 /* make this handle hugepd */
784 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
785 if (!IS_ERR(page)) {
786 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
787 return page;
788 }
789
790 pgd = pgd_offset(mm, address);
791
792 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
793 return no_page_table(vma, flags);
794
795 if (pgd_huge(*pgd)) {
796 page = follow_huge_pgd(mm, address, pgd, flags);
797 if (page)
798 return page;
799 return no_page_table(vma, flags);
800 }
801 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
802 page = follow_huge_pd(vma, address,
803 __hugepd(pgd_val(*pgd)), flags,
804 PGDIR_SHIFT);
805 if (page)
806 return page;
807 return no_page_table(vma, flags);
808 }
809
810 return follow_p4d_mask(vma, address, pgd, flags, ctx);
811 }
812
813 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
814 unsigned int foll_flags)
815 {
816 struct follow_page_context ctx = { NULL };
817 struct page *page;
818
819 page = follow_page_mask(vma, address, foll_flags, &ctx);
820 if (ctx.pgmap)
821 put_dev_pagemap(ctx.pgmap);
822 return page;
823 }
824
825 static int get_gate_page(struct mm_struct *mm, unsigned long address,
826 unsigned int gup_flags, struct vm_area_struct **vma,
827 struct page **page)
828 {
829 pgd_t *pgd;
830 p4d_t *p4d;
831 pud_t *pud;
832 pmd_t *pmd;
833 pte_t *pte;
834 int ret = -EFAULT;
835
836 /* user gate pages are read-only */
837 if (gup_flags & FOLL_WRITE)
838 return -EFAULT;
839 if (address > TASK_SIZE)
840 pgd = pgd_offset_k(address);
841 else
842 pgd = pgd_offset_gate(mm, address);
843 if (pgd_none(*pgd))
844 return -EFAULT;
845 p4d = p4d_offset(pgd, address);
846 if (p4d_none(*p4d))
847 return -EFAULT;
848 pud = pud_offset(p4d, address);
849 if (pud_none(*pud))
850 return -EFAULT;
851 pmd = pmd_offset(pud, address);
852 if (!pmd_present(*pmd))
853 return -EFAULT;
854 VM_BUG_ON(pmd_trans_huge(*pmd));
855 pte = pte_offset_map(pmd, address);
856 if (pte_none(*pte))
857 goto unmap;
858 *vma = get_gate_vma(mm);
859 if (!page)
860 goto out;
861 *page = vm_normal_page(*vma, address, *pte);
862 if (!*page) {
863 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
864 goto unmap;
865 *page = pte_page(*pte);
866 }
867 if (unlikely(!try_grab_page(*page, gup_flags))) {
868 ret = -ENOMEM;
869 goto unmap;
870 }
871 out:
872 ret = 0;
873 unmap:
874 pte_unmap(pte);
875 return ret;
876 }
877
878 /*
879 * mmap_lock must be held on entry. If @locked != NULL and *@flags
880 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
881 * is, *@locked will be set to 0 and -EBUSY returned.
882 */
883 static int faultin_page(struct vm_area_struct *vma,
884 unsigned long address, unsigned int *flags, int *locked)
885 {
886 unsigned int fault_flags = 0;
887 vm_fault_t ret;
888
889 /* mlock all present pages, but do not fault in new pages */
890 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
891 return -ENOENT;
892 if (*flags & FOLL_WRITE)
893 fault_flags |= FAULT_FLAG_WRITE;
894 if (*flags & FOLL_REMOTE)
895 fault_flags |= FAULT_FLAG_REMOTE;
896 if (locked)
897 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
898 if (*flags & FOLL_NOWAIT)
899 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
900 if (*flags & FOLL_TRIED) {
901 /*
902 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
903 * can co-exist
904 */
905 fault_flags |= FAULT_FLAG_TRIED;
906 }
907
908 ret = handle_mm_fault(vma, address, fault_flags, NULL);
909 if (ret & VM_FAULT_ERROR) {
910 int err = vm_fault_to_errno(ret, *flags);
911
912 if (err)
913 return err;
914 BUG();
915 }
916
917 if (ret & VM_FAULT_RETRY) {
918 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
919 *locked = 0;
920 return -EBUSY;
921 }
922
923 /*
924 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
925 * necessary, even if maybe_mkwrite decided not to set pte_write. We
926 * can thus safely do subsequent page lookups as if they were reads.
927 * But only do so when looping for pte_write is futile: in some cases
928 * userspace may also be wanting to write to the gotten user page,
929 * which a read fault here might prevent (a readonly page might get
930 * reCOWed by userspace write).
931 */
932 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
933 *flags |= FOLL_COW;
934 return 0;
935 }
936
937 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
938 {
939 vm_flags_t vm_flags = vma->vm_flags;
940 int write = (gup_flags & FOLL_WRITE);
941 int foreign = (gup_flags & FOLL_REMOTE);
942
943 if (vm_flags & (VM_IO | VM_PFNMAP))
944 return -EFAULT;
945
946 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
947 return -EFAULT;
948
949 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
950 return -EOPNOTSUPP;
951
952 if (write) {
953 if (!(vm_flags & VM_WRITE)) {
954 if (!(gup_flags & FOLL_FORCE))
955 return -EFAULT;
956 /*
957 * We used to let the write,force case do COW in a
958 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
959 * set a breakpoint in a read-only mapping of an
960 * executable, without corrupting the file (yet only
961 * when that file had been opened for writing!).
962 * Anon pages in shared mappings are surprising: now
963 * just reject it.
964 */
965 if (!is_cow_mapping(vm_flags))
966 return -EFAULT;
967 }
968 } else if (!(vm_flags & VM_READ)) {
969 if (!(gup_flags & FOLL_FORCE))
970 return -EFAULT;
971 /*
972 * Is there actually any vma we can reach here which does not
973 * have VM_MAYREAD set?
974 */
975 if (!(vm_flags & VM_MAYREAD))
976 return -EFAULT;
977 }
978 /*
979 * gups are always data accesses, not instruction
980 * fetches, so execute=false here
981 */
982 if (!arch_vma_access_permitted(vma, write, false, foreign))
983 return -EFAULT;
984 return 0;
985 }
986
987 /**
988 * __get_user_pages() - pin user pages in memory
989 * @mm: mm_struct of target mm
990 * @start: starting user address
991 * @nr_pages: number of pages from start to pin
992 * @gup_flags: flags modifying pin behaviour
993 * @pages: array that receives pointers to the pages pinned.
994 * Should be at least nr_pages long. Or NULL, if caller
995 * only intends to ensure the pages are faulted in.
996 * @vmas: array of pointers to vmas corresponding to each page.
997 * Or NULL if the caller does not require them.
998 * @locked: whether we're still with the mmap_lock held
999 *
1000 * Returns either number of pages pinned (which may be less than the
1001 * number requested), or an error. Details about the return value:
1002 *
1003 * -- If nr_pages is 0, returns 0.
1004 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1005 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1006 * pages pinned. Again, this may be less than nr_pages.
1007 * -- 0 return value is possible when the fault would need to be retried.
1008 *
1009 * The caller is responsible for releasing returned @pages, via put_page().
1010 *
1011 * @vmas are valid only as long as mmap_lock is held.
1012 *
1013 * Must be called with mmap_lock held. It may be released. See below.
1014 *
1015 * __get_user_pages walks a process's page tables and takes a reference to
1016 * each struct page that each user address corresponds to at a given
1017 * instant. That is, it takes the page that would be accessed if a user
1018 * thread accesses the given user virtual address at that instant.
1019 *
1020 * This does not guarantee that the page exists in the user mappings when
1021 * __get_user_pages returns, and there may even be a completely different
1022 * page there in some cases (eg. if mmapped pagecache has been invalidated
1023 * and subsequently re faulted). However it does guarantee that the page
1024 * won't be freed completely. And mostly callers simply care that the page
1025 * contains data that was valid *at some point in time*. Typically, an IO
1026 * or similar operation cannot guarantee anything stronger anyway because
1027 * locks can't be held over the syscall boundary.
1028 *
1029 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1030 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1031 * appropriate) must be called after the page is finished with, and
1032 * before put_page is called.
1033 *
1034 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1035 * released by an up_read(). That can happen if @gup_flags does not
1036 * have FOLL_NOWAIT.
1037 *
1038 * A caller using such a combination of @locked and @gup_flags
1039 * must therefore hold the mmap_lock for reading only, and recognize
1040 * when it's been released. Otherwise, it must be held for either
1041 * reading or writing and will not be released.
1042 *
1043 * In most cases, get_user_pages or get_user_pages_fast should be used
1044 * instead of __get_user_pages. __get_user_pages should be used only if
1045 * you need some special @gup_flags.
1046 */
1047 static long __get_user_pages(struct mm_struct *mm,
1048 unsigned long start, unsigned long nr_pages,
1049 unsigned int gup_flags, struct page **pages,
1050 struct vm_area_struct **vmas, int *locked)
1051 {
1052 long ret = 0, i = 0;
1053 struct vm_area_struct *vma = NULL;
1054 struct follow_page_context ctx = { NULL };
1055
1056 if (!nr_pages)
1057 return 0;
1058
1059 start = untagged_addr(start);
1060
1061 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1062
1063 /*
1064 * If FOLL_FORCE is set then do not force a full fault as the hinting
1065 * fault information is unrelated to the reference behaviour of a task
1066 * using the address space
1067 */
1068 if (!(gup_flags & FOLL_FORCE))
1069 gup_flags |= FOLL_NUMA;
1070
1071 do {
1072 struct page *page;
1073 unsigned int foll_flags = gup_flags;
1074 unsigned int page_increm;
1075
1076 /* first iteration or cross vma bound */
1077 if (!vma || start >= vma->vm_end) {
1078 vma = find_extend_vma(mm, start);
1079 if (!vma && in_gate_area(mm, start)) {
1080 ret = get_gate_page(mm, start & PAGE_MASK,
1081 gup_flags, &vma,
1082 pages ? &pages[i] : NULL);
1083 if (ret)
1084 goto out;
1085 ctx.page_mask = 0;
1086 goto next_page;
1087 }
1088
1089 if (!vma) {
1090 ret = -EFAULT;
1091 goto out;
1092 }
1093 ret = check_vma_flags(vma, gup_flags);
1094 if (ret)
1095 goto out;
1096
1097 if (is_vm_hugetlb_page(vma)) {
1098 i = follow_hugetlb_page(mm, vma, pages, vmas,
1099 &start, &nr_pages, i,
1100 gup_flags, locked);
1101 if (locked && *locked == 0) {
1102 /*
1103 * We've got a VM_FAULT_RETRY
1104 * and we've lost mmap_lock.
1105 * We must stop here.
1106 */
1107 BUG_ON(gup_flags & FOLL_NOWAIT);
1108 BUG_ON(ret != 0);
1109 goto out;
1110 }
1111 continue;
1112 }
1113 }
1114 retry:
1115 /*
1116 * If we have a pending SIGKILL, don't keep faulting pages and
1117 * potentially allocating memory.
1118 */
1119 if (fatal_signal_pending(current)) {
1120 ret = -EINTR;
1121 goto out;
1122 }
1123 cond_resched();
1124
1125 page = follow_page_mask(vma, start, foll_flags, &ctx);
1126 if (!page) {
1127 ret = faultin_page(vma, start, &foll_flags, locked);
1128 switch (ret) {
1129 case 0:
1130 goto retry;
1131 case -EBUSY:
1132 ret = 0;
1133 fallthrough;
1134 case -EFAULT:
1135 case -ENOMEM:
1136 case -EHWPOISON:
1137 goto out;
1138 case -ENOENT:
1139 goto next_page;
1140 }
1141 BUG();
1142 } else if (PTR_ERR(page) == -EEXIST) {
1143 /*
1144 * Proper page table entry exists, but no corresponding
1145 * struct page.
1146 */
1147 goto next_page;
1148 } else if (IS_ERR(page)) {
1149 ret = PTR_ERR(page);
1150 goto out;
1151 }
1152 if (pages) {
1153 pages[i] = page;
1154 flush_anon_page(vma, page, start);
1155 flush_dcache_page(page);
1156 ctx.page_mask = 0;
1157 }
1158 next_page:
1159 if (vmas) {
1160 vmas[i] = vma;
1161 ctx.page_mask = 0;
1162 }
1163 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1164 if (page_increm > nr_pages)
1165 page_increm = nr_pages;
1166 i += page_increm;
1167 start += page_increm * PAGE_SIZE;
1168 nr_pages -= page_increm;
1169 } while (nr_pages);
1170 out:
1171 if (ctx.pgmap)
1172 put_dev_pagemap(ctx.pgmap);
1173 return i ? i : ret;
1174 }
1175
1176 static bool vma_permits_fault(struct vm_area_struct *vma,
1177 unsigned int fault_flags)
1178 {
1179 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1180 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1181 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1182
1183 if (!(vm_flags & vma->vm_flags))
1184 return false;
1185
1186 /*
1187 * The architecture might have a hardware protection
1188 * mechanism other than read/write that can deny access.
1189 *
1190 * gup always represents data access, not instruction
1191 * fetches, so execute=false here:
1192 */
1193 if (!arch_vma_access_permitted(vma, write, false, foreign))
1194 return false;
1195
1196 return true;
1197 }
1198
1199 /**
1200 * fixup_user_fault() - manually resolve a user page fault
1201 * @mm: mm_struct of target mm
1202 * @address: user address
1203 * @fault_flags:flags to pass down to handle_mm_fault()
1204 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1205 * does not allow retry. If NULL, the caller must guarantee
1206 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1207 *
1208 * This is meant to be called in the specific scenario where for locking reasons
1209 * we try to access user memory in atomic context (within a pagefault_disable()
1210 * section), this returns -EFAULT, and we want to resolve the user fault before
1211 * trying again.
1212 *
1213 * Typically this is meant to be used by the futex code.
1214 *
1215 * The main difference with get_user_pages() is that this function will
1216 * unconditionally call handle_mm_fault() which will in turn perform all the
1217 * necessary SW fixup of the dirty and young bits in the PTE, while
1218 * get_user_pages() only guarantees to update these in the struct page.
1219 *
1220 * This is important for some architectures where those bits also gate the
1221 * access permission to the page because they are maintained in software. On
1222 * such architectures, gup() will not be enough to make a subsequent access
1223 * succeed.
1224 *
1225 * This function will not return with an unlocked mmap_lock. So it has not the
1226 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1227 */
1228 int fixup_user_fault(struct mm_struct *mm,
1229 unsigned long address, unsigned int fault_flags,
1230 bool *unlocked)
1231 {
1232 struct vm_area_struct *vma;
1233 vm_fault_t ret, major = 0;
1234
1235 address = untagged_addr(address);
1236
1237 if (unlocked)
1238 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1239
1240 retry:
1241 vma = find_extend_vma(mm, address);
1242 if (!vma || address < vma->vm_start)
1243 return -EFAULT;
1244
1245 if (!vma_permits_fault(vma, fault_flags))
1246 return -EFAULT;
1247
1248 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1249 fatal_signal_pending(current))
1250 return -EINTR;
1251
1252 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1253 major |= ret & VM_FAULT_MAJOR;
1254 if (ret & VM_FAULT_ERROR) {
1255 int err = vm_fault_to_errno(ret, 0);
1256
1257 if (err)
1258 return err;
1259 BUG();
1260 }
1261
1262 if (ret & VM_FAULT_RETRY) {
1263 mmap_read_lock(mm);
1264 *unlocked = true;
1265 fault_flags |= FAULT_FLAG_TRIED;
1266 goto retry;
1267 }
1268
1269 return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(fixup_user_fault);
1272
1273 /*
1274 * Please note that this function, unlike __get_user_pages will not
1275 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1276 */
1277 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1278 unsigned long start,
1279 unsigned long nr_pages,
1280 struct page **pages,
1281 struct vm_area_struct **vmas,
1282 int *locked,
1283 unsigned int flags)
1284 {
1285 long ret, pages_done;
1286 bool lock_dropped;
1287
1288 if (locked) {
1289 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1290 BUG_ON(vmas);
1291 /* check caller initialized locked */
1292 BUG_ON(*locked != 1);
1293 }
1294
1295 if (flags & FOLL_PIN)
1296 atomic_set(&mm->has_pinned, 1);
1297
1298 /*
1299 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1300 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1301 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1302 * for FOLL_GET, not for the newer FOLL_PIN.
1303 *
1304 * FOLL_PIN always expects pages to be non-null, but no need to assert
1305 * that here, as any failures will be obvious enough.
1306 */
1307 if (pages && !(flags & FOLL_PIN))
1308 flags |= FOLL_GET;
1309
1310 pages_done = 0;
1311 lock_dropped = false;
1312 for (;;) {
1313 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1314 vmas, locked);
1315 if (!locked)
1316 /* VM_FAULT_RETRY couldn't trigger, bypass */
1317 return ret;
1318
1319 /* VM_FAULT_RETRY cannot return errors */
1320 if (!*locked) {
1321 BUG_ON(ret < 0);
1322 BUG_ON(ret >= nr_pages);
1323 }
1324
1325 if (ret > 0) {
1326 nr_pages -= ret;
1327 pages_done += ret;
1328 if (!nr_pages)
1329 break;
1330 }
1331 if (*locked) {
1332 /*
1333 * VM_FAULT_RETRY didn't trigger or it was a
1334 * FOLL_NOWAIT.
1335 */
1336 if (!pages_done)
1337 pages_done = ret;
1338 break;
1339 }
1340 /*
1341 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1342 * For the prefault case (!pages) we only update counts.
1343 */
1344 if (likely(pages))
1345 pages += ret;
1346 start += ret << PAGE_SHIFT;
1347 lock_dropped = true;
1348
1349 retry:
1350 /*
1351 * Repeat on the address that fired VM_FAULT_RETRY
1352 * with both FAULT_FLAG_ALLOW_RETRY and
1353 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1354 * by fatal signals, so we need to check it before we
1355 * start trying again otherwise it can loop forever.
1356 */
1357
1358 if (fatal_signal_pending(current)) {
1359 if (!pages_done)
1360 pages_done = -EINTR;
1361 break;
1362 }
1363
1364 ret = mmap_read_lock_killable(mm);
1365 if (ret) {
1366 BUG_ON(ret > 0);
1367 if (!pages_done)
1368 pages_done = ret;
1369 break;
1370 }
1371
1372 *locked = 1;
1373 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1374 pages, NULL, locked);
1375 if (!*locked) {
1376 /* Continue to retry until we succeeded */
1377 BUG_ON(ret != 0);
1378 goto retry;
1379 }
1380 if (ret != 1) {
1381 BUG_ON(ret > 1);
1382 if (!pages_done)
1383 pages_done = ret;
1384 break;
1385 }
1386 nr_pages--;
1387 pages_done++;
1388 if (!nr_pages)
1389 break;
1390 if (likely(pages))
1391 pages++;
1392 start += PAGE_SIZE;
1393 }
1394 if (lock_dropped && *locked) {
1395 /*
1396 * We must let the caller know we temporarily dropped the lock
1397 * and so the critical section protected by it was lost.
1398 */
1399 mmap_read_unlock(mm);
1400 *locked = 0;
1401 }
1402 return pages_done;
1403 }
1404
1405 /**
1406 * populate_vma_page_range() - populate a range of pages in the vma.
1407 * @vma: target vma
1408 * @start: start address
1409 * @end: end address
1410 * @locked: whether the mmap_lock is still held
1411 *
1412 * This takes care of mlocking the pages too if VM_LOCKED is set.
1413 *
1414 * Return either number of pages pinned in the vma, or a negative error
1415 * code on error.
1416 *
1417 * vma->vm_mm->mmap_lock must be held.
1418 *
1419 * If @locked is NULL, it may be held for read or write and will
1420 * be unperturbed.
1421 *
1422 * If @locked is non-NULL, it must held for read only and may be
1423 * released. If it's released, *@locked will be set to 0.
1424 */
1425 long populate_vma_page_range(struct vm_area_struct *vma,
1426 unsigned long start, unsigned long end, int *locked)
1427 {
1428 struct mm_struct *mm = vma->vm_mm;
1429 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1430 int gup_flags;
1431
1432 VM_BUG_ON(start & ~PAGE_MASK);
1433 VM_BUG_ON(end & ~PAGE_MASK);
1434 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1435 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1436 mmap_assert_locked(mm);
1437
1438 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1439 if (vma->vm_flags & VM_LOCKONFAULT)
1440 gup_flags &= ~FOLL_POPULATE;
1441 /*
1442 * We want to touch writable mappings with a write fault in order
1443 * to break COW, except for shared mappings because these don't COW
1444 * and we would not want to dirty them for nothing.
1445 */
1446 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1447 gup_flags |= FOLL_WRITE;
1448
1449 /*
1450 * We want mlock to succeed for regions that have any permissions
1451 * other than PROT_NONE.
1452 */
1453 if (vma_is_accessible(vma))
1454 gup_flags |= FOLL_FORCE;
1455
1456 /*
1457 * We made sure addr is within a VMA, so the following will
1458 * not result in a stack expansion that recurses back here.
1459 */
1460 return __get_user_pages(mm, start, nr_pages, gup_flags,
1461 NULL, NULL, locked);
1462 }
1463
1464 /*
1465 * __mm_populate - populate and/or mlock pages within a range of address space.
1466 *
1467 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1468 * flags. VMAs must be already marked with the desired vm_flags, and
1469 * mmap_lock must not be held.
1470 */
1471 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1472 {
1473 struct mm_struct *mm = current->mm;
1474 unsigned long end, nstart, nend;
1475 struct vm_area_struct *vma = NULL;
1476 int locked = 0;
1477 long ret = 0;
1478
1479 end = start + len;
1480
1481 for (nstart = start; nstart < end; nstart = nend) {
1482 /*
1483 * We want to fault in pages for [nstart; end) address range.
1484 * Find first corresponding VMA.
1485 */
1486 if (!locked) {
1487 locked = 1;
1488 mmap_read_lock(mm);
1489 vma = find_vma(mm, nstart);
1490 } else if (nstart >= vma->vm_end)
1491 vma = vma->vm_next;
1492 if (!vma || vma->vm_start >= end)
1493 break;
1494 /*
1495 * Set [nstart; nend) to intersection of desired address
1496 * range with the first VMA. Also, skip undesirable VMA types.
1497 */
1498 nend = min(end, vma->vm_end);
1499 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1500 continue;
1501 if (nstart < vma->vm_start)
1502 nstart = vma->vm_start;
1503 /*
1504 * Now fault in a range of pages. populate_vma_page_range()
1505 * double checks the vma flags, so that it won't mlock pages
1506 * if the vma was already munlocked.
1507 */
1508 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1509 if (ret < 0) {
1510 if (ignore_errors) {
1511 ret = 0;
1512 continue; /* continue at next VMA */
1513 }
1514 break;
1515 }
1516 nend = nstart + ret * PAGE_SIZE;
1517 ret = 0;
1518 }
1519 if (locked)
1520 mmap_read_unlock(mm);
1521 return ret; /* 0 or negative error code */
1522 }
1523 #else /* CONFIG_MMU */
1524 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1525 unsigned long nr_pages, struct page **pages,
1526 struct vm_area_struct **vmas, int *locked,
1527 unsigned int foll_flags)
1528 {
1529 struct vm_area_struct *vma;
1530 unsigned long vm_flags;
1531 long i;
1532
1533 /* calculate required read or write permissions.
1534 * If FOLL_FORCE is set, we only require the "MAY" flags.
1535 */
1536 vm_flags = (foll_flags & FOLL_WRITE) ?
1537 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1538 vm_flags &= (foll_flags & FOLL_FORCE) ?
1539 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1540
1541 for (i = 0; i < nr_pages; i++) {
1542 vma = find_vma(mm, start);
1543 if (!vma)
1544 goto finish_or_fault;
1545
1546 /* protect what we can, including chardevs */
1547 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1548 !(vm_flags & vma->vm_flags))
1549 goto finish_or_fault;
1550
1551 if (pages) {
1552 pages[i] = virt_to_page(start);
1553 if (pages[i])
1554 get_page(pages[i]);
1555 }
1556 if (vmas)
1557 vmas[i] = vma;
1558 start = (start + PAGE_SIZE) & PAGE_MASK;
1559 }
1560
1561 return i;
1562
1563 finish_or_fault:
1564 return i ? : -EFAULT;
1565 }
1566 #endif /* !CONFIG_MMU */
1567
1568 /**
1569 * get_dump_page() - pin user page in memory while writing it to core dump
1570 * @addr: user address
1571 *
1572 * Returns struct page pointer of user page pinned for dump,
1573 * to be freed afterwards by put_page().
1574 *
1575 * Returns NULL on any kind of failure - a hole must then be inserted into
1576 * the corefile, to preserve alignment with its headers; and also returns
1577 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1578 * allowing a hole to be left in the corefile to save disk space.
1579 *
1580 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1581 */
1582 #ifdef CONFIG_ELF_CORE
1583 struct page *get_dump_page(unsigned long addr)
1584 {
1585 struct mm_struct *mm = current->mm;
1586 struct page *page;
1587 int locked = 1;
1588 int ret;
1589
1590 if (mmap_read_lock_killable(mm))
1591 return NULL;
1592 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1593 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1594 if (locked)
1595 mmap_read_unlock(mm);
1596 return (ret == 1) ? page : NULL;
1597 }
1598 #endif /* CONFIG_ELF_CORE */
1599
1600 #ifdef CONFIG_MIGRATION
1601 /*
1602 * Check whether all pages are pinnable, if so return number of pages. If some
1603 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1604 * pages were migrated, or if some pages were not successfully isolated.
1605 * Return negative error if migration fails.
1606 */
1607 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1608 struct page **pages,
1609 unsigned int gup_flags)
1610 {
1611 unsigned long i;
1612 unsigned long isolation_error_count = 0;
1613 bool drain_allow = true;
1614 LIST_HEAD(movable_page_list);
1615 long ret = 0;
1616 struct page *prev_head = NULL;
1617 struct page *head;
1618 struct migration_target_control mtc = {
1619 .nid = NUMA_NO_NODE,
1620 .gfp_mask = GFP_USER | __GFP_NOWARN,
1621 };
1622
1623 for (i = 0; i < nr_pages; i++) {
1624 head = compound_head(pages[i]);
1625 if (head == prev_head)
1626 continue;
1627 prev_head = head;
1628 /*
1629 * If we get a movable page, since we are going to be pinning
1630 * these entries, try to move them out if possible.
1631 */
1632 if (!is_pinnable_page(head)) {
1633 if (PageHuge(head)) {
1634 if (!isolate_huge_page(head, &movable_page_list))
1635 isolation_error_count++;
1636 } else {
1637 if (!PageLRU(head) && drain_allow) {
1638 lru_add_drain_all();
1639 drain_allow = false;
1640 }
1641
1642 if (isolate_lru_page(head)) {
1643 isolation_error_count++;
1644 continue;
1645 }
1646 list_add_tail(&head->lru, &movable_page_list);
1647 mod_node_page_state(page_pgdat(head),
1648 NR_ISOLATED_ANON +
1649 page_is_file_lru(head),
1650 thp_nr_pages(head));
1651 }
1652 }
1653 }
1654
1655 /*
1656 * If list is empty, and no isolation errors, means that all pages are
1657 * in the correct zone.
1658 */
1659 if (list_empty(&movable_page_list) && !isolation_error_count)
1660 return nr_pages;
1661
1662 if (gup_flags & FOLL_PIN) {
1663 unpin_user_pages(pages, nr_pages);
1664 } else {
1665 for (i = 0; i < nr_pages; i++)
1666 put_page(pages[i]);
1667 }
1668 if (!list_empty(&movable_page_list)) {
1669 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1670 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1671 MR_LONGTERM_PIN);
1672 if (ret && !list_empty(&movable_page_list))
1673 putback_movable_pages(&movable_page_list);
1674 }
1675
1676 return ret > 0 ? -ENOMEM : ret;
1677 }
1678 #else
1679 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1680 struct page **pages,
1681 unsigned int gup_flags)
1682 {
1683 return nr_pages;
1684 }
1685 #endif /* CONFIG_MIGRATION */
1686
1687 /*
1688 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1689 * allows us to process the FOLL_LONGTERM flag.
1690 */
1691 static long __gup_longterm_locked(struct mm_struct *mm,
1692 unsigned long start,
1693 unsigned long nr_pages,
1694 struct page **pages,
1695 struct vm_area_struct **vmas,
1696 unsigned int gup_flags)
1697 {
1698 unsigned int flags;
1699 long rc;
1700
1701 if (!(gup_flags & FOLL_LONGTERM))
1702 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1703 NULL, gup_flags);
1704 flags = memalloc_pin_save();
1705 do {
1706 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1707 NULL, gup_flags);
1708 if (rc <= 0)
1709 break;
1710 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1711 } while (!rc);
1712 memalloc_pin_restore(flags);
1713
1714 return rc;
1715 }
1716
1717 static bool is_valid_gup_flags(unsigned int gup_flags)
1718 {
1719 /*
1720 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1721 * never directly by the caller, so enforce that with an assertion:
1722 */
1723 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1724 return false;
1725 /*
1726 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1727 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1728 * FOLL_PIN.
1729 */
1730 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1731 return false;
1732
1733 return true;
1734 }
1735
1736 #ifdef CONFIG_MMU
1737 static long __get_user_pages_remote(struct mm_struct *mm,
1738 unsigned long start, unsigned long nr_pages,
1739 unsigned int gup_flags, struct page **pages,
1740 struct vm_area_struct **vmas, int *locked)
1741 {
1742 /*
1743 * Parts of FOLL_LONGTERM behavior are incompatible with
1744 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1745 * vmas. However, this only comes up if locked is set, and there are
1746 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1747 * allow what we can.
1748 */
1749 if (gup_flags & FOLL_LONGTERM) {
1750 if (WARN_ON_ONCE(locked))
1751 return -EINVAL;
1752 /*
1753 * This will check the vmas (even if our vmas arg is NULL)
1754 * and return -ENOTSUPP if DAX isn't allowed in this case:
1755 */
1756 return __gup_longterm_locked(mm, start, nr_pages, pages,
1757 vmas, gup_flags | FOLL_TOUCH |
1758 FOLL_REMOTE);
1759 }
1760
1761 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1762 locked,
1763 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1764 }
1765
1766 /**
1767 * get_user_pages_remote() - pin user pages in memory
1768 * @mm: mm_struct of target mm
1769 * @start: starting user address
1770 * @nr_pages: number of pages from start to pin
1771 * @gup_flags: flags modifying lookup behaviour
1772 * @pages: array that receives pointers to the pages pinned.
1773 * Should be at least nr_pages long. Or NULL, if caller
1774 * only intends to ensure the pages are faulted in.
1775 * @vmas: array of pointers to vmas corresponding to each page.
1776 * Or NULL if the caller does not require them.
1777 * @locked: pointer to lock flag indicating whether lock is held and
1778 * subsequently whether VM_FAULT_RETRY functionality can be
1779 * utilised. Lock must initially be held.
1780 *
1781 * Returns either number of pages pinned (which may be less than the
1782 * number requested), or an error. Details about the return value:
1783 *
1784 * -- If nr_pages is 0, returns 0.
1785 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1786 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1787 * pages pinned. Again, this may be less than nr_pages.
1788 *
1789 * The caller is responsible for releasing returned @pages, via put_page().
1790 *
1791 * @vmas are valid only as long as mmap_lock is held.
1792 *
1793 * Must be called with mmap_lock held for read or write.
1794 *
1795 * get_user_pages_remote walks a process's page tables and takes a reference
1796 * to each struct page that each user address corresponds to at a given
1797 * instant. That is, it takes the page that would be accessed if a user
1798 * thread accesses the given user virtual address at that instant.
1799 *
1800 * This does not guarantee that the page exists in the user mappings when
1801 * get_user_pages_remote returns, and there may even be a completely different
1802 * page there in some cases (eg. if mmapped pagecache has been invalidated
1803 * and subsequently re faulted). However it does guarantee that the page
1804 * won't be freed completely. And mostly callers simply care that the page
1805 * contains data that was valid *at some point in time*. Typically, an IO
1806 * or similar operation cannot guarantee anything stronger anyway because
1807 * locks can't be held over the syscall boundary.
1808 *
1809 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1810 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1811 * be called after the page is finished with, and before put_page is called.
1812 *
1813 * get_user_pages_remote is typically used for fewer-copy IO operations,
1814 * to get a handle on the memory by some means other than accesses
1815 * via the user virtual addresses. The pages may be submitted for
1816 * DMA to devices or accessed via their kernel linear mapping (via the
1817 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1818 *
1819 * See also get_user_pages_fast, for performance critical applications.
1820 *
1821 * get_user_pages_remote should be phased out in favor of
1822 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1823 * should use get_user_pages_remote because it cannot pass
1824 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1825 */
1826 long get_user_pages_remote(struct mm_struct *mm,
1827 unsigned long start, unsigned long nr_pages,
1828 unsigned int gup_flags, struct page **pages,
1829 struct vm_area_struct **vmas, int *locked)
1830 {
1831 if (!is_valid_gup_flags(gup_flags))
1832 return -EINVAL;
1833
1834 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1835 pages, vmas, locked);
1836 }
1837 EXPORT_SYMBOL(get_user_pages_remote);
1838
1839 #else /* CONFIG_MMU */
1840 long get_user_pages_remote(struct mm_struct *mm,
1841 unsigned long start, unsigned long nr_pages,
1842 unsigned int gup_flags, struct page **pages,
1843 struct vm_area_struct **vmas, int *locked)
1844 {
1845 return 0;
1846 }
1847
1848 static long __get_user_pages_remote(struct mm_struct *mm,
1849 unsigned long start, unsigned long nr_pages,
1850 unsigned int gup_flags, struct page **pages,
1851 struct vm_area_struct **vmas, int *locked)
1852 {
1853 return 0;
1854 }
1855 #endif /* !CONFIG_MMU */
1856
1857 /**
1858 * get_user_pages() - pin user pages in memory
1859 * @start: starting user address
1860 * @nr_pages: number of pages from start to pin
1861 * @gup_flags: flags modifying lookup behaviour
1862 * @pages: array that receives pointers to the pages pinned.
1863 * Should be at least nr_pages long. Or NULL, if caller
1864 * only intends to ensure the pages are faulted in.
1865 * @vmas: array of pointers to vmas corresponding to each page.
1866 * Or NULL if the caller does not require them.
1867 *
1868 * This is the same as get_user_pages_remote(), just with a less-flexible
1869 * calling convention where we assume that the mm being operated on belongs to
1870 * the current task, and doesn't allow passing of a locked parameter. We also
1871 * obviously don't pass FOLL_REMOTE in here.
1872 */
1873 long get_user_pages(unsigned long start, unsigned long nr_pages,
1874 unsigned int gup_flags, struct page **pages,
1875 struct vm_area_struct **vmas)
1876 {
1877 if (!is_valid_gup_flags(gup_flags))
1878 return -EINVAL;
1879
1880 return __gup_longterm_locked(current->mm, start, nr_pages,
1881 pages, vmas, gup_flags | FOLL_TOUCH);
1882 }
1883 EXPORT_SYMBOL(get_user_pages);
1884
1885 /**
1886 * get_user_pages_locked() - variant of get_user_pages()
1887 *
1888 * @start: starting user address
1889 * @nr_pages: number of pages from start to pin
1890 * @gup_flags: flags modifying lookup behaviour
1891 * @pages: array that receives pointers to the pages pinned.
1892 * Should be at least nr_pages long. Or NULL, if caller
1893 * only intends to ensure the pages are faulted in.
1894 * @locked: pointer to lock flag indicating whether lock is held and
1895 * subsequently whether VM_FAULT_RETRY functionality can be
1896 * utilised. Lock must initially be held.
1897 *
1898 * It is suitable to replace the form:
1899 *
1900 * mmap_read_lock(mm);
1901 * do_something()
1902 * get_user_pages(mm, ..., pages, NULL);
1903 * mmap_read_unlock(mm);
1904 *
1905 * to:
1906 *
1907 * int locked = 1;
1908 * mmap_read_lock(mm);
1909 * do_something()
1910 * get_user_pages_locked(mm, ..., pages, &locked);
1911 * if (locked)
1912 * mmap_read_unlock(mm);
1913 *
1914 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1915 * paths better by using either get_user_pages_locked() or
1916 * get_user_pages_unlocked().
1917 *
1918 */
1919 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1920 unsigned int gup_flags, struct page **pages,
1921 int *locked)
1922 {
1923 /*
1924 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1925 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1926 * vmas. As there are no users of this flag in this call we simply
1927 * disallow this option for now.
1928 */
1929 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1930 return -EINVAL;
1931 /*
1932 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1933 * never directly by the caller, so enforce that:
1934 */
1935 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1936 return -EINVAL;
1937
1938 return __get_user_pages_locked(current->mm, start, nr_pages,
1939 pages, NULL, locked,
1940 gup_flags | FOLL_TOUCH);
1941 }
1942 EXPORT_SYMBOL(get_user_pages_locked);
1943
1944 /*
1945 * get_user_pages_unlocked() is suitable to replace the form:
1946 *
1947 * mmap_read_lock(mm);
1948 * get_user_pages(mm, ..., pages, NULL);
1949 * mmap_read_unlock(mm);
1950 *
1951 * with:
1952 *
1953 * get_user_pages_unlocked(mm, ..., pages);
1954 *
1955 * It is functionally equivalent to get_user_pages_fast so
1956 * get_user_pages_fast should be used instead if specific gup_flags
1957 * (e.g. FOLL_FORCE) are not required.
1958 */
1959 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1960 struct page **pages, unsigned int gup_flags)
1961 {
1962 struct mm_struct *mm = current->mm;
1963 int locked = 1;
1964 long ret;
1965
1966 /*
1967 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1968 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1969 * vmas. As there are no users of this flag in this call we simply
1970 * disallow this option for now.
1971 */
1972 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1973 return -EINVAL;
1974
1975 mmap_read_lock(mm);
1976 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1977 &locked, gup_flags | FOLL_TOUCH);
1978 if (locked)
1979 mmap_read_unlock(mm);
1980 return ret;
1981 }
1982 EXPORT_SYMBOL(get_user_pages_unlocked);
1983
1984 /*
1985 * Fast GUP
1986 *
1987 * get_user_pages_fast attempts to pin user pages by walking the page
1988 * tables directly and avoids taking locks. Thus the walker needs to be
1989 * protected from page table pages being freed from under it, and should
1990 * block any THP splits.
1991 *
1992 * One way to achieve this is to have the walker disable interrupts, and
1993 * rely on IPIs from the TLB flushing code blocking before the page table
1994 * pages are freed. This is unsuitable for architectures that do not need
1995 * to broadcast an IPI when invalidating TLBs.
1996 *
1997 * Another way to achieve this is to batch up page table containing pages
1998 * belonging to more than one mm_user, then rcu_sched a callback to free those
1999 * pages. Disabling interrupts will allow the fast_gup walker to both block
2000 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2001 * (which is a relatively rare event). The code below adopts this strategy.
2002 *
2003 * Before activating this code, please be aware that the following assumptions
2004 * are currently made:
2005 *
2006 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2007 * free pages containing page tables or TLB flushing requires IPI broadcast.
2008 *
2009 * *) ptes can be read atomically by the architecture.
2010 *
2011 * *) access_ok is sufficient to validate userspace address ranges.
2012 *
2013 * The last two assumptions can be relaxed by the addition of helper functions.
2014 *
2015 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2016 */
2017 #ifdef CONFIG_HAVE_FAST_GUP
2018
2019 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2020 unsigned int flags,
2021 struct page **pages)
2022 {
2023 while ((*nr) - nr_start) {
2024 struct page *page = pages[--(*nr)];
2025
2026 ClearPageReferenced(page);
2027 if (flags & FOLL_PIN)
2028 unpin_user_page(page);
2029 else
2030 put_page(page);
2031 }
2032 }
2033
2034 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2035 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2036 unsigned int flags, struct page **pages, int *nr)
2037 {
2038 struct dev_pagemap *pgmap = NULL;
2039 int nr_start = *nr, ret = 0;
2040 pte_t *ptep, *ptem;
2041
2042 ptem = ptep = pte_offset_map(&pmd, addr);
2043 do {
2044 pte_t pte = ptep_get_lockless(ptep);
2045 struct page *head, *page;
2046
2047 /*
2048 * Similar to the PMD case below, NUMA hinting must take slow
2049 * path using the pte_protnone check.
2050 */
2051 if (pte_protnone(pte))
2052 goto pte_unmap;
2053
2054 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2055 goto pte_unmap;
2056
2057 if (pte_devmap(pte)) {
2058 if (unlikely(flags & FOLL_LONGTERM))
2059 goto pte_unmap;
2060
2061 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2062 if (unlikely(!pgmap)) {
2063 undo_dev_pagemap(nr, nr_start, flags, pages);
2064 goto pte_unmap;
2065 }
2066 } else if (pte_special(pte))
2067 goto pte_unmap;
2068
2069 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2070 page = pte_page(pte);
2071
2072 head = try_grab_compound_head(page, 1, flags);
2073 if (!head)
2074 goto pte_unmap;
2075
2076 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2077 put_compound_head(head, 1, flags);
2078 goto pte_unmap;
2079 }
2080
2081 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2082
2083 /*
2084 * We need to make the page accessible if and only if we are
2085 * going to access its content (the FOLL_PIN case). Please
2086 * see Documentation/core-api/pin_user_pages.rst for
2087 * details.
2088 */
2089 if (flags & FOLL_PIN) {
2090 ret = arch_make_page_accessible(page);
2091 if (ret) {
2092 unpin_user_page(page);
2093 goto pte_unmap;
2094 }
2095 }
2096 SetPageReferenced(page);
2097 pages[*nr] = page;
2098 (*nr)++;
2099
2100 } while (ptep++, addr += PAGE_SIZE, addr != end);
2101
2102 ret = 1;
2103
2104 pte_unmap:
2105 if (pgmap)
2106 put_dev_pagemap(pgmap);
2107 pte_unmap(ptem);
2108 return ret;
2109 }
2110 #else
2111
2112 /*
2113 * If we can't determine whether or not a pte is special, then fail immediately
2114 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2115 * to be special.
2116 *
2117 * For a futex to be placed on a THP tail page, get_futex_key requires a
2118 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2119 * useful to have gup_huge_pmd even if we can't operate on ptes.
2120 */
2121 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2122 unsigned int flags, struct page **pages, int *nr)
2123 {
2124 return 0;
2125 }
2126 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2127
2128 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2129 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2130 unsigned long end, unsigned int flags,
2131 struct page **pages, int *nr)
2132 {
2133 int nr_start = *nr;
2134 struct dev_pagemap *pgmap = NULL;
2135
2136 do {
2137 struct page *page = pfn_to_page(pfn);
2138
2139 pgmap = get_dev_pagemap(pfn, pgmap);
2140 if (unlikely(!pgmap)) {
2141 undo_dev_pagemap(nr, nr_start, flags, pages);
2142 return 0;
2143 }
2144 SetPageReferenced(page);
2145 pages[*nr] = page;
2146 if (unlikely(!try_grab_page(page, flags))) {
2147 undo_dev_pagemap(nr, nr_start, flags, pages);
2148 return 0;
2149 }
2150 (*nr)++;
2151 pfn++;
2152 } while (addr += PAGE_SIZE, addr != end);
2153
2154 if (pgmap)
2155 put_dev_pagemap(pgmap);
2156 return 1;
2157 }
2158
2159 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2160 unsigned long end, unsigned int flags,
2161 struct page **pages, int *nr)
2162 {
2163 unsigned long fault_pfn;
2164 int nr_start = *nr;
2165
2166 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2167 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2168 return 0;
2169
2170 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2171 undo_dev_pagemap(nr, nr_start, flags, pages);
2172 return 0;
2173 }
2174 return 1;
2175 }
2176
2177 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2178 unsigned long end, unsigned int flags,
2179 struct page **pages, int *nr)
2180 {
2181 unsigned long fault_pfn;
2182 int nr_start = *nr;
2183
2184 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2185 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2186 return 0;
2187
2188 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2189 undo_dev_pagemap(nr, nr_start, flags, pages);
2190 return 0;
2191 }
2192 return 1;
2193 }
2194 #else
2195 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2196 unsigned long end, unsigned int flags,
2197 struct page **pages, int *nr)
2198 {
2199 BUILD_BUG();
2200 return 0;
2201 }
2202
2203 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2204 unsigned long end, unsigned int flags,
2205 struct page **pages, int *nr)
2206 {
2207 BUILD_BUG();
2208 return 0;
2209 }
2210 #endif
2211
2212 static int record_subpages(struct page *page, unsigned long addr,
2213 unsigned long end, struct page **pages)
2214 {
2215 int nr;
2216
2217 for (nr = 0; addr != end; addr += PAGE_SIZE)
2218 pages[nr++] = page++;
2219
2220 return nr;
2221 }
2222
2223 #ifdef CONFIG_ARCH_HAS_HUGEPD
2224 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2225 unsigned long sz)
2226 {
2227 unsigned long __boundary = (addr + sz) & ~(sz-1);
2228 return (__boundary - 1 < end - 1) ? __boundary : end;
2229 }
2230
2231 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2232 unsigned long end, unsigned int flags,
2233 struct page **pages, int *nr)
2234 {
2235 unsigned long pte_end;
2236 struct page *head, *page;
2237 pte_t pte;
2238 int refs;
2239
2240 pte_end = (addr + sz) & ~(sz-1);
2241 if (pte_end < end)
2242 end = pte_end;
2243
2244 pte = huge_ptep_get(ptep);
2245
2246 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2247 return 0;
2248
2249 /* hugepages are never "special" */
2250 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2251
2252 head = pte_page(pte);
2253 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2254 refs = record_subpages(page, addr, end, pages + *nr);
2255
2256 head = try_grab_compound_head(head, refs, flags);
2257 if (!head)
2258 return 0;
2259
2260 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2261 put_compound_head(head, refs, flags);
2262 return 0;
2263 }
2264
2265 *nr += refs;
2266 SetPageReferenced(head);
2267 return 1;
2268 }
2269
2270 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2271 unsigned int pdshift, unsigned long end, unsigned int flags,
2272 struct page **pages, int *nr)
2273 {
2274 pte_t *ptep;
2275 unsigned long sz = 1UL << hugepd_shift(hugepd);
2276 unsigned long next;
2277
2278 ptep = hugepte_offset(hugepd, addr, pdshift);
2279 do {
2280 next = hugepte_addr_end(addr, end, sz);
2281 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2282 return 0;
2283 } while (ptep++, addr = next, addr != end);
2284
2285 return 1;
2286 }
2287 #else
2288 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2289 unsigned int pdshift, unsigned long end, unsigned int flags,
2290 struct page **pages, int *nr)
2291 {
2292 return 0;
2293 }
2294 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2295
2296 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2297 unsigned long end, unsigned int flags,
2298 struct page **pages, int *nr)
2299 {
2300 struct page *head, *page;
2301 int refs;
2302
2303 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2304 return 0;
2305
2306 if (pmd_devmap(orig)) {
2307 if (unlikely(flags & FOLL_LONGTERM))
2308 return 0;
2309 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2310 pages, nr);
2311 }
2312
2313 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2314 refs = record_subpages(page, addr, end, pages + *nr);
2315
2316 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2317 if (!head)
2318 return 0;
2319
2320 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2321 put_compound_head(head, refs, flags);
2322 return 0;
2323 }
2324
2325 *nr += refs;
2326 SetPageReferenced(head);
2327 return 1;
2328 }
2329
2330 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2331 unsigned long end, unsigned int flags,
2332 struct page **pages, int *nr)
2333 {
2334 struct page *head, *page;
2335 int refs;
2336
2337 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2338 return 0;
2339
2340 if (pud_devmap(orig)) {
2341 if (unlikely(flags & FOLL_LONGTERM))
2342 return 0;
2343 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2344 pages, nr);
2345 }
2346
2347 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2348 refs = record_subpages(page, addr, end, pages + *nr);
2349
2350 head = try_grab_compound_head(pud_page(orig), refs, flags);
2351 if (!head)
2352 return 0;
2353
2354 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2355 put_compound_head(head, refs, flags);
2356 return 0;
2357 }
2358
2359 *nr += refs;
2360 SetPageReferenced(head);
2361 return 1;
2362 }
2363
2364 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2365 unsigned long end, unsigned int flags,
2366 struct page **pages, int *nr)
2367 {
2368 int refs;
2369 struct page *head, *page;
2370
2371 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2372 return 0;
2373
2374 BUILD_BUG_ON(pgd_devmap(orig));
2375
2376 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2377 refs = record_subpages(page, addr, end, pages + *nr);
2378
2379 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2380 if (!head)
2381 return 0;
2382
2383 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2384 put_compound_head(head, refs, flags);
2385 return 0;
2386 }
2387
2388 *nr += refs;
2389 SetPageReferenced(head);
2390 return 1;
2391 }
2392
2393 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2394 unsigned int flags, struct page **pages, int *nr)
2395 {
2396 unsigned long next;
2397 pmd_t *pmdp;
2398
2399 pmdp = pmd_offset_lockless(pudp, pud, addr);
2400 do {
2401 pmd_t pmd = READ_ONCE(*pmdp);
2402
2403 next = pmd_addr_end(addr, end);
2404 if (!pmd_present(pmd))
2405 return 0;
2406
2407 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2408 pmd_devmap(pmd))) {
2409 /*
2410 * NUMA hinting faults need to be handled in the GUP
2411 * slowpath for accounting purposes and so that they
2412 * can be serialised against THP migration.
2413 */
2414 if (pmd_protnone(pmd))
2415 return 0;
2416
2417 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2418 pages, nr))
2419 return 0;
2420
2421 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2422 /*
2423 * architecture have different format for hugetlbfs
2424 * pmd format and THP pmd format
2425 */
2426 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2427 PMD_SHIFT, next, flags, pages, nr))
2428 return 0;
2429 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2430 return 0;
2431 } while (pmdp++, addr = next, addr != end);
2432
2433 return 1;
2434 }
2435
2436 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2437 unsigned int flags, struct page **pages, int *nr)
2438 {
2439 unsigned long next;
2440 pud_t *pudp;
2441
2442 pudp = pud_offset_lockless(p4dp, p4d, addr);
2443 do {
2444 pud_t pud = READ_ONCE(*pudp);
2445
2446 next = pud_addr_end(addr, end);
2447 if (unlikely(!pud_present(pud)))
2448 return 0;
2449 if (unlikely(pud_huge(pud))) {
2450 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2451 pages, nr))
2452 return 0;
2453 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2454 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2455 PUD_SHIFT, next, flags, pages, nr))
2456 return 0;
2457 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2458 return 0;
2459 } while (pudp++, addr = next, addr != end);
2460
2461 return 1;
2462 }
2463
2464 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2465 unsigned int flags, struct page **pages, int *nr)
2466 {
2467 unsigned long next;
2468 p4d_t *p4dp;
2469
2470 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2471 do {
2472 p4d_t p4d = READ_ONCE(*p4dp);
2473
2474 next = p4d_addr_end(addr, end);
2475 if (p4d_none(p4d))
2476 return 0;
2477 BUILD_BUG_ON(p4d_huge(p4d));
2478 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2479 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2480 P4D_SHIFT, next, flags, pages, nr))
2481 return 0;
2482 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2483 return 0;
2484 } while (p4dp++, addr = next, addr != end);
2485
2486 return 1;
2487 }
2488
2489 static void gup_pgd_range(unsigned long addr, unsigned long end,
2490 unsigned int flags, struct page **pages, int *nr)
2491 {
2492 unsigned long next;
2493 pgd_t *pgdp;
2494
2495 pgdp = pgd_offset(current->mm, addr);
2496 do {
2497 pgd_t pgd = READ_ONCE(*pgdp);
2498
2499 next = pgd_addr_end(addr, end);
2500 if (pgd_none(pgd))
2501 return;
2502 if (unlikely(pgd_huge(pgd))) {
2503 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2504 pages, nr))
2505 return;
2506 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2507 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2508 PGDIR_SHIFT, next, flags, pages, nr))
2509 return;
2510 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2511 return;
2512 } while (pgdp++, addr = next, addr != end);
2513 }
2514 #else
2515 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2516 unsigned int flags, struct page **pages, int *nr)
2517 {
2518 }
2519 #endif /* CONFIG_HAVE_FAST_GUP */
2520
2521 #ifndef gup_fast_permitted
2522 /*
2523 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2524 * we need to fall back to the slow version:
2525 */
2526 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2527 {
2528 return true;
2529 }
2530 #endif
2531
2532 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2533 unsigned int gup_flags, struct page **pages)
2534 {
2535 int ret;
2536
2537 /*
2538 * FIXME: FOLL_LONGTERM does not work with
2539 * get_user_pages_unlocked() (see comments in that function)
2540 */
2541 if (gup_flags & FOLL_LONGTERM) {
2542 mmap_read_lock(current->mm);
2543 ret = __gup_longterm_locked(current->mm,
2544 start, nr_pages,
2545 pages, NULL, gup_flags);
2546 mmap_read_unlock(current->mm);
2547 } else {
2548 ret = get_user_pages_unlocked(start, nr_pages,
2549 pages, gup_flags);
2550 }
2551
2552 return ret;
2553 }
2554
2555 static unsigned long lockless_pages_from_mm(unsigned long start,
2556 unsigned long end,
2557 unsigned int gup_flags,
2558 struct page **pages)
2559 {
2560 unsigned long flags;
2561 int nr_pinned = 0;
2562 unsigned seq;
2563
2564 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2565 !gup_fast_permitted(start, end))
2566 return 0;
2567
2568 if (gup_flags & FOLL_PIN) {
2569 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2570 if (seq & 1)
2571 return 0;
2572 }
2573
2574 /*
2575 * Disable interrupts. The nested form is used, in order to allow full,
2576 * general purpose use of this routine.
2577 *
2578 * With interrupts disabled, we block page table pages from being freed
2579 * from under us. See struct mmu_table_batch comments in
2580 * include/asm-generic/tlb.h for more details.
2581 *
2582 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2583 * that come from THPs splitting.
2584 */
2585 local_irq_save(flags);
2586 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2587 local_irq_restore(flags);
2588
2589 /*
2590 * When pinning pages for DMA there could be a concurrent write protect
2591 * from fork() via copy_page_range(), in this case always fail fast GUP.
2592 */
2593 if (gup_flags & FOLL_PIN) {
2594 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2595 unpin_user_pages(pages, nr_pinned);
2596 return 0;
2597 }
2598 }
2599 return nr_pinned;
2600 }
2601
2602 static int internal_get_user_pages_fast(unsigned long start,
2603 unsigned long nr_pages,
2604 unsigned int gup_flags,
2605 struct page **pages)
2606 {
2607 unsigned long len, end;
2608 unsigned long nr_pinned;
2609 int ret;
2610
2611 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2612 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2613 FOLL_FAST_ONLY)))
2614 return -EINVAL;
2615
2616 if (gup_flags & FOLL_PIN)
2617 atomic_set(&current->mm->has_pinned, 1);
2618
2619 if (!(gup_flags & FOLL_FAST_ONLY))
2620 might_lock_read(&current->mm->mmap_lock);
2621
2622 start = untagged_addr(start) & PAGE_MASK;
2623 len = nr_pages << PAGE_SHIFT;
2624 if (check_add_overflow(start, len, &end))
2625 return 0;
2626 if (unlikely(!access_ok((void __user *)start, len)))
2627 return -EFAULT;
2628
2629 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2630 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2631 return nr_pinned;
2632
2633 /* Slow path: try to get the remaining pages with get_user_pages */
2634 start += nr_pinned << PAGE_SHIFT;
2635 pages += nr_pinned;
2636 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2637 pages);
2638 if (ret < 0) {
2639 /*
2640 * The caller has to unpin the pages we already pinned so
2641 * returning -errno is not an option
2642 */
2643 if (nr_pinned)
2644 return nr_pinned;
2645 return ret;
2646 }
2647 return ret + nr_pinned;
2648 }
2649
2650 /**
2651 * get_user_pages_fast_only() - pin user pages in memory
2652 * @start: starting user address
2653 * @nr_pages: number of pages from start to pin
2654 * @gup_flags: flags modifying pin behaviour
2655 * @pages: array that receives pointers to the pages pinned.
2656 * Should be at least nr_pages long.
2657 *
2658 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2659 * the regular GUP.
2660 * Note a difference with get_user_pages_fast: this always returns the
2661 * number of pages pinned, 0 if no pages were pinned.
2662 *
2663 * If the architecture does not support this function, simply return with no
2664 * pages pinned.
2665 *
2666 * Careful, careful! COW breaking can go either way, so a non-write
2667 * access can get ambiguous page results. If you call this function without
2668 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2669 */
2670 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2671 unsigned int gup_flags, struct page **pages)
2672 {
2673 int nr_pinned;
2674 /*
2675 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2676 * because gup fast is always a "pin with a +1 page refcount" request.
2677 *
2678 * FOLL_FAST_ONLY is required in order to match the API description of
2679 * this routine: no fall back to regular ("slow") GUP.
2680 */
2681 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2682
2683 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2684 pages);
2685
2686 /*
2687 * As specified in the API description above, this routine is not
2688 * allowed to return negative values. However, the common core
2689 * routine internal_get_user_pages_fast() *can* return -errno.
2690 * Therefore, correct for that here:
2691 */
2692 if (nr_pinned < 0)
2693 nr_pinned = 0;
2694
2695 return nr_pinned;
2696 }
2697 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2698
2699 /**
2700 * get_user_pages_fast() - pin user pages in memory
2701 * @start: starting user address
2702 * @nr_pages: number of pages from start to pin
2703 * @gup_flags: flags modifying pin behaviour
2704 * @pages: array that receives pointers to the pages pinned.
2705 * Should be at least nr_pages long.
2706 *
2707 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2708 * If not successful, it will fall back to taking the lock and
2709 * calling get_user_pages().
2710 *
2711 * Returns number of pages pinned. This may be fewer than the number requested.
2712 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2713 * -errno.
2714 */
2715 int get_user_pages_fast(unsigned long start, int nr_pages,
2716 unsigned int gup_flags, struct page **pages)
2717 {
2718 if (!is_valid_gup_flags(gup_flags))
2719 return -EINVAL;
2720
2721 /*
2722 * The caller may or may not have explicitly set FOLL_GET; either way is
2723 * OK. However, internally (within mm/gup.c), gup fast variants must set
2724 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2725 * request.
2726 */
2727 gup_flags |= FOLL_GET;
2728 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2729 }
2730 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2731
2732 /**
2733 * pin_user_pages_fast() - pin user pages in memory without taking locks
2734 *
2735 * @start: starting user address
2736 * @nr_pages: number of pages from start to pin
2737 * @gup_flags: flags modifying pin behaviour
2738 * @pages: array that receives pointers to the pages pinned.
2739 * Should be at least nr_pages long.
2740 *
2741 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2742 * get_user_pages_fast() for documentation on the function arguments, because
2743 * the arguments here are identical.
2744 *
2745 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2746 * see Documentation/core-api/pin_user_pages.rst for further details.
2747 */
2748 int pin_user_pages_fast(unsigned long start, int nr_pages,
2749 unsigned int gup_flags, struct page **pages)
2750 {
2751 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2752 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2753 return -EINVAL;
2754
2755 gup_flags |= FOLL_PIN;
2756 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2757 }
2758 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2759
2760 /*
2761 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2762 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2763 *
2764 * The API rules are the same, too: no negative values may be returned.
2765 */
2766 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2767 unsigned int gup_flags, struct page **pages)
2768 {
2769 int nr_pinned;
2770
2771 /*
2772 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2773 * rules require returning 0, rather than -errno:
2774 */
2775 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2776 return 0;
2777 /*
2778 * FOLL_FAST_ONLY is required in order to match the API description of
2779 * this routine: no fall back to regular ("slow") GUP.
2780 */
2781 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2782 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2783 pages);
2784 /*
2785 * This routine is not allowed to return negative values. However,
2786 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2787 * correct for that here:
2788 */
2789 if (nr_pinned < 0)
2790 nr_pinned = 0;
2791
2792 return nr_pinned;
2793 }
2794 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2795
2796 /**
2797 * pin_user_pages_remote() - pin pages of a remote process
2798 *
2799 * @mm: mm_struct of target mm
2800 * @start: starting user address
2801 * @nr_pages: number of pages from start to pin
2802 * @gup_flags: flags modifying lookup behaviour
2803 * @pages: array that receives pointers to the pages pinned.
2804 * Should be at least nr_pages long. Or NULL, if caller
2805 * only intends to ensure the pages are faulted in.
2806 * @vmas: array of pointers to vmas corresponding to each page.
2807 * Or NULL if the caller does not require them.
2808 * @locked: pointer to lock flag indicating whether lock is held and
2809 * subsequently whether VM_FAULT_RETRY functionality can be
2810 * utilised. Lock must initially be held.
2811 *
2812 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2813 * get_user_pages_remote() for documentation on the function arguments, because
2814 * the arguments here are identical.
2815 *
2816 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2817 * see Documentation/core-api/pin_user_pages.rst for details.
2818 */
2819 long pin_user_pages_remote(struct mm_struct *mm,
2820 unsigned long start, unsigned long nr_pages,
2821 unsigned int gup_flags, struct page **pages,
2822 struct vm_area_struct **vmas, int *locked)
2823 {
2824 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2825 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2826 return -EINVAL;
2827
2828 gup_flags |= FOLL_PIN;
2829 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2830 pages, vmas, locked);
2831 }
2832 EXPORT_SYMBOL(pin_user_pages_remote);
2833
2834 /**
2835 * pin_user_pages() - pin user pages in memory for use by other devices
2836 *
2837 * @start: starting user address
2838 * @nr_pages: number of pages from start to pin
2839 * @gup_flags: flags modifying lookup behaviour
2840 * @pages: array that receives pointers to the pages pinned.
2841 * Should be at least nr_pages long. Or NULL, if caller
2842 * only intends to ensure the pages are faulted in.
2843 * @vmas: array of pointers to vmas corresponding to each page.
2844 * Or NULL if the caller does not require them.
2845 *
2846 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2847 * FOLL_PIN is set.
2848 *
2849 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2850 * see Documentation/core-api/pin_user_pages.rst for details.
2851 */
2852 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2853 unsigned int gup_flags, struct page **pages,
2854 struct vm_area_struct **vmas)
2855 {
2856 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2857 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2858 return -EINVAL;
2859
2860 gup_flags |= FOLL_PIN;
2861 return __gup_longterm_locked(current->mm, start, nr_pages,
2862 pages, vmas, gup_flags);
2863 }
2864 EXPORT_SYMBOL(pin_user_pages);
2865
2866 /*
2867 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2868 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2869 * FOLL_PIN and rejects FOLL_GET.
2870 */
2871 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2872 struct page **pages, unsigned int gup_flags)
2873 {
2874 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2875 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2876 return -EINVAL;
2877
2878 gup_flags |= FOLL_PIN;
2879 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2880 }
2881 EXPORT_SYMBOL(pin_user_pages_unlocked);
2882
2883 /*
2884 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2885 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2886 * FOLL_GET.
2887 */
2888 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2889 unsigned int gup_flags, struct page **pages,
2890 int *locked)
2891 {
2892 /*
2893 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2894 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2895 * vmas. As there are no users of this flag in this call we simply
2896 * disallow this option for now.
2897 */
2898 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2899 return -EINVAL;
2900
2901 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2902 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2903 return -EINVAL;
2904
2905 gup_flags |= FOLL_PIN;
2906 return __get_user_pages_locked(current->mm, start, nr_pages,
2907 pages, NULL, locked,
2908 gup_flags | FOLL_TOUCH);
2909 }
2910 EXPORT_SYMBOL(pin_user_pages_locked);