]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/gup.c
Merge tag 'pinctrl-v5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-focal-kernel.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
32 typedef int (*set_dirty_func_t)(struct page *page);
33
34 static void __put_user_pages_dirty(struct page **pages,
35 unsigned long npages,
36 set_dirty_func_t sdf)
37 {
38 unsigned long index;
39
40 for (index = 0; index < npages; index++) {
41 struct page *page = compound_head(pages[index]);
42
43 /*
44 * Checking PageDirty at this point may race with
45 * clear_page_dirty_for_io(), but that's OK. Two key cases:
46 *
47 * 1) This code sees the page as already dirty, so it skips
48 * the call to sdf(). That could happen because
49 * clear_page_dirty_for_io() called page_mkclean(),
50 * followed by set_page_dirty(). However, now the page is
51 * going to get written back, which meets the original
52 * intention of setting it dirty, so all is well:
53 * clear_page_dirty_for_io() goes on to call
54 * TestClearPageDirty(), and write the page back.
55 *
56 * 2) This code sees the page as clean, so it calls sdf().
57 * The page stays dirty, despite being written back, so it
58 * gets written back again in the next writeback cycle.
59 * This is harmless.
60 */
61 if (!PageDirty(page))
62 sdf(page);
63
64 put_user_page(page);
65 }
66 }
67
68 /**
69 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
70 * @pages: array of pages to be marked dirty and released.
71 * @npages: number of pages in the @pages array.
72 *
73 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
74 * variants called on that page.
75 *
76 * For each page in the @pages array, make that page (or its head page, if a
77 * compound page) dirty, if it was previously listed as clean. Then, release
78 * the page using put_user_page().
79 *
80 * Please see the put_user_page() documentation for details.
81 *
82 * set_page_dirty(), which does not lock the page, is used here.
83 * Therefore, it is the caller's responsibility to ensure that this is
84 * safe. If not, then put_user_pages_dirty_lock() should be called instead.
85 *
86 */
87 void put_user_pages_dirty(struct page **pages, unsigned long npages)
88 {
89 __put_user_pages_dirty(pages, npages, set_page_dirty);
90 }
91 EXPORT_SYMBOL(put_user_pages_dirty);
92
93 /**
94 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
95 * @pages: array of pages to be marked dirty and released.
96 * @npages: number of pages in the @pages array.
97 *
98 * For each page in the @pages array, make that page (or its head page, if a
99 * compound page) dirty, if it was previously listed as clean. Then, release
100 * the page using put_user_page().
101 *
102 * Please see the put_user_page() documentation for details.
103 *
104 * This is just like put_user_pages_dirty(), except that it invokes
105 * set_page_dirty_lock(), instead of set_page_dirty().
106 *
107 */
108 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
109 {
110 __put_user_pages_dirty(pages, npages, set_page_dirty_lock);
111 }
112 EXPORT_SYMBOL(put_user_pages_dirty_lock);
113
114 /**
115 * put_user_pages() - release an array of gup-pinned pages.
116 * @pages: array of pages to be marked dirty and released.
117 * @npages: number of pages in the @pages array.
118 *
119 * For each page in the @pages array, release the page using put_user_page().
120 *
121 * Please see the put_user_page() documentation for details.
122 */
123 void put_user_pages(struct page **pages, unsigned long npages)
124 {
125 unsigned long index;
126
127 /*
128 * TODO: this can be optimized for huge pages: if a series of pages is
129 * physically contiguous and part of the same compound page, then a
130 * single operation to the head page should suffice.
131 */
132 for (index = 0; index < npages; index++)
133 put_user_page(pages[index]);
134 }
135 EXPORT_SYMBOL(put_user_pages);
136
137 #ifdef CONFIG_MMU
138 static struct page *no_page_table(struct vm_area_struct *vma,
139 unsigned int flags)
140 {
141 /*
142 * When core dumping an enormous anonymous area that nobody
143 * has touched so far, we don't want to allocate unnecessary pages or
144 * page tables. Return error instead of NULL to skip handle_mm_fault,
145 * then get_dump_page() will return NULL to leave a hole in the dump.
146 * But we can only make this optimization where a hole would surely
147 * be zero-filled if handle_mm_fault() actually did handle it.
148 */
149 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
150 return ERR_PTR(-EFAULT);
151 return NULL;
152 }
153
154 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
155 pte_t *pte, unsigned int flags)
156 {
157 /* No page to get reference */
158 if (flags & FOLL_GET)
159 return -EFAULT;
160
161 if (flags & FOLL_TOUCH) {
162 pte_t entry = *pte;
163
164 if (flags & FOLL_WRITE)
165 entry = pte_mkdirty(entry);
166 entry = pte_mkyoung(entry);
167
168 if (!pte_same(*pte, entry)) {
169 set_pte_at(vma->vm_mm, address, pte, entry);
170 update_mmu_cache(vma, address, pte);
171 }
172 }
173
174 /* Proper page table entry exists, but no corresponding struct page */
175 return -EEXIST;
176 }
177
178 /*
179 * FOLL_FORCE can write to even unwritable pte's, but only
180 * after we've gone through a COW cycle and they are dirty.
181 */
182 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
183 {
184 return pte_write(pte) ||
185 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
186 }
187
188 static struct page *follow_page_pte(struct vm_area_struct *vma,
189 unsigned long address, pmd_t *pmd, unsigned int flags,
190 struct dev_pagemap **pgmap)
191 {
192 struct mm_struct *mm = vma->vm_mm;
193 struct page *page;
194 spinlock_t *ptl;
195 pte_t *ptep, pte;
196
197 retry:
198 if (unlikely(pmd_bad(*pmd)))
199 return no_page_table(vma, flags);
200
201 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
202 pte = *ptep;
203 if (!pte_present(pte)) {
204 swp_entry_t entry;
205 /*
206 * KSM's break_ksm() relies upon recognizing a ksm page
207 * even while it is being migrated, so for that case we
208 * need migration_entry_wait().
209 */
210 if (likely(!(flags & FOLL_MIGRATION)))
211 goto no_page;
212 if (pte_none(pte))
213 goto no_page;
214 entry = pte_to_swp_entry(pte);
215 if (!is_migration_entry(entry))
216 goto no_page;
217 pte_unmap_unlock(ptep, ptl);
218 migration_entry_wait(mm, pmd, address);
219 goto retry;
220 }
221 if ((flags & FOLL_NUMA) && pte_protnone(pte))
222 goto no_page;
223 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
224 pte_unmap_unlock(ptep, ptl);
225 return NULL;
226 }
227
228 page = vm_normal_page(vma, address, pte);
229 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
230 /*
231 * Only return device mapping pages in the FOLL_GET case since
232 * they are only valid while holding the pgmap reference.
233 */
234 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
235 if (*pgmap)
236 page = pte_page(pte);
237 else
238 goto no_page;
239 } else if (unlikely(!page)) {
240 if (flags & FOLL_DUMP) {
241 /* Avoid special (like zero) pages in core dumps */
242 page = ERR_PTR(-EFAULT);
243 goto out;
244 }
245
246 if (is_zero_pfn(pte_pfn(pte))) {
247 page = pte_page(pte);
248 } else {
249 int ret;
250
251 ret = follow_pfn_pte(vma, address, ptep, flags);
252 page = ERR_PTR(ret);
253 goto out;
254 }
255 }
256
257 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
258 int ret;
259 get_page(page);
260 pte_unmap_unlock(ptep, ptl);
261 lock_page(page);
262 ret = split_huge_page(page);
263 unlock_page(page);
264 put_page(page);
265 if (ret)
266 return ERR_PTR(ret);
267 goto retry;
268 }
269
270 if (flags & FOLL_GET) {
271 if (unlikely(!try_get_page(page))) {
272 page = ERR_PTR(-ENOMEM);
273 goto out;
274 }
275 }
276 if (flags & FOLL_TOUCH) {
277 if ((flags & FOLL_WRITE) &&
278 !pte_dirty(pte) && !PageDirty(page))
279 set_page_dirty(page);
280 /*
281 * pte_mkyoung() would be more correct here, but atomic care
282 * is needed to avoid losing the dirty bit: it is easier to use
283 * mark_page_accessed().
284 */
285 mark_page_accessed(page);
286 }
287 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
288 /* Do not mlock pte-mapped THP */
289 if (PageTransCompound(page))
290 goto out;
291
292 /*
293 * The preliminary mapping check is mainly to avoid the
294 * pointless overhead of lock_page on the ZERO_PAGE
295 * which might bounce very badly if there is contention.
296 *
297 * If the page is already locked, we don't need to
298 * handle it now - vmscan will handle it later if and
299 * when it attempts to reclaim the page.
300 */
301 if (page->mapping && trylock_page(page)) {
302 lru_add_drain(); /* push cached pages to LRU */
303 /*
304 * Because we lock page here, and migration is
305 * blocked by the pte's page reference, and we
306 * know the page is still mapped, we don't even
307 * need to check for file-cache page truncation.
308 */
309 mlock_vma_page(page);
310 unlock_page(page);
311 }
312 }
313 out:
314 pte_unmap_unlock(ptep, ptl);
315 return page;
316 no_page:
317 pte_unmap_unlock(ptep, ptl);
318 if (!pte_none(pte))
319 return NULL;
320 return no_page_table(vma, flags);
321 }
322
323 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
324 unsigned long address, pud_t *pudp,
325 unsigned int flags,
326 struct follow_page_context *ctx)
327 {
328 pmd_t *pmd, pmdval;
329 spinlock_t *ptl;
330 struct page *page;
331 struct mm_struct *mm = vma->vm_mm;
332
333 pmd = pmd_offset(pudp, address);
334 /*
335 * The READ_ONCE() will stabilize the pmdval in a register or
336 * on the stack so that it will stop changing under the code.
337 */
338 pmdval = READ_ONCE(*pmd);
339 if (pmd_none(pmdval))
340 return no_page_table(vma, flags);
341 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
342 page = follow_huge_pmd(mm, address, pmd, flags);
343 if (page)
344 return page;
345 return no_page_table(vma, flags);
346 }
347 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
348 page = follow_huge_pd(vma, address,
349 __hugepd(pmd_val(pmdval)), flags,
350 PMD_SHIFT);
351 if (page)
352 return page;
353 return no_page_table(vma, flags);
354 }
355 retry:
356 if (!pmd_present(pmdval)) {
357 if (likely(!(flags & FOLL_MIGRATION)))
358 return no_page_table(vma, flags);
359 VM_BUG_ON(thp_migration_supported() &&
360 !is_pmd_migration_entry(pmdval));
361 if (is_pmd_migration_entry(pmdval))
362 pmd_migration_entry_wait(mm, pmd);
363 pmdval = READ_ONCE(*pmd);
364 /*
365 * MADV_DONTNEED may convert the pmd to null because
366 * mmap_sem is held in read mode
367 */
368 if (pmd_none(pmdval))
369 return no_page_table(vma, flags);
370 goto retry;
371 }
372 if (pmd_devmap(pmdval)) {
373 ptl = pmd_lock(mm, pmd);
374 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
375 spin_unlock(ptl);
376 if (page)
377 return page;
378 }
379 if (likely(!pmd_trans_huge(pmdval)))
380 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
381
382 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
383 return no_page_table(vma, flags);
384
385 retry_locked:
386 ptl = pmd_lock(mm, pmd);
387 if (unlikely(pmd_none(*pmd))) {
388 spin_unlock(ptl);
389 return no_page_table(vma, flags);
390 }
391 if (unlikely(!pmd_present(*pmd))) {
392 spin_unlock(ptl);
393 if (likely(!(flags & FOLL_MIGRATION)))
394 return no_page_table(vma, flags);
395 pmd_migration_entry_wait(mm, pmd);
396 goto retry_locked;
397 }
398 if (unlikely(!pmd_trans_huge(*pmd))) {
399 spin_unlock(ptl);
400 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
401 }
402 if (flags & FOLL_SPLIT) {
403 int ret;
404 page = pmd_page(*pmd);
405 if (is_huge_zero_page(page)) {
406 spin_unlock(ptl);
407 ret = 0;
408 split_huge_pmd(vma, pmd, address);
409 if (pmd_trans_unstable(pmd))
410 ret = -EBUSY;
411 } else {
412 if (unlikely(!try_get_page(page))) {
413 spin_unlock(ptl);
414 return ERR_PTR(-ENOMEM);
415 }
416 spin_unlock(ptl);
417 lock_page(page);
418 ret = split_huge_page(page);
419 unlock_page(page);
420 put_page(page);
421 if (pmd_none(*pmd))
422 return no_page_table(vma, flags);
423 }
424
425 return ret ? ERR_PTR(ret) :
426 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
427 }
428 page = follow_trans_huge_pmd(vma, address, pmd, flags);
429 spin_unlock(ptl);
430 ctx->page_mask = HPAGE_PMD_NR - 1;
431 return page;
432 }
433
434 static struct page *follow_pud_mask(struct vm_area_struct *vma,
435 unsigned long address, p4d_t *p4dp,
436 unsigned int flags,
437 struct follow_page_context *ctx)
438 {
439 pud_t *pud;
440 spinlock_t *ptl;
441 struct page *page;
442 struct mm_struct *mm = vma->vm_mm;
443
444 pud = pud_offset(p4dp, address);
445 if (pud_none(*pud))
446 return no_page_table(vma, flags);
447 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
448 page = follow_huge_pud(mm, address, pud, flags);
449 if (page)
450 return page;
451 return no_page_table(vma, flags);
452 }
453 if (is_hugepd(__hugepd(pud_val(*pud)))) {
454 page = follow_huge_pd(vma, address,
455 __hugepd(pud_val(*pud)), flags,
456 PUD_SHIFT);
457 if (page)
458 return page;
459 return no_page_table(vma, flags);
460 }
461 if (pud_devmap(*pud)) {
462 ptl = pud_lock(mm, pud);
463 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
464 spin_unlock(ptl);
465 if (page)
466 return page;
467 }
468 if (unlikely(pud_bad(*pud)))
469 return no_page_table(vma, flags);
470
471 return follow_pmd_mask(vma, address, pud, flags, ctx);
472 }
473
474 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
475 unsigned long address, pgd_t *pgdp,
476 unsigned int flags,
477 struct follow_page_context *ctx)
478 {
479 p4d_t *p4d;
480 struct page *page;
481
482 p4d = p4d_offset(pgdp, address);
483 if (p4d_none(*p4d))
484 return no_page_table(vma, flags);
485 BUILD_BUG_ON(p4d_huge(*p4d));
486 if (unlikely(p4d_bad(*p4d)))
487 return no_page_table(vma, flags);
488
489 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
490 page = follow_huge_pd(vma, address,
491 __hugepd(p4d_val(*p4d)), flags,
492 P4D_SHIFT);
493 if (page)
494 return page;
495 return no_page_table(vma, flags);
496 }
497 return follow_pud_mask(vma, address, p4d, flags, ctx);
498 }
499
500 /**
501 * follow_page_mask - look up a page descriptor from a user-virtual address
502 * @vma: vm_area_struct mapping @address
503 * @address: virtual address to look up
504 * @flags: flags modifying lookup behaviour
505 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
506 * pointer to output page_mask
507 *
508 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
509 *
510 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
511 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
512 *
513 * On output, the @ctx->page_mask is set according to the size of the page.
514 *
515 * Return: the mapped (struct page *), %NULL if no mapping exists, or
516 * an error pointer if there is a mapping to something not represented
517 * by a page descriptor (see also vm_normal_page()).
518 */
519 static struct page *follow_page_mask(struct vm_area_struct *vma,
520 unsigned long address, unsigned int flags,
521 struct follow_page_context *ctx)
522 {
523 pgd_t *pgd;
524 struct page *page;
525 struct mm_struct *mm = vma->vm_mm;
526
527 ctx->page_mask = 0;
528
529 /* make this handle hugepd */
530 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
531 if (!IS_ERR(page)) {
532 BUG_ON(flags & FOLL_GET);
533 return page;
534 }
535
536 pgd = pgd_offset(mm, address);
537
538 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
539 return no_page_table(vma, flags);
540
541 if (pgd_huge(*pgd)) {
542 page = follow_huge_pgd(mm, address, pgd, flags);
543 if (page)
544 return page;
545 return no_page_table(vma, flags);
546 }
547 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
548 page = follow_huge_pd(vma, address,
549 __hugepd(pgd_val(*pgd)), flags,
550 PGDIR_SHIFT);
551 if (page)
552 return page;
553 return no_page_table(vma, flags);
554 }
555
556 return follow_p4d_mask(vma, address, pgd, flags, ctx);
557 }
558
559 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
560 unsigned int foll_flags)
561 {
562 struct follow_page_context ctx = { NULL };
563 struct page *page;
564
565 page = follow_page_mask(vma, address, foll_flags, &ctx);
566 if (ctx.pgmap)
567 put_dev_pagemap(ctx.pgmap);
568 return page;
569 }
570
571 static int get_gate_page(struct mm_struct *mm, unsigned long address,
572 unsigned int gup_flags, struct vm_area_struct **vma,
573 struct page **page)
574 {
575 pgd_t *pgd;
576 p4d_t *p4d;
577 pud_t *pud;
578 pmd_t *pmd;
579 pte_t *pte;
580 int ret = -EFAULT;
581
582 /* user gate pages are read-only */
583 if (gup_flags & FOLL_WRITE)
584 return -EFAULT;
585 if (address > TASK_SIZE)
586 pgd = pgd_offset_k(address);
587 else
588 pgd = pgd_offset_gate(mm, address);
589 if (pgd_none(*pgd))
590 return -EFAULT;
591 p4d = p4d_offset(pgd, address);
592 if (p4d_none(*p4d))
593 return -EFAULT;
594 pud = pud_offset(p4d, address);
595 if (pud_none(*pud))
596 return -EFAULT;
597 pmd = pmd_offset(pud, address);
598 if (!pmd_present(*pmd))
599 return -EFAULT;
600 VM_BUG_ON(pmd_trans_huge(*pmd));
601 pte = pte_offset_map(pmd, address);
602 if (pte_none(*pte))
603 goto unmap;
604 *vma = get_gate_vma(mm);
605 if (!page)
606 goto out;
607 *page = vm_normal_page(*vma, address, *pte);
608 if (!*page) {
609 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
610 goto unmap;
611 *page = pte_page(*pte);
612
613 /*
614 * This should never happen (a device public page in the gate
615 * area).
616 */
617 if (is_device_public_page(*page))
618 goto unmap;
619 }
620 if (unlikely(!try_get_page(*page))) {
621 ret = -ENOMEM;
622 goto unmap;
623 }
624 out:
625 ret = 0;
626 unmap:
627 pte_unmap(pte);
628 return ret;
629 }
630
631 /*
632 * mmap_sem must be held on entry. If @nonblocking != NULL and
633 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
634 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
635 */
636 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
637 unsigned long address, unsigned int *flags, int *nonblocking)
638 {
639 unsigned int fault_flags = 0;
640 vm_fault_t ret;
641
642 /* mlock all present pages, but do not fault in new pages */
643 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
644 return -ENOENT;
645 if (*flags & FOLL_WRITE)
646 fault_flags |= FAULT_FLAG_WRITE;
647 if (*flags & FOLL_REMOTE)
648 fault_flags |= FAULT_FLAG_REMOTE;
649 if (nonblocking)
650 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
651 if (*flags & FOLL_NOWAIT)
652 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
653 if (*flags & FOLL_TRIED) {
654 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
655 fault_flags |= FAULT_FLAG_TRIED;
656 }
657
658 ret = handle_mm_fault(vma, address, fault_flags);
659 if (ret & VM_FAULT_ERROR) {
660 int err = vm_fault_to_errno(ret, *flags);
661
662 if (err)
663 return err;
664 BUG();
665 }
666
667 if (tsk) {
668 if (ret & VM_FAULT_MAJOR)
669 tsk->maj_flt++;
670 else
671 tsk->min_flt++;
672 }
673
674 if (ret & VM_FAULT_RETRY) {
675 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
676 *nonblocking = 0;
677 return -EBUSY;
678 }
679
680 /*
681 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
682 * necessary, even if maybe_mkwrite decided not to set pte_write. We
683 * can thus safely do subsequent page lookups as if they were reads.
684 * But only do so when looping for pte_write is futile: in some cases
685 * userspace may also be wanting to write to the gotten user page,
686 * which a read fault here might prevent (a readonly page might get
687 * reCOWed by userspace write).
688 */
689 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
690 *flags |= FOLL_COW;
691 return 0;
692 }
693
694 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
695 {
696 vm_flags_t vm_flags = vma->vm_flags;
697 int write = (gup_flags & FOLL_WRITE);
698 int foreign = (gup_flags & FOLL_REMOTE);
699
700 if (vm_flags & (VM_IO | VM_PFNMAP))
701 return -EFAULT;
702
703 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
704 return -EFAULT;
705
706 if (write) {
707 if (!(vm_flags & VM_WRITE)) {
708 if (!(gup_flags & FOLL_FORCE))
709 return -EFAULT;
710 /*
711 * We used to let the write,force case do COW in a
712 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
713 * set a breakpoint in a read-only mapping of an
714 * executable, without corrupting the file (yet only
715 * when that file had been opened for writing!).
716 * Anon pages in shared mappings are surprising: now
717 * just reject it.
718 */
719 if (!is_cow_mapping(vm_flags))
720 return -EFAULT;
721 }
722 } else if (!(vm_flags & VM_READ)) {
723 if (!(gup_flags & FOLL_FORCE))
724 return -EFAULT;
725 /*
726 * Is there actually any vma we can reach here which does not
727 * have VM_MAYREAD set?
728 */
729 if (!(vm_flags & VM_MAYREAD))
730 return -EFAULT;
731 }
732 /*
733 * gups are always data accesses, not instruction
734 * fetches, so execute=false here
735 */
736 if (!arch_vma_access_permitted(vma, write, false, foreign))
737 return -EFAULT;
738 return 0;
739 }
740
741 /**
742 * __get_user_pages() - pin user pages in memory
743 * @tsk: task_struct of target task
744 * @mm: mm_struct of target mm
745 * @start: starting user address
746 * @nr_pages: number of pages from start to pin
747 * @gup_flags: flags modifying pin behaviour
748 * @pages: array that receives pointers to the pages pinned.
749 * Should be at least nr_pages long. Or NULL, if caller
750 * only intends to ensure the pages are faulted in.
751 * @vmas: array of pointers to vmas corresponding to each page.
752 * Or NULL if the caller does not require them.
753 * @nonblocking: whether waiting for disk IO or mmap_sem contention
754 *
755 * Returns number of pages pinned. This may be fewer than the number
756 * requested. If nr_pages is 0 or negative, returns 0. If no pages
757 * were pinned, returns -errno. Each page returned must be released
758 * with a put_page() call when it is finished with. vmas will only
759 * remain valid while mmap_sem is held.
760 *
761 * Must be called with mmap_sem held. It may be released. See below.
762 *
763 * __get_user_pages walks a process's page tables and takes a reference to
764 * each struct page that each user address corresponds to at a given
765 * instant. That is, it takes the page that would be accessed if a user
766 * thread accesses the given user virtual address at that instant.
767 *
768 * This does not guarantee that the page exists in the user mappings when
769 * __get_user_pages returns, and there may even be a completely different
770 * page there in some cases (eg. if mmapped pagecache has been invalidated
771 * and subsequently re faulted). However it does guarantee that the page
772 * won't be freed completely. And mostly callers simply care that the page
773 * contains data that was valid *at some point in time*. Typically, an IO
774 * or similar operation cannot guarantee anything stronger anyway because
775 * locks can't be held over the syscall boundary.
776 *
777 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
778 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
779 * appropriate) must be called after the page is finished with, and
780 * before put_page is called.
781 *
782 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
783 * or mmap_sem contention, and if waiting is needed to pin all pages,
784 * *@nonblocking will be set to 0. Further, if @gup_flags does not
785 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
786 * this case.
787 *
788 * A caller using such a combination of @nonblocking and @gup_flags
789 * must therefore hold the mmap_sem for reading only, and recognize
790 * when it's been released. Otherwise, it must be held for either
791 * reading or writing and will not be released.
792 *
793 * In most cases, get_user_pages or get_user_pages_fast should be used
794 * instead of __get_user_pages. __get_user_pages should be used only if
795 * you need some special @gup_flags.
796 */
797 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
798 unsigned long start, unsigned long nr_pages,
799 unsigned int gup_flags, struct page **pages,
800 struct vm_area_struct **vmas, int *nonblocking)
801 {
802 long ret = 0, i = 0;
803 struct vm_area_struct *vma = NULL;
804 struct follow_page_context ctx = { NULL };
805
806 if (!nr_pages)
807 return 0;
808
809 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
810
811 /*
812 * If FOLL_FORCE is set then do not force a full fault as the hinting
813 * fault information is unrelated to the reference behaviour of a task
814 * using the address space
815 */
816 if (!(gup_flags & FOLL_FORCE))
817 gup_flags |= FOLL_NUMA;
818
819 do {
820 struct page *page;
821 unsigned int foll_flags = gup_flags;
822 unsigned int page_increm;
823
824 /* first iteration or cross vma bound */
825 if (!vma || start >= vma->vm_end) {
826 vma = find_extend_vma(mm, start);
827 if (!vma && in_gate_area(mm, start)) {
828 ret = get_gate_page(mm, start & PAGE_MASK,
829 gup_flags, &vma,
830 pages ? &pages[i] : NULL);
831 if (ret)
832 goto out;
833 ctx.page_mask = 0;
834 goto next_page;
835 }
836
837 if (!vma || check_vma_flags(vma, gup_flags)) {
838 ret = -EFAULT;
839 goto out;
840 }
841 if (is_vm_hugetlb_page(vma)) {
842 i = follow_hugetlb_page(mm, vma, pages, vmas,
843 &start, &nr_pages, i,
844 gup_flags, nonblocking);
845 continue;
846 }
847 }
848 retry:
849 /*
850 * If we have a pending SIGKILL, don't keep faulting pages and
851 * potentially allocating memory.
852 */
853 if (fatal_signal_pending(current)) {
854 ret = -ERESTARTSYS;
855 goto out;
856 }
857 cond_resched();
858
859 page = follow_page_mask(vma, start, foll_flags, &ctx);
860 if (!page) {
861 ret = faultin_page(tsk, vma, start, &foll_flags,
862 nonblocking);
863 switch (ret) {
864 case 0:
865 goto retry;
866 case -EBUSY:
867 ret = 0;
868 /* FALLTHRU */
869 case -EFAULT:
870 case -ENOMEM:
871 case -EHWPOISON:
872 goto out;
873 case -ENOENT:
874 goto next_page;
875 }
876 BUG();
877 } else if (PTR_ERR(page) == -EEXIST) {
878 /*
879 * Proper page table entry exists, but no corresponding
880 * struct page.
881 */
882 goto next_page;
883 } else if (IS_ERR(page)) {
884 ret = PTR_ERR(page);
885 goto out;
886 }
887 if (pages) {
888 pages[i] = page;
889 flush_anon_page(vma, page, start);
890 flush_dcache_page(page);
891 ctx.page_mask = 0;
892 }
893 next_page:
894 if (vmas) {
895 vmas[i] = vma;
896 ctx.page_mask = 0;
897 }
898 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
899 if (page_increm > nr_pages)
900 page_increm = nr_pages;
901 i += page_increm;
902 start += page_increm * PAGE_SIZE;
903 nr_pages -= page_increm;
904 } while (nr_pages);
905 out:
906 if (ctx.pgmap)
907 put_dev_pagemap(ctx.pgmap);
908 return i ? i : ret;
909 }
910
911 static bool vma_permits_fault(struct vm_area_struct *vma,
912 unsigned int fault_flags)
913 {
914 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
915 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
916 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
917
918 if (!(vm_flags & vma->vm_flags))
919 return false;
920
921 /*
922 * The architecture might have a hardware protection
923 * mechanism other than read/write that can deny access.
924 *
925 * gup always represents data access, not instruction
926 * fetches, so execute=false here:
927 */
928 if (!arch_vma_access_permitted(vma, write, false, foreign))
929 return false;
930
931 return true;
932 }
933
934 /*
935 * fixup_user_fault() - manually resolve a user page fault
936 * @tsk: the task_struct to use for page fault accounting, or
937 * NULL if faults are not to be recorded.
938 * @mm: mm_struct of target mm
939 * @address: user address
940 * @fault_flags:flags to pass down to handle_mm_fault()
941 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
942 * does not allow retry
943 *
944 * This is meant to be called in the specific scenario where for locking reasons
945 * we try to access user memory in atomic context (within a pagefault_disable()
946 * section), this returns -EFAULT, and we want to resolve the user fault before
947 * trying again.
948 *
949 * Typically this is meant to be used by the futex code.
950 *
951 * The main difference with get_user_pages() is that this function will
952 * unconditionally call handle_mm_fault() which will in turn perform all the
953 * necessary SW fixup of the dirty and young bits in the PTE, while
954 * get_user_pages() only guarantees to update these in the struct page.
955 *
956 * This is important for some architectures where those bits also gate the
957 * access permission to the page because they are maintained in software. On
958 * such architectures, gup() will not be enough to make a subsequent access
959 * succeed.
960 *
961 * This function will not return with an unlocked mmap_sem. So it has not the
962 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
963 */
964 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
965 unsigned long address, unsigned int fault_flags,
966 bool *unlocked)
967 {
968 struct vm_area_struct *vma;
969 vm_fault_t ret, major = 0;
970
971 if (unlocked)
972 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
973
974 retry:
975 vma = find_extend_vma(mm, address);
976 if (!vma || address < vma->vm_start)
977 return -EFAULT;
978
979 if (!vma_permits_fault(vma, fault_flags))
980 return -EFAULT;
981
982 ret = handle_mm_fault(vma, address, fault_flags);
983 major |= ret & VM_FAULT_MAJOR;
984 if (ret & VM_FAULT_ERROR) {
985 int err = vm_fault_to_errno(ret, 0);
986
987 if (err)
988 return err;
989 BUG();
990 }
991
992 if (ret & VM_FAULT_RETRY) {
993 down_read(&mm->mmap_sem);
994 if (!(fault_flags & FAULT_FLAG_TRIED)) {
995 *unlocked = true;
996 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
997 fault_flags |= FAULT_FLAG_TRIED;
998 goto retry;
999 }
1000 }
1001
1002 if (tsk) {
1003 if (major)
1004 tsk->maj_flt++;
1005 else
1006 tsk->min_flt++;
1007 }
1008 return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(fixup_user_fault);
1011
1012 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1013 struct mm_struct *mm,
1014 unsigned long start,
1015 unsigned long nr_pages,
1016 struct page **pages,
1017 struct vm_area_struct **vmas,
1018 int *locked,
1019 unsigned int flags)
1020 {
1021 long ret, pages_done;
1022 bool lock_dropped;
1023
1024 if (locked) {
1025 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1026 BUG_ON(vmas);
1027 /* check caller initialized locked */
1028 BUG_ON(*locked != 1);
1029 }
1030
1031 if (pages)
1032 flags |= FOLL_GET;
1033
1034 pages_done = 0;
1035 lock_dropped = false;
1036 for (;;) {
1037 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1038 vmas, locked);
1039 if (!locked)
1040 /* VM_FAULT_RETRY couldn't trigger, bypass */
1041 return ret;
1042
1043 /* VM_FAULT_RETRY cannot return errors */
1044 if (!*locked) {
1045 BUG_ON(ret < 0);
1046 BUG_ON(ret >= nr_pages);
1047 }
1048
1049 if (ret > 0) {
1050 nr_pages -= ret;
1051 pages_done += ret;
1052 if (!nr_pages)
1053 break;
1054 }
1055 if (*locked) {
1056 /*
1057 * VM_FAULT_RETRY didn't trigger or it was a
1058 * FOLL_NOWAIT.
1059 */
1060 if (!pages_done)
1061 pages_done = ret;
1062 break;
1063 }
1064 /*
1065 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1066 * For the prefault case (!pages) we only update counts.
1067 */
1068 if (likely(pages))
1069 pages += ret;
1070 start += ret << PAGE_SHIFT;
1071
1072 /*
1073 * Repeat on the address that fired VM_FAULT_RETRY
1074 * without FAULT_FLAG_ALLOW_RETRY but with
1075 * FAULT_FLAG_TRIED.
1076 */
1077 *locked = 1;
1078 lock_dropped = true;
1079 down_read(&mm->mmap_sem);
1080 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1081 pages, NULL, NULL);
1082 if (ret != 1) {
1083 BUG_ON(ret > 1);
1084 if (!pages_done)
1085 pages_done = ret;
1086 break;
1087 }
1088 nr_pages--;
1089 pages_done++;
1090 if (!nr_pages)
1091 break;
1092 if (likely(pages))
1093 pages++;
1094 start += PAGE_SIZE;
1095 }
1096 if (lock_dropped && *locked) {
1097 /*
1098 * We must let the caller know we temporarily dropped the lock
1099 * and so the critical section protected by it was lost.
1100 */
1101 up_read(&mm->mmap_sem);
1102 *locked = 0;
1103 }
1104 return pages_done;
1105 }
1106
1107 /*
1108 * get_user_pages_remote() - pin user pages in memory
1109 * @tsk: the task_struct to use for page fault accounting, or
1110 * NULL if faults are not to be recorded.
1111 * @mm: mm_struct of target mm
1112 * @start: starting user address
1113 * @nr_pages: number of pages from start to pin
1114 * @gup_flags: flags modifying lookup behaviour
1115 * @pages: array that receives pointers to the pages pinned.
1116 * Should be at least nr_pages long. Or NULL, if caller
1117 * only intends to ensure the pages are faulted in.
1118 * @vmas: array of pointers to vmas corresponding to each page.
1119 * Or NULL if the caller does not require them.
1120 * @locked: pointer to lock flag indicating whether lock is held and
1121 * subsequently whether VM_FAULT_RETRY functionality can be
1122 * utilised. Lock must initially be held.
1123 *
1124 * Returns number of pages pinned. This may be fewer than the number
1125 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1126 * were pinned, returns -errno. Each page returned must be released
1127 * with a put_page() call when it is finished with. vmas will only
1128 * remain valid while mmap_sem is held.
1129 *
1130 * Must be called with mmap_sem held for read or write.
1131 *
1132 * get_user_pages walks a process's page tables and takes a reference to
1133 * each struct page that each user address corresponds to at a given
1134 * instant. That is, it takes the page that would be accessed if a user
1135 * thread accesses the given user virtual address at that instant.
1136 *
1137 * This does not guarantee that the page exists in the user mappings when
1138 * get_user_pages returns, and there may even be a completely different
1139 * page there in some cases (eg. if mmapped pagecache has been invalidated
1140 * and subsequently re faulted). However it does guarantee that the page
1141 * won't be freed completely. And mostly callers simply care that the page
1142 * contains data that was valid *at some point in time*. Typically, an IO
1143 * or similar operation cannot guarantee anything stronger anyway because
1144 * locks can't be held over the syscall boundary.
1145 *
1146 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1147 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1148 * be called after the page is finished with, and before put_page is called.
1149 *
1150 * get_user_pages is typically used for fewer-copy IO operations, to get a
1151 * handle on the memory by some means other than accesses via the user virtual
1152 * addresses. The pages may be submitted for DMA to devices or accessed via
1153 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1154 * use the correct cache flushing APIs.
1155 *
1156 * See also get_user_pages_fast, for performance critical applications.
1157 *
1158 * get_user_pages should be phased out in favor of
1159 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1160 * should use get_user_pages because it cannot pass
1161 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1162 */
1163 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1164 unsigned long start, unsigned long nr_pages,
1165 unsigned int gup_flags, struct page **pages,
1166 struct vm_area_struct **vmas, int *locked)
1167 {
1168 /*
1169 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1170 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1171 * vmas. As there are no users of this flag in this call we simply
1172 * disallow this option for now.
1173 */
1174 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1175 return -EINVAL;
1176
1177 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1178 locked,
1179 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1180 }
1181 EXPORT_SYMBOL(get_user_pages_remote);
1182
1183 /**
1184 * populate_vma_page_range() - populate a range of pages in the vma.
1185 * @vma: target vma
1186 * @start: start address
1187 * @end: end address
1188 * @nonblocking:
1189 *
1190 * This takes care of mlocking the pages too if VM_LOCKED is set.
1191 *
1192 * return 0 on success, negative error code on error.
1193 *
1194 * vma->vm_mm->mmap_sem must be held.
1195 *
1196 * If @nonblocking is NULL, it may be held for read or write and will
1197 * be unperturbed.
1198 *
1199 * If @nonblocking is non-NULL, it must held for read only and may be
1200 * released. If it's released, *@nonblocking will be set to 0.
1201 */
1202 long populate_vma_page_range(struct vm_area_struct *vma,
1203 unsigned long start, unsigned long end, int *nonblocking)
1204 {
1205 struct mm_struct *mm = vma->vm_mm;
1206 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1207 int gup_flags;
1208
1209 VM_BUG_ON(start & ~PAGE_MASK);
1210 VM_BUG_ON(end & ~PAGE_MASK);
1211 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1212 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1213 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1214
1215 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1216 if (vma->vm_flags & VM_LOCKONFAULT)
1217 gup_flags &= ~FOLL_POPULATE;
1218 /*
1219 * We want to touch writable mappings with a write fault in order
1220 * to break COW, except for shared mappings because these don't COW
1221 * and we would not want to dirty them for nothing.
1222 */
1223 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1224 gup_flags |= FOLL_WRITE;
1225
1226 /*
1227 * We want mlock to succeed for regions that have any permissions
1228 * other than PROT_NONE.
1229 */
1230 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1231 gup_flags |= FOLL_FORCE;
1232
1233 /*
1234 * We made sure addr is within a VMA, so the following will
1235 * not result in a stack expansion that recurses back here.
1236 */
1237 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1238 NULL, NULL, nonblocking);
1239 }
1240
1241 /*
1242 * __mm_populate - populate and/or mlock pages within a range of address space.
1243 *
1244 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1245 * flags. VMAs must be already marked with the desired vm_flags, and
1246 * mmap_sem must not be held.
1247 */
1248 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1249 {
1250 struct mm_struct *mm = current->mm;
1251 unsigned long end, nstart, nend;
1252 struct vm_area_struct *vma = NULL;
1253 int locked = 0;
1254 long ret = 0;
1255
1256 end = start + len;
1257
1258 for (nstart = start; nstart < end; nstart = nend) {
1259 /*
1260 * We want to fault in pages for [nstart; end) address range.
1261 * Find first corresponding VMA.
1262 */
1263 if (!locked) {
1264 locked = 1;
1265 down_read(&mm->mmap_sem);
1266 vma = find_vma(mm, nstart);
1267 } else if (nstart >= vma->vm_end)
1268 vma = vma->vm_next;
1269 if (!vma || vma->vm_start >= end)
1270 break;
1271 /*
1272 * Set [nstart; nend) to intersection of desired address
1273 * range with the first VMA. Also, skip undesirable VMA types.
1274 */
1275 nend = min(end, vma->vm_end);
1276 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1277 continue;
1278 if (nstart < vma->vm_start)
1279 nstart = vma->vm_start;
1280 /*
1281 * Now fault in a range of pages. populate_vma_page_range()
1282 * double checks the vma flags, so that it won't mlock pages
1283 * if the vma was already munlocked.
1284 */
1285 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1286 if (ret < 0) {
1287 if (ignore_errors) {
1288 ret = 0;
1289 continue; /* continue at next VMA */
1290 }
1291 break;
1292 }
1293 nend = nstart + ret * PAGE_SIZE;
1294 ret = 0;
1295 }
1296 if (locked)
1297 up_read(&mm->mmap_sem);
1298 return ret; /* 0 or negative error code */
1299 }
1300
1301 /**
1302 * get_dump_page() - pin user page in memory while writing it to core dump
1303 * @addr: user address
1304 *
1305 * Returns struct page pointer of user page pinned for dump,
1306 * to be freed afterwards by put_page().
1307 *
1308 * Returns NULL on any kind of failure - a hole must then be inserted into
1309 * the corefile, to preserve alignment with its headers; and also returns
1310 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1311 * allowing a hole to be left in the corefile to save diskspace.
1312 *
1313 * Called without mmap_sem, but after all other threads have been killed.
1314 */
1315 #ifdef CONFIG_ELF_CORE
1316 struct page *get_dump_page(unsigned long addr)
1317 {
1318 struct vm_area_struct *vma;
1319 struct page *page;
1320
1321 if (__get_user_pages(current, current->mm, addr, 1,
1322 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1323 NULL) < 1)
1324 return NULL;
1325 flush_cache_page(vma, addr, page_to_pfn(page));
1326 return page;
1327 }
1328 #endif /* CONFIG_ELF_CORE */
1329 #else /* CONFIG_MMU */
1330 static long __get_user_pages_locked(struct task_struct *tsk,
1331 struct mm_struct *mm, unsigned long start,
1332 unsigned long nr_pages, struct page **pages,
1333 struct vm_area_struct **vmas, int *locked,
1334 unsigned int foll_flags)
1335 {
1336 struct vm_area_struct *vma;
1337 unsigned long vm_flags;
1338 int i;
1339
1340 /* calculate required read or write permissions.
1341 * If FOLL_FORCE is set, we only require the "MAY" flags.
1342 */
1343 vm_flags = (foll_flags & FOLL_WRITE) ?
1344 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1345 vm_flags &= (foll_flags & FOLL_FORCE) ?
1346 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1347
1348 for (i = 0; i < nr_pages; i++) {
1349 vma = find_vma(mm, start);
1350 if (!vma)
1351 goto finish_or_fault;
1352
1353 /* protect what we can, including chardevs */
1354 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1355 !(vm_flags & vma->vm_flags))
1356 goto finish_or_fault;
1357
1358 if (pages) {
1359 pages[i] = virt_to_page(start);
1360 if (pages[i])
1361 get_page(pages[i]);
1362 }
1363 if (vmas)
1364 vmas[i] = vma;
1365 start = (start + PAGE_SIZE) & PAGE_MASK;
1366 }
1367
1368 return i;
1369
1370 finish_or_fault:
1371 return i ? : -EFAULT;
1372 }
1373 #endif /* !CONFIG_MMU */
1374
1375 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1376 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1377 {
1378 long i;
1379 struct vm_area_struct *vma_prev = NULL;
1380
1381 for (i = 0; i < nr_pages; i++) {
1382 struct vm_area_struct *vma = vmas[i];
1383
1384 if (vma == vma_prev)
1385 continue;
1386
1387 vma_prev = vma;
1388
1389 if (vma_is_fsdax(vma))
1390 return true;
1391 }
1392 return false;
1393 }
1394
1395 #ifdef CONFIG_CMA
1396 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1397 {
1398 /*
1399 * We want to make sure we allocate the new page from the same node
1400 * as the source page.
1401 */
1402 int nid = page_to_nid(page);
1403 /*
1404 * Trying to allocate a page for migration. Ignore allocation
1405 * failure warnings. We don't force __GFP_THISNODE here because
1406 * this node here is the node where we have CMA reservation and
1407 * in some case these nodes will have really less non movable
1408 * allocation memory.
1409 */
1410 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1411
1412 if (PageHighMem(page))
1413 gfp_mask |= __GFP_HIGHMEM;
1414
1415 #ifdef CONFIG_HUGETLB_PAGE
1416 if (PageHuge(page)) {
1417 struct hstate *h = page_hstate(page);
1418 /*
1419 * We don't want to dequeue from the pool because pool pages will
1420 * mostly be from the CMA region.
1421 */
1422 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1423 }
1424 #endif
1425 if (PageTransHuge(page)) {
1426 struct page *thp;
1427 /*
1428 * ignore allocation failure warnings
1429 */
1430 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1431
1432 /*
1433 * Remove the movable mask so that we don't allocate from
1434 * CMA area again.
1435 */
1436 thp_gfpmask &= ~__GFP_MOVABLE;
1437 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1438 if (!thp)
1439 return NULL;
1440 prep_transhuge_page(thp);
1441 return thp;
1442 }
1443
1444 return __alloc_pages_node(nid, gfp_mask, 0);
1445 }
1446
1447 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1448 struct mm_struct *mm,
1449 unsigned long start,
1450 unsigned long nr_pages,
1451 struct page **pages,
1452 struct vm_area_struct **vmas,
1453 unsigned int gup_flags)
1454 {
1455 unsigned long i;
1456 unsigned long step;
1457 bool drain_allow = true;
1458 bool migrate_allow = true;
1459 LIST_HEAD(cma_page_list);
1460
1461 check_again:
1462 for (i = 0; i < nr_pages;) {
1463
1464 struct page *head = compound_head(pages[i]);
1465
1466 /*
1467 * gup may start from a tail page. Advance step by the left
1468 * part.
1469 */
1470 step = (1 << compound_order(head)) - (pages[i] - head);
1471 /*
1472 * If we get a page from the CMA zone, since we are going to
1473 * be pinning these entries, we might as well move them out
1474 * of the CMA zone if possible.
1475 */
1476 if (is_migrate_cma_page(head)) {
1477 if (PageHuge(head))
1478 isolate_huge_page(head, &cma_page_list);
1479 else {
1480 if (!PageLRU(head) && drain_allow) {
1481 lru_add_drain_all();
1482 drain_allow = false;
1483 }
1484
1485 if (!isolate_lru_page(head)) {
1486 list_add_tail(&head->lru, &cma_page_list);
1487 mod_node_page_state(page_pgdat(head),
1488 NR_ISOLATED_ANON +
1489 page_is_file_cache(head),
1490 hpage_nr_pages(head));
1491 }
1492 }
1493 }
1494
1495 i += step;
1496 }
1497
1498 if (!list_empty(&cma_page_list)) {
1499 /*
1500 * drop the above get_user_pages reference.
1501 */
1502 for (i = 0; i < nr_pages; i++)
1503 put_page(pages[i]);
1504
1505 if (migrate_pages(&cma_page_list, new_non_cma_page,
1506 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1507 /*
1508 * some of the pages failed migration. Do get_user_pages
1509 * without migration.
1510 */
1511 migrate_allow = false;
1512
1513 if (!list_empty(&cma_page_list))
1514 putback_movable_pages(&cma_page_list);
1515 }
1516 /*
1517 * We did migrate all the pages, Try to get the page references
1518 * again migrating any new CMA pages which we failed to isolate
1519 * earlier.
1520 */
1521 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1522 pages, vmas, NULL,
1523 gup_flags);
1524
1525 if ((nr_pages > 0) && migrate_allow) {
1526 drain_allow = true;
1527 goto check_again;
1528 }
1529 }
1530
1531 return nr_pages;
1532 }
1533 #else
1534 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1535 struct mm_struct *mm,
1536 unsigned long start,
1537 unsigned long nr_pages,
1538 struct page **pages,
1539 struct vm_area_struct **vmas,
1540 unsigned int gup_flags)
1541 {
1542 return nr_pages;
1543 }
1544 #endif /* CONFIG_CMA */
1545
1546 /*
1547 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1548 * allows us to process the FOLL_LONGTERM flag.
1549 */
1550 static long __gup_longterm_locked(struct task_struct *tsk,
1551 struct mm_struct *mm,
1552 unsigned long start,
1553 unsigned long nr_pages,
1554 struct page **pages,
1555 struct vm_area_struct **vmas,
1556 unsigned int gup_flags)
1557 {
1558 struct vm_area_struct **vmas_tmp = vmas;
1559 unsigned long flags = 0;
1560 long rc, i;
1561
1562 if (gup_flags & FOLL_LONGTERM) {
1563 if (!pages)
1564 return -EINVAL;
1565
1566 if (!vmas_tmp) {
1567 vmas_tmp = kcalloc(nr_pages,
1568 sizeof(struct vm_area_struct *),
1569 GFP_KERNEL);
1570 if (!vmas_tmp)
1571 return -ENOMEM;
1572 }
1573 flags = memalloc_nocma_save();
1574 }
1575
1576 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1577 vmas_tmp, NULL, gup_flags);
1578
1579 if (gup_flags & FOLL_LONGTERM) {
1580 memalloc_nocma_restore(flags);
1581 if (rc < 0)
1582 goto out;
1583
1584 if (check_dax_vmas(vmas_tmp, rc)) {
1585 for (i = 0; i < rc; i++)
1586 put_page(pages[i]);
1587 rc = -EOPNOTSUPP;
1588 goto out;
1589 }
1590
1591 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1592 vmas_tmp, gup_flags);
1593 }
1594
1595 out:
1596 if (vmas_tmp != vmas)
1597 kfree(vmas_tmp);
1598 return rc;
1599 }
1600 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1601 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1602 struct mm_struct *mm,
1603 unsigned long start,
1604 unsigned long nr_pages,
1605 struct page **pages,
1606 struct vm_area_struct **vmas,
1607 unsigned int flags)
1608 {
1609 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1610 NULL, flags);
1611 }
1612 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1613
1614 /*
1615 * This is the same as get_user_pages_remote(), just with a
1616 * less-flexible calling convention where we assume that the task
1617 * and mm being operated on are the current task's and don't allow
1618 * passing of a locked parameter. We also obviously don't pass
1619 * FOLL_REMOTE in here.
1620 */
1621 long get_user_pages(unsigned long start, unsigned long nr_pages,
1622 unsigned int gup_flags, struct page **pages,
1623 struct vm_area_struct **vmas)
1624 {
1625 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1626 pages, vmas, gup_flags | FOLL_TOUCH);
1627 }
1628 EXPORT_SYMBOL(get_user_pages);
1629
1630 /*
1631 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1632 * paths better by using either get_user_pages_locked() or
1633 * get_user_pages_unlocked().
1634 *
1635 * get_user_pages_locked() is suitable to replace the form:
1636 *
1637 * down_read(&mm->mmap_sem);
1638 * do_something()
1639 * get_user_pages(tsk, mm, ..., pages, NULL);
1640 * up_read(&mm->mmap_sem);
1641 *
1642 * to:
1643 *
1644 * int locked = 1;
1645 * down_read(&mm->mmap_sem);
1646 * do_something()
1647 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1648 * if (locked)
1649 * up_read(&mm->mmap_sem);
1650 */
1651 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1652 unsigned int gup_flags, struct page **pages,
1653 int *locked)
1654 {
1655 /*
1656 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1657 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1658 * vmas. As there are no users of this flag in this call we simply
1659 * disallow this option for now.
1660 */
1661 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1662 return -EINVAL;
1663
1664 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1665 pages, NULL, locked,
1666 gup_flags | FOLL_TOUCH);
1667 }
1668 EXPORT_SYMBOL(get_user_pages_locked);
1669
1670 /*
1671 * get_user_pages_unlocked() is suitable to replace the form:
1672 *
1673 * down_read(&mm->mmap_sem);
1674 * get_user_pages(tsk, mm, ..., pages, NULL);
1675 * up_read(&mm->mmap_sem);
1676 *
1677 * with:
1678 *
1679 * get_user_pages_unlocked(tsk, mm, ..., pages);
1680 *
1681 * It is functionally equivalent to get_user_pages_fast so
1682 * get_user_pages_fast should be used instead if specific gup_flags
1683 * (e.g. FOLL_FORCE) are not required.
1684 */
1685 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1686 struct page **pages, unsigned int gup_flags)
1687 {
1688 struct mm_struct *mm = current->mm;
1689 int locked = 1;
1690 long ret;
1691
1692 /*
1693 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1694 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1695 * vmas. As there are no users of this flag in this call we simply
1696 * disallow this option for now.
1697 */
1698 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1699 return -EINVAL;
1700
1701 down_read(&mm->mmap_sem);
1702 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1703 &locked, gup_flags | FOLL_TOUCH);
1704 if (locked)
1705 up_read(&mm->mmap_sem);
1706 return ret;
1707 }
1708 EXPORT_SYMBOL(get_user_pages_unlocked);
1709
1710 /*
1711 * Fast GUP
1712 *
1713 * get_user_pages_fast attempts to pin user pages by walking the page
1714 * tables directly and avoids taking locks. Thus the walker needs to be
1715 * protected from page table pages being freed from under it, and should
1716 * block any THP splits.
1717 *
1718 * One way to achieve this is to have the walker disable interrupts, and
1719 * rely on IPIs from the TLB flushing code blocking before the page table
1720 * pages are freed. This is unsuitable for architectures that do not need
1721 * to broadcast an IPI when invalidating TLBs.
1722 *
1723 * Another way to achieve this is to batch up page table containing pages
1724 * belonging to more than one mm_user, then rcu_sched a callback to free those
1725 * pages. Disabling interrupts will allow the fast_gup walker to both block
1726 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1727 * (which is a relatively rare event). The code below adopts this strategy.
1728 *
1729 * Before activating this code, please be aware that the following assumptions
1730 * are currently made:
1731 *
1732 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1733 * free pages containing page tables or TLB flushing requires IPI broadcast.
1734 *
1735 * *) ptes can be read atomically by the architecture.
1736 *
1737 * *) access_ok is sufficient to validate userspace address ranges.
1738 *
1739 * The last two assumptions can be relaxed by the addition of helper functions.
1740 *
1741 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1742 */
1743 #ifdef CONFIG_HAVE_FAST_GUP
1744 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1745 /*
1746 * WARNING: only to be used in the get_user_pages_fast() implementation.
1747 *
1748 * With get_user_pages_fast(), we walk down the pagetables without taking any
1749 * locks. For this we would like to load the pointers atomically, but sometimes
1750 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
1751 * we do have is the guarantee that a PTE will only either go from not present
1752 * to present, or present to not present or both -- it will not switch to a
1753 * completely different present page without a TLB flush in between; something
1754 * that we are blocking by holding interrupts off.
1755 *
1756 * Setting ptes from not present to present goes:
1757 *
1758 * ptep->pte_high = h;
1759 * smp_wmb();
1760 * ptep->pte_low = l;
1761 *
1762 * And present to not present goes:
1763 *
1764 * ptep->pte_low = 0;
1765 * smp_wmb();
1766 * ptep->pte_high = 0;
1767 *
1768 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1769 * We load pte_high *after* loading pte_low, which ensures we don't see an older
1770 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
1771 * picked up a changed pte high. We might have gotten rubbish values from
1772 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1773 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1774 * operates on present ptes we're safe.
1775 */
1776 static inline pte_t gup_get_pte(pte_t *ptep)
1777 {
1778 pte_t pte;
1779
1780 do {
1781 pte.pte_low = ptep->pte_low;
1782 smp_rmb();
1783 pte.pte_high = ptep->pte_high;
1784 smp_rmb();
1785 } while (unlikely(pte.pte_low != ptep->pte_low));
1786
1787 return pte;
1788 }
1789 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1790 /*
1791 * We require that the PTE can be read atomically.
1792 */
1793 static inline pte_t gup_get_pte(pte_t *ptep)
1794 {
1795 return READ_ONCE(*ptep);
1796 }
1797 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1798
1799 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1800 struct page **pages)
1801 {
1802 while ((*nr) - nr_start) {
1803 struct page *page = pages[--(*nr)];
1804
1805 ClearPageReferenced(page);
1806 put_page(page);
1807 }
1808 }
1809
1810 /*
1811 * Return the compund head page with ref appropriately incremented,
1812 * or NULL if that failed.
1813 */
1814 static inline struct page *try_get_compound_head(struct page *page, int refs)
1815 {
1816 struct page *head = compound_head(page);
1817 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1818 return NULL;
1819 if (unlikely(!page_cache_add_speculative(head, refs)))
1820 return NULL;
1821 return head;
1822 }
1823
1824 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1825 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1826 unsigned int flags, struct page **pages, int *nr)
1827 {
1828 struct dev_pagemap *pgmap = NULL;
1829 int nr_start = *nr, ret = 0;
1830 pte_t *ptep, *ptem;
1831
1832 ptem = ptep = pte_offset_map(&pmd, addr);
1833 do {
1834 pte_t pte = gup_get_pte(ptep);
1835 struct page *head, *page;
1836
1837 /*
1838 * Similar to the PMD case below, NUMA hinting must take slow
1839 * path using the pte_protnone check.
1840 */
1841 if (pte_protnone(pte))
1842 goto pte_unmap;
1843
1844 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1845 goto pte_unmap;
1846
1847 if (pte_devmap(pte)) {
1848 if (unlikely(flags & FOLL_LONGTERM))
1849 goto pte_unmap;
1850
1851 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1852 if (unlikely(!pgmap)) {
1853 undo_dev_pagemap(nr, nr_start, pages);
1854 goto pte_unmap;
1855 }
1856 } else if (pte_special(pte))
1857 goto pte_unmap;
1858
1859 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1860 page = pte_page(pte);
1861
1862 head = try_get_compound_head(page, 1);
1863 if (!head)
1864 goto pte_unmap;
1865
1866 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1867 put_page(head);
1868 goto pte_unmap;
1869 }
1870
1871 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1872
1873 SetPageReferenced(page);
1874 pages[*nr] = page;
1875 (*nr)++;
1876
1877 } while (ptep++, addr += PAGE_SIZE, addr != end);
1878
1879 ret = 1;
1880
1881 pte_unmap:
1882 if (pgmap)
1883 put_dev_pagemap(pgmap);
1884 pte_unmap(ptem);
1885 return ret;
1886 }
1887 #else
1888
1889 /*
1890 * If we can't determine whether or not a pte is special, then fail immediately
1891 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1892 * to be special.
1893 *
1894 * For a futex to be placed on a THP tail page, get_futex_key requires a
1895 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1896 * useful to have gup_huge_pmd even if we can't operate on ptes.
1897 */
1898 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1899 unsigned int flags, struct page **pages, int *nr)
1900 {
1901 return 0;
1902 }
1903 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1904
1905 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1906 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1907 unsigned long end, struct page **pages, int *nr)
1908 {
1909 int nr_start = *nr;
1910 struct dev_pagemap *pgmap = NULL;
1911
1912 do {
1913 struct page *page = pfn_to_page(pfn);
1914
1915 pgmap = get_dev_pagemap(pfn, pgmap);
1916 if (unlikely(!pgmap)) {
1917 undo_dev_pagemap(nr, nr_start, pages);
1918 return 0;
1919 }
1920 SetPageReferenced(page);
1921 pages[*nr] = page;
1922 get_page(page);
1923 (*nr)++;
1924 pfn++;
1925 } while (addr += PAGE_SIZE, addr != end);
1926
1927 if (pgmap)
1928 put_dev_pagemap(pgmap);
1929 return 1;
1930 }
1931
1932 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1933 unsigned long end, struct page **pages, int *nr)
1934 {
1935 unsigned long fault_pfn;
1936 int nr_start = *nr;
1937
1938 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1939 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1940 return 0;
1941
1942 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1943 undo_dev_pagemap(nr, nr_start, pages);
1944 return 0;
1945 }
1946 return 1;
1947 }
1948
1949 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1950 unsigned long end, struct page **pages, int *nr)
1951 {
1952 unsigned long fault_pfn;
1953 int nr_start = *nr;
1954
1955 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1956 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1957 return 0;
1958
1959 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1960 undo_dev_pagemap(nr, nr_start, pages);
1961 return 0;
1962 }
1963 return 1;
1964 }
1965 #else
1966 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1967 unsigned long end, struct page **pages, int *nr)
1968 {
1969 BUILD_BUG();
1970 return 0;
1971 }
1972
1973 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1974 unsigned long end, struct page **pages, int *nr)
1975 {
1976 BUILD_BUG();
1977 return 0;
1978 }
1979 #endif
1980
1981 #ifdef CONFIG_ARCH_HAS_HUGEPD
1982 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1983 unsigned long sz)
1984 {
1985 unsigned long __boundary = (addr + sz) & ~(sz-1);
1986 return (__boundary - 1 < end - 1) ? __boundary : end;
1987 }
1988
1989 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1990 unsigned long end, int write, struct page **pages, int *nr)
1991 {
1992 unsigned long pte_end;
1993 struct page *head, *page;
1994 pte_t pte;
1995 int refs;
1996
1997 pte_end = (addr + sz) & ~(sz-1);
1998 if (pte_end < end)
1999 end = pte_end;
2000
2001 pte = READ_ONCE(*ptep);
2002
2003 if (!pte_access_permitted(pte, write))
2004 return 0;
2005
2006 /* hugepages are never "special" */
2007 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2008
2009 refs = 0;
2010 head = pte_page(pte);
2011
2012 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2013 do {
2014 VM_BUG_ON(compound_head(page) != head);
2015 pages[*nr] = page;
2016 (*nr)++;
2017 page++;
2018 refs++;
2019 } while (addr += PAGE_SIZE, addr != end);
2020
2021 head = try_get_compound_head(head, refs);
2022 if (!head) {
2023 *nr -= refs;
2024 return 0;
2025 }
2026
2027 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2028 /* Could be optimized better */
2029 *nr -= refs;
2030 while (refs--)
2031 put_page(head);
2032 return 0;
2033 }
2034
2035 SetPageReferenced(head);
2036 return 1;
2037 }
2038
2039 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2040 unsigned int pdshift, unsigned long end, int write,
2041 struct page **pages, int *nr)
2042 {
2043 pte_t *ptep;
2044 unsigned long sz = 1UL << hugepd_shift(hugepd);
2045 unsigned long next;
2046
2047 ptep = hugepte_offset(hugepd, addr, pdshift);
2048 do {
2049 next = hugepte_addr_end(addr, end, sz);
2050 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
2051 return 0;
2052 } while (ptep++, addr = next, addr != end);
2053
2054 return 1;
2055 }
2056 #else
2057 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2058 unsigned pdshift, unsigned long end, int write,
2059 struct page **pages, int *nr)
2060 {
2061 return 0;
2062 }
2063 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2064
2065 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2066 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2067 {
2068 struct page *head, *page;
2069 int refs;
2070
2071 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2072 return 0;
2073
2074 if (pmd_devmap(orig)) {
2075 if (unlikely(flags & FOLL_LONGTERM))
2076 return 0;
2077 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2078 }
2079
2080 refs = 0;
2081 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2082 do {
2083 pages[*nr] = page;
2084 (*nr)++;
2085 page++;
2086 refs++;
2087 } while (addr += PAGE_SIZE, addr != end);
2088
2089 head = try_get_compound_head(pmd_page(orig), refs);
2090 if (!head) {
2091 *nr -= refs;
2092 return 0;
2093 }
2094
2095 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2096 *nr -= refs;
2097 while (refs--)
2098 put_page(head);
2099 return 0;
2100 }
2101
2102 SetPageReferenced(head);
2103 return 1;
2104 }
2105
2106 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2107 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2108 {
2109 struct page *head, *page;
2110 int refs;
2111
2112 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2113 return 0;
2114
2115 if (pud_devmap(orig)) {
2116 if (unlikely(flags & FOLL_LONGTERM))
2117 return 0;
2118 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2119 }
2120
2121 refs = 0;
2122 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2123 do {
2124 pages[*nr] = page;
2125 (*nr)++;
2126 page++;
2127 refs++;
2128 } while (addr += PAGE_SIZE, addr != end);
2129
2130 head = try_get_compound_head(pud_page(orig), refs);
2131 if (!head) {
2132 *nr -= refs;
2133 return 0;
2134 }
2135
2136 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2137 *nr -= refs;
2138 while (refs--)
2139 put_page(head);
2140 return 0;
2141 }
2142
2143 SetPageReferenced(head);
2144 return 1;
2145 }
2146
2147 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2148 unsigned long end, unsigned int flags,
2149 struct page **pages, int *nr)
2150 {
2151 int refs;
2152 struct page *head, *page;
2153
2154 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2155 return 0;
2156
2157 BUILD_BUG_ON(pgd_devmap(orig));
2158 refs = 0;
2159 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2160 do {
2161 pages[*nr] = page;
2162 (*nr)++;
2163 page++;
2164 refs++;
2165 } while (addr += PAGE_SIZE, addr != end);
2166
2167 head = try_get_compound_head(pgd_page(orig), refs);
2168 if (!head) {
2169 *nr -= refs;
2170 return 0;
2171 }
2172
2173 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2174 *nr -= refs;
2175 while (refs--)
2176 put_page(head);
2177 return 0;
2178 }
2179
2180 SetPageReferenced(head);
2181 return 1;
2182 }
2183
2184 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2185 unsigned int flags, struct page **pages, int *nr)
2186 {
2187 unsigned long next;
2188 pmd_t *pmdp;
2189
2190 pmdp = pmd_offset(&pud, addr);
2191 do {
2192 pmd_t pmd = READ_ONCE(*pmdp);
2193
2194 next = pmd_addr_end(addr, end);
2195 if (!pmd_present(pmd))
2196 return 0;
2197
2198 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2199 pmd_devmap(pmd))) {
2200 /*
2201 * NUMA hinting faults need to be handled in the GUP
2202 * slowpath for accounting purposes and so that they
2203 * can be serialised against THP migration.
2204 */
2205 if (pmd_protnone(pmd))
2206 return 0;
2207
2208 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2209 pages, nr))
2210 return 0;
2211
2212 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2213 /*
2214 * architecture have different format for hugetlbfs
2215 * pmd format and THP pmd format
2216 */
2217 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2218 PMD_SHIFT, next, flags, pages, nr))
2219 return 0;
2220 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2221 return 0;
2222 } while (pmdp++, addr = next, addr != end);
2223
2224 return 1;
2225 }
2226
2227 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2228 unsigned int flags, struct page **pages, int *nr)
2229 {
2230 unsigned long next;
2231 pud_t *pudp;
2232
2233 pudp = pud_offset(&p4d, addr);
2234 do {
2235 pud_t pud = READ_ONCE(*pudp);
2236
2237 next = pud_addr_end(addr, end);
2238 if (pud_none(pud))
2239 return 0;
2240 if (unlikely(pud_huge(pud))) {
2241 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2242 pages, nr))
2243 return 0;
2244 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2245 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2246 PUD_SHIFT, next, flags, pages, nr))
2247 return 0;
2248 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2249 return 0;
2250 } while (pudp++, addr = next, addr != end);
2251
2252 return 1;
2253 }
2254
2255 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2256 unsigned int flags, struct page **pages, int *nr)
2257 {
2258 unsigned long next;
2259 p4d_t *p4dp;
2260
2261 p4dp = p4d_offset(&pgd, addr);
2262 do {
2263 p4d_t p4d = READ_ONCE(*p4dp);
2264
2265 next = p4d_addr_end(addr, end);
2266 if (p4d_none(p4d))
2267 return 0;
2268 BUILD_BUG_ON(p4d_huge(p4d));
2269 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2270 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2271 P4D_SHIFT, next, flags, pages, nr))
2272 return 0;
2273 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2274 return 0;
2275 } while (p4dp++, addr = next, addr != end);
2276
2277 return 1;
2278 }
2279
2280 static void gup_pgd_range(unsigned long addr, unsigned long end,
2281 unsigned int flags, struct page **pages, int *nr)
2282 {
2283 unsigned long next;
2284 pgd_t *pgdp;
2285
2286 pgdp = pgd_offset(current->mm, addr);
2287 do {
2288 pgd_t pgd = READ_ONCE(*pgdp);
2289
2290 next = pgd_addr_end(addr, end);
2291 if (pgd_none(pgd))
2292 return;
2293 if (unlikely(pgd_huge(pgd))) {
2294 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2295 pages, nr))
2296 return;
2297 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2298 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2299 PGDIR_SHIFT, next, flags, pages, nr))
2300 return;
2301 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2302 return;
2303 } while (pgdp++, addr = next, addr != end);
2304 }
2305 #else
2306 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2307 unsigned int flags, struct page **pages, int *nr)
2308 {
2309 }
2310 #endif /* CONFIG_HAVE_FAST_GUP */
2311
2312 #ifndef gup_fast_permitted
2313 /*
2314 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2315 * we need to fall back to the slow version:
2316 */
2317 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2318 {
2319 return true;
2320 }
2321 #endif
2322
2323 /*
2324 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2325 * the regular GUP.
2326 * Note a difference with get_user_pages_fast: this always returns the
2327 * number of pages pinned, 0 if no pages were pinned.
2328 *
2329 * If the architecture does not support this function, simply return with no
2330 * pages pinned.
2331 */
2332 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2333 struct page **pages)
2334 {
2335 unsigned long len, end;
2336 unsigned long flags;
2337 int nr = 0;
2338
2339 start = untagged_addr(start) & PAGE_MASK;
2340 len = (unsigned long) nr_pages << PAGE_SHIFT;
2341 end = start + len;
2342
2343 if (end <= start)
2344 return 0;
2345 if (unlikely(!access_ok((void __user *)start, len)))
2346 return 0;
2347
2348 /*
2349 * Disable interrupts. We use the nested form as we can already have
2350 * interrupts disabled by get_futex_key.
2351 *
2352 * With interrupts disabled, we block page table pages from being
2353 * freed from under us. See struct mmu_table_batch comments in
2354 * include/asm-generic/tlb.h for more details.
2355 *
2356 * We do not adopt an rcu_read_lock(.) here as we also want to
2357 * block IPIs that come from THPs splitting.
2358 */
2359
2360 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2361 gup_fast_permitted(start, end)) {
2362 local_irq_save(flags);
2363 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2364 local_irq_restore(flags);
2365 }
2366
2367 return nr;
2368 }
2369 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2370
2371 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2372 unsigned int gup_flags, struct page **pages)
2373 {
2374 int ret;
2375
2376 /*
2377 * FIXME: FOLL_LONGTERM does not work with
2378 * get_user_pages_unlocked() (see comments in that function)
2379 */
2380 if (gup_flags & FOLL_LONGTERM) {
2381 down_read(&current->mm->mmap_sem);
2382 ret = __gup_longterm_locked(current, current->mm,
2383 start, nr_pages,
2384 pages, NULL, gup_flags);
2385 up_read(&current->mm->mmap_sem);
2386 } else {
2387 ret = get_user_pages_unlocked(start, nr_pages,
2388 pages, gup_flags);
2389 }
2390
2391 return ret;
2392 }
2393
2394 /**
2395 * get_user_pages_fast() - pin user pages in memory
2396 * @start: starting user address
2397 * @nr_pages: number of pages from start to pin
2398 * @gup_flags: flags modifying pin behaviour
2399 * @pages: array that receives pointers to the pages pinned.
2400 * Should be at least nr_pages long.
2401 *
2402 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2403 * If not successful, it will fall back to taking the lock and
2404 * calling get_user_pages().
2405 *
2406 * Returns number of pages pinned. This may be fewer than the number
2407 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2408 * were pinned, returns -errno.
2409 */
2410 int get_user_pages_fast(unsigned long start, int nr_pages,
2411 unsigned int gup_flags, struct page **pages)
2412 {
2413 unsigned long addr, len, end;
2414 int nr = 0, ret = 0;
2415
2416 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2417 return -EINVAL;
2418
2419 start = untagged_addr(start) & PAGE_MASK;
2420 addr = start;
2421 len = (unsigned long) nr_pages << PAGE_SHIFT;
2422 end = start + len;
2423
2424 if (end <= start)
2425 return 0;
2426 if (unlikely(!access_ok((void __user *)start, len)))
2427 return -EFAULT;
2428
2429 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2430 gup_fast_permitted(start, end)) {
2431 local_irq_disable();
2432 gup_pgd_range(addr, end, gup_flags, pages, &nr);
2433 local_irq_enable();
2434 ret = nr;
2435 }
2436
2437 if (nr < nr_pages) {
2438 /* Try to get the remaining pages with get_user_pages */
2439 start += nr << PAGE_SHIFT;
2440 pages += nr;
2441
2442 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2443 gup_flags, pages);
2444
2445 /* Have to be a bit careful with return values */
2446 if (nr > 0) {
2447 if (ret < 0)
2448 ret = nr;
2449 else
2450 ret += nr;
2451 }
2452 }
2453
2454 return ret;
2455 }
2456 EXPORT_SYMBOL_GPL(get_user_pages_fast);