]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/gup.c
mm/gup: use unpin_user_pages() in __gup_longterm_locked()
[mirror_ubuntu-jammy-kernel.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23
24 #include "internal.h"
25
26 struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29 };
30
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37 }
38
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45 }
46
47 /*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60 }
61
62 /*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs,
83 unsigned int flags)
84 {
85 if (flags & FOLL_GET)
86 return try_get_compound_head(page, refs);
87 else if (flags & FOLL_PIN) {
88 int orig_refs = refs;
89
90 /*
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
93 */
94 if (unlikely(flags & FOLL_LONGTERM) &&
95 is_migrate_cma_page(page))
96 return NULL;
97
98 /*
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
102 *
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
105 */
106 if (!hpage_pincount_available(page))
107 refs *= GUP_PIN_COUNTING_BIAS;
108
109 page = try_get_compound_head(page, refs);
110 if (!page)
111 return NULL;
112
113 if (hpage_pincount_available(page))
114 hpage_pincount_add(page, refs);
115
116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 orig_refs);
118
119 return page;
120 }
121
122 WARN_ON_ONCE(1);
123 return NULL;
124 }
125
126 /**
127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128 *
129 * This might not do anything at all, depending on the flags argument.
130 *
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133 *
134 * @page: pointer to page to be grabbed
135 * @flags: gup flags: these are the FOLL_* flag values.
136 *
137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138 * time. Cases:
139 *
140 * FOLL_GET: page's refcount will be incremented by 1.
141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142 *
143 * Return: true for success, or if no action was required (if neither FOLL_PIN
144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145 * FOLL_PIN was set, but the page could not be grabbed.
146 */
147 bool __must_check try_grab_page(struct page *page, unsigned int flags)
148 {
149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150
151 if (flags & FOLL_GET)
152 return try_get_page(page);
153 else if (flags & FOLL_PIN) {
154 int refs = 1;
155
156 page = compound_head(page);
157
158 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 return false;
160
161 if (hpage_pincount_available(page))
162 hpage_pincount_add(page, 1);
163 else
164 refs = GUP_PIN_COUNTING_BIAS;
165
166 /*
167 * Similar to try_grab_compound_head(): even if using the
168 * hpage_pincount_add/_sub() routines, be sure to
169 * *also* increment the normal page refcount field at least
170 * once, so that the page really is pinned.
171 */
172 page_ref_add(page, refs);
173
174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175 }
176
177 return true;
178 }
179
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page *page)
182 {
183 int count, refs = 1;
184
185 if (!page_is_devmap_managed(page))
186 return false;
187
188 if (hpage_pincount_available(page))
189 hpage_pincount_sub(page, 1);
190 else
191 refs = GUP_PIN_COUNTING_BIAS;
192
193 count = page_ref_sub_return(page, refs);
194
195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196 /*
197 * devmap page refcounts are 1-based, rather than 0-based: if
198 * refcount is 1, then the page is free and the refcount is
199 * stable because nobody holds a reference on the page.
200 */
201 if (count == 1)
202 free_devmap_managed_page(page);
203 else if (!count)
204 __put_page(page);
205
206 return true;
207 }
208 #else
209 static bool __unpin_devmap_managed_user_page(struct page *page)
210 {
211 return false;
212 }
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
214
215 /**
216 * unpin_user_page() - release a dma-pinned page
217 * @page: pointer to page to be released
218 *
219 * Pages that were pinned via pin_user_pages*() must be released via either
220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221 * that such pages can be separately tracked and uniquely handled. In
222 * particular, interactions with RDMA and filesystems need special handling.
223 */
224 void unpin_user_page(struct page *page)
225 {
226 int refs = 1;
227
228 page = compound_head(page);
229
230 /*
231 * For devmap managed pages we need to catch refcount transition from
232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 * page is free and we need to inform the device driver through
234 * callback. See include/linux/memremap.h and HMM for details.
235 */
236 if (__unpin_devmap_managed_user_page(page))
237 return;
238
239 if (hpage_pincount_available(page))
240 hpage_pincount_sub(page, 1);
241 else
242 refs = GUP_PIN_COUNTING_BIAS;
243
244 if (page_ref_sub_and_test(page, refs))
245 __put_page(page);
246
247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248 }
249 EXPORT_SYMBOL(unpin_user_page);
250
251 /**
252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253 * @pages: array of pages to be maybe marked dirty, and definitely released.
254 * @npages: number of pages in the @pages array.
255 * @make_dirty: whether to mark the pages dirty
256 *
257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258 * variants called on that page.
259 *
260 * For each page in the @pages array, make that page (or its head page, if a
261 * compound page) dirty, if @make_dirty is true, and if the page was previously
262 * listed as clean. In any case, releases all pages using unpin_user_page(),
263 * possibly via unpin_user_pages(), for the non-dirty case.
264 *
265 * Please see the unpin_user_page() documentation for details.
266 *
267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268 * required, then the caller should a) verify that this is really correct,
269 * because _lock() is usually required, and b) hand code it:
270 * set_page_dirty_lock(), unpin_user_page().
271 *
272 */
273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 bool make_dirty)
275 {
276 unsigned long index;
277
278 /*
279 * TODO: this can be optimized for huge pages: if a series of pages is
280 * physically contiguous and part of the same compound page, then a
281 * single operation to the head page should suffice.
282 */
283
284 if (!make_dirty) {
285 unpin_user_pages(pages, npages);
286 return;
287 }
288
289 for (index = 0; index < npages; index++) {
290 struct page *page = compound_head(pages[index]);
291 /*
292 * Checking PageDirty at this point may race with
293 * clear_page_dirty_for_io(), but that's OK. Two key
294 * cases:
295 *
296 * 1) This code sees the page as already dirty, so it
297 * skips the call to set_page_dirty(). That could happen
298 * because clear_page_dirty_for_io() called
299 * page_mkclean(), followed by set_page_dirty().
300 * However, now the page is going to get written back,
301 * which meets the original intention of setting it
302 * dirty, so all is well: clear_page_dirty_for_io() goes
303 * on to call TestClearPageDirty(), and write the page
304 * back.
305 *
306 * 2) This code sees the page as clean, so it calls
307 * set_page_dirty(). The page stays dirty, despite being
308 * written back, so it gets written back again in the
309 * next writeback cycle. This is harmless.
310 */
311 if (!PageDirty(page))
312 set_page_dirty_lock(page);
313 unpin_user_page(page);
314 }
315 }
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317
318 /**
319 * unpin_user_pages() - release an array of gup-pinned pages.
320 * @pages: array of pages to be marked dirty and released.
321 * @npages: number of pages in the @pages array.
322 *
323 * For each page in the @pages array, release the page using unpin_user_page().
324 *
325 * Please see the unpin_user_page() documentation for details.
326 */
327 void unpin_user_pages(struct page **pages, unsigned long npages)
328 {
329 unsigned long index;
330
331 /*
332 * If this WARN_ON() fires, then the system *might* be leaking pages (by
333 * leaving them pinned), but probably not. More likely, gup/pup returned
334 * a hard -ERRNO error to the caller, who erroneously passed it here.
335 */
336 if (WARN_ON(IS_ERR_VALUE(npages)))
337 return;
338 /*
339 * TODO: this can be optimized for huge pages: if a series of pages is
340 * physically contiguous and part of the same compound page, then a
341 * single operation to the head page should suffice.
342 */
343 for (index = 0; index < npages; index++)
344 unpin_user_page(pages[index]);
345 }
346 EXPORT_SYMBOL(unpin_user_pages);
347
348 #ifdef CONFIG_MMU
349 static struct page *no_page_table(struct vm_area_struct *vma,
350 unsigned int flags)
351 {
352 /*
353 * When core dumping an enormous anonymous area that nobody
354 * has touched so far, we don't want to allocate unnecessary pages or
355 * page tables. Return error instead of NULL to skip handle_mm_fault,
356 * then get_dump_page() will return NULL to leave a hole in the dump.
357 * But we can only make this optimization where a hole would surely
358 * be zero-filled if handle_mm_fault() actually did handle it.
359 */
360 if ((flags & FOLL_DUMP) &&
361 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
362 return ERR_PTR(-EFAULT);
363 return NULL;
364 }
365
366 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
367 pte_t *pte, unsigned int flags)
368 {
369 /* No page to get reference */
370 if (flags & FOLL_GET)
371 return -EFAULT;
372
373 if (flags & FOLL_TOUCH) {
374 pte_t entry = *pte;
375
376 if (flags & FOLL_WRITE)
377 entry = pte_mkdirty(entry);
378 entry = pte_mkyoung(entry);
379
380 if (!pte_same(*pte, entry)) {
381 set_pte_at(vma->vm_mm, address, pte, entry);
382 update_mmu_cache(vma, address, pte);
383 }
384 }
385
386 /* Proper page table entry exists, but no corresponding struct page */
387 return -EEXIST;
388 }
389
390 /*
391 * FOLL_FORCE can write to even unwritable pte's, but only
392 * after we've gone through a COW cycle and they are dirty.
393 */
394 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
395 {
396 return pte_write(pte) ||
397 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
398 }
399
400 static struct page *follow_page_pte(struct vm_area_struct *vma,
401 unsigned long address, pmd_t *pmd, unsigned int flags,
402 struct dev_pagemap **pgmap)
403 {
404 struct mm_struct *mm = vma->vm_mm;
405 struct page *page;
406 spinlock_t *ptl;
407 pte_t *ptep, pte;
408 int ret;
409
410 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
411 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
412 (FOLL_PIN | FOLL_GET)))
413 return ERR_PTR(-EINVAL);
414 retry:
415 if (unlikely(pmd_bad(*pmd)))
416 return no_page_table(vma, flags);
417
418 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
419 pte = *ptep;
420 if (!pte_present(pte)) {
421 swp_entry_t entry;
422 /*
423 * KSM's break_ksm() relies upon recognizing a ksm page
424 * even while it is being migrated, so for that case we
425 * need migration_entry_wait().
426 */
427 if (likely(!(flags & FOLL_MIGRATION)))
428 goto no_page;
429 if (pte_none(pte))
430 goto no_page;
431 entry = pte_to_swp_entry(pte);
432 if (!is_migration_entry(entry))
433 goto no_page;
434 pte_unmap_unlock(ptep, ptl);
435 migration_entry_wait(mm, pmd, address);
436 goto retry;
437 }
438 if ((flags & FOLL_NUMA) && pte_protnone(pte))
439 goto no_page;
440 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
441 pte_unmap_unlock(ptep, ptl);
442 return NULL;
443 }
444
445 page = vm_normal_page(vma, address, pte);
446 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
447 /*
448 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
449 * case since they are only valid while holding the pgmap
450 * reference.
451 */
452 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
453 if (*pgmap)
454 page = pte_page(pte);
455 else
456 goto no_page;
457 } else if (unlikely(!page)) {
458 if (flags & FOLL_DUMP) {
459 /* Avoid special (like zero) pages in core dumps */
460 page = ERR_PTR(-EFAULT);
461 goto out;
462 }
463
464 if (is_zero_pfn(pte_pfn(pte))) {
465 page = pte_page(pte);
466 } else {
467 ret = follow_pfn_pte(vma, address, ptep, flags);
468 page = ERR_PTR(ret);
469 goto out;
470 }
471 }
472
473 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
474 get_page(page);
475 pte_unmap_unlock(ptep, ptl);
476 lock_page(page);
477 ret = split_huge_page(page);
478 unlock_page(page);
479 put_page(page);
480 if (ret)
481 return ERR_PTR(ret);
482 goto retry;
483 }
484
485 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
486 if (unlikely(!try_grab_page(page, flags))) {
487 page = ERR_PTR(-ENOMEM);
488 goto out;
489 }
490 /*
491 * We need to make the page accessible if and only if we are going
492 * to access its content (the FOLL_PIN case). Please see
493 * Documentation/core-api/pin_user_pages.rst for details.
494 */
495 if (flags & FOLL_PIN) {
496 ret = arch_make_page_accessible(page);
497 if (ret) {
498 unpin_user_page(page);
499 page = ERR_PTR(ret);
500 goto out;
501 }
502 }
503 if (flags & FOLL_TOUCH) {
504 if ((flags & FOLL_WRITE) &&
505 !pte_dirty(pte) && !PageDirty(page))
506 set_page_dirty(page);
507 /*
508 * pte_mkyoung() would be more correct here, but atomic care
509 * is needed to avoid losing the dirty bit: it is easier to use
510 * mark_page_accessed().
511 */
512 mark_page_accessed(page);
513 }
514 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
515 /* Do not mlock pte-mapped THP */
516 if (PageTransCompound(page))
517 goto out;
518
519 /*
520 * The preliminary mapping check is mainly to avoid the
521 * pointless overhead of lock_page on the ZERO_PAGE
522 * which might bounce very badly if there is contention.
523 *
524 * If the page is already locked, we don't need to
525 * handle it now - vmscan will handle it later if and
526 * when it attempts to reclaim the page.
527 */
528 if (page->mapping && trylock_page(page)) {
529 lru_add_drain(); /* push cached pages to LRU */
530 /*
531 * Because we lock page here, and migration is
532 * blocked by the pte's page reference, and we
533 * know the page is still mapped, we don't even
534 * need to check for file-cache page truncation.
535 */
536 mlock_vma_page(page);
537 unlock_page(page);
538 }
539 }
540 out:
541 pte_unmap_unlock(ptep, ptl);
542 return page;
543 no_page:
544 pte_unmap_unlock(ptep, ptl);
545 if (!pte_none(pte))
546 return NULL;
547 return no_page_table(vma, flags);
548 }
549
550 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
551 unsigned long address, pud_t *pudp,
552 unsigned int flags,
553 struct follow_page_context *ctx)
554 {
555 pmd_t *pmd, pmdval;
556 spinlock_t *ptl;
557 struct page *page;
558 struct mm_struct *mm = vma->vm_mm;
559
560 pmd = pmd_offset(pudp, address);
561 /*
562 * The READ_ONCE() will stabilize the pmdval in a register or
563 * on the stack so that it will stop changing under the code.
564 */
565 pmdval = READ_ONCE(*pmd);
566 if (pmd_none(pmdval))
567 return no_page_table(vma, flags);
568 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
569 page = follow_huge_pmd(mm, address, pmd, flags);
570 if (page)
571 return page;
572 return no_page_table(vma, flags);
573 }
574 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
575 page = follow_huge_pd(vma, address,
576 __hugepd(pmd_val(pmdval)), flags,
577 PMD_SHIFT);
578 if (page)
579 return page;
580 return no_page_table(vma, flags);
581 }
582 retry:
583 if (!pmd_present(pmdval)) {
584 if (likely(!(flags & FOLL_MIGRATION)))
585 return no_page_table(vma, flags);
586 VM_BUG_ON(thp_migration_supported() &&
587 !is_pmd_migration_entry(pmdval));
588 if (is_pmd_migration_entry(pmdval))
589 pmd_migration_entry_wait(mm, pmd);
590 pmdval = READ_ONCE(*pmd);
591 /*
592 * MADV_DONTNEED may convert the pmd to null because
593 * mmap_lock is held in read mode
594 */
595 if (pmd_none(pmdval))
596 return no_page_table(vma, flags);
597 goto retry;
598 }
599 if (pmd_devmap(pmdval)) {
600 ptl = pmd_lock(mm, pmd);
601 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
602 spin_unlock(ptl);
603 if (page)
604 return page;
605 }
606 if (likely(!pmd_trans_huge(pmdval)))
607 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
608
609 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
610 return no_page_table(vma, flags);
611
612 retry_locked:
613 ptl = pmd_lock(mm, pmd);
614 if (unlikely(pmd_none(*pmd))) {
615 spin_unlock(ptl);
616 return no_page_table(vma, flags);
617 }
618 if (unlikely(!pmd_present(*pmd))) {
619 spin_unlock(ptl);
620 if (likely(!(flags & FOLL_MIGRATION)))
621 return no_page_table(vma, flags);
622 pmd_migration_entry_wait(mm, pmd);
623 goto retry_locked;
624 }
625 if (unlikely(!pmd_trans_huge(*pmd))) {
626 spin_unlock(ptl);
627 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
628 }
629 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
630 int ret;
631 page = pmd_page(*pmd);
632 if (is_huge_zero_page(page)) {
633 spin_unlock(ptl);
634 ret = 0;
635 split_huge_pmd(vma, pmd, address);
636 if (pmd_trans_unstable(pmd))
637 ret = -EBUSY;
638 } else if (flags & FOLL_SPLIT) {
639 if (unlikely(!try_get_page(page))) {
640 spin_unlock(ptl);
641 return ERR_PTR(-ENOMEM);
642 }
643 spin_unlock(ptl);
644 lock_page(page);
645 ret = split_huge_page(page);
646 unlock_page(page);
647 put_page(page);
648 if (pmd_none(*pmd))
649 return no_page_table(vma, flags);
650 } else { /* flags & FOLL_SPLIT_PMD */
651 spin_unlock(ptl);
652 split_huge_pmd(vma, pmd, address);
653 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
654 }
655
656 return ret ? ERR_PTR(ret) :
657 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
658 }
659 page = follow_trans_huge_pmd(vma, address, pmd, flags);
660 spin_unlock(ptl);
661 ctx->page_mask = HPAGE_PMD_NR - 1;
662 return page;
663 }
664
665 static struct page *follow_pud_mask(struct vm_area_struct *vma,
666 unsigned long address, p4d_t *p4dp,
667 unsigned int flags,
668 struct follow_page_context *ctx)
669 {
670 pud_t *pud;
671 spinlock_t *ptl;
672 struct page *page;
673 struct mm_struct *mm = vma->vm_mm;
674
675 pud = pud_offset(p4dp, address);
676 if (pud_none(*pud))
677 return no_page_table(vma, flags);
678 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
679 page = follow_huge_pud(mm, address, pud, flags);
680 if (page)
681 return page;
682 return no_page_table(vma, flags);
683 }
684 if (is_hugepd(__hugepd(pud_val(*pud)))) {
685 page = follow_huge_pd(vma, address,
686 __hugepd(pud_val(*pud)), flags,
687 PUD_SHIFT);
688 if (page)
689 return page;
690 return no_page_table(vma, flags);
691 }
692 if (pud_devmap(*pud)) {
693 ptl = pud_lock(mm, pud);
694 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
695 spin_unlock(ptl);
696 if (page)
697 return page;
698 }
699 if (unlikely(pud_bad(*pud)))
700 return no_page_table(vma, flags);
701
702 return follow_pmd_mask(vma, address, pud, flags, ctx);
703 }
704
705 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
706 unsigned long address, pgd_t *pgdp,
707 unsigned int flags,
708 struct follow_page_context *ctx)
709 {
710 p4d_t *p4d;
711 struct page *page;
712
713 p4d = p4d_offset(pgdp, address);
714 if (p4d_none(*p4d))
715 return no_page_table(vma, flags);
716 BUILD_BUG_ON(p4d_huge(*p4d));
717 if (unlikely(p4d_bad(*p4d)))
718 return no_page_table(vma, flags);
719
720 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
721 page = follow_huge_pd(vma, address,
722 __hugepd(p4d_val(*p4d)), flags,
723 P4D_SHIFT);
724 if (page)
725 return page;
726 return no_page_table(vma, flags);
727 }
728 return follow_pud_mask(vma, address, p4d, flags, ctx);
729 }
730
731 /**
732 * follow_page_mask - look up a page descriptor from a user-virtual address
733 * @vma: vm_area_struct mapping @address
734 * @address: virtual address to look up
735 * @flags: flags modifying lookup behaviour
736 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
737 * pointer to output page_mask
738 *
739 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
740 *
741 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
742 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
743 *
744 * On output, the @ctx->page_mask is set according to the size of the page.
745 *
746 * Return: the mapped (struct page *), %NULL if no mapping exists, or
747 * an error pointer if there is a mapping to something not represented
748 * by a page descriptor (see also vm_normal_page()).
749 */
750 static struct page *follow_page_mask(struct vm_area_struct *vma,
751 unsigned long address, unsigned int flags,
752 struct follow_page_context *ctx)
753 {
754 pgd_t *pgd;
755 struct page *page;
756 struct mm_struct *mm = vma->vm_mm;
757
758 ctx->page_mask = 0;
759
760 /* make this handle hugepd */
761 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
762 if (!IS_ERR(page)) {
763 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
764 return page;
765 }
766
767 pgd = pgd_offset(mm, address);
768
769 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
770 return no_page_table(vma, flags);
771
772 if (pgd_huge(*pgd)) {
773 page = follow_huge_pgd(mm, address, pgd, flags);
774 if (page)
775 return page;
776 return no_page_table(vma, flags);
777 }
778 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
779 page = follow_huge_pd(vma, address,
780 __hugepd(pgd_val(*pgd)), flags,
781 PGDIR_SHIFT);
782 if (page)
783 return page;
784 return no_page_table(vma, flags);
785 }
786
787 return follow_p4d_mask(vma, address, pgd, flags, ctx);
788 }
789
790 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
791 unsigned int foll_flags)
792 {
793 struct follow_page_context ctx = { NULL };
794 struct page *page;
795
796 page = follow_page_mask(vma, address, foll_flags, &ctx);
797 if (ctx.pgmap)
798 put_dev_pagemap(ctx.pgmap);
799 return page;
800 }
801
802 static int get_gate_page(struct mm_struct *mm, unsigned long address,
803 unsigned int gup_flags, struct vm_area_struct **vma,
804 struct page **page)
805 {
806 pgd_t *pgd;
807 p4d_t *p4d;
808 pud_t *pud;
809 pmd_t *pmd;
810 pte_t *pte;
811 int ret = -EFAULT;
812
813 /* user gate pages are read-only */
814 if (gup_flags & FOLL_WRITE)
815 return -EFAULT;
816 if (address > TASK_SIZE)
817 pgd = pgd_offset_k(address);
818 else
819 pgd = pgd_offset_gate(mm, address);
820 if (pgd_none(*pgd))
821 return -EFAULT;
822 p4d = p4d_offset(pgd, address);
823 if (p4d_none(*p4d))
824 return -EFAULT;
825 pud = pud_offset(p4d, address);
826 if (pud_none(*pud))
827 return -EFAULT;
828 pmd = pmd_offset(pud, address);
829 if (!pmd_present(*pmd))
830 return -EFAULT;
831 VM_BUG_ON(pmd_trans_huge(*pmd));
832 pte = pte_offset_map(pmd, address);
833 if (pte_none(*pte))
834 goto unmap;
835 *vma = get_gate_vma(mm);
836 if (!page)
837 goto out;
838 *page = vm_normal_page(*vma, address, *pte);
839 if (!*page) {
840 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
841 goto unmap;
842 *page = pte_page(*pte);
843 }
844 if (unlikely(!try_grab_page(*page, gup_flags))) {
845 ret = -ENOMEM;
846 goto unmap;
847 }
848 out:
849 ret = 0;
850 unmap:
851 pte_unmap(pte);
852 return ret;
853 }
854
855 /*
856 * mmap_lock must be held on entry. If @locked != NULL and *@flags
857 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
858 * is, *@locked will be set to 0 and -EBUSY returned.
859 */
860 static int faultin_page(struct vm_area_struct *vma,
861 unsigned long address, unsigned int *flags, int *locked)
862 {
863 unsigned int fault_flags = 0;
864 vm_fault_t ret;
865
866 /* mlock all present pages, but do not fault in new pages */
867 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
868 return -ENOENT;
869 if (*flags & FOLL_WRITE)
870 fault_flags |= FAULT_FLAG_WRITE;
871 if (*flags & FOLL_REMOTE)
872 fault_flags |= FAULT_FLAG_REMOTE;
873 if (locked)
874 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
875 if (*flags & FOLL_NOWAIT)
876 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
877 if (*flags & FOLL_TRIED) {
878 /*
879 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
880 * can co-exist
881 */
882 fault_flags |= FAULT_FLAG_TRIED;
883 }
884
885 ret = handle_mm_fault(vma, address, fault_flags, NULL);
886 if (ret & VM_FAULT_ERROR) {
887 int err = vm_fault_to_errno(ret, *flags);
888
889 if (err)
890 return err;
891 BUG();
892 }
893
894 if (ret & VM_FAULT_RETRY) {
895 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
896 *locked = 0;
897 return -EBUSY;
898 }
899
900 /*
901 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
902 * necessary, even if maybe_mkwrite decided not to set pte_write. We
903 * can thus safely do subsequent page lookups as if they were reads.
904 * But only do so when looping for pte_write is futile: in some cases
905 * userspace may also be wanting to write to the gotten user page,
906 * which a read fault here might prevent (a readonly page might get
907 * reCOWed by userspace write).
908 */
909 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
910 *flags |= FOLL_COW;
911 return 0;
912 }
913
914 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
915 {
916 vm_flags_t vm_flags = vma->vm_flags;
917 int write = (gup_flags & FOLL_WRITE);
918 int foreign = (gup_flags & FOLL_REMOTE);
919
920 if (vm_flags & (VM_IO | VM_PFNMAP))
921 return -EFAULT;
922
923 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
924 return -EFAULT;
925
926 if (write) {
927 if (!(vm_flags & VM_WRITE)) {
928 if (!(gup_flags & FOLL_FORCE))
929 return -EFAULT;
930 /*
931 * We used to let the write,force case do COW in a
932 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
933 * set a breakpoint in a read-only mapping of an
934 * executable, without corrupting the file (yet only
935 * when that file had been opened for writing!).
936 * Anon pages in shared mappings are surprising: now
937 * just reject it.
938 */
939 if (!is_cow_mapping(vm_flags))
940 return -EFAULT;
941 }
942 } else if (!(vm_flags & VM_READ)) {
943 if (!(gup_flags & FOLL_FORCE))
944 return -EFAULT;
945 /*
946 * Is there actually any vma we can reach here which does not
947 * have VM_MAYREAD set?
948 */
949 if (!(vm_flags & VM_MAYREAD))
950 return -EFAULT;
951 }
952 /*
953 * gups are always data accesses, not instruction
954 * fetches, so execute=false here
955 */
956 if (!arch_vma_access_permitted(vma, write, false, foreign))
957 return -EFAULT;
958 return 0;
959 }
960
961 /**
962 * __get_user_pages() - pin user pages in memory
963 * @mm: mm_struct of target mm
964 * @start: starting user address
965 * @nr_pages: number of pages from start to pin
966 * @gup_flags: flags modifying pin behaviour
967 * @pages: array that receives pointers to the pages pinned.
968 * Should be at least nr_pages long. Or NULL, if caller
969 * only intends to ensure the pages are faulted in.
970 * @vmas: array of pointers to vmas corresponding to each page.
971 * Or NULL if the caller does not require them.
972 * @locked: whether we're still with the mmap_lock held
973 *
974 * Returns either number of pages pinned (which may be less than the
975 * number requested), or an error. Details about the return value:
976 *
977 * -- If nr_pages is 0, returns 0.
978 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
979 * -- If nr_pages is >0, and some pages were pinned, returns the number of
980 * pages pinned. Again, this may be less than nr_pages.
981 * -- 0 return value is possible when the fault would need to be retried.
982 *
983 * The caller is responsible for releasing returned @pages, via put_page().
984 *
985 * @vmas are valid only as long as mmap_lock is held.
986 *
987 * Must be called with mmap_lock held. It may be released. See below.
988 *
989 * __get_user_pages walks a process's page tables and takes a reference to
990 * each struct page that each user address corresponds to at a given
991 * instant. That is, it takes the page that would be accessed if a user
992 * thread accesses the given user virtual address at that instant.
993 *
994 * This does not guarantee that the page exists in the user mappings when
995 * __get_user_pages returns, and there may even be a completely different
996 * page there in some cases (eg. if mmapped pagecache has been invalidated
997 * and subsequently re faulted). However it does guarantee that the page
998 * won't be freed completely. And mostly callers simply care that the page
999 * contains data that was valid *at some point in time*. Typically, an IO
1000 * or similar operation cannot guarantee anything stronger anyway because
1001 * locks can't be held over the syscall boundary.
1002 *
1003 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1004 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1005 * appropriate) must be called after the page is finished with, and
1006 * before put_page is called.
1007 *
1008 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1009 * released by an up_read(). That can happen if @gup_flags does not
1010 * have FOLL_NOWAIT.
1011 *
1012 * A caller using such a combination of @locked and @gup_flags
1013 * must therefore hold the mmap_lock for reading only, and recognize
1014 * when it's been released. Otherwise, it must be held for either
1015 * reading or writing and will not be released.
1016 *
1017 * In most cases, get_user_pages or get_user_pages_fast should be used
1018 * instead of __get_user_pages. __get_user_pages should be used only if
1019 * you need some special @gup_flags.
1020 */
1021 static long __get_user_pages(struct mm_struct *mm,
1022 unsigned long start, unsigned long nr_pages,
1023 unsigned int gup_flags, struct page **pages,
1024 struct vm_area_struct **vmas, int *locked)
1025 {
1026 long ret = 0, i = 0;
1027 struct vm_area_struct *vma = NULL;
1028 struct follow_page_context ctx = { NULL };
1029
1030 if (!nr_pages)
1031 return 0;
1032
1033 start = untagged_addr(start);
1034
1035 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1036
1037 /*
1038 * If FOLL_FORCE is set then do not force a full fault as the hinting
1039 * fault information is unrelated to the reference behaviour of a task
1040 * using the address space
1041 */
1042 if (!(gup_flags & FOLL_FORCE))
1043 gup_flags |= FOLL_NUMA;
1044
1045 do {
1046 struct page *page;
1047 unsigned int foll_flags = gup_flags;
1048 unsigned int page_increm;
1049
1050 /* first iteration or cross vma bound */
1051 if (!vma || start >= vma->vm_end) {
1052 vma = find_extend_vma(mm, start);
1053 if (!vma && in_gate_area(mm, start)) {
1054 ret = get_gate_page(mm, start & PAGE_MASK,
1055 gup_flags, &vma,
1056 pages ? &pages[i] : NULL);
1057 if (ret)
1058 goto out;
1059 ctx.page_mask = 0;
1060 goto next_page;
1061 }
1062
1063 if (!vma || check_vma_flags(vma, gup_flags)) {
1064 ret = -EFAULT;
1065 goto out;
1066 }
1067 if (is_vm_hugetlb_page(vma)) {
1068 i = follow_hugetlb_page(mm, vma, pages, vmas,
1069 &start, &nr_pages, i,
1070 gup_flags, locked);
1071 if (locked && *locked == 0) {
1072 /*
1073 * We've got a VM_FAULT_RETRY
1074 * and we've lost mmap_lock.
1075 * We must stop here.
1076 */
1077 BUG_ON(gup_flags & FOLL_NOWAIT);
1078 BUG_ON(ret != 0);
1079 goto out;
1080 }
1081 continue;
1082 }
1083 }
1084 retry:
1085 /*
1086 * If we have a pending SIGKILL, don't keep faulting pages and
1087 * potentially allocating memory.
1088 */
1089 if (fatal_signal_pending(current)) {
1090 ret = -EINTR;
1091 goto out;
1092 }
1093 cond_resched();
1094
1095 page = follow_page_mask(vma, start, foll_flags, &ctx);
1096 if (!page) {
1097 ret = faultin_page(vma, start, &foll_flags, locked);
1098 switch (ret) {
1099 case 0:
1100 goto retry;
1101 case -EBUSY:
1102 ret = 0;
1103 fallthrough;
1104 case -EFAULT:
1105 case -ENOMEM:
1106 case -EHWPOISON:
1107 goto out;
1108 case -ENOENT:
1109 goto next_page;
1110 }
1111 BUG();
1112 } else if (PTR_ERR(page) == -EEXIST) {
1113 /*
1114 * Proper page table entry exists, but no corresponding
1115 * struct page.
1116 */
1117 goto next_page;
1118 } else if (IS_ERR(page)) {
1119 ret = PTR_ERR(page);
1120 goto out;
1121 }
1122 if (pages) {
1123 pages[i] = page;
1124 flush_anon_page(vma, page, start);
1125 flush_dcache_page(page);
1126 ctx.page_mask = 0;
1127 }
1128 next_page:
1129 if (vmas) {
1130 vmas[i] = vma;
1131 ctx.page_mask = 0;
1132 }
1133 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1134 if (page_increm > nr_pages)
1135 page_increm = nr_pages;
1136 i += page_increm;
1137 start += page_increm * PAGE_SIZE;
1138 nr_pages -= page_increm;
1139 } while (nr_pages);
1140 out:
1141 if (ctx.pgmap)
1142 put_dev_pagemap(ctx.pgmap);
1143 return i ? i : ret;
1144 }
1145
1146 static bool vma_permits_fault(struct vm_area_struct *vma,
1147 unsigned int fault_flags)
1148 {
1149 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1150 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1151 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1152
1153 if (!(vm_flags & vma->vm_flags))
1154 return false;
1155
1156 /*
1157 * The architecture might have a hardware protection
1158 * mechanism other than read/write that can deny access.
1159 *
1160 * gup always represents data access, not instruction
1161 * fetches, so execute=false here:
1162 */
1163 if (!arch_vma_access_permitted(vma, write, false, foreign))
1164 return false;
1165
1166 return true;
1167 }
1168
1169 /**
1170 * fixup_user_fault() - manually resolve a user page fault
1171 * @mm: mm_struct of target mm
1172 * @address: user address
1173 * @fault_flags:flags to pass down to handle_mm_fault()
1174 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1175 * does not allow retry. If NULL, the caller must guarantee
1176 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1177 *
1178 * This is meant to be called in the specific scenario where for locking reasons
1179 * we try to access user memory in atomic context (within a pagefault_disable()
1180 * section), this returns -EFAULT, and we want to resolve the user fault before
1181 * trying again.
1182 *
1183 * Typically this is meant to be used by the futex code.
1184 *
1185 * The main difference with get_user_pages() is that this function will
1186 * unconditionally call handle_mm_fault() which will in turn perform all the
1187 * necessary SW fixup of the dirty and young bits in the PTE, while
1188 * get_user_pages() only guarantees to update these in the struct page.
1189 *
1190 * This is important for some architectures where those bits also gate the
1191 * access permission to the page because they are maintained in software. On
1192 * such architectures, gup() will not be enough to make a subsequent access
1193 * succeed.
1194 *
1195 * This function will not return with an unlocked mmap_lock. So it has not the
1196 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1197 */
1198 int fixup_user_fault(struct mm_struct *mm,
1199 unsigned long address, unsigned int fault_flags,
1200 bool *unlocked)
1201 {
1202 struct vm_area_struct *vma;
1203 vm_fault_t ret, major = 0;
1204
1205 address = untagged_addr(address);
1206
1207 if (unlocked)
1208 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1209
1210 retry:
1211 vma = find_extend_vma(mm, address);
1212 if (!vma || address < vma->vm_start)
1213 return -EFAULT;
1214
1215 if (!vma_permits_fault(vma, fault_flags))
1216 return -EFAULT;
1217
1218 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1219 fatal_signal_pending(current))
1220 return -EINTR;
1221
1222 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1223 major |= ret & VM_FAULT_MAJOR;
1224 if (ret & VM_FAULT_ERROR) {
1225 int err = vm_fault_to_errno(ret, 0);
1226
1227 if (err)
1228 return err;
1229 BUG();
1230 }
1231
1232 if (ret & VM_FAULT_RETRY) {
1233 mmap_read_lock(mm);
1234 *unlocked = true;
1235 fault_flags |= FAULT_FLAG_TRIED;
1236 goto retry;
1237 }
1238
1239 return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(fixup_user_fault);
1242
1243 /*
1244 * Please note that this function, unlike __get_user_pages will not
1245 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1246 */
1247 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1248 unsigned long start,
1249 unsigned long nr_pages,
1250 struct page **pages,
1251 struct vm_area_struct **vmas,
1252 int *locked,
1253 unsigned int flags)
1254 {
1255 long ret, pages_done;
1256 bool lock_dropped;
1257
1258 if (locked) {
1259 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1260 BUG_ON(vmas);
1261 /* check caller initialized locked */
1262 BUG_ON(*locked != 1);
1263 }
1264
1265 if (flags & FOLL_PIN)
1266 atomic_set(&mm->has_pinned, 1);
1267
1268 /*
1269 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1270 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1271 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1272 * for FOLL_GET, not for the newer FOLL_PIN.
1273 *
1274 * FOLL_PIN always expects pages to be non-null, but no need to assert
1275 * that here, as any failures will be obvious enough.
1276 */
1277 if (pages && !(flags & FOLL_PIN))
1278 flags |= FOLL_GET;
1279
1280 pages_done = 0;
1281 lock_dropped = false;
1282 for (;;) {
1283 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1284 vmas, locked);
1285 if (!locked)
1286 /* VM_FAULT_RETRY couldn't trigger, bypass */
1287 return ret;
1288
1289 /* VM_FAULT_RETRY cannot return errors */
1290 if (!*locked) {
1291 BUG_ON(ret < 0);
1292 BUG_ON(ret >= nr_pages);
1293 }
1294
1295 if (ret > 0) {
1296 nr_pages -= ret;
1297 pages_done += ret;
1298 if (!nr_pages)
1299 break;
1300 }
1301 if (*locked) {
1302 /*
1303 * VM_FAULT_RETRY didn't trigger or it was a
1304 * FOLL_NOWAIT.
1305 */
1306 if (!pages_done)
1307 pages_done = ret;
1308 break;
1309 }
1310 /*
1311 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1312 * For the prefault case (!pages) we only update counts.
1313 */
1314 if (likely(pages))
1315 pages += ret;
1316 start += ret << PAGE_SHIFT;
1317 lock_dropped = true;
1318
1319 retry:
1320 /*
1321 * Repeat on the address that fired VM_FAULT_RETRY
1322 * with both FAULT_FLAG_ALLOW_RETRY and
1323 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1324 * by fatal signals, so we need to check it before we
1325 * start trying again otherwise it can loop forever.
1326 */
1327
1328 if (fatal_signal_pending(current)) {
1329 if (!pages_done)
1330 pages_done = -EINTR;
1331 break;
1332 }
1333
1334 ret = mmap_read_lock_killable(mm);
1335 if (ret) {
1336 BUG_ON(ret > 0);
1337 if (!pages_done)
1338 pages_done = ret;
1339 break;
1340 }
1341
1342 *locked = 1;
1343 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1344 pages, NULL, locked);
1345 if (!*locked) {
1346 /* Continue to retry until we succeeded */
1347 BUG_ON(ret != 0);
1348 goto retry;
1349 }
1350 if (ret != 1) {
1351 BUG_ON(ret > 1);
1352 if (!pages_done)
1353 pages_done = ret;
1354 break;
1355 }
1356 nr_pages--;
1357 pages_done++;
1358 if (!nr_pages)
1359 break;
1360 if (likely(pages))
1361 pages++;
1362 start += PAGE_SIZE;
1363 }
1364 if (lock_dropped && *locked) {
1365 /*
1366 * We must let the caller know we temporarily dropped the lock
1367 * and so the critical section protected by it was lost.
1368 */
1369 mmap_read_unlock(mm);
1370 *locked = 0;
1371 }
1372 return pages_done;
1373 }
1374
1375 /**
1376 * populate_vma_page_range() - populate a range of pages in the vma.
1377 * @vma: target vma
1378 * @start: start address
1379 * @end: end address
1380 * @locked: whether the mmap_lock is still held
1381 *
1382 * This takes care of mlocking the pages too if VM_LOCKED is set.
1383 *
1384 * Return either number of pages pinned in the vma, or a negative error
1385 * code on error.
1386 *
1387 * vma->vm_mm->mmap_lock must be held.
1388 *
1389 * If @locked is NULL, it may be held for read or write and will
1390 * be unperturbed.
1391 *
1392 * If @locked is non-NULL, it must held for read only and may be
1393 * released. If it's released, *@locked will be set to 0.
1394 */
1395 long populate_vma_page_range(struct vm_area_struct *vma,
1396 unsigned long start, unsigned long end, int *locked)
1397 {
1398 struct mm_struct *mm = vma->vm_mm;
1399 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1400 int gup_flags;
1401
1402 VM_BUG_ON(start & ~PAGE_MASK);
1403 VM_BUG_ON(end & ~PAGE_MASK);
1404 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1405 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1406 mmap_assert_locked(mm);
1407
1408 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1409 if (vma->vm_flags & VM_LOCKONFAULT)
1410 gup_flags &= ~FOLL_POPULATE;
1411 /*
1412 * We want to touch writable mappings with a write fault in order
1413 * to break COW, except for shared mappings because these don't COW
1414 * and we would not want to dirty them for nothing.
1415 */
1416 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1417 gup_flags |= FOLL_WRITE;
1418
1419 /*
1420 * We want mlock to succeed for regions that have any permissions
1421 * other than PROT_NONE.
1422 */
1423 if (vma_is_accessible(vma))
1424 gup_flags |= FOLL_FORCE;
1425
1426 /*
1427 * We made sure addr is within a VMA, so the following will
1428 * not result in a stack expansion that recurses back here.
1429 */
1430 return __get_user_pages(mm, start, nr_pages, gup_flags,
1431 NULL, NULL, locked);
1432 }
1433
1434 /*
1435 * __mm_populate - populate and/or mlock pages within a range of address space.
1436 *
1437 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1438 * flags. VMAs must be already marked with the desired vm_flags, and
1439 * mmap_lock must not be held.
1440 */
1441 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1442 {
1443 struct mm_struct *mm = current->mm;
1444 unsigned long end, nstart, nend;
1445 struct vm_area_struct *vma = NULL;
1446 int locked = 0;
1447 long ret = 0;
1448
1449 end = start + len;
1450
1451 for (nstart = start; nstart < end; nstart = nend) {
1452 /*
1453 * We want to fault in pages for [nstart; end) address range.
1454 * Find first corresponding VMA.
1455 */
1456 if (!locked) {
1457 locked = 1;
1458 mmap_read_lock(mm);
1459 vma = find_vma(mm, nstart);
1460 } else if (nstart >= vma->vm_end)
1461 vma = vma->vm_next;
1462 if (!vma || vma->vm_start >= end)
1463 break;
1464 /*
1465 * Set [nstart; nend) to intersection of desired address
1466 * range with the first VMA. Also, skip undesirable VMA types.
1467 */
1468 nend = min(end, vma->vm_end);
1469 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1470 continue;
1471 if (nstart < vma->vm_start)
1472 nstart = vma->vm_start;
1473 /*
1474 * Now fault in a range of pages. populate_vma_page_range()
1475 * double checks the vma flags, so that it won't mlock pages
1476 * if the vma was already munlocked.
1477 */
1478 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1479 if (ret < 0) {
1480 if (ignore_errors) {
1481 ret = 0;
1482 continue; /* continue at next VMA */
1483 }
1484 break;
1485 }
1486 nend = nstart + ret * PAGE_SIZE;
1487 ret = 0;
1488 }
1489 if (locked)
1490 mmap_read_unlock(mm);
1491 return ret; /* 0 or negative error code */
1492 }
1493 #else /* CONFIG_MMU */
1494 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1495 unsigned long nr_pages, struct page **pages,
1496 struct vm_area_struct **vmas, int *locked,
1497 unsigned int foll_flags)
1498 {
1499 struct vm_area_struct *vma;
1500 unsigned long vm_flags;
1501 int i;
1502
1503 /* calculate required read or write permissions.
1504 * If FOLL_FORCE is set, we only require the "MAY" flags.
1505 */
1506 vm_flags = (foll_flags & FOLL_WRITE) ?
1507 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1508 vm_flags &= (foll_flags & FOLL_FORCE) ?
1509 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1510
1511 for (i = 0; i < nr_pages; i++) {
1512 vma = find_vma(mm, start);
1513 if (!vma)
1514 goto finish_or_fault;
1515
1516 /* protect what we can, including chardevs */
1517 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1518 !(vm_flags & vma->vm_flags))
1519 goto finish_or_fault;
1520
1521 if (pages) {
1522 pages[i] = virt_to_page(start);
1523 if (pages[i])
1524 get_page(pages[i]);
1525 }
1526 if (vmas)
1527 vmas[i] = vma;
1528 start = (start + PAGE_SIZE) & PAGE_MASK;
1529 }
1530
1531 return i;
1532
1533 finish_or_fault:
1534 return i ? : -EFAULT;
1535 }
1536 #endif /* !CONFIG_MMU */
1537
1538 /**
1539 * get_dump_page() - pin user page in memory while writing it to core dump
1540 * @addr: user address
1541 *
1542 * Returns struct page pointer of user page pinned for dump,
1543 * to be freed afterwards by put_page().
1544 *
1545 * Returns NULL on any kind of failure - a hole must then be inserted into
1546 * the corefile, to preserve alignment with its headers; and also returns
1547 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1548 * allowing a hole to be left in the corefile to save diskspace.
1549 *
1550 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1551 */
1552 #ifdef CONFIG_ELF_CORE
1553 struct page *get_dump_page(unsigned long addr)
1554 {
1555 struct mm_struct *mm = current->mm;
1556 struct page *page;
1557 int locked = 1;
1558 int ret;
1559
1560 if (mmap_read_lock_killable(mm))
1561 return NULL;
1562 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1563 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1564 if (locked)
1565 mmap_read_unlock(mm);
1566 return (ret == 1) ? page : NULL;
1567 }
1568 #endif /* CONFIG_ELF_CORE */
1569
1570 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1571 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1572 {
1573 long i;
1574 struct vm_area_struct *vma_prev = NULL;
1575
1576 for (i = 0; i < nr_pages; i++) {
1577 struct vm_area_struct *vma = vmas[i];
1578
1579 if (vma == vma_prev)
1580 continue;
1581
1582 vma_prev = vma;
1583
1584 if (vma_is_fsdax(vma))
1585 return true;
1586 }
1587 return false;
1588 }
1589
1590 #ifdef CONFIG_CMA
1591 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1592 unsigned long start,
1593 unsigned long nr_pages,
1594 struct page **pages,
1595 struct vm_area_struct **vmas,
1596 unsigned int gup_flags)
1597 {
1598 unsigned long i;
1599 unsigned long step;
1600 bool drain_allow = true;
1601 bool migrate_allow = true;
1602 LIST_HEAD(cma_page_list);
1603 long ret = nr_pages;
1604 struct migration_target_control mtc = {
1605 .nid = NUMA_NO_NODE,
1606 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1607 };
1608
1609 check_again:
1610 for (i = 0; i < nr_pages;) {
1611
1612 struct page *head = compound_head(pages[i]);
1613
1614 /*
1615 * gup may start from a tail page. Advance step by the left
1616 * part.
1617 */
1618 step = compound_nr(head) - (pages[i] - head);
1619 /*
1620 * If we get a page from the CMA zone, since we are going to
1621 * be pinning these entries, we might as well move them out
1622 * of the CMA zone if possible.
1623 */
1624 if (is_migrate_cma_page(head)) {
1625 if (PageHuge(head))
1626 isolate_huge_page(head, &cma_page_list);
1627 else {
1628 if (!PageLRU(head) && drain_allow) {
1629 lru_add_drain_all();
1630 drain_allow = false;
1631 }
1632
1633 if (!isolate_lru_page(head)) {
1634 list_add_tail(&head->lru, &cma_page_list);
1635 mod_node_page_state(page_pgdat(head),
1636 NR_ISOLATED_ANON +
1637 page_is_file_lru(head),
1638 thp_nr_pages(head));
1639 }
1640 }
1641 }
1642
1643 i += step;
1644 }
1645
1646 if (!list_empty(&cma_page_list)) {
1647 /*
1648 * drop the above get_user_pages reference.
1649 */
1650 if (gup_flags & FOLL_PIN)
1651 unpin_user_pages(pages, nr_pages);
1652 else
1653 for (i = 0; i < nr_pages; i++)
1654 put_page(pages[i]);
1655
1656 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1657 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1658 /*
1659 * some of the pages failed migration. Do get_user_pages
1660 * without migration.
1661 */
1662 migrate_allow = false;
1663
1664 if (!list_empty(&cma_page_list))
1665 putback_movable_pages(&cma_page_list);
1666 }
1667 /*
1668 * We did migrate all the pages, Try to get the page references
1669 * again migrating any new CMA pages which we failed to isolate
1670 * earlier.
1671 */
1672 ret = __get_user_pages_locked(mm, start, nr_pages,
1673 pages, vmas, NULL,
1674 gup_flags);
1675
1676 if ((ret > 0) && migrate_allow) {
1677 nr_pages = ret;
1678 drain_allow = true;
1679 goto check_again;
1680 }
1681 }
1682
1683 return ret;
1684 }
1685 #else
1686 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1687 unsigned long start,
1688 unsigned long nr_pages,
1689 struct page **pages,
1690 struct vm_area_struct **vmas,
1691 unsigned int gup_flags)
1692 {
1693 return nr_pages;
1694 }
1695 #endif /* CONFIG_CMA */
1696
1697 /*
1698 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1699 * allows us to process the FOLL_LONGTERM flag.
1700 */
1701 static long __gup_longterm_locked(struct mm_struct *mm,
1702 unsigned long start,
1703 unsigned long nr_pages,
1704 struct page **pages,
1705 struct vm_area_struct **vmas,
1706 unsigned int gup_flags)
1707 {
1708 struct vm_area_struct **vmas_tmp = vmas;
1709 unsigned long flags = 0;
1710 long rc, i;
1711
1712 if (gup_flags & FOLL_LONGTERM) {
1713 if (!pages)
1714 return -EINVAL;
1715
1716 if (!vmas_tmp) {
1717 vmas_tmp = kcalloc(nr_pages,
1718 sizeof(struct vm_area_struct *),
1719 GFP_KERNEL);
1720 if (!vmas_tmp)
1721 return -ENOMEM;
1722 }
1723 flags = memalloc_nocma_save();
1724 }
1725
1726 rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1727 vmas_tmp, NULL, gup_flags);
1728
1729 if (gup_flags & FOLL_LONGTERM) {
1730 if (rc < 0)
1731 goto out;
1732
1733 if (check_dax_vmas(vmas_tmp, rc)) {
1734 if (gup_flags & FOLL_PIN)
1735 unpin_user_pages(pages, rc);
1736 else
1737 for (i = 0; i < rc; i++)
1738 put_page(pages[i]);
1739 rc = -EOPNOTSUPP;
1740 goto out;
1741 }
1742
1743 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1744 vmas_tmp, gup_flags);
1745 out:
1746 memalloc_nocma_restore(flags);
1747 }
1748
1749 if (vmas_tmp != vmas)
1750 kfree(vmas_tmp);
1751 return rc;
1752 }
1753 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1754 static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1755 unsigned long start,
1756 unsigned long nr_pages,
1757 struct page **pages,
1758 struct vm_area_struct **vmas,
1759 unsigned int flags)
1760 {
1761 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1762 NULL, flags);
1763 }
1764 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1765
1766 static bool is_valid_gup_flags(unsigned int gup_flags)
1767 {
1768 /*
1769 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1770 * never directly by the caller, so enforce that with an assertion:
1771 */
1772 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1773 return false;
1774 /*
1775 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1776 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1777 * FOLL_PIN.
1778 */
1779 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1780 return false;
1781
1782 return true;
1783 }
1784
1785 #ifdef CONFIG_MMU
1786 static long __get_user_pages_remote(struct mm_struct *mm,
1787 unsigned long start, unsigned long nr_pages,
1788 unsigned int gup_flags, struct page **pages,
1789 struct vm_area_struct **vmas, int *locked)
1790 {
1791 /*
1792 * Parts of FOLL_LONGTERM behavior are incompatible with
1793 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1794 * vmas. However, this only comes up if locked is set, and there are
1795 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1796 * allow what we can.
1797 */
1798 if (gup_flags & FOLL_LONGTERM) {
1799 if (WARN_ON_ONCE(locked))
1800 return -EINVAL;
1801 /*
1802 * This will check the vmas (even if our vmas arg is NULL)
1803 * and return -ENOTSUPP if DAX isn't allowed in this case:
1804 */
1805 return __gup_longterm_locked(mm, start, nr_pages, pages,
1806 vmas, gup_flags | FOLL_TOUCH |
1807 FOLL_REMOTE);
1808 }
1809
1810 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1811 locked,
1812 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1813 }
1814
1815 /**
1816 * get_user_pages_remote() - pin user pages in memory
1817 * @mm: mm_struct of target mm
1818 * @start: starting user address
1819 * @nr_pages: number of pages from start to pin
1820 * @gup_flags: flags modifying lookup behaviour
1821 * @pages: array that receives pointers to the pages pinned.
1822 * Should be at least nr_pages long. Or NULL, if caller
1823 * only intends to ensure the pages are faulted in.
1824 * @vmas: array of pointers to vmas corresponding to each page.
1825 * Or NULL if the caller does not require them.
1826 * @locked: pointer to lock flag indicating whether lock is held and
1827 * subsequently whether VM_FAULT_RETRY functionality can be
1828 * utilised. Lock must initially be held.
1829 *
1830 * Returns either number of pages pinned (which may be less than the
1831 * number requested), or an error. Details about the return value:
1832 *
1833 * -- If nr_pages is 0, returns 0.
1834 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1835 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1836 * pages pinned. Again, this may be less than nr_pages.
1837 *
1838 * The caller is responsible for releasing returned @pages, via put_page().
1839 *
1840 * @vmas are valid only as long as mmap_lock is held.
1841 *
1842 * Must be called with mmap_lock held for read or write.
1843 *
1844 * get_user_pages_remote walks a process's page tables and takes a reference
1845 * to each struct page that each user address corresponds to at a given
1846 * instant. That is, it takes the page that would be accessed if a user
1847 * thread accesses the given user virtual address at that instant.
1848 *
1849 * This does not guarantee that the page exists in the user mappings when
1850 * get_user_pages_remote returns, and there may even be a completely different
1851 * page there in some cases (eg. if mmapped pagecache has been invalidated
1852 * and subsequently re faulted). However it does guarantee that the page
1853 * won't be freed completely. And mostly callers simply care that the page
1854 * contains data that was valid *at some point in time*. Typically, an IO
1855 * or similar operation cannot guarantee anything stronger anyway because
1856 * locks can't be held over the syscall boundary.
1857 *
1858 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1859 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1860 * be called after the page is finished with, and before put_page is called.
1861 *
1862 * get_user_pages_remote is typically used for fewer-copy IO operations,
1863 * to get a handle on the memory by some means other than accesses
1864 * via the user virtual addresses. The pages may be submitted for
1865 * DMA to devices or accessed via their kernel linear mapping (via the
1866 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1867 *
1868 * See also get_user_pages_fast, for performance critical applications.
1869 *
1870 * get_user_pages_remote should be phased out in favor of
1871 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1872 * should use get_user_pages_remote because it cannot pass
1873 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1874 */
1875 long get_user_pages_remote(struct mm_struct *mm,
1876 unsigned long start, unsigned long nr_pages,
1877 unsigned int gup_flags, struct page **pages,
1878 struct vm_area_struct **vmas, int *locked)
1879 {
1880 if (!is_valid_gup_flags(gup_flags))
1881 return -EINVAL;
1882
1883 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1884 pages, vmas, locked);
1885 }
1886 EXPORT_SYMBOL(get_user_pages_remote);
1887
1888 #else /* CONFIG_MMU */
1889 long get_user_pages_remote(struct mm_struct *mm,
1890 unsigned long start, unsigned long nr_pages,
1891 unsigned int gup_flags, struct page **pages,
1892 struct vm_area_struct **vmas, int *locked)
1893 {
1894 return 0;
1895 }
1896
1897 static long __get_user_pages_remote(struct mm_struct *mm,
1898 unsigned long start, unsigned long nr_pages,
1899 unsigned int gup_flags, struct page **pages,
1900 struct vm_area_struct **vmas, int *locked)
1901 {
1902 return 0;
1903 }
1904 #endif /* !CONFIG_MMU */
1905
1906 /**
1907 * get_user_pages() - pin user pages in memory
1908 * @start: starting user address
1909 * @nr_pages: number of pages from start to pin
1910 * @gup_flags: flags modifying lookup behaviour
1911 * @pages: array that receives pointers to the pages pinned.
1912 * Should be at least nr_pages long. Or NULL, if caller
1913 * only intends to ensure the pages are faulted in.
1914 * @vmas: array of pointers to vmas corresponding to each page.
1915 * Or NULL if the caller does not require them.
1916 *
1917 * This is the same as get_user_pages_remote(), just with a less-flexible
1918 * calling convention where we assume that the mm being operated on belongs to
1919 * the current task, and doesn't allow passing of a locked parameter. We also
1920 * obviously don't pass FOLL_REMOTE in here.
1921 */
1922 long get_user_pages(unsigned long start, unsigned long nr_pages,
1923 unsigned int gup_flags, struct page **pages,
1924 struct vm_area_struct **vmas)
1925 {
1926 if (!is_valid_gup_flags(gup_flags))
1927 return -EINVAL;
1928
1929 return __gup_longterm_locked(current->mm, start, nr_pages,
1930 pages, vmas, gup_flags | FOLL_TOUCH);
1931 }
1932 EXPORT_SYMBOL(get_user_pages);
1933
1934 /**
1935 * get_user_pages_locked() is suitable to replace the form:
1936 *
1937 * mmap_read_lock(mm);
1938 * do_something()
1939 * get_user_pages(mm, ..., pages, NULL);
1940 * mmap_read_unlock(mm);
1941 *
1942 * to:
1943 *
1944 * int locked = 1;
1945 * mmap_read_lock(mm);
1946 * do_something()
1947 * get_user_pages_locked(mm, ..., pages, &locked);
1948 * if (locked)
1949 * mmap_read_unlock(mm);
1950 *
1951 * @start: starting user address
1952 * @nr_pages: number of pages from start to pin
1953 * @gup_flags: flags modifying lookup behaviour
1954 * @pages: array that receives pointers to the pages pinned.
1955 * Should be at least nr_pages long. Or NULL, if caller
1956 * only intends to ensure the pages are faulted in.
1957 * @locked: pointer to lock flag indicating whether lock is held and
1958 * subsequently whether VM_FAULT_RETRY functionality can be
1959 * utilised. Lock must initially be held.
1960 *
1961 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1962 * paths better by using either get_user_pages_locked() or
1963 * get_user_pages_unlocked().
1964 *
1965 */
1966 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1967 unsigned int gup_flags, struct page **pages,
1968 int *locked)
1969 {
1970 /*
1971 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1972 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1973 * vmas. As there are no users of this flag in this call we simply
1974 * disallow this option for now.
1975 */
1976 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1977 return -EINVAL;
1978 /*
1979 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1980 * never directly by the caller, so enforce that:
1981 */
1982 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1983 return -EINVAL;
1984
1985 return __get_user_pages_locked(current->mm, start, nr_pages,
1986 pages, NULL, locked,
1987 gup_flags | FOLL_TOUCH);
1988 }
1989 EXPORT_SYMBOL(get_user_pages_locked);
1990
1991 /*
1992 * get_user_pages_unlocked() is suitable to replace the form:
1993 *
1994 * mmap_read_lock(mm);
1995 * get_user_pages(mm, ..., pages, NULL);
1996 * mmap_read_unlock(mm);
1997 *
1998 * with:
1999 *
2000 * get_user_pages_unlocked(mm, ..., pages);
2001 *
2002 * It is functionally equivalent to get_user_pages_fast so
2003 * get_user_pages_fast should be used instead if specific gup_flags
2004 * (e.g. FOLL_FORCE) are not required.
2005 */
2006 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2007 struct page **pages, unsigned int gup_flags)
2008 {
2009 struct mm_struct *mm = current->mm;
2010 int locked = 1;
2011 long ret;
2012
2013 /*
2014 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2015 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2016 * vmas. As there are no users of this flag in this call we simply
2017 * disallow this option for now.
2018 */
2019 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2020 return -EINVAL;
2021
2022 mmap_read_lock(mm);
2023 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2024 &locked, gup_flags | FOLL_TOUCH);
2025 if (locked)
2026 mmap_read_unlock(mm);
2027 return ret;
2028 }
2029 EXPORT_SYMBOL(get_user_pages_unlocked);
2030
2031 /*
2032 * Fast GUP
2033 *
2034 * get_user_pages_fast attempts to pin user pages by walking the page
2035 * tables directly and avoids taking locks. Thus the walker needs to be
2036 * protected from page table pages being freed from under it, and should
2037 * block any THP splits.
2038 *
2039 * One way to achieve this is to have the walker disable interrupts, and
2040 * rely on IPIs from the TLB flushing code blocking before the page table
2041 * pages are freed. This is unsuitable for architectures that do not need
2042 * to broadcast an IPI when invalidating TLBs.
2043 *
2044 * Another way to achieve this is to batch up page table containing pages
2045 * belonging to more than one mm_user, then rcu_sched a callback to free those
2046 * pages. Disabling interrupts will allow the fast_gup walker to both block
2047 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2048 * (which is a relatively rare event). The code below adopts this strategy.
2049 *
2050 * Before activating this code, please be aware that the following assumptions
2051 * are currently made:
2052 *
2053 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2054 * free pages containing page tables or TLB flushing requires IPI broadcast.
2055 *
2056 * *) ptes can be read atomically by the architecture.
2057 *
2058 * *) access_ok is sufficient to validate userspace address ranges.
2059 *
2060 * The last two assumptions can be relaxed by the addition of helper functions.
2061 *
2062 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2063 */
2064 #ifdef CONFIG_HAVE_FAST_GUP
2065
2066 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2067 {
2068 if (flags & FOLL_PIN) {
2069 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2070 refs);
2071
2072 if (hpage_pincount_available(page))
2073 hpage_pincount_sub(page, refs);
2074 else
2075 refs *= GUP_PIN_COUNTING_BIAS;
2076 }
2077
2078 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2079 /*
2080 * Calling put_page() for each ref is unnecessarily slow. Only the last
2081 * ref needs a put_page().
2082 */
2083 if (refs > 1)
2084 page_ref_sub(page, refs - 1);
2085 put_page(page);
2086 }
2087
2088 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2089
2090 /*
2091 * WARNING: only to be used in the get_user_pages_fast() implementation.
2092 *
2093 * With get_user_pages_fast(), we walk down the pagetables without taking any
2094 * locks. For this we would like to load the pointers atomically, but sometimes
2095 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2096 * we do have is the guarantee that a PTE will only either go from not present
2097 * to present, or present to not present or both -- it will not switch to a
2098 * completely different present page without a TLB flush in between; something
2099 * that we are blocking by holding interrupts off.
2100 *
2101 * Setting ptes from not present to present goes:
2102 *
2103 * ptep->pte_high = h;
2104 * smp_wmb();
2105 * ptep->pte_low = l;
2106 *
2107 * And present to not present goes:
2108 *
2109 * ptep->pte_low = 0;
2110 * smp_wmb();
2111 * ptep->pte_high = 0;
2112 *
2113 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2114 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2115 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2116 * picked up a changed pte high. We might have gotten rubbish values from
2117 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2118 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2119 * operates on present ptes we're safe.
2120 */
2121 static inline pte_t gup_get_pte(pte_t *ptep)
2122 {
2123 pte_t pte;
2124
2125 do {
2126 pte.pte_low = ptep->pte_low;
2127 smp_rmb();
2128 pte.pte_high = ptep->pte_high;
2129 smp_rmb();
2130 } while (unlikely(pte.pte_low != ptep->pte_low));
2131
2132 return pte;
2133 }
2134 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2135 /*
2136 * We require that the PTE can be read atomically.
2137 */
2138 static inline pte_t gup_get_pte(pte_t *ptep)
2139 {
2140 return ptep_get(ptep);
2141 }
2142 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2143
2144 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2145 unsigned int flags,
2146 struct page **pages)
2147 {
2148 while ((*nr) - nr_start) {
2149 struct page *page = pages[--(*nr)];
2150
2151 ClearPageReferenced(page);
2152 if (flags & FOLL_PIN)
2153 unpin_user_page(page);
2154 else
2155 put_page(page);
2156 }
2157 }
2158
2159 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2160 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2161 unsigned int flags, struct page **pages, int *nr)
2162 {
2163 struct dev_pagemap *pgmap = NULL;
2164 int nr_start = *nr, ret = 0;
2165 pte_t *ptep, *ptem;
2166
2167 ptem = ptep = pte_offset_map(&pmd, addr);
2168 do {
2169 pte_t pte = gup_get_pte(ptep);
2170 struct page *head, *page;
2171
2172 /*
2173 * Similar to the PMD case below, NUMA hinting must take slow
2174 * path using the pte_protnone check.
2175 */
2176 if (pte_protnone(pte))
2177 goto pte_unmap;
2178
2179 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2180 goto pte_unmap;
2181
2182 if (pte_devmap(pte)) {
2183 if (unlikely(flags & FOLL_LONGTERM))
2184 goto pte_unmap;
2185
2186 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2187 if (unlikely(!pgmap)) {
2188 undo_dev_pagemap(nr, nr_start, flags, pages);
2189 goto pte_unmap;
2190 }
2191 } else if (pte_special(pte))
2192 goto pte_unmap;
2193
2194 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2195 page = pte_page(pte);
2196
2197 head = try_grab_compound_head(page, 1, flags);
2198 if (!head)
2199 goto pte_unmap;
2200
2201 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2202 put_compound_head(head, 1, flags);
2203 goto pte_unmap;
2204 }
2205
2206 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2207
2208 /*
2209 * We need to make the page accessible if and only if we are
2210 * going to access its content (the FOLL_PIN case). Please
2211 * see Documentation/core-api/pin_user_pages.rst for
2212 * details.
2213 */
2214 if (flags & FOLL_PIN) {
2215 ret = arch_make_page_accessible(page);
2216 if (ret) {
2217 unpin_user_page(page);
2218 goto pte_unmap;
2219 }
2220 }
2221 SetPageReferenced(page);
2222 pages[*nr] = page;
2223 (*nr)++;
2224
2225 } while (ptep++, addr += PAGE_SIZE, addr != end);
2226
2227 ret = 1;
2228
2229 pte_unmap:
2230 if (pgmap)
2231 put_dev_pagemap(pgmap);
2232 pte_unmap(ptem);
2233 return ret;
2234 }
2235 #else
2236
2237 /*
2238 * If we can't determine whether or not a pte is special, then fail immediately
2239 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2240 * to be special.
2241 *
2242 * For a futex to be placed on a THP tail page, get_futex_key requires a
2243 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2244 * useful to have gup_huge_pmd even if we can't operate on ptes.
2245 */
2246 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2247 unsigned int flags, struct page **pages, int *nr)
2248 {
2249 return 0;
2250 }
2251 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2252
2253 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2254 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2255 unsigned long end, unsigned int flags,
2256 struct page **pages, int *nr)
2257 {
2258 int nr_start = *nr;
2259 struct dev_pagemap *pgmap = NULL;
2260
2261 do {
2262 struct page *page = pfn_to_page(pfn);
2263
2264 pgmap = get_dev_pagemap(pfn, pgmap);
2265 if (unlikely(!pgmap)) {
2266 undo_dev_pagemap(nr, nr_start, flags, pages);
2267 return 0;
2268 }
2269 SetPageReferenced(page);
2270 pages[*nr] = page;
2271 if (unlikely(!try_grab_page(page, flags))) {
2272 undo_dev_pagemap(nr, nr_start, flags, pages);
2273 return 0;
2274 }
2275 (*nr)++;
2276 pfn++;
2277 } while (addr += PAGE_SIZE, addr != end);
2278
2279 if (pgmap)
2280 put_dev_pagemap(pgmap);
2281 return 1;
2282 }
2283
2284 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2285 unsigned long end, unsigned int flags,
2286 struct page **pages, int *nr)
2287 {
2288 unsigned long fault_pfn;
2289 int nr_start = *nr;
2290
2291 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2292 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2293 return 0;
2294
2295 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2296 undo_dev_pagemap(nr, nr_start, flags, pages);
2297 return 0;
2298 }
2299 return 1;
2300 }
2301
2302 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2303 unsigned long end, unsigned int flags,
2304 struct page **pages, int *nr)
2305 {
2306 unsigned long fault_pfn;
2307 int nr_start = *nr;
2308
2309 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2310 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2311 return 0;
2312
2313 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2314 undo_dev_pagemap(nr, nr_start, flags, pages);
2315 return 0;
2316 }
2317 return 1;
2318 }
2319 #else
2320 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2321 unsigned long end, unsigned int flags,
2322 struct page **pages, int *nr)
2323 {
2324 BUILD_BUG();
2325 return 0;
2326 }
2327
2328 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2329 unsigned long end, unsigned int flags,
2330 struct page **pages, int *nr)
2331 {
2332 BUILD_BUG();
2333 return 0;
2334 }
2335 #endif
2336
2337 static int record_subpages(struct page *page, unsigned long addr,
2338 unsigned long end, struct page **pages)
2339 {
2340 int nr;
2341
2342 for (nr = 0; addr != end; addr += PAGE_SIZE)
2343 pages[nr++] = page++;
2344
2345 return nr;
2346 }
2347
2348 #ifdef CONFIG_ARCH_HAS_HUGEPD
2349 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2350 unsigned long sz)
2351 {
2352 unsigned long __boundary = (addr + sz) & ~(sz-1);
2353 return (__boundary - 1 < end - 1) ? __boundary : end;
2354 }
2355
2356 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2357 unsigned long end, unsigned int flags,
2358 struct page **pages, int *nr)
2359 {
2360 unsigned long pte_end;
2361 struct page *head, *page;
2362 pte_t pte;
2363 int refs;
2364
2365 pte_end = (addr + sz) & ~(sz-1);
2366 if (pte_end < end)
2367 end = pte_end;
2368
2369 pte = huge_ptep_get(ptep);
2370
2371 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2372 return 0;
2373
2374 /* hugepages are never "special" */
2375 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2376
2377 head = pte_page(pte);
2378 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2379 refs = record_subpages(page, addr, end, pages + *nr);
2380
2381 head = try_grab_compound_head(head, refs, flags);
2382 if (!head)
2383 return 0;
2384
2385 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2386 put_compound_head(head, refs, flags);
2387 return 0;
2388 }
2389
2390 *nr += refs;
2391 SetPageReferenced(head);
2392 return 1;
2393 }
2394
2395 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2396 unsigned int pdshift, unsigned long end, unsigned int flags,
2397 struct page **pages, int *nr)
2398 {
2399 pte_t *ptep;
2400 unsigned long sz = 1UL << hugepd_shift(hugepd);
2401 unsigned long next;
2402
2403 ptep = hugepte_offset(hugepd, addr, pdshift);
2404 do {
2405 next = hugepte_addr_end(addr, end, sz);
2406 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2407 return 0;
2408 } while (ptep++, addr = next, addr != end);
2409
2410 return 1;
2411 }
2412 #else
2413 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2414 unsigned int pdshift, unsigned long end, unsigned int flags,
2415 struct page **pages, int *nr)
2416 {
2417 return 0;
2418 }
2419 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2420
2421 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2422 unsigned long end, unsigned int flags,
2423 struct page **pages, int *nr)
2424 {
2425 struct page *head, *page;
2426 int refs;
2427
2428 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2429 return 0;
2430
2431 if (pmd_devmap(orig)) {
2432 if (unlikely(flags & FOLL_LONGTERM))
2433 return 0;
2434 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2435 pages, nr);
2436 }
2437
2438 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2439 refs = record_subpages(page, addr, end, pages + *nr);
2440
2441 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2442 if (!head)
2443 return 0;
2444
2445 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2446 put_compound_head(head, refs, flags);
2447 return 0;
2448 }
2449
2450 *nr += refs;
2451 SetPageReferenced(head);
2452 return 1;
2453 }
2454
2455 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2456 unsigned long end, unsigned int flags,
2457 struct page **pages, int *nr)
2458 {
2459 struct page *head, *page;
2460 int refs;
2461
2462 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2463 return 0;
2464
2465 if (pud_devmap(orig)) {
2466 if (unlikely(flags & FOLL_LONGTERM))
2467 return 0;
2468 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2469 pages, nr);
2470 }
2471
2472 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2473 refs = record_subpages(page, addr, end, pages + *nr);
2474
2475 head = try_grab_compound_head(pud_page(orig), refs, flags);
2476 if (!head)
2477 return 0;
2478
2479 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2480 put_compound_head(head, refs, flags);
2481 return 0;
2482 }
2483
2484 *nr += refs;
2485 SetPageReferenced(head);
2486 return 1;
2487 }
2488
2489 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2490 unsigned long end, unsigned int flags,
2491 struct page **pages, int *nr)
2492 {
2493 int refs;
2494 struct page *head, *page;
2495
2496 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2497 return 0;
2498
2499 BUILD_BUG_ON(pgd_devmap(orig));
2500
2501 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2502 refs = record_subpages(page, addr, end, pages + *nr);
2503
2504 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2505 if (!head)
2506 return 0;
2507
2508 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2509 put_compound_head(head, refs, flags);
2510 return 0;
2511 }
2512
2513 *nr += refs;
2514 SetPageReferenced(head);
2515 return 1;
2516 }
2517
2518 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2519 unsigned int flags, struct page **pages, int *nr)
2520 {
2521 unsigned long next;
2522 pmd_t *pmdp;
2523
2524 pmdp = pmd_offset_lockless(pudp, pud, addr);
2525 do {
2526 pmd_t pmd = READ_ONCE(*pmdp);
2527
2528 next = pmd_addr_end(addr, end);
2529 if (!pmd_present(pmd))
2530 return 0;
2531
2532 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2533 pmd_devmap(pmd))) {
2534 /*
2535 * NUMA hinting faults need to be handled in the GUP
2536 * slowpath for accounting purposes and so that they
2537 * can be serialised against THP migration.
2538 */
2539 if (pmd_protnone(pmd))
2540 return 0;
2541
2542 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2543 pages, nr))
2544 return 0;
2545
2546 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2547 /*
2548 * architecture have different format for hugetlbfs
2549 * pmd format and THP pmd format
2550 */
2551 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2552 PMD_SHIFT, next, flags, pages, nr))
2553 return 0;
2554 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2555 return 0;
2556 } while (pmdp++, addr = next, addr != end);
2557
2558 return 1;
2559 }
2560
2561 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2562 unsigned int flags, struct page **pages, int *nr)
2563 {
2564 unsigned long next;
2565 pud_t *pudp;
2566
2567 pudp = pud_offset_lockless(p4dp, p4d, addr);
2568 do {
2569 pud_t pud = READ_ONCE(*pudp);
2570
2571 next = pud_addr_end(addr, end);
2572 if (unlikely(!pud_present(pud)))
2573 return 0;
2574 if (unlikely(pud_huge(pud))) {
2575 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2576 pages, nr))
2577 return 0;
2578 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2579 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2580 PUD_SHIFT, next, flags, pages, nr))
2581 return 0;
2582 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2583 return 0;
2584 } while (pudp++, addr = next, addr != end);
2585
2586 return 1;
2587 }
2588
2589 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2590 unsigned int flags, struct page **pages, int *nr)
2591 {
2592 unsigned long next;
2593 p4d_t *p4dp;
2594
2595 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2596 do {
2597 p4d_t p4d = READ_ONCE(*p4dp);
2598
2599 next = p4d_addr_end(addr, end);
2600 if (p4d_none(p4d))
2601 return 0;
2602 BUILD_BUG_ON(p4d_huge(p4d));
2603 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2604 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2605 P4D_SHIFT, next, flags, pages, nr))
2606 return 0;
2607 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2608 return 0;
2609 } while (p4dp++, addr = next, addr != end);
2610
2611 return 1;
2612 }
2613
2614 static void gup_pgd_range(unsigned long addr, unsigned long end,
2615 unsigned int flags, struct page **pages, int *nr)
2616 {
2617 unsigned long next;
2618 pgd_t *pgdp;
2619
2620 pgdp = pgd_offset(current->mm, addr);
2621 do {
2622 pgd_t pgd = READ_ONCE(*pgdp);
2623
2624 next = pgd_addr_end(addr, end);
2625 if (pgd_none(pgd))
2626 return;
2627 if (unlikely(pgd_huge(pgd))) {
2628 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2629 pages, nr))
2630 return;
2631 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2632 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2633 PGDIR_SHIFT, next, flags, pages, nr))
2634 return;
2635 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2636 return;
2637 } while (pgdp++, addr = next, addr != end);
2638 }
2639 #else
2640 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2641 unsigned int flags, struct page **pages, int *nr)
2642 {
2643 }
2644 #endif /* CONFIG_HAVE_FAST_GUP */
2645
2646 #ifndef gup_fast_permitted
2647 /*
2648 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2649 * we need to fall back to the slow version:
2650 */
2651 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2652 {
2653 return true;
2654 }
2655 #endif
2656
2657 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2658 unsigned int gup_flags, struct page **pages)
2659 {
2660 int ret;
2661
2662 /*
2663 * FIXME: FOLL_LONGTERM does not work with
2664 * get_user_pages_unlocked() (see comments in that function)
2665 */
2666 if (gup_flags & FOLL_LONGTERM) {
2667 mmap_read_lock(current->mm);
2668 ret = __gup_longterm_locked(current->mm,
2669 start, nr_pages,
2670 pages, NULL, gup_flags);
2671 mmap_read_unlock(current->mm);
2672 } else {
2673 ret = get_user_pages_unlocked(start, nr_pages,
2674 pages, gup_flags);
2675 }
2676
2677 return ret;
2678 }
2679
2680 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2681 unsigned int gup_flags,
2682 struct page **pages)
2683 {
2684 unsigned long addr, len, end;
2685 unsigned long flags;
2686 int nr_pinned = 0, ret = 0;
2687
2688 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2689 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2690 FOLL_FAST_ONLY)))
2691 return -EINVAL;
2692
2693 if (gup_flags & FOLL_PIN)
2694 atomic_set(&current->mm->has_pinned, 1);
2695
2696 if (!(gup_flags & FOLL_FAST_ONLY))
2697 might_lock_read(&current->mm->mmap_lock);
2698
2699 start = untagged_addr(start) & PAGE_MASK;
2700 addr = start;
2701 len = (unsigned long) nr_pages << PAGE_SHIFT;
2702 end = start + len;
2703
2704 if (end <= start)
2705 return 0;
2706 if (unlikely(!access_ok((void __user *)start, len)))
2707 return -EFAULT;
2708
2709 /*
2710 * Disable interrupts. The nested form is used, in order to allow
2711 * full, general purpose use of this routine.
2712 *
2713 * With interrupts disabled, we block page table pages from being
2714 * freed from under us. See struct mmu_table_batch comments in
2715 * include/asm-generic/tlb.h for more details.
2716 *
2717 * We do not adopt an rcu_read_lock(.) here as we also want to
2718 * block IPIs that come from THPs splitting.
2719 */
2720 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2721 unsigned long fast_flags = gup_flags;
2722
2723 local_irq_save(flags);
2724 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2725 local_irq_restore(flags);
2726 ret = nr_pinned;
2727 }
2728
2729 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2730 /* Try to get the remaining pages with get_user_pages */
2731 start += nr_pinned << PAGE_SHIFT;
2732 pages += nr_pinned;
2733
2734 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2735 gup_flags, pages);
2736
2737 /* Have to be a bit careful with return values */
2738 if (nr_pinned > 0) {
2739 if (ret < 0)
2740 ret = nr_pinned;
2741 else
2742 ret += nr_pinned;
2743 }
2744 }
2745
2746 return ret;
2747 }
2748 /**
2749 * get_user_pages_fast_only() - pin user pages in memory
2750 * @start: starting user address
2751 * @nr_pages: number of pages from start to pin
2752 * @gup_flags: flags modifying pin behaviour
2753 * @pages: array that receives pointers to the pages pinned.
2754 * Should be at least nr_pages long.
2755 *
2756 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2757 * the regular GUP.
2758 * Note a difference with get_user_pages_fast: this always returns the
2759 * number of pages pinned, 0 if no pages were pinned.
2760 *
2761 * If the architecture does not support this function, simply return with no
2762 * pages pinned.
2763 *
2764 * Careful, careful! COW breaking can go either way, so a non-write
2765 * access can get ambiguous page results. If you call this function without
2766 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2767 */
2768 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2769 unsigned int gup_flags, struct page **pages)
2770 {
2771 int nr_pinned;
2772 /*
2773 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2774 * because gup fast is always a "pin with a +1 page refcount" request.
2775 *
2776 * FOLL_FAST_ONLY is required in order to match the API description of
2777 * this routine: no fall back to regular ("slow") GUP.
2778 */
2779 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2780
2781 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2782 pages);
2783
2784 /*
2785 * As specified in the API description above, this routine is not
2786 * allowed to return negative values. However, the common core
2787 * routine internal_get_user_pages_fast() *can* return -errno.
2788 * Therefore, correct for that here:
2789 */
2790 if (nr_pinned < 0)
2791 nr_pinned = 0;
2792
2793 return nr_pinned;
2794 }
2795 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2796
2797 /**
2798 * get_user_pages_fast() - pin user pages in memory
2799 * @start: starting user address
2800 * @nr_pages: number of pages from start to pin
2801 * @gup_flags: flags modifying pin behaviour
2802 * @pages: array that receives pointers to the pages pinned.
2803 * Should be at least nr_pages long.
2804 *
2805 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2806 * If not successful, it will fall back to taking the lock and
2807 * calling get_user_pages().
2808 *
2809 * Returns number of pages pinned. This may be fewer than the number requested.
2810 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2811 * -errno.
2812 */
2813 int get_user_pages_fast(unsigned long start, int nr_pages,
2814 unsigned int gup_flags, struct page **pages)
2815 {
2816 if (!is_valid_gup_flags(gup_flags))
2817 return -EINVAL;
2818
2819 /*
2820 * The caller may or may not have explicitly set FOLL_GET; either way is
2821 * OK. However, internally (within mm/gup.c), gup fast variants must set
2822 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2823 * request.
2824 */
2825 gup_flags |= FOLL_GET;
2826 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2827 }
2828 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2829
2830 /**
2831 * pin_user_pages_fast() - pin user pages in memory without taking locks
2832 *
2833 * @start: starting user address
2834 * @nr_pages: number of pages from start to pin
2835 * @gup_flags: flags modifying pin behaviour
2836 * @pages: array that receives pointers to the pages pinned.
2837 * Should be at least nr_pages long.
2838 *
2839 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2840 * get_user_pages_fast() for documentation on the function arguments, because
2841 * the arguments here are identical.
2842 *
2843 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2844 * see Documentation/core-api/pin_user_pages.rst for further details.
2845 */
2846 int pin_user_pages_fast(unsigned long start, int nr_pages,
2847 unsigned int gup_flags, struct page **pages)
2848 {
2849 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2850 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2851 return -EINVAL;
2852
2853 gup_flags |= FOLL_PIN;
2854 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2855 }
2856 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2857
2858 /*
2859 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2860 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2861 *
2862 * The API rules are the same, too: no negative values may be returned.
2863 */
2864 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2865 unsigned int gup_flags, struct page **pages)
2866 {
2867 int nr_pinned;
2868
2869 /*
2870 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2871 * rules require returning 0, rather than -errno:
2872 */
2873 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2874 return 0;
2875 /*
2876 * FOLL_FAST_ONLY is required in order to match the API description of
2877 * this routine: no fall back to regular ("slow") GUP.
2878 */
2879 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2880 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2881 pages);
2882 /*
2883 * This routine is not allowed to return negative values. However,
2884 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2885 * correct for that here:
2886 */
2887 if (nr_pinned < 0)
2888 nr_pinned = 0;
2889
2890 return nr_pinned;
2891 }
2892 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2893
2894 /**
2895 * pin_user_pages_remote() - pin pages of a remote process
2896 *
2897 * @mm: mm_struct of target mm
2898 * @start: starting user address
2899 * @nr_pages: number of pages from start to pin
2900 * @gup_flags: flags modifying lookup behaviour
2901 * @pages: array that receives pointers to the pages pinned.
2902 * Should be at least nr_pages long. Or NULL, if caller
2903 * only intends to ensure the pages are faulted in.
2904 * @vmas: array of pointers to vmas corresponding to each page.
2905 * Or NULL if the caller does not require them.
2906 * @locked: pointer to lock flag indicating whether lock is held and
2907 * subsequently whether VM_FAULT_RETRY functionality can be
2908 * utilised. Lock must initially be held.
2909 *
2910 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2911 * get_user_pages_remote() for documentation on the function arguments, because
2912 * the arguments here are identical.
2913 *
2914 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2915 * see Documentation/core-api/pin_user_pages.rst for details.
2916 */
2917 long pin_user_pages_remote(struct mm_struct *mm,
2918 unsigned long start, unsigned long nr_pages,
2919 unsigned int gup_flags, struct page **pages,
2920 struct vm_area_struct **vmas, int *locked)
2921 {
2922 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2923 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2924 return -EINVAL;
2925
2926 gup_flags |= FOLL_PIN;
2927 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2928 pages, vmas, locked);
2929 }
2930 EXPORT_SYMBOL(pin_user_pages_remote);
2931
2932 /**
2933 * pin_user_pages() - pin user pages in memory for use by other devices
2934 *
2935 * @start: starting user address
2936 * @nr_pages: number of pages from start to pin
2937 * @gup_flags: flags modifying lookup behaviour
2938 * @pages: array that receives pointers to the pages pinned.
2939 * Should be at least nr_pages long. Or NULL, if caller
2940 * only intends to ensure the pages are faulted in.
2941 * @vmas: array of pointers to vmas corresponding to each page.
2942 * Or NULL if the caller does not require them.
2943 *
2944 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2945 * FOLL_PIN is set.
2946 *
2947 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2948 * see Documentation/core-api/pin_user_pages.rst for details.
2949 */
2950 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2951 unsigned int gup_flags, struct page **pages,
2952 struct vm_area_struct **vmas)
2953 {
2954 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2955 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2956 return -EINVAL;
2957
2958 gup_flags |= FOLL_PIN;
2959 return __gup_longterm_locked(current->mm, start, nr_pages,
2960 pages, vmas, gup_flags);
2961 }
2962 EXPORT_SYMBOL(pin_user_pages);
2963
2964 /*
2965 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2966 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2967 * FOLL_PIN and rejects FOLL_GET.
2968 */
2969 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2970 struct page **pages, unsigned int gup_flags)
2971 {
2972 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2973 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2974 return -EINVAL;
2975
2976 gup_flags |= FOLL_PIN;
2977 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2978 }
2979 EXPORT_SYMBOL(pin_user_pages_unlocked);
2980
2981 /*
2982 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2983 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2984 * FOLL_GET.
2985 */
2986 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2987 unsigned int gup_flags, struct page **pages,
2988 int *locked)
2989 {
2990 /*
2991 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2992 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2993 * vmas. As there are no users of this flag in this call we simply
2994 * disallow this option for now.
2995 */
2996 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2997 return -EINVAL;
2998
2999 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3000 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3001 return -EINVAL;
3002
3003 gup_flags |= FOLL_PIN;
3004 return __get_user_pages_locked(current->mm, start, nr_pages,
3005 pages, NULL, locked,
3006 gup_flags | FOLL_TOUCH);
3007 }
3008 EXPORT_SYMBOL(pin_user_pages_locked);