]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/gup.c
Revert "mm: enlarge stack guard gap"
[mirror_ubuntu-zesty-kernel.git] / mm / gup.c
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
15
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
18
19 #include "internal.h"
20
21 static struct page *no_page_table(struct vm_area_struct *vma,
22 unsigned int flags)
23 {
24 /*
25 * When core dumping an enormous anonymous area that nobody
26 * has touched so far, we don't want to allocate unnecessary pages or
27 * page tables. Return error instead of NULL to skip handle_mm_fault,
28 * then get_dump_page() will return NULL to leave a hole in the dump.
29 * But we can only make this optimization where a hole would surely
30 * be zero-filled if handle_mm_fault() actually did handle it.
31 */
32 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
33 return ERR_PTR(-EFAULT);
34 return NULL;
35 }
36
37 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
38 pte_t *pte, unsigned int flags)
39 {
40 /* No page to get reference */
41 if (flags & FOLL_GET)
42 return -EFAULT;
43
44 if (flags & FOLL_TOUCH) {
45 pte_t entry = *pte;
46
47 if (flags & FOLL_WRITE)
48 entry = pte_mkdirty(entry);
49 entry = pte_mkyoung(entry);
50
51 if (!pte_same(*pte, entry)) {
52 set_pte_at(vma->vm_mm, address, pte, entry);
53 update_mmu_cache(vma, address, pte);
54 }
55 }
56
57 /* Proper page table entry exists, but no corresponding struct page */
58 return -EEXIST;
59 }
60
61 /*
62 * FOLL_FORCE can write to even unwritable pte's, but only
63 * after we've gone through a COW cycle and they are dirty.
64 */
65 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
66 {
67 return pte_write(pte) ||
68 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
69 }
70
71 static struct page *follow_page_pte(struct vm_area_struct *vma,
72 unsigned long address, pmd_t *pmd, unsigned int flags)
73 {
74 struct mm_struct *mm = vma->vm_mm;
75 struct page *page;
76 spinlock_t *ptl;
77 pte_t *ptep, pte;
78
79 retry:
80 if (unlikely(pmd_bad(*pmd)))
81 return no_page_table(vma, flags);
82
83 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
84 pte = *ptep;
85 if (!pte_present(pte)) {
86 swp_entry_t entry;
87 /*
88 * KSM's break_ksm() relies upon recognizing a ksm page
89 * even while it is being migrated, so for that case we
90 * need migration_entry_wait().
91 */
92 if (likely(!(flags & FOLL_MIGRATION)))
93 goto no_page;
94 if (pte_none(pte))
95 goto no_page;
96 entry = pte_to_swp_entry(pte);
97 if (!is_migration_entry(entry))
98 goto no_page;
99 pte_unmap_unlock(ptep, ptl);
100 migration_entry_wait(mm, pmd, address);
101 goto retry;
102 }
103 if ((flags & FOLL_NUMA) && pte_protnone(pte))
104 goto no_page;
105 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
106 pte_unmap_unlock(ptep, ptl);
107 return NULL;
108 }
109
110 page = vm_normal_page(vma, address, pte);
111 if (unlikely(!page)) {
112 if (flags & FOLL_DUMP) {
113 /* Avoid special (like zero) pages in core dumps */
114 page = ERR_PTR(-EFAULT);
115 goto out;
116 }
117
118 if (is_zero_pfn(pte_pfn(pte))) {
119 page = pte_page(pte);
120 } else {
121 int ret;
122
123 ret = follow_pfn_pte(vma, address, ptep, flags);
124 page = ERR_PTR(ret);
125 goto out;
126 }
127 }
128
129 if (flags & FOLL_GET)
130 get_page_foll(page);
131 if (flags & FOLL_TOUCH) {
132 if ((flags & FOLL_WRITE) &&
133 !pte_dirty(pte) && !PageDirty(page))
134 set_page_dirty(page);
135 /*
136 * pte_mkyoung() would be more correct here, but atomic care
137 * is needed to avoid losing the dirty bit: it is easier to use
138 * mark_page_accessed().
139 */
140 mark_page_accessed(page);
141 }
142 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
143 /*
144 * The preliminary mapping check is mainly to avoid the
145 * pointless overhead of lock_page on the ZERO_PAGE
146 * which might bounce very badly if there is contention.
147 *
148 * If the page is already locked, we don't need to
149 * handle it now - vmscan will handle it later if and
150 * when it attempts to reclaim the page.
151 */
152 if (page->mapping && trylock_page(page)) {
153 lru_add_drain(); /* push cached pages to LRU */
154 /*
155 * Because we lock page here, and migration is
156 * blocked by the pte's page reference, and we
157 * know the page is still mapped, we don't even
158 * need to check for file-cache page truncation.
159 */
160 mlock_vma_page(page);
161 unlock_page(page);
162 }
163 }
164 out:
165 pte_unmap_unlock(ptep, ptl);
166 return page;
167 no_page:
168 pte_unmap_unlock(ptep, ptl);
169 if (!pte_none(pte))
170 return NULL;
171 return no_page_table(vma, flags);
172 }
173
174 /**
175 * follow_page_mask - look up a page descriptor from a user-virtual address
176 * @vma: vm_area_struct mapping @address
177 * @address: virtual address to look up
178 * @flags: flags modifying lookup behaviour
179 * @page_mask: on output, *page_mask is set according to the size of the page
180 *
181 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
182 *
183 * Returns the mapped (struct page *), %NULL if no mapping exists, or
184 * an error pointer if there is a mapping to something not represented
185 * by a page descriptor (see also vm_normal_page()).
186 */
187 struct page *follow_page_mask(struct vm_area_struct *vma,
188 unsigned long address, unsigned int flags,
189 unsigned int *page_mask)
190 {
191 pgd_t *pgd;
192 pud_t *pud;
193 pmd_t *pmd;
194 spinlock_t *ptl;
195 struct page *page;
196 struct mm_struct *mm = vma->vm_mm;
197
198 *page_mask = 0;
199
200 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
201 if (!IS_ERR(page)) {
202 BUG_ON(flags & FOLL_GET);
203 return page;
204 }
205
206 pgd = pgd_offset(mm, address);
207 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
208 return no_page_table(vma, flags);
209
210 pud = pud_offset(pgd, address);
211 if (pud_none(*pud))
212 return no_page_table(vma, flags);
213 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
214 page = follow_huge_pud(mm, address, pud, flags);
215 if (page)
216 return page;
217 return no_page_table(vma, flags);
218 }
219 if (unlikely(pud_bad(*pud)))
220 return no_page_table(vma, flags);
221
222 pmd = pmd_offset(pud, address);
223 if (pmd_none(*pmd))
224 return no_page_table(vma, flags);
225 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
226 page = follow_huge_pmd(mm, address, pmd, flags);
227 if (page)
228 return page;
229 return no_page_table(vma, flags);
230 }
231 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
232 return no_page_table(vma, flags);
233 if (pmd_trans_huge(*pmd)) {
234 if (flags & FOLL_SPLIT) {
235 split_huge_page_pmd(vma, address, pmd);
236 return follow_page_pte(vma, address, pmd, flags);
237 }
238 ptl = pmd_lock(mm, pmd);
239 if (likely(pmd_trans_huge(*pmd))) {
240 if (unlikely(pmd_trans_splitting(*pmd))) {
241 spin_unlock(ptl);
242 wait_split_huge_page(vma->anon_vma, pmd);
243 } else {
244 page = follow_trans_huge_pmd(vma, address,
245 pmd, flags);
246 spin_unlock(ptl);
247 *page_mask = HPAGE_PMD_NR - 1;
248 return page;
249 }
250 } else
251 spin_unlock(ptl);
252 }
253 return follow_page_pte(vma, address, pmd, flags);
254 }
255
256 static int get_gate_page(struct mm_struct *mm, unsigned long address,
257 unsigned int gup_flags, struct vm_area_struct **vma,
258 struct page **page)
259 {
260 pgd_t *pgd;
261 pud_t *pud;
262 pmd_t *pmd;
263 pte_t *pte;
264 int ret = -EFAULT;
265
266 /* user gate pages are read-only */
267 if (gup_flags & FOLL_WRITE)
268 return -EFAULT;
269 if (address > TASK_SIZE)
270 pgd = pgd_offset_k(address);
271 else
272 pgd = pgd_offset_gate(mm, address);
273 BUG_ON(pgd_none(*pgd));
274 pud = pud_offset(pgd, address);
275 BUG_ON(pud_none(*pud));
276 pmd = pmd_offset(pud, address);
277 if (pmd_none(*pmd))
278 return -EFAULT;
279 VM_BUG_ON(pmd_trans_huge(*pmd));
280 pte = pte_offset_map(pmd, address);
281 if (pte_none(*pte))
282 goto unmap;
283 *vma = get_gate_vma(mm);
284 if (!page)
285 goto out;
286 *page = vm_normal_page(*vma, address, *pte);
287 if (!*page) {
288 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
289 goto unmap;
290 *page = pte_page(*pte);
291 }
292 get_page(*page);
293 out:
294 ret = 0;
295 unmap:
296 pte_unmap(pte);
297 return ret;
298 }
299
300 /*
301 * mmap_sem must be held on entry. If @nonblocking != NULL and
302 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
303 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
304 */
305 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
306 unsigned long address, unsigned int *flags, int *nonblocking)
307 {
308 struct mm_struct *mm = vma->vm_mm;
309 unsigned int fault_flags = 0;
310 int ret;
311
312 /* mlock all present pages, but do not fault in new pages */
313 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
314 return -ENOENT;
315 /* For mm_populate(), just skip the stack guard page. */
316 if ((*flags & FOLL_POPULATE) &&
317 (stack_guard_page_start(vma, address) ||
318 stack_guard_page_end(vma, address + PAGE_SIZE)))
319 return -ENOENT;
320 if (*flags & FOLL_WRITE)
321 fault_flags |= FAULT_FLAG_WRITE;
322 if (nonblocking)
323 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
324 if (*flags & FOLL_NOWAIT)
325 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
326 if (*flags & FOLL_TRIED) {
327 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
328 fault_flags |= FAULT_FLAG_TRIED;
329 }
330
331 ret = handle_mm_fault(mm, vma, address, fault_flags);
332 if (ret & VM_FAULT_ERROR) {
333 if (ret & VM_FAULT_OOM)
334 return -ENOMEM;
335 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
336 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
337 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
338 return -EFAULT;
339 BUG();
340 }
341
342 if (tsk) {
343 if (ret & VM_FAULT_MAJOR)
344 tsk->maj_flt++;
345 else
346 tsk->min_flt++;
347 }
348
349 if (ret & VM_FAULT_RETRY) {
350 if (nonblocking)
351 *nonblocking = 0;
352 return -EBUSY;
353 }
354
355 /*
356 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
357 * necessary, even if maybe_mkwrite decided not to set pte_write. We
358 * can thus safely do subsequent page lookups as if they were reads.
359 * But only do so when looping for pte_write is futile: in some cases
360 * userspace may also be wanting to write to the gotten user page,
361 * which a read fault here might prevent (a readonly page might get
362 * reCOWed by userspace write).
363 */
364 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
365 *flags |= FOLL_COW;
366 return 0;
367 }
368
369 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
370 {
371 vm_flags_t vm_flags = vma->vm_flags;
372
373 if (vm_flags & (VM_IO | VM_PFNMAP))
374 return -EFAULT;
375
376 if (gup_flags & FOLL_WRITE) {
377 if (!(vm_flags & VM_WRITE)) {
378 if (!(gup_flags & FOLL_FORCE))
379 return -EFAULT;
380 /*
381 * We used to let the write,force case do COW in a
382 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
383 * set a breakpoint in a read-only mapping of an
384 * executable, without corrupting the file (yet only
385 * when that file had been opened for writing!).
386 * Anon pages in shared mappings are surprising: now
387 * just reject it.
388 */
389 if (!is_cow_mapping(vm_flags)) {
390 WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
391 return -EFAULT;
392 }
393 }
394 } else if (!(vm_flags & VM_READ)) {
395 if (!(gup_flags & FOLL_FORCE))
396 return -EFAULT;
397 /*
398 * Is there actually any vma we can reach here which does not
399 * have VM_MAYREAD set?
400 */
401 if (!(vm_flags & VM_MAYREAD))
402 return -EFAULT;
403 }
404 return 0;
405 }
406
407 /**
408 * __get_user_pages() - pin user pages in memory
409 * @tsk: task_struct of target task
410 * @mm: mm_struct of target mm
411 * @start: starting user address
412 * @nr_pages: number of pages from start to pin
413 * @gup_flags: flags modifying pin behaviour
414 * @pages: array that receives pointers to the pages pinned.
415 * Should be at least nr_pages long. Or NULL, if caller
416 * only intends to ensure the pages are faulted in.
417 * @vmas: array of pointers to vmas corresponding to each page.
418 * Or NULL if the caller does not require them.
419 * @nonblocking: whether waiting for disk IO or mmap_sem contention
420 *
421 * Returns number of pages pinned. This may be fewer than the number
422 * requested. If nr_pages is 0 or negative, returns 0. If no pages
423 * were pinned, returns -errno. Each page returned must be released
424 * with a put_page() call when it is finished with. vmas will only
425 * remain valid while mmap_sem is held.
426 *
427 * Must be called with mmap_sem held. It may be released. See below.
428 *
429 * __get_user_pages walks a process's page tables and takes a reference to
430 * each struct page that each user address corresponds to at a given
431 * instant. That is, it takes the page that would be accessed if a user
432 * thread accesses the given user virtual address at that instant.
433 *
434 * This does not guarantee that the page exists in the user mappings when
435 * __get_user_pages returns, and there may even be a completely different
436 * page there in some cases (eg. if mmapped pagecache has been invalidated
437 * and subsequently re faulted). However it does guarantee that the page
438 * won't be freed completely. And mostly callers simply care that the page
439 * contains data that was valid *at some point in time*. Typically, an IO
440 * or similar operation cannot guarantee anything stronger anyway because
441 * locks can't be held over the syscall boundary.
442 *
443 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
444 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
445 * appropriate) must be called after the page is finished with, and
446 * before put_page is called.
447 *
448 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
449 * or mmap_sem contention, and if waiting is needed to pin all pages,
450 * *@nonblocking will be set to 0. Further, if @gup_flags does not
451 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
452 * this case.
453 *
454 * A caller using such a combination of @nonblocking and @gup_flags
455 * must therefore hold the mmap_sem for reading only, and recognize
456 * when it's been released. Otherwise, it must be held for either
457 * reading or writing and will not be released.
458 *
459 * In most cases, get_user_pages or get_user_pages_fast should be used
460 * instead of __get_user_pages. __get_user_pages should be used only if
461 * you need some special @gup_flags.
462 */
463 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
464 unsigned long start, unsigned long nr_pages,
465 unsigned int gup_flags, struct page **pages,
466 struct vm_area_struct **vmas, int *nonblocking)
467 {
468 long i = 0;
469 unsigned int page_mask;
470 struct vm_area_struct *vma = NULL;
471
472 if (!nr_pages)
473 return 0;
474
475 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
476
477 /*
478 * If FOLL_FORCE is set then do not force a full fault as the hinting
479 * fault information is unrelated to the reference behaviour of a task
480 * using the address space
481 */
482 if (!(gup_flags & FOLL_FORCE))
483 gup_flags |= FOLL_NUMA;
484
485 do {
486 struct page *page;
487 unsigned int foll_flags = gup_flags;
488 unsigned int page_increm;
489
490 /* first iteration or cross vma bound */
491 if (!vma || start >= vma->vm_end) {
492 vma = find_extend_vma(mm, start);
493 if (!vma && in_gate_area(mm, start)) {
494 int ret;
495 ret = get_gate_page(mm, start & PAGE_MASK,
496 gup_flags, &vma,
497 pages ? &pages[i] : NULL);
498 if (ret)
499 return i ? : ret;
500 page_mask = 0;
501 goto next_page;
502 }
503
504 if (!vma || check_vma_flags(vma, gup_flags))
505 return i ? : -EFAULT;
506 if (is_vm_hugetlb_page(vma)) {
507 i = follow_hugetlb_page(mm, vma, pages, vmas,
508 &start, &nr_pages, i,
509 gup_flags);
510 continue;
511 }
512 }
513 retry:
514 /*
515 * If we have a pending SIGKILL, don't keep faulting pages and
516 * potentially allocating memory.
517 */
518 if (unlikely(fatal_signal_pending(current)))
519 return i ? i : -ERESTARTSYS;
520 cond_resched();
521 page = follow_page_mask(vma, start, foll_flags, &page_mask);
522 if (!page) {
523 int ret;
524 ret = faultin_page(tsk, vma, start, &foll_flags,
525 nonblocking);
526 switch (ret) {
527 case 0:
528 goto retry;
529 case -EFAULT:
530 case -ENOMEM:
531 case -EHWPOISON:
532 return i ? i : ret;
533 case -EBUSY:
534 return i;
535 case -ENOENT:
536 goto next_page;
537 }
538 BUG();
539 } else if (PTR_ERR(page) == -EEXIST) {
540 /*
541 * Proper page table entry exists, but no corresponding
542 * struct page.
543 */
544 goto next_page;
545 } else if (IS_ERR(page)) {
546 return i ? i : PTR_ERR(page);
547 }
548 if (pages) {
549 pages[i] = page;
550 flush_anon_page(vma, page, start);
551 flush_dcache_page(page);
552 page_mask = 0;
553 }
554 next_page:
555 if (vmas) {
556 vmas[i] = vma;
557 page_mask = 0;
558 }
559 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
560 if (page_increm > nr_pages)
561 page_increm = nr_pages;
562 i += page_increm;
563 start += page_increm * PAGE_SIZE;
564 nr_pages -= page_increm;
565 } while (nr_pages);
566 return i;
567 }
568 EXPORT_SYMBOL(__get_user_pages);
569
570 /*
571 * fixup_user_fault() - manually resolve a user page fault
572 * @tsk: the task_struct to use for page fault accounting, or
573 * NULL if faults are not to be recorded.
574 * @mm: mm_struct of target mm
575 * @address: user address
576 * @fault_flags:flags to pass down to handle_mm_fault()
577 *
578 * This is meant to be called in the specific scenario where for locking reasons
579 * we try to access user memory in atomic context (within a pagefault_disable()
580 * section), this returns -EFAULT, and we want to resolve the user fault before
581 * trying again.
582 *
583 * Typically this is meant to be used by the futex code.
584 *
585 * The main difference with get_user_pages() is that this function will
586 * unconditionally call handle_mm_fault() which will in turn perform all the
587 * necessary SW fixup of the dirty and young bits in the PTE, while
588 * handle_mm_fault() only guarantees to update these in the struct page.
589 *
590 * This is important for some architectures where those bits also gate the
591 * access permission to the page because they are maintained in software. On
592 * such architectures, gup() will not be enough to make a subsequent access
593 * succeed.
594 *
595 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
596 */
597 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
598 unsigned long address, unsigned int fault_flags)
599 {
600 struct vm_area_struct *vma;
601 vm_flags_t vm_flags;
602 int ret;
603
604 vma = find_extend_vma(mm, address);
605 if (!vma || address < vma->vm_start)
606 return -EFAULT;
607
608 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
609 if (!(vm_flags & vma->vm_flags))
610 return -EFAULT;
611
612 ret = handle_mm_fault(mm, vma, address, fault_flags);
613 if (ret & VM_FAULT_ERROR) {
614 if (ret & VM_FAULT_OOM)
615 return -ENOMEM;
616 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
617 return -EHWPOISON;
618 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
619 return -EFAULT;
620 BUG();
621 }
622 if (tsk) {
623 if (ret & VM_FAULT_MAJOR)
624 tsk->maj_flt++;
625 else
626 tsk->min_flt++;
627 }
628 return 0;
629 }
630
631 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
632 struct mm_struct *mm,
633 unsigned long start,
634 unsigned long nr_pages,
635 int write, int force,
636 struct page **pages,
637 struct vm_area_struct **vmas,
638 int *locked, bool notify_drop,
639 unsigned int flags)
640 {
641 long ret, pages_done;
642 bool lock_dropped;
643
644 if (locked) {
645 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
646 BUG_ON(vmas);
647 /* check caller initialized locked */
648 BUG_ON(*locked != 1);
649 }
650
651 if (pages)
652 flags |= FOLL_GET;
653 if (write)
654 flags |= FOLL_WRITE;
655 if (force)
656 flags |= FOLL_FORCE;
657
658 pages_done = 0;
659 lock_dropped = false;
660 for (;;) {
661 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
662 vmas, locked);
663 if (!locked)
664 /* VM_FAULT_RETRY couldn't trigger, bypass */
665 return ret;
666
667 /* VM_FAULT_RETRY cannot return errors */
668 if (!*locked) {
669 BUG_ON(ret < 0);
670 BUG_ON(ret >= nr_pages);
671 }
672
673 if (!pages)
674 /* If it's a prefault don't insist harder */
675 return ret;
676
677 if (ret > 0) {
678 nr_pages -= ret;
679 pages_done += ret;
680 if (!nr_pages)
681 break;
682 }
683 if (*locked) {
684 /* VM_FAULT_RETRY didn't trigger */
685 if (!pages_done)
686 pages_done = ret;
687 break;
688 }
689 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
690 pages += ret;
691 start += ret << PAGE_SHIFT;
692
693 /*
694 * Repeat on the address that fired VM_FAULT_RETRY
695 * without FAULT_FLAG_ALLOW_RETRY but with
696 * FAULT_FLAG_TRIED.
697 */
698 *locked = 1;
699 lock_dropped = true;
700 down_read(&mm->mmap_sem);
701 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
702 pages, NULL, NULL);
703 if (ret != 1) {
704 BUG_ON(ret > 1);
705 if (!pages_done)
706 pages_done = ret;
707 break;
708 }
709 nr_pages--;
710 pages_done++;
711 if (!nr_pages)
712 break;
713 pages++;
714 start += PAGE_SIZE;
715 }
716 if (notify_drop && lock_dropped && *locked) {
717 /*
718 * We must let the caller know we temporarily dropped the lock
719 * and so the critical section protected by it was lost.
720 */
721 up_read(&mm->mmap_sem);
722 *locked = 0;
723 }
724 return pages_done;
725 }
726
727 /*
728 * We can leverage the VM_FAULT_RETRY functionality in the page fault
729 * paths better by using either get_user_pages_locked() or
730 * get_user_pages_unlocked().
731 *
732 * get_user_pages_locked() is suitable to replace the form:
733 *
734 * down_read(&mm->mmap_sem);
735 * do_something()
736 * get_user_pages(tsk, mm, ..., pages, NULL);
737 * up_read(&mm->mmap_sem);
738 *
739 * to:
740 *
741 * int locked = 1;
742 * down_read(&mm->mmap_sem);
743 * do_something()
744 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
745 * if (locked)
746 * up_read(&mm->mmap_sem);
747 */
748 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
749 unsigned long start, unsigned long nr_pages,
750 int write, int force, struct page **pages,
751 int *locked)
752 {
753 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
754 pages, NULL, locked, true, FOLL_TOUCH);
755 }
756 EXPORT_SYMBOL(get_user_pages_locked);
757
758 /*
759 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
760 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
761 *
762 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
763 * caller if required (just like with __get_user_pages). "FOLL_GET",
764 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
765 * according to the parameters "pages", "write", "force"
766 * respectively.
767 */
768 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
769 unsigned long start, unsigned long nr_pages,
770 int write, int force, struct page **pages,
771 unsigned int gup_flags)
772 {
773 long ret;
774 int locked = 1;
775 down_read(&mm->mmap_sem);
776 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
777 pages, NULL, &locked, false, gup_flags);
778 if (locked)
779 up_read(&mm->mmap_sem);
780 return ret;
781 }
782 EXPORT_SYMBOL(__get_user_pages_unlocked);
783
784 /*
785 * get_user_pages_unlocked() is suitable to replace the form:
786 *
787 * down_read(&mm->mmap_sem);
788 * get_user_pages(tsk, mm, ..., pages, NULL);
789 * up_read(&mm->mmap_sem);
790 *
791 * with:
792 *
793 * get_user_pages_unlocked(tsk, mm, ..., pages);
794 *
795 * It is functionally equivalent to get_user_pages_fast so
796 * get_user_pages_fast should be used instead, if the two parameters
797 * "tsk" and "mm" are respectively equal to current and current->mm,
798 * or if "force" shall be set to 1 (get_user_pages_fast misses the
799 * "force" parameter).
800 */
801 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
802 unsigned long start, unsigned long nr_pages,
803 int write, int force, struct page **pages)
804 {
805 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
806 force, pages, FOLL_TOUCH);
807 }
808 EXPORT_SYMBOL(get_user_pages_unlocked);
809
810 /*
811 * get_user_pages() - pin user pages in memory
812 * @tsk: the task_struct to use for page fault accounting, or
813 * NULL if faults are not to be recorded.
814 * @mm: mm_struct of target mm
815 * @start: starting user address
816 * @nr_pages: number of pages from start to pin
817 * @write: whether pages will be written to by the caller
818 * @force: whether to force access even when user mapping is currently
819 * protected (but never forces write access to shared mapping).
820 * @pages: array that receives pointers to the pages pinned.
821 * Should be at least nr_pages long. Or NULL, if caller
822 * only intends to ensure the pages are faulted in.
823 * @vmas: array of pointers to vmas corresponding to each page.
824 * Or NULL if the caller does not require them.
825 *
826 * Returns number of pages pinned. This may be fewer than the number
827 * requested. If nr_pages is 0 or negative, returns 0. If no pages
828 * were pinned, returns -errno. Each page returned must be released
829 * with a put_page() call when it is finished with. vmas will only
830 * remain valid while mmap_sem is held.
831 *
832 * Must be called with mmap_sem held for read or write.
833 *
834 * get_user_pages walks a process's page tables and takes a reference to
835 * each struct page that each user address corresponds to at a given
836 * instant. That is, it takes the page that would be accessed if a user
837 * thread accesses the given user virtual address at that instant.
838 *
839 * This does not guarantee that the page exists in the user mappings when
840 * get_user_pages returns, and there may even be a completely different
841 * page there in some cases (eg. if mmapped pagecache has been invalidated
842 * and subsequently re faulted). However it does guarantee that the page
843 * won't be freed completely. And mostly callers simply care that the page
844 * contains data that was valid *at some point in time*. Typically, an IO
845 * or similar operation cannot guarantee anything stronger anyway because
846 * locks can't be held over the syscall boundary.
847 *
848 * If write=0, the page must not be written to. If the page is written to,
849 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
850 * after the page is finished with, and before put_page is called.
851 *
852 * get_user_pages is typically used for fewer-copy IO operations, to get a
853 * handle on the memory by some means other than accesses via the user virtual
854 * addresses. The pages may be submitted for DMA to devices or accessed via
855 * their kernel linear mapping (via the kmap APIs). Care should be taken to
856 * use the correct cache flushing APIs.
857 *
858 * See also get_user_pages_fast, for performance critical applications.
859 *
860 * get_user_pages should be phased out in favor of
861 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
862 * should use get_user_pages because it cannot pass
863 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
864 */
865 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
866 unsigned long start, unsigned long nr_pages, int write,
867 int force, struct page **pages, struct vm_area_struct **vmas)
868 {
869 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
870 pages, vmas, NULL, false, FOLL_TOUCH);
871 }
872 EXPORT_SYMBOL(get_user_pages);
873
874 /**
875 * populate_vma_page_range() - populate a range of pages in the vma.
876 * @vma: target vma
877 * @start: start address
878 * @end: end address
879 * @nonblocking:
880 *
881 * This takes care of mlocking the pages too if VM_LOCKED is set.
882 *
883 * return 0 on success, negative error code on error.
884 *
885 * vma->vm_mm->mmap_sem must be held.
886 *
887 * If @nonblocking is NULL, it may be held for read or write and will
888 * be unperturbed.
889 *
890 * If @nonblocking is non-NULL, it must held for read only and may be
891 * released. If it's released, *@nonblocking will be set to 0.
892 */
893 long populate_vma_page_range(struct vm_area_struct *vma,
894 unsigned long start, unsigned long end, int *nonblocking)
895 {
896 struct mm_struct *mm = vma->vm_mm;
897 unsigned long nr_pages = (end - start) / PAGE_SIZE;
898 int gup_flags;
899
900 VM_BUG_ON(start & ~PAGE_MASK);
901 VM_BUG_ON(end & ~PAGE_MASK);
902 VM_BUG_ON_VMA(start < vma->vm_start, vma);
903 VM_BUG_ON_VMA(end > vma->vm_end, vma);
904 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
905
906 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
907 if (vma->vm_flags & VM_LOCKONFAULT)
908 gup_flags &= ~FOLL_POPULATE;
909
910 /*
911 * We want to touch writable mappings with a write fault in order
912 * to break COW, except for shared mappings because these don't COW
913 * and we would not want to dirty them for nothing.
914 */
915 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
916 gup_flags |= FOLL_WRITE;
917
918 /*
919 * We want mlock to succeed for regions that have any permissions
920 * other than PROT_NONE.
921 */
922 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
923 gup_flags |= FOLL_FORCE;
924
925 /*
926 * We made sure addr is within a VMA, so the following will
927 * not result in a stack expansion that recurses back here.
928 */
929 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
930 NULL, NULL, nonblocking);
931 }
932
933 /*
934 * __mm_populate - populate and/or mlock pages within a range of address space.
935 *
936 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
937 * flags. VMAs must be already marked with the desired vm_flags, and
938 * mmap_sem must not be held.
939 */
940 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
941 {
942 struct mm_struct *mm = current->mm;
943 unsigned long end, nstart, nend;
944 struct vm_area_struct *vma = NULL;
945 int locked = 0;
946 long ret = 0;
947
948 VM_BUG_ON(start & ~PAGE_MASK);
949 VM_BUG_ON(len != PAGE_ALIGN(len));
950 end = start + len;
951
952 for (nstart = start; nstart < end; nstart = nend) {
953 /*
954 * We want to fault in pages for [nstart; end) address range.
955 * Find first corresponding VMA.
956 */
957 if (!locked) {
958 locked = 1;
959 down_read(&mm->mmap_sem);
960 vma = find_vma(mm, nstart);
961 } else if (nstart >= vma->vm_end)
962 vma = vma->vm_next;
963 if (!vma || vma->vm_start >= end)
964 break;
965 /*
966 * Set [nstart; nend) to intersection of desired address
967 * range with the first VMA. Also, skip undesirable VMA types.
968 */
969 nend = min(end, vma->vm_end);
970 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
971 continue;
972 if (nstart < vma->vm_start)
973 nstart = vma->vm_start;
974 /*
975 * Now fault in a range of pages. populate_vma_page_range()
976 * double checks the vma flags, so that it won't mlock pages
977 * if the vma was already munlocked.
978 */
979 ret = populate_vma_page_range(vma, nstart, nend, &locked);
980 if (ret < 0) {
981 if (ignore_errors) {
982 ret = 0;
983 continue; /* continue at next VMA */
984 }
985 break;
986 }
987 nend = nstart + ret * PAGE_SIZE;
988 ret = 0;
989 }
990 if (locked)
991 up_read(&mm->mmap_sem);
992 return ret; /* 0 or negative error code */
993 }
994
995 /**
996 * get_dump_page() - pin user page in memory while writing it to core dump
997 * @addr: user address
998 *
999 * Returns struct page pointer of user page pinned for dump,
1000 * to be freed afterwards by page_cache_release() or put_page().
1001 *
1002 * Returns NULL on any kind of failure - a hole must then be inserted into
1003 * the corefile, to preserve alignment with its headers; and also returns
1004 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1005 * allowing a hole to be left in the corefile to save diskspace.
1006 *
1007 * Called without mmap_sem, but after all other threads have been killed.
1008 */
1009 #ifdef CONFIG_ELF_CORE
1010 struct page *get_dump_page(unsigned long addr)
1011 {
1012 struct vm_area_struct *vma;
1013 struct page *page;
1014
1015 if (__get_user_pages(current, current->mm, addr, 1,
1016 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1017 NULL) < 1)
1018 return NULL;
1019 flush_cache_page(vma, addr, page_to_pfn(page));
1020 return page;
1021 }
1022 #endif /* CONFIG_ELF_CORE */
1023
1024 /*
1025 * Generic RCU Fast GUP
1026 *
1027 * get_user_pages_fast attempts to pin user pages by walking the page
1028 * tables directly and avoids taking locks. Thus the walker needs to be
1029 * protected from page table pages being freed from under it, and should
1030 * block any THP splits.
1031 *
1032 * One way to achieve this is to have the walker disable interrupts, and
1033 * rely on IPIs from the TLB flushing code blocking before the page table
1034 * pages are freed. This is unsuitable for architectures that do not need
1035 * to broadcast an IPI when invalidating TLBs.
1036 *
1037 * Another way to achieve this is to batch up page table containing pages
1038 * belonging to more than one mm_user, then rcu_sched a callback to free those
1039 * pages. Disabling interrupts will allow the fast_gup walker to both block
1040 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1041 * (which is a relatively rare event). The code below adopts this strategy.
1042 *
1043 * Before activating this code, please be aware that the following assumptions
1044 * are currently made:
1045 *
1046 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1047 * pages containing page tables.
1048 *
1049 * *) THP splits will broadcast an IPI, this can be achieved by overriding
1050 * pmdp_splitting_flush.
1051 *
1052 * *) ptes can be read atomically by the architecture.
1053 *
1054 * *) access_ok is sufficient to validate userspace address ranges.
1055 *
1056 * The last two assumptions can be relaxed by the addition of helper functions.
1057 *
1058 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1059 */
1060 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1061
1062 #ifdef __HAVE_ARCH_PTE_SPECIAL
1063 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1064 int write, struct page **pages, int *nr)
1065 {
1066 pte_t *ptep, *ptem;
1067 int ret = 0;
1068
1069 ptem = ptep = pte_offset_map(&pmd, addr);
1070 do {
1071 /*
1072 * In the line below we are assuming that the pte can be read
1073 * atomically. If this is not the case for your architecture,
1074 * please wrap this in a helper function!
1075 *
1076 * for an example see gup_get_pte in arch/x86/mm/gup.c
1077 */
1078 pte_t pte = READ_ONCE(*ptep);
1079 struct page *page;
1080
1081 /*
1082 * Similar to the PMD case below, NUMA hinting must take slow
1083 * path using the pte_protnone check.
1084 */
1085 if (!pte_present(pte) || pte_special(pte) ||
1086 pte_protnone(pte) || (write && !pte_write(pte)))
1087 goto pte_unmap;
1088
1089 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1090 page = pte_page(pte);
1091
1092 if (!page_cache_get_speculative(page))
1093 goto pte_unmap;
1094
1095 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1096 put_page(page);
1097 goto pte_unmap;
1098 }
1099
1100 pages[*nr] = page;
1101 (*nr)++;
1102
1103 } while (ptep++, addr += PAGE_SIZE, addr != end);
1104
1105 ret = 1;
1106
1107 pte_unmap:
1108 pte_unmap(ptem);
1109 return ret;
1110 }
1111 #else
1112
1113 /*
1114 * If we can't determine whether or not a pte is special, then fail immediately
1115 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1116 * to be special.
1117 *
1118 * For a futex to be placed on a THP tail page, get_futex_key requires a
1119 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1120 * useful to have gup_huge_pmd even if we can't operate on ptes.
1121 */
1122 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1123 int write, struct page **pages, int *nr)
1124 {
1125 return 0;
1126 }
1127 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1128
1129 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1130 unsigned long end, int write, struct page **pages, int *nr)
1131 {
1132 struct page *head, *page, *tail;
1133 int refs;
1134
1135 if (write && !pmd_write(orig))
1136 return 0;
1137
1138 refs = 0;
1139 head = pmd_page(orig);
1140 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1141 tail = page;
1142 do {
1143 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1144 pages[*nr] = page;
1145 (*nr)++;
1146 page++;
1147 refs++;
1148 } while (addr += PAGE_SIZE, addr != end);
1149
1150 if (!page_cache_add_speculative(head, refs)) {
1151 *nr -= refs;
1152 return 0;
1153 }
1154
1155 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1156 *nr -= refs;
1157 while (refs--)
1158 put_page(head);
1159 return 0;
1160 }
1161
1162 /*
1163 * Any tail pages need their mapcount reference taken before we
1164 * return. (This allows the THP code to bump their ref count when
1165 * they are split into base pages).
1166 */
1167 while (refs--) {
1168 if (PageTail(tail))
1169 get_huge_page_tail(tail);
1170 tail++;
1171 }
1172
1173 return 1;
1174 }
1175
1176 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1177 unsigned long end, int write, struct page **pages, int *nr)
1178 {
1179 struct page *head, *page, *tail;
1180 int refs;
1181
1182 if (write && !pud_write(orig))
1183 return 0;
1184
1185 refs = 0;
1186 head = pud_page(orig);
1187 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1188 tail = page;
1189 do {
1190 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1191 pages[*nr] = page;
1192 (*nr)++;
1193 page++;
1194 refs++;
1195 } while (addr += PAGE_SIZE, addr != end);
1196
1197 if (!page_cache_add_speculative(head, refs)) {
1198 *nr -= refs;
1199 return 0;
1200 }
1201
1202 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1203 *nr -= refs;
1204 while (refs--)
1205 put_page(head);
1206 return 0;
1207 }
1208
1209 while (refs--) {
1210 if (PageTail(tail))
1211 get_huge_page_tail(tail);
1212 tail++;
1213 }
1214
1215 return 1;
1216 }
1217
1218 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1219 unsigned long end, int write,
1220 struct page **pages, int *nr)
1221 {
1222 int refs;
1223 struct page *head, *page, *tail;
1224
1225 if (write && !pgd_write(orig))
1226 return 0;
1227
1228 refs = 0;
1229 head = pgd_page(orig);
1230 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1231 tail = page;
1232 do {
1233 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1234 pages[*nr] = page;
1235 (*nr)++;
1236 page++;
1237 refs++;
1238 } while (addr += PAGE_SIZE, addr != end);
1239
1240 if (!page_cache_add_speculative(head, refs)) {
1241 *nr -= refs;
1242 return 0;
1243 }
1244
1245 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1246 *nr -= refs;
1247 while (refs--)
1248 put_page(head);
1249 return 0;
1250 }
1251
1252 while (refs--) {
1253 if (PageTail(tail))
1254 get_huge_page_tail(tail);
1255 tail++;
1256 }
1257
1258 return 1;
1259 }
1260
1261 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1262 int write, struct page **pages, int *nr)
1263 {
1264 unsigned long next;
1265 pmd_t *pmdp;
1266
1267 pmdp = pmd_offset(&pud, addr);
1268 do {
1269 pmd_t pmd = READ_ONCE(*pmdp);
1270
1271 next = pmd_addr_end(addr, end);
1272 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1273 return 0;
1274
1275 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1276 /*
1277 * NUMA hinting faults need to be handled in the GUP
1278 * slowpath for accounting purposes and so that they
1279 * can be serialised against THP migration.
1280 */
1281 if (pmd_protnone(pmd))
1282 return 0;
1283
1284 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1285 pages, nr))
1286 return 0;
1287
1288 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1289 /*
1290 * architecture have different format for hugetlbfs
1291 * pmd format and THP pmd format
1292 */
1293 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1294 PMD_SHIFT, next, write, pages, nr))
1295 return 0;
1296 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1297 return 0;
1298 } while (pmdp++, addr = next, addr != end);
1299
1300 return 1;
1301 }
1302
1303 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1304 int write, struct page **pages, int *nr)
1305 {
1306 unsigned long next;
1307 pud_t *pudp;
1308
1309 pudp = pud_offset(&pgd, addr);
1310 do {
1311 pud_t pud = READ_ONCE(*pudp);
1312
1313 next = pud_addr_end(addr, end);
1314 if (pud_none(pud))
1315 return 0;
1316 if (unlikely(pud_huge(pud))) {
1317 if (!gup_huge_pud(pud, pudp, addr, next, write,
1318 pages, nr))
1319 return 0;
1320 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1321 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1322 PUD_SHIFT, next, write, pages, nr))
1323 return 0;
1324 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1325 return 0;
1326 } while (pudp++, addr = next, addr != end);
1327
1328 return 1;
1329 }
1330
1331 /*
1332 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1333 * the regular GUP. It will only return non-negative values.
1334 */
1335 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1336 struct page **pages)
1337 {
1338 struct mm_struct *mm = current->mm;
1339 unsigned long addr, len, end;
1340 unsigned long next, flags;
1341 pgd_t *pgdp;
1342 int nr = 0;
1343
1344 start &= PAGE_MASK;
1345 addr = start;
1346 len = (unsigned long) nr_pages << PAGE_SHIFT;
1347 end = start + len;
1348
1349 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1350 start, len)))
1351 return 0;
1352
1353 /*
1354 * Disable interrupts. We use the nested form as we can already have
1355 * interrupts disabled by get_futex_key.
1356 *
1357 * With interrupts disabled, we block page table pages from being
1358 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1359 * for more details.
1360 *
1361 * We do not adopt an rcu_read_lock(.) here as we also want to
1362 * block IPIs that come from THPs splitting.
1363 */
1364
1365 local_irq_save(flags);
1366 pgdp = pgd_offset(mm, addr);
1367 do {
1368 pgd_t pgd = READ_ONCE(*pgdp);
1369
1370 next = pgd_addr_end(addr, end);
1371 if (pgd_none(pgd))
1372 break;
1373 if (unlikely(pgd_huge(pgd))) {
1374 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1375 pages, &nr))
1376 break;
1377 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1378 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1379 PGDIR_SHIFT, next, write, pages, &nr))
1380 break;
1381 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1382 break;
1383 } while (pgdp++, addr = next, addr != end);
1384 local_irq_restore(flags);
1385
1386 return nr;
1387 }
1388
1389 /**
1390 * get_user_pages_fast() - pin user pages in memory
1391 * @start: starting user address
1392 * @nr_pages: number of pages from start to pin
1393 * @write: whether pages will be written to
1394 * @pages: array that receives pointers to the pages pinned.
1395 * Should be at least nr_pages long.
1396 *
1397 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1398 * If not successful, it will fall back to taking the lock and
1399 * calling get_user_pages().
1400 *
1401 * Returns number of pages pinned. This may be fewer than the number
1402 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1403 * were pinned, returns -errno.
1404 */
1405 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1406 struct page **pages)
1407 {
1408 struct mm_struct *mm = current->mm;
1409 int nr, ret;
1410
1411 start &= PAGE_MASK;
1412 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1413 ret = nr;
1414
1415 if (nr < nr_pages) {
1416 /* Try to get the remaining pages with get_user_pages */
1417 start += nr << PAGE_SHIFT;
1418 pages += nr;
1419
1420 ret = get_user_pages_unlocked(current, mm, start,
1421 nr_pages - nr, write, 0, pages);
1422
1423 /* Have to be a bit careful with return values */
1424 if (nr > 0) {
1425 if (ret < 0)
1426 ret = nr;
1427 else
1428 ret += nr;
1429 }
1430 }
1431
1432 return ret;
1433 }
1434
1435 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */