]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/gup.c
9d1bf3ec8e394dd2e2053989701d0fb73e3e5fa4
[mirror_ubuntu-hirsute-kernel.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38 }
39
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46 }
47
48 /*
49 * Return the compound head page with ref appropriately incremented,
50 * or NULL if that failed.
51 */
52 static inline struct page *try_get_compound_head(struct page *page, int refs)
53 {
54 struct page *head = compound_head(page);
55
56 if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 return NULL;
58 if (unlikely(!page_cache_add_speculative(head, refs)))
59 return NULL;
60 return head;
61 }
62
63 /*
64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65 * flags-dependent amount.
66 *
67 * "grab" names in this file mean, "look at flags to decide whether to use
68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69 *
70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71 * same time. (That's true throughout the get_user_pages*() and
72 * pin_user_pages*() APIs.) Cases:
73 *
74 * FOLL_GET: page's refcount will be incremented by 1.
75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76 *
77 * Return: head page (with refcount appropriately incremented) for success, or
78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79 * considered failure, and furthermore, a likely bug in the caller, so a warning
80 * is also emitted.
81 */
82 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 int refs,
84 unsigned int flags)
85 {
86 if (flags & FOLL_GET)
87 return try_get_compound_head(page, refs);
88 else if (flags & FOLL_PIN) {
89 int orig_refs = refs;
90
91 /*
92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 * path, so fail and let the caller fall back to the slow path.
94 */
95 if (unlikely(flags & FOLL_LONGTERM) &&
96 is_migrate_cma_page(page))
97 return NULL;
98
99 /*
100 * When pinning a compound page of order > 1 (which is what
101 * hpage_pincount_available() checks for), use an exact count to
102 * track it, via hpage_pincount_add/_sub().
103 *
104 * However, be sure to *also* increment the normal page refcount
105 * field at least once, so that the page really is pinned.
106 */
107 if (!hpage_pincount_available(page))
108 refs *= GUP_PIN_COUNTING_BIAS;
109
110 page = try_get_compound_head(page, refs);
111 if (!page)
112 return NULL;
113
114 if (hpage_pincount_available(page))
115 hpage_pincount_add(page, refs);
116
117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 orig_refs);
119
120 return page;
121 }
122
123 WARN_ON_ONCE(1);
124 return NULL;
125 }
126
127 /**
128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129 *
130 * This might not do anything at all, depending on the flags argument.
131 *
132 * "grab" names in this file mean, "look at flags to decide whether to use
133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134 *
135 * @page: pointer to page to be grabbed
136 * @flags: gup flags: these are the FOLL_* flag values.
137 *
138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139 * time. Cases:
140 *
141 * FOLL_GET: page's refcount will be incremented by 1.
142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143 *
144 * Return: true for success, or if no action was required (if neither FOLL_PIN
145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146 * FOLL_PIN was set, but the page could not be grabbed.
147 */
148 bool __must_check try_grab_page(struct page *page, unsigned int flags)
149 {
150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
151
152 if (flags & FOLL_GET)
153 return try_get_page(page);
154 else if (flags & FOLL_PIN) {
155 int refs = 1;
156
157 page = compound_head(page);
158
159 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 return false;
161
162 if (hpage_pincount_available(page))
163 hpage_pincount_add(page, 1);
164 else
165 refs = GUP_PIN_COUNTING_BIAS;
166
167 /*
168 * Similar to try_grab_compound_head(): even if using the
169 * hpage_pincount_add/_sub() routines, be sure to
170 * *also* increment the normal page refcount field at least
171 * once, so that the page really is pinned.
172 */
173 page_ref_add(page, refs);
174
175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
176 }
177
178 return true;
179 }
180
181 #ifdef CONFIG_DEV_PAGEMAP_OPS
182 static bool __unpin_devmap_managed_user_page(struct page *page)
183 {
184 int count, refs = 1;
185
186 if (!page_is_devmap_managed(page))
187 return false;
188
189 if (hpage_pincount_available(page))
190 hpage_pincount_sub(page, 1);
191 else
192 refs = GUP_PIN_COUNTING_BIAS;
193
194 count = page_ref_sub_return(page, refs);
195
196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
197 /*
198 * devmap page refcounts are 1-based, rather than 0-based: if
199 * refcount is 1, then the page is free and the refcount is
200 * stable because nobody holds a reference on the page.
201 */
202 if (count == 1)
203 free_devmap_managed_page(page);
204 else if (!count)
205 __put_page(page);
206
207 return true;
208 }
209 #else
210 static bool __unpin_devmap_managed_user_page(struct page *page)
211 {
212 return false;
213 }
214 #endif /* CONFIG_DEV_PAGEMAP_OPS */
215
216 /**
217 * unpin_user_page() - release a dma-pinned page
218 * @page: pointer to page to be released
219 *
220 * Pages that were pinned via pin_user_pages*() must be released via either
221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222 * that such pages can be separately tracked and uniquely handled. In
223 * particular, interactions with RDMA and filesystems need special handling.
224 */
225 void unpin_user_page(struct page *page)
226 {
227 int refs = 1;
228
229 page = compound_head(page);
230
231 /*
232 * For devmap managed pages we need to catch refcount transition from
233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 * page is free and we need to inform the device driver through
235 * callback. See include/linux/memremap.h and HMM for details.
236 */
237 if (__unpin_devmap_managed_user_page(page))
238 return;
239
240 if (hpage_pincount_available(page))
241 hpage_pincount_sub(page, 1);
242 else
243 refs = GUP_PIN_COUNTING_BIAS;
244
245 if (page_ref_sub_and_test(page, refs))
246 __put_page(page);
247
248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
249 }
250 EXPORT_SYMBOL(unpin_user_page);
251
252 /**
253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254 * @pages: array of pages to be maybe marked dirty, and definitely released.
255 * @npages: number of pages in the @pages array.
256 * @make_dirty: whether to mark the pages dirty
257 *
258 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259 * variants called on that page.
260 *
261 * For each page in the @pages array, make that page (or its head page, if a
262 * compound page) dirty, if @make_dirty is true, and if the page was previously
263 * listed as clean. In any case, releases all pages using unpin_user_page(),
264 * possibly via unpin_user_pages(), for the non-dirty case.
265 *
266 * Please see the unpin_user_page() documentation for details.
267 *
268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269 * required, then the caller should a) verify that this is really correct,
270 * because _lock() is usually required, and b) hand code it:
271 * set_page_dirty_lock(), unpin_user_page().
272 *
273 */
274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 bool make_dirty)
276 {
277 unsigned long index;
278
279 /*
280 * TODO: this can be optimized for huge pages: if a series of pages is
281 * physically contiguous and part of the same compound page, then a
282 * single operation to the head page should suffice.
283 */
284
285 if (!make_dirty) {
286 unpin_user_pages(pages, npages);
287 return;
288 }
289
290 for (index = 0; index < npages; index++) {
291 struct page *page = compound_head(pages[index]);
292 /*
293 * Checking PageDirty at this point may race with
294 * clear_page_dirty_for_io(), but that's OK. Two key
295 * cases:
296 *
297 * 1) This code sees the page as already dirty, so it
298 * skips the call to set_page_dirty(). That could happen
299 * because clear_page_dirty_for_io() called
300 * page_mkclean(), followed by set_page_dirty().
301 * However, now the page is going to get written back,
302 * which meets the original intention of setting it
303 * dirty, so all is well: clear_page_dirty_for_io() goes
304 * on to call TestClearPageDirty(), and write the page
305 * back.
306 *
307 * 2) This code sees the page as clean, so it calls
308 * set_page_dirty(). The page stays dirty, despite being
309 * written back, so it gets written back again in the
310 * next writeback cycle. This is harmless.
311 */
312 if (!PageDirty(page))
313 set_page_dirty_lock(page);
314 unpin_user_page(page);
315 }
316 }
317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
318
319 /**
320 * unpin_user_pages() - release an array of gup-pinned pages.
321 * @pages: array of pages to be marked dirty and released.
322 * @npages: number of pages in the @pages array.
323 *
324 * For each page in the @pages array, release the page using unpin_user_page().
325 *
326 * Please see the unpin_user_page() documentation for details.
327 */
328 void unpin_user_pages(struct page **pages, unsigned long npages)
329 {
330 unsigned long index;
331
332 /*
333 * TODO: this can be optimized for huge pages: if a series of pages is
334 * physically contiguous and part of the same compound page, then a
335 * single operation to the head page should suffice.
336 */
337 for (index = 0; index < npages; index++)
338 unpin_user_page(pages[index]);
339 }
340 EXPORT_SYMBOL(unpin_user_pages);
341
342 #ifdef CONFIG_MMU
343 static struct page *no_page_table(struct vm_area_struct *vma,
344 unsigned int flags)
345 {
346 /*
347 * When core dumping an enormous anonymous area that nobody
348 * has touched so far, we don't want to allocate unnecessary pages or
349 * page tables. Return error instead of NULL to skip handle_mm_fault,
350 * then get_dump_page() will return NULL to leave a hole in the dump.
351 * But we can only make this optimization where a hole would surely
352 * be zero-filled if handle_mm_fault() actually did handle it.
353 */
354 if ((flags & FOLL_DUMP) &&
355 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
356 return ERR_PTR(-EFAULT);
357 return NULL;
358 }
359
360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
361 pte_t *pte, unsigned int flags)
362 {
363 /* No page to get reference */
364 if (flags & FOLL_GET)
365 return -EFAULT;
366
367 if (flags & FOLL_TOUCH) {
368 pte_t entry = *pte;
369
370 if (flags & FOLL_WRITE)
371 entry = pte_mkdirty(entry);
372 entry = pte_mkyoung(entry);
373
374 if (!pte_same(*pte, entry)) {
375 set_pte_at(vma->vm_mm, address, pte, entry);
376 update_mmu_cache(vma, address, pte);
377 }
378 }
379
380 /* Proper page table entry exists, but no corresponding struct page */
381 return -EEXIST;
382 }
383
384 /*
385 * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
386 * but only after we've gone through a COW cycle and they are dirty.
387 */
388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
389 {
390 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
391 }
392
393 /*
394 * A (separate) COW fault might break the page the other way and
395 * get_user_pages() would return the page from what is now the wrong
396 * VM. So we need to force a COW break at GUP time even for reads.
397 */
398 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
399 {
400 return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
401 }
402
403 static struct page *follow_page_pte(struct vm_area_struct *vma,
404 unsigned long address, pmd_t *pmd, unsigned int flags,
405 struct dev_pagemap **pgmap)
406 {
407 struct mm_struct *mm = vma->vm_mm;
408 struct page *page;
409 spinlock_t *ptl;
410 pte_t *ptep, pte;
411 int ret;
412
413 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
414 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
415 (FOLL_PIN | FOLL_GET)))
416 return ERR_PTR(-EINVAL);
417 retry:
418 if (unlikely(pmd_bad(*pmd)))
419 return no_page_table(vma, flags);
420
421 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
422 pte = *ptep;
423 if (!pte_present(pte)) {
424 swp_entry_t entry;
425 /*
426 * KSM's break_ksm() relies upon recognizing a ksm page
427 * even while it is being migrated, so for that case we
428 * need migration_entry_wait().
429 */
430 if (likely(!(flags & FOLL_MIGRATION)))
431 goto no_page;
432 if (pte_none(pte))
433 goto no_page;
434 entry = pte_to_swp_entry(pte);
435 if (!is_migration_entry(entry))
436 goto no_page;
437 pte_unmap_unlock(ptep, ptl);
438 migration_entry_wait(mm, pmd, address);
439 goto retry;
440 }
441 if ((flags & FOLL_NUMA) && pte_protnone(pte))
442 goto no_page;
443 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
444 pte_unmap_unlock(ptep, ptl);
445 return NULL;
446 }
447
448 page = vm_normal_page(vma, address, pte);
449 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
450 /*
451 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
452 * case since they are only valid while holding the pgmap
453 * reference.
454 */
455 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
456 if (*pgmap)
457 page = pte_page(pte);
458 else
459 goto no_page;
460 } else if (unlikely(!page)) {
461 if (flags & FOLL_DUMP) {
462 /* Avoid special (like zero) pages in core dumps */
463 page = ERR_PTR(-EFAULT);
464 goto out;
465 }
466
467 if (is_zero_pfn(pte_pfn(pte))) {
468 page = pte_page(pte);
469 } else {
470 ret = follow_pfn_pte(vma, address, ptep, flags);
471 page = ERR_PTR(ret);
472 goto out;
473 }
474 }
475
476 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
477 get_page(page);
478 pte_unmap_unlock(ptep, ptl);
479 lock_page(page);
480 ret = split_huge_page(page);
481 unlock_page(page);
482 put_page(page);
483 if (ret)
484 return ERR_PTR(ret);
485 goto retry;
486 }
487
488 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
489 if (unlikely(!try_grab_page(page, flags))) {
490 page = ERR_PTR(-ENOMEM);
491 goto out;
492 }
493 /*
494 * We need to make the page accessible if and only if we are going
495 * to access its content (the FOLL_PIN case). Please see
496 * Documentation/core-api/pin_user_pages.rst for details.
497 */
498 if (flags & FOLL_PIN) {
499 ret = arch_make_page_accessible(page);
500 if (ret) {
501 unpin_user_page(page);
502 page = ERR_PTR(ret);
503 goto out;
504 }
505 }
506 if (flags & FOLL_TOUCH) {
507 if ((flags & FOLL_WRITE) &&
508 !pte_dirty(pte) && !PageDirty(page))
509 set_page_dirty(page);
510 /*
511 * pte_mkyoung() would be more correct here, but atomic care
512 * is needed to avoid losing the dirty bit: it is easier to use
513 * mark_page_accessed().
514 */
515 mark_page_accessed(page);
516 }
517 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
518 /* Do not mlock pte-mapped THP */
519 if (PageTransCompound(page))
520 goto out;
521
522 /*
523 * The preliminary mapping check is mainly to avoid the
524 * pointless overhead of lock_page on the ZERO_PAGE
525 * which might bounce very badly if there is contention.
526 *
527 * If the page is already locked, we don't need to
528 * handle it now - vmscan will handle it later if and
529 * when it attempts to reclaim the page.
530 */
531 if (page->mapping && trylock_page(page)) {
532 lru_add_drain(); /* push cached pages to LRU */
533 /*
534 * Because we lock page here, and migration is
535 * blocked by the pte's page reference, and we
536 * know the page is still mapped, we don't even
537 * need to check for file-cache page truncation.
538 */
539 mlock_vma_page(page);
540 unlock_page(page);
541 }
542 }
543 out:
544 pte_unmap_unlock(ptep, ptl);
545 return page;
546 no_page:
547 pte_unmap_unlock(ptep, ptl);
548 if (!pte_none(pte))
549 return NULL;
550 return no_page_table(vma, flags);
551 }
552
553 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
554 unsigned long address, pud_t *pudp,
555 unsigned int flags,
556 struct follow_page_context *ctx)
557 {
558 pmd_t *pmd, pmdval;
559 spinlock_t *ptl;
560 struct page *page;
561 struct mm_struct *mm = vma->vm_mm;
562
563 pmd = pmd_offset(pudp, address);
564 /*
565 * The READ_ONCE() will stabilize the pmdval in a register or
566 * on the stack so that it will stop changing under the code.
567 */
568 pmdval = READ_ONCE(*pmd);
569 if (pmd_none(pmdval))
570 return no_page_table(vma, flags);
571 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
572 page = follow_huge_pmd(mm, address, pmd, flags);
573 if (page)
574 return page;
575 return no_page_table(vma, flags);
576 }
577 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
578 page = follow_huge_pd(vma, address,
579 __hugepd(pmd_val(pmdval)), flags,
580 PMD_SHIFT);
581 if (page)
582 return page;
583 return no_page_table(vma, flags);
584 }
585 retry:
586 if (!pmd_present(pmdval)) {
587 if (likely(!(flags & FOLL_MIGRATION)))
588 return no_page_table(vma, flags);
589 VM_BUG_ON(thp_migration_supported() &&
590 !is_pmd_migration_entry(pmdval));
591 if (is_pmd_migration_entry(pmdval))
592 pmd_migration_entry_wait(mm, pmd);
593 pmdval = READ_ONCE(*pmd);
594 /*
595 * MADV_DONTNEED may convert the pmd to null because
596 * mmap_sem is held in read mode
597 */
598 if (pmd_none(pmdval))
599 return no_page_table(vma, flags);
600 goto retry;
601 }
602 if (pmd_devmap(pmdval)) {
603 ptl = pmd_lock(mm, pmd);
604 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
605 spin_unlock(ptl);
606 if (page)
607 return page;
608 }
609 if (likely(!pmd_trans_huge(pmdval)))
610 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
611
612 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
613 return no_page_table(vma, flags);
614
615 retry_locked:
616 ptl = pmd_lock(mm, pmd);
617 if (unlikely(pmd_none(*pmd))) {
618 spin_unlock(ptl);
619 return no_page_table(vma, flags);
620 }
621 if (unlikely(!pmd_present(*pmd))) {
622 spin_unlock(ptl);
623 if (likely(!(flags & FOLL_MIGRATION)))
624 return no_page_table(vma, flags);
625 pmd_migration_entry_wait(mm, pmd);
626 goto retry_locked;
627 }
628 if (unlikely(!pmd_trans_huge(*pmd))) {
629 spin_unlock(ptl);
630 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
631 }
632 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
633 int ret;
634 page = pmd_page(*pmd);
635 if (is_huge_zero_page(page)) {
636 spin_unlock(ptl);
637 ret = 0;
638 split_huge_pmd(vma, pmd, address);
639 if (pmd_trans_unstable(pmd))
640 ret = -EBUSY;
641 } else if (flags & FOLL_SPLIT) {
642 if (unlikely(!try_get_page(page))) {
643 spin_unlock(ptl);
644 return ERR_PTR(-ENOMEM);
645 }
646 spin_unlock(ptl);
647 lock_page(page);
648 ret = split_huge_page(page);
649 unlock_page(page);
650 put_page(page);
651 if (pmd_none(*pmd))
652 return no_page_table(vma, flags);
653 } else { /* flags & FOLL_SPLIT_PMD */
654 spin_unlock(ptl);
655 split_huge_pmd(vma, pmd, address);
656 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
657 }
658
659 return ret ? ERR_PTR(ret) :
660 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
661 }
662 page = follow_trans_huge_pmd(vma, address, pmd, flags);
663 spin_unlock(ptl);
664 ctx->page_mask = HPAGE_PMD_NR - 1;
665 return page;
666 }
667
668 static struct page *follow_pud_mask(struct vm_area_struct *vma,
669 unsigned long address, p4d_t *p4dp,
670 unsigned int flags,
671 struct follow_page_context *ctx)
672 {
673 pud_t *pud;
674 spinlock_t *ptl;
675 struct page *page;
676 struct mm_struct *mm = vma->vm_mm;
677
678 pud = pud_offset(p4dp, address);
679 if (pud_none(*pud))
680 return no_page_table(vma, flags);
681 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
682 page = follow_huge_pud(mm, address, pud, flags);
683 if (page)
684 return page;
685 return no_page_table(vma, flags);
686 }
687 if (is_hugepd(__hugepd(pud_val(*pud)))) {
688 page = follow_huge_pd(vma, address,
689 __hugepd(pud_val(*pud)), flags,
690 PUD_SHIFT);
691 if (page)
692 return page;
693 return no_page_table(vma, flags);
694 }
695 if (pud_devmap(*pud)) {
696 ptl = pud_lock(mm, pud);
697 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
698 spin_unlock(ptl);
699 if (page)
700 return page;
701 }
702 if (unlikely(pud_bad(*pud)))
703 return no_page_table(vma, flags);
704
705 return follow_pmd_mask(vma, address, pud, flags, ctx);
706 }
707
708 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
709 unsigned long address, pgd_t *pgdp,
710 unsigned int flags,
711 struct follow_page_context *ctx)
712 {
713 p4d_t *p4d;
714 struct page *page;
715
716 p4d = p4d_offset(pgdp, address);
717 if (p4d_none(*p4d))
718 return no_page_table(vma, flags);
719 BUILD_BUG_ON(p4d_huge(*p4d));
720 if (unlikely(p4d_bad(*p4d)))
721 return no_page_table(vma, flags);
722
723 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
724 page = follow_huge_pd(vma, address,
725 __hugepd(p4d_val(*p4d)), flags,
726 P4D_SHIFT);
727 if (page)
728 return page;
729 return no_page_table(vma, flags);
730 }
731 return follow_pud_mask(vma, address, p4d, flags, ctx);
732 }
733
734 /**
735 * follow_page_mask - look up a page descriptor from a user-virtual address
736 * @vma: vm_area_struct mapping @address
737 * @address: virtual address to look up
738 * @flags: flags modifying lookup behaviour
739 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
740 * pointer to output page_mask
741 *
742 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
743 *
744 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
745 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
746 *
747 * On output, the @ctx->page_mask is set according to the size of the page.
748 *
749 * Return: the mapped (struct page *), %NULL if no mapping exists, or
750 * an error pointer if there is a mapping to something not represented
751 * by a page descriptor (see also vm_normal_page()).
752 */
753 static struct page *follow_page_mask(struct vm_area_struct *vma,
754 unsigned long address, unsigned int flags,
755 struct follow_page_context *ctx)
756 {
757 pgd_t *pgd;
758 struct page *page;
759 struct mm_struct *mm = vma->vm_mm;
760
761 ctx->page_mask = 0;
762
763 /* make this handle hugepd */
764 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
765 if (!IS_ERR(page)) {
766 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
767 return page;
768 }
769
770 pgd = pgd_offset(mm, address);
771
772 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
773 return no_page_table(vma, flags);
774
775 if (pgd_huge(*pgd)) {
776 page = follow_huge_pgd(mm, address, pgd, flags);
777 if (page)
778 return page;
779 return no_page_table(vma, flags);
780 }
781 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
782 page = follow_huge_pd(vma, address,
783 __hugepd(pgd_val(*pgd)), flags,
784 PGDIR_SHIFT);
785 if (page)
786 return page;
787 return no_page_table(vma, flags);
788 }
789
790 return follow_p4d_mask(vma, address, pgd, flags, ctx);
791 }
792
793 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
794 unsigned int foll_flags)
795 {
796 struct follow_page_context ctx = { NULL };
797 struct page *page;
798
799 page = follow_page_mask(vma, address, foll_flags, &ctx);
800 if (ctx.pgmap)
801 put_dev_pagemap(ctx.pgmap);
802 return page;
803 }
804
805 static int get_gate_page(struct mm_struct *mm, unsigned long address,
806 unsigned int gup_flags, struct vm_area_struct **vma,
807 struct page **page)
808 {
809 pgd_t *pgd;
810 p4d_t *p4d;
811 pud_t *pud;
812 pmd_t *pmd;
813 pte_t *pte;
814 int ret = -EFAULT;
815
816 /* user gate pages are read-only */
817 if (gup_flags & FOLL_WRITE)
818 return -EFAULT;
819 if (address > TASK_SIZE)
820 pgd = pgd_offset_k(address);
821 else
822 pgd = pgd_offset_gate(mm, address);
823 if (pgd_none(*pgd))
824 return -EFAULT;
825 p4d = p4d_offset(pgd, address);
826 if (p4d_none(*p4d))
827 return -EFAULT;
828 pud = pud_offset(p4d, address);
829 if (pud_none(*pud))
830 return -EFAULT;
831 pmd = pmd_offset(pud, address);
832 if (!pmd_present(*pmd))
833 return -EFAULT;
834 VM_BUG_ON(pmd_trans_huge(*pmd));
835 pte = pte_offset_map(pmd, address);
836 if (pte_none(*pte))
837 goto unmap;
838 *vma = get_gate_vma(mm);
839 if (!page)
840 goto out;
841 *page = vm_normal_page(*vma, address, *pte);
842 if (!*page) {
843 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
844 goto unmap;
845 *page = pte_page(*pte);
846 }
847 if (unlikely(!try_get_page(*page))) {
848 ret = -ENOMEM;
849 goto unmap;
850 }
851 out:
852 ret = 0;
853 unmap:
854 pte_unmap(pte);
855 return ret;
856 }
857
858 /*
859 * mmap_sem must be held on entry. If @locked != NULL and *@flags
860 * does not include FOLL_NOWAIT, the mmap_sem may be released. If it
861 * is, *@locked will be set to 0 and -EBUSY returned.
862 */
863 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
864 unsigned long address, unsigned int *flags, int *locked)
865 {
866 unsigned int fault_flags = 0;
867 vm_fault_t ret;
868
869 /* mlock all present pages, but do not fault in new pages */
870 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
871 return -ENOENT;
872 if (*flags & FOLL_WRITE)
873 fault_flags |= FAULT_FLAG_WRITE;
874 if (*flags & FOLL_REMOTE)
875 fault_flags |= FAULT_FLAG_REMOTE;
876 if (locked)
877 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
878 if (*flags & FOLL_NOWAIT)
879 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
880 if (*flags & FOLL_TRIED) {
881 /*
882 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
883 * can co-exist
884 */
885 fault_flags |= FAULT_FLAG_TRIED;
886 }
887
888 ret = handle_mm_fault(vma, address, fault_flags);
889 if (ret & VM_FAULT_ERROR) {
890 int err = vm_fault_to_errno(ret, *flags);
891
892 if (err)
893 return err;
894 BUG();
895 }
896
897 if (tsk) {
898 if (ret & VM_FAULT_MAJOR)
899 tsk->maj_flt++;
900 else
901 tsk->min_flt++;
902 }
903
904 if (ret & VM_FAULT_RETRY) {
905 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
906 *locked = 0;
907 return -EBUSY;
908 }
909
910 /*
911 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
912 * necessary, even if maybe_mkwrite decided not to set pte_write. We
913 * can thus safely do subsequent page lookups as if they were reads.
914 * But only do so when looping for pte_write is futile: in some cases
915 * userspace may also be wanting to write to the gotten user page,
916 * which a read fault here might prevent (a readonly page might get
917 * reCOWed by userspace write).
918 */
919 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
920 *flags |= FOLL_COW;
921 return 0;
922 }
923
924 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
925 {
926 vm_flags_t vm_flags = vma->vm_flags;
927 int write = (gup_flags & FOLL_WRITE);
928 int foreign = (gup_flags & FOLL_REMOTE);
929
930 if (vm_flags & (VM_IO | VM_PFNMAP))
931 return -EFAULT;
932
933 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
934 return -EFAULT;
935
936 if (write) {
937 if (!(vm_flags & VM_WRITE)) {
938 if (!(gup_flags & FOLL_FORCE))
939 return -EFAULT;
940 /*
941 * We used to let the write,force case do COW in a
942 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
943 * set a breakpoint in a read-only mapping of an
944 * executable, without corrupting the file (yet only
945 * when that file had been opened for writing!).
946 * Anon pages in shared mappings are surprising: now
947 * just reject it.
948 */
949 if (!is_cow_mapping(vm_flags))
950 return -EFAULT;
951 }
952 } else if (!(vm_flags & VM_READ)) {
953 if (!(gup_flags & FOLL_FORCE))
954 return -EFAULT;
955 /*
956 * Is there actually any vma we can reach here which does not
957 * have VM_MAYREAD set?
958 */
959 if (!(vm_flags & VM_MAYREAD))
960 return -EFAULT;
961 }
962 /*
963 * gups are always data accesses, not instruction
964 * fetches, so execute=false here
965 */
966 if (!arch_vma_access_permitted(vma, write, false, foreign))
967 return -EFAULT;
968 return 0;
969 }
970
971 /**
972 * __get_user_pages() - pin user pages in memory
973 * @tsk: task_struct of target task
974 * @mm: mm_struct of target mm
975 * @start: starting user address
976 * @nr_pages: number of pages from start to pin
977 * @gup_flags: flags modifying pin behaviour
978 * @pages: array that receives pointers to the pages pinned.
979 * Should be at least nr_pages long. Or NULL, if caller
980 * only intends to ensure the pages are faulted in.
981 * @vmas: array of pointers to vmas corresponding to each page.
982 * Or NULL if the caller does not require them.
983 * @locked: whether we're still with the mmap_sem held
984 *
985 * Returns either number of pages pinned (which may be less than the
986 * number requested), or an error. Details about the return value:
987 *
988 * -- If nr_pages is 0, returns 0.
989 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
990 * -- If nr_pages is >0, and some pages were pinned, returns the number of
991 * pages pinned. Again, this may be less than nr_pages.
992 * -- 0 return value is possible when the fault would need to be retried.
993 *
994 * The caller is responsible for releasing returned @pages, via put_page().
995 *
996 * @vmas are valid only as long as mmap_sem is held.
997 *
998 * Must be called with mmap_sem held. It may be released. See below.
999 *
1000 * __get_user_pages walks a process's page tables and takes a reference to
1001 * each struct page that each user address corresponds to at a given
1002 * instant. That is, it takes the page that would be accessed if a user
1003 * thread accesses the given user virtual address at that instant.
1004 *
1005 * This does not guarantee that the page exists in the user mappings when
1006 * __get_user_pages returns, and there may even be a completely different
1007 * page there in some cases (eg. if mmapped pagecache has been invalidated
1008 * and subsequently re faulted). However it does guarantee that the page
1009 * won't be freed completely. And mostly callers simply care that the page
1010 * contains data that was valid *at some point in time*. Typically, an IO
1011 * or similar operation cannot guarantee anything stronger anyway because
1012 * locks can't be held over the syscall boundary.
1013 *
1014 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1015 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1016 * appropriate) must be called after the page is finished with, and
1017 * before put_page is called.
1018 *
1019 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
1020 * released by an up_read(). That can happen if @gup_flags does not
1021 * have FOLL_NOWAIT.
1022 *
1023 * A caller using such a combination of @locked and @gup_flags
1024 * must therefore hold the mmap_sem for reading only, and recognize
1025 * when it's been released. Otherwise, it must be held for either
1026 * reading or writing and will not be released.
1027 *
1028 * In most cases, get_user_pages or get_user_pages_fast should be used
1029 * instead of __get_user_pages. __get_user_pages should be used only if
1030 * you need some special @gup_flags.
1031 */
1032 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1033 unsigned long start, unsigned long nr_pages,
1034 unsigned int gup_flags, struct page **pages,
1035 struct vm_area_struct **vmas, int *locked)
1036 {
1037 long ret = 0, i = 0;
1038 struct vm_area_struct *vma = NULL;
1039 struct follow_page_context ctx = { NULL };
1040
1041 if (!nr_pages)
1042 return 0;
1043
1044 start = untagged_addr(start);
1045
1046 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1047
1048 /*
1049 * If FOLL_FORCE is set then do not force a full fault as the hinting
1050 * fault information is unrelated to the reference behaviour of a task
1051 * using the address space
1052 */
1053 if (!(gup_flags & FOLL_FORCE))
1054 gup_flags |= FOLL_NUMA;
1055
1056 do {
1057 struct page *page;
1058 unsigned int foll_flags = gup_flags;
1059 unsigned int page_increm;
1060
1061 /* first iteration or cross vma bound */
1062 if (!vma || start >= vma->vm_end) {
1063 vma = find_extend_vma(mm, start);
1064 if (!vma && in_gate_area(mm, start)) {
1065 ret = get_gate_page(mm, start & PAGE_MASK,
1066 gup_flags, &vma,
1067 pages ? &pages[i] : NULL);
1068 if (ret)
1069 goto out;
1070 ctx.page_mask = 0;
1071 goto next_page;
1072 }
1073
1074 if (!vma || check_vma_flags(vma, gup_flags)) {
1075 ret = -EFAULT;
1076 goto out;
1077 }
1078 if (is_vm_hugetlb_page(vma)) {
1079 if (should_force_cow_break(vma, foll_flags))
1080 foll_flags |= FOLL_WRITE;
1081 i = follow_hugetlb_page(mm, vma, pages, vmas,
1082 &start, &nr_pages, i,
1083 foll_flags, locked);
1084 if (locked && *locked == 0) {
1085 /*
1086 * We've got a VM_FAULT_RETRY
1087 * and we've lost mmap_sem.
1088 * We must stop here.
1089 */
1090 BUG_ON(gup_flags & FOLL_NOWAIT);
1091 BUG_ON(ret != 0);
1092 goto out;
1093 }
1094 continue;
1095 }
1096 }
1097
1098 if (should_force_cow_break(vma, foll_flags))
1099 foll_flags |= FOLL_WRITE;
1100
1101 retry:
1102 /*
1103 * If we have a pending SIGKILL, don't keep faulting pages and
1104 * potentially allocating memory.
1105 */
1106 if (fatal_signal_pending(current)) {
1107 ret = -EINTR;
1108 goto out;
1109 }
1110 cond_resched();
1111
1112 page = follow_page_mask(vma, start, foll_flags, &ctx);
1113 if (!page) {
1114 ret = faultin_page(tsk, vma, start, &foll_flags,
1115 locked);
1116 switch (ret) {
1117 case 0:
1118 goto retry;
1119 case -EBUSY:
1120 ret = 0;
1121 fallthrough;
1122 case -EFAULT:
1123 case -ENOMEM:
1124 case -EHWPOISON:
1125 goto out;
1126 case -ENOENT:
1127 goto next_page;
1128 }
1129 BUG();
1130 } else if (PTR_ERR(page) == -EEXIST) {
1131 /*
1132 * Proper page table entry exists, but no corresponding
1133 * struct page.
1134 */
1135 goto next_page;
1136 } else if (IS_ERR(page)) {
1137 ret = PTR_ERR(page);
1138 goto out;
1139 }
1140 if (pages) {
1141 pages[i] = page;
1142 flush_anon_page(vma, page, start);
1143 flush_dcache_page(page);
1144 ctx.page_mask = 0;
1145 }
1146 next_page:
1147 if (vmas) {
1148 vmas[i] = vma;
1149 ctx.page_mask = 0;
1150 }
1151 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1152 if (page_increm > nr_pages)
1153 page_increm = nr_pages;
1154 i += page_increm;
1155 start += page_increm * PAGE_SIZE;
1156 nr_pages -= page_increm;
1157 } while (nr_pages);
1158 out:
1159 if (ctx.pgmap)
1160 put_dev_pagemap(ctx.pgmap);
1161 return i ? i : ret;
1162 }
1163
1164 static bool vma_permits_fault(struct vm_area_struct *vma,
1165 unsigned int fault_flags)
1166 {
1167 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1168 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1169 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1170
1171 if (!(vm_flags & vma->vm_flags))
1172 return false;
1173
1174 /*
1175 * The architecture might have a hardware protection
1176 * mechanism other than read/write that can deny access.
1177 *
1178 * gup always represents data access, not instruction
1179 * fetches, so execute=false here:
1180 */
1181 if (!arch_vma_access_permitted(vma, write, false, foreign))
1182 return false;
1183
1184 return true;
1185 }
1186
1187 /**
1188 * fixup_user_fault() - manually resolve a user page fault
1189 * @tsk: the task_struct to use for page fault accounting, or
1190 * NULL if faults are not to be recorded.
1191 * @mm: mm_struct of target mm
1192 * @address: user address
1193 * @fault_flags:flags to pass down to handle_mm_fault()
1194 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
1195 * does not allow retry. If NULL, the caller must guarantee
1196 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1197 *
1198 * This is meant to be called in the specific scenario where for locking reasons
1199 * we try to access user memory in atomic context (within a pagefault_disable()
1200 * section), this returns -EFAULT, and we want to resolve the user fault before
1201 * trying again.
1202 *
1203 * Typically this is meant to be used by the futex code.
1204 *
1205 * The main difference with get_user_pages() is that this function will
1206 * unconditionally call handle_mm_fault() which will in turn perform all the
1207 * necessary SW fixup of the dirty and young bits in the PTE, while
1208 * get_user_pages() only guarantees to update these in the struct page.
1209 *
1210 * This is important for some architectures where those bits also gate the
1211 * access permission to the page because they are maintained in software. On
1212 * such architectures, gup() will not be enough to make a subsequent access
1213 * succeed.
1214 *
1215 * This function will not return with an unlocked mmap_sem. So it has not the
1216 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1217 */
1218 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1219 unsigned long address, unsigned int fault_flags,
1220 bool *unlocked)
1221 {
1222 struct vm_area_struct *vma;
1223 vm_fault_t ret, major = 0;
1224
1225 address = untagged_addr(address);
1226
1227 if (unlocked)
1228 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1229
1230 retry:
1231 vma = find_extend_vma(mm, address);
1232 if (!vma || address < vma->vm_start)
1233 return -EFAULT;
1234
1235 if (!vma_permits_fault(vma, fault_flags))
1236 return -EFAULT;
1237
1238 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1239 fatal_signal_pending(current))
1240 return -EINTR;
1241
1242 ret = handle_mm_fault(vma, address, fault_flags);
1243 major |= ret & VM_FAULT_MAJOR;
1244 if (ret & VM_FAULT_ERROR) {
1245 int err = vm_fault_to_errno(ret, 0);
1246
1247 if (err)
1248 return err;
1249 BUG();
1250 }
1251
1252 if (ret & VM_FAULT_RETRY) {
1253 down_read(&mm->mmap_sem);
1254 *unlocked = true;
1255 fault_flags |= FAULT_FLAG_TRIED;
1256 goto retry;
1257 }
1258
1259 if (tsk) {
1260 if (major)
1261 tsk->maj_flt++;
1262 else
1263 tsk->min_flt++;
1264 }
1265 return 0;
1266 }
1267 EXPORT_SYMBOL_GPL(fixup_user_fault);
1268
1269 /*
1270 * Please note that this function, unlike __get_user_pages will not
1271 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1272 */
1273 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1274 struct mm_struct *mm,
1275 unsigned long start,
1276 unsigned long nr_pages,
1277 struct page **pages,
1278 struct vm_area_struct **vmas,
1279 int *locked,
1280 unsigned int flags)
1281 {
1282 long ret, pages_done;
1283 bool lock_dropped;
1284
1285 if (locked) {
1286 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1287 BUG_ON(vmas);
1288 /* check caller initialized locked */
1289 BUG_ON(*locked != 1);
1290 }
1291
1292 /*
1293 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1294 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1295 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1296 * for FOLL_GET, not for the newer FOLL_PIN.
1297 *
1298 * FOLL_PIN always expects pages to be non-null, but no need to assert
1299 * that here, as any failures will be obvious enough.
1300 */
1301 if (pages && !(flags & FOLL_PIN))
1302 flags |= FOLL_GET;
1303
1304 pages_done = 0;
1305 lock_dropped = false;
1306 for (;;) {
1307 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1308 vmas, locked);
1309 if (!locked)
1310 /* VM_FAULT_RETRY couldn't trigger, bypass */
1311 return ret;
1312
1313 /* VM_FAULT_RETRY cannot return errors */
1314 if (!*locked) {
1315 BUG_ON(ret < 0);
1316 BUG_ON(ret >= nr_pages);
1317 }
1318
1319 if (ret > 0) {
1320 nr_pages -= ret;
1321 pages_done += ret;
1322 if (!nr_pages)
1323 break;
1324 }
1325 if (*locked) {
1326 /*
1327 * VM_FAULT_RETRY didn't trigger or it was a
1328 * FOLL_NOWAIT.
1329 */
1330 if (!pages_done)
1331 pages_done = ret;
1332 break;
1333 }
1334 /*
1335 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1336 * For the prefault case (!pages) we only update counts.
1337 */
1338 if (likely(pages))
1339 pages += ret;
1340 start += ret << PAGE_SHIFT;
1341 lock_dropped = true;
1342
1343 retry:
1344 /*
1345 * Repeat on the address that fired VM_FAULT_RETRY
1346 * with both FAULT_FLAG_ALLOW_RETRY and
1347 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1348 * by fatal signals, so we need to check it before we
1349 * start trying again otherwise it can loop forever.
1350 */
1351
1352 if (fatal_signal_pending(current)) {
1353 if (!pages_done)
1354 pages_done = -EINTR;
1355 break;
1356 }
1357
1358 ret = down_read_killable(&mm->mmap_sem);
1359 if (ret) {
1360 BUG_ON(ret > 0);
1361 if (!pages_done)
1362 pages_done = ret;
1363 break;
1364 }
1365
1366 *locked = 1;
1367 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1368 pages, NULL, locked);
1369 if (!*locked) {
1370 /* Continue to retry until we succeeded */
1371 BUG_ON(ret != 0);
1372 goto retry;
1373 }
1374 if (ret != 1) {
1375 BUG_ON(ret > 1);
1376 if (!pages_done)
1377 pages_done = ret;
1378 break;
1379 }
1380 nr_pages--;
1381 pages_done++;
1382 if (!nr_pages)
1383 break;
1384 if (likely(pages))
1385 pages++;
1386 start += PAGE_SIZE;
1387 }
1388 if (lock_dropped && *locked) {
1389 /*
1390 * We must let the caller know we temporarily dropped the lock
1391 * and so the critical section protected by it was lost.
1392 */
1393 up_read(&mm->mmap_sem);
1394 *locked = 0;
1395 }
1396 return pages_done;
1397 }
1398
1399 /**
1400 * populate_vma_page_range() - populate a range of pages in the vma.
1401 * @vma: target vma
1402 * @start: start address
1403 * @end: end address
1404 * @locked: whether the mmap_sem is still held
1405 *
1406 * This takes care of mlocking the pages too if VM_LOCKED is set.
1407 *
1408 * return 0 on success, negative error code on error.
1409 *
1410 * vma->vm_mm->mmap_sem must be held.
1411 *
1412 * If @locked is NULL, it may be held for read or write and will
1413 * be unperturbed.
1414 *
1415 * If @locked is non-NULL, it must held for read only and may be
1416 * released. If it's released, *@locked will be set to 0.
1417 */
1418 long populate_vma_page_range(struct vm_area_struct *vma,
1419 unsigned long start, unsigned long end, int *locked)
1420 {
1421 struct mm_struct *mm = vma->vm_mm;
1422 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1423 int gup_flags;
1424
1425 VM_BUG_ON(start & ~PAGE_MASK);
1426 VM_BUG_ON(end & ~PAGE_MASK);
1427 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1428 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1429 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1430
1431 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1432 if (vma->vm_flags & VM_LOCKONFAULT)
1433 gup_flags &= ~FOLL_POPULATE;
1434 /*
1435 * We want to touch writable mappings with a write fault in order
1436 * to break COW, except for shared mappings because these don't COW
1437 * and we would not want to dirty them for nothing.
1438 */
1439 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1440 gup_flags |= FOLL_WRITE;
1441
1442 /*
1443 * We want mlock to succeed for regions that have any permissions
1444 * other than PROT_NONE.
1445 */
1446 if (vma_is_accessible(vma))
1447 gup_flags |= FOLL_FORCE;
1448
1449 /*
1450 * We made sure addr is within a VMA, so the following will
1451 * not result in a stack expansion that recurses back here.
1452 */
1453 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1454 NULL, NULL, locked);
1455 }
1456
1457 /*
1458 * __mm_populate - populate and/or mlock pages within a range of address space.
1459 *
1460 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1461 * flags. VMAs must be already marked with the desired vm_flags, and
1462 * mmap_sem must not be held.
1463 */
1464 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1465 {
1466 struct mm_struct *mm = current->mm;
1467 unsigned long end, nstart, nend;
1468 struct vm_area_struct *vma = NULL;
1469 int locked = 0;
1470 long ret = 0;
1471
1472 end = start + len;
1473
1474 for (nstart = start; nstart < end; nstart = nend) {
1475 /*
1476 * We want to fault in pages for [nstart; end) address range.
1477 * Find first corresponding VMA.
1478 */
1479 if (!locked) {
1480 locked = 1;
1481 down_read(&mm->mmap_sem);
1482 vma = find_vma(mm, nstart);
1483 } else if (nstart >= vma->vm_end)
1484 vma = vma->vm_next;
1485 if (!vma || vma->vm_start >= end)
1486 break;
1487 /*
1488 * Set [nstart; nend) to intersection of desired address
1489 * range with the first VMA. Also, skip undesirable VMA types.
1490 */
1491 nend = min(end, vma->vm_end);
1492 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1493 continue;
1494 if (nstart < vma->vm_start)
1495 nstart = vma->vm_start;
1496 /*
1497 * Now fault in a range of pages. populate_vma_page_range()
1498 * double checks the vma flags, so that it won't mlock pages
1499 * if the vma was already munlocked.
1500 */
1501 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1502 if (ret < 0) {
1503 if (ignore_errors) {
1504 ret = 0;
1505 continue; /* continue at next VMA */
1506 }
1507 break;
1508 }
1509 nend = nstart + ret * PAGE_SIZE;
1510 ret = 0;
1511 }
1512 if (locked)
1513 up_read(&mm->mmap_sem);
1514 return ret; /* 0 or negative error code */
1515 }
1516
1517 /**
1518 * get_dump_page() - pin user page in memory while writing it to core dump
1519 * @addr: user address
1520 *
1521 * Returns struct page pointer of user page pinned for dump,
1522 * to be freed afterwards by put_page().
1523 *
1524 * Returns NULL on any kind of failure - a hole must then be inserted into
1525 * the corefile, to preserve alignment with its headers; and also returns
1526 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1527 * allowing a hole to be left in the corefile to save diskspace.
1528 *
1529 * Called without mmap_sem, but after all other threads have been killed.
1530 */
1531 #ifdef CONFIG_ELF_CORE
1532 struct page *get_dump_page(unsigned long addr)
1533 {
1534 struct vm_area_struct *vma;
1535 struct page *page;
1536
1537 if (__get_user_pages(current, current->mm, addr, 1,
1538 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1539 NULL) < 1)
1540 return NULL;
1541 flush_cache_page(vma, addr, page_to_pfn(page));
1542 return page;
1543 }
1544 #endif /* CONFIG_ELF_CORE */
1545 #else /* CONFIG_MMU */
1546 static long __get_user_pages_locked(struct task_struct *tsk,
1547 struct mm_struct *mm, unsigned long start,
1548 unsigned long nr_pages, struct page **pages,
1549 struct vm_area_struct **vmas, int *locked,
1550 unsigned int foll_flags)
1551 {
1552 struct vm_area_struct *vma;
1553 unsigned long vm_flags;
1554 int i;
1555
1556 /* calculate required read or write permissions.
1557 * If FOLL_FORCE is set, we only require the "MAY" flags.
1558 */
1559 vm_flags = (foll_flags & FOLL_WRITE) ?
1560 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1561 vm_flags &= (foll_flags & FOLL_FORCE) ?
1562 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1563
1564 for (i = 0; i < nr_pages; i++) {
1565 vma = find_vma(mm, start);
1566 if (!vma)
1567 goto finish_or_fault;
1568
1569 /* protect what we can, including chardevs */
1570 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1571 !(vm_flags & vma->vm_flags))
1572 goto finish_or_fault;
1573
1574 if (pages) {
1575 pages[i] = virt_to_page(start);
1576 if (pages[i])
1577 get_page(pages[i]);
1578 }
1579 if (vmas)
1580 vmas[i] = vma;
1581 start = (start + PAGE_SIZE) & PAGE_MASK;
1582 }
1583
1584 return i;
1585
1586 finish_or_fault:
1587 return i ? : -EFAULT;
1588 }
1589 #endif /* !CONFIG_MMU */
1590
1591 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1592 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1593 {
1594 long i;
1595 struct vm_area_struct *vma_prev = NULL;
1596
1597 for (i = 0; i < nr_pages; i++) {
1598 struct vm_area_struct *vma = vmas[i];
1599
1600 if (vma == vma_prev)
1601 continue;
1602
1603 vma_prev = vma;
1604
1605 if (vma_is_fsdax(vma))
1606 return true;
1607 }
1608 return false;
1609 }
1610
1611 #ifdef CONFIG_CMA
1612 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1613 {
1614 /*
1615 * We want to make sure we allocate the new page from the same node
1616 * as the source page.
1617 */
1618 int nid = page_to_nid(page);
1619 /*
1620 * Trying to allocate a page for migration. Ignore allocation
1621 * failure warnings. We don't force __GFP_THISNODE here because
1622 * this node here is the node where we have CMA reservation and
1623 * in some case these nodes will have really less non movable
1624 * allocation memory.
1625 */
1626 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1627
1628 if (PageHighMem(page))
1629 gfp_mask |= __GFP_HIGHMEM;
1630
1631 #ifdef CONFIG_HUGETLB_PAGE
1632 if (PageHuge(page)) {
1633 struct hstate *h = page_hstate(page);
1634 /*
1635 * We don't want to dequeue from the pool because pool pages will
1636 * mostly be from the CMA region.
1637 */
1638 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1639 }
1640 #endif
1641 if (PageTransHuge(page)) {
1642 struct page *thp;
1643 /*
1644 * ignore allocation failure warnings
1645 */
1646 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1647
1648 /*
1649 * Remove the movable mask so that we don't allocate from
1650 * CMA area again.
1651 */
1652 thp_gfpmask &= ~__GFP_MOVABLE;
1653 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1654 if (!thp)
1655 return NULL;
1656 prep_transhuge_page(thp);
1657 return thp;
1658 }
1659
1660 return __alloc_pages_node(nid, gfp_mask, 0);
1661 }
1662
1663 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1664 struct mm_struct *mm,
1665 unsigned long start,
1666 unsigned long nr_pages,
1667 struct page **pages,
1668 struct vm_area_struct **vmas,
1669 unsigned int gup_flags)
1670 {
1671 unsigned long i;
1672 unsigned long step;
1673 bool drain_allow = true;
1674 bool migrate_allow = true;
1675 LIST_HEAD(cma_page_list);
1676 long ret = nr_pages;
1677
1678 check_again:
1679 for (i = 0; i < nr_pages;) {
1680
1681 struct page *head = compound_head(pages[i]);
1682
1683 /*
1684 * gup may start from a tail page. Advance step by the left
1685 * part.
1686 */
1687 step = compound_nr(head) - (pages[i] - head);
1688 /*
1689 * If we get a page from the CMA zone, since we are going to
1690 * be pinning these entries, we might as well move them out
1691 * of the CMA zone if possible.
1692 */
1693 if (is_migrate_cma_page(head)) {
1694 if (PageHuge(head))
1695 isolate_huge_page(head, &cma_page_list);
1696 else {
1697 if (!PageLRU(head) && drain_allow) {
1698 lru_add_drain_all();
1699 drain_allow = false;
1700 }
1701
1702 if (!isolate_lru_page(head)) {
1703 list_add_tail(&head->lru, &cma_page_list);
1704 mod_node_page_state(page_pgdat(head),
1705 NR_ISOLATED_ANON +
1706 page_is_file_lru(head),
1707 hpage_nr_pages(head));
1708 }
1709 }
1710 }
1711
1712 i += step;
1713 }
1714
1715 if (!list_empty(&cma_page_list)) {
1716 /*
1717 * drop the above get_user_pages reference.
1718 */
1719 for (i = 0; i < nr_pages; i++)
1720 put_page(pages[i]);
1721
1722 if (migrate_pages(&cma_page_list, new_non_cma_page,
1723 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1724 /*
1725 * some of the pages failed migration. Do get_user_pages
1726 * without migration.
1727 */
1728 migrate_allow = false;
1729
1730 if (!list_empty(&cma_page_list))
1731 putback_movable_pages(&cma_page_list);
1732 }
1733 /*
1734 * We did migrate all the pages, Try to get the page references
1735 * again migrating any new CMA pages which we failed to isolate
1736 * earlier.
1737 */
1738 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1739 pages, vmas, NULL,
1740 gup_flags);
1741
1742 if ((ret > 0) && migrate_allow) {
1743 nr_pages = ret;
1744 drain_allow = true;
1745 goto check_again;
1746 }
1747 }
1748
1749 return ret;
1750 }
1751 #else
1752 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1753 struct mm_struct *mm,
1754 unsigned long start,
1755 unsigned long nr_pages,
1756 struct page **pages,
1757 struct vm_area_struct **vmas,
1758 unsigned int gup_flags)
1759 {
1760 return nr_pages;
1761 }
1762 #endif /* CONFIG_CMA */
1763
1764 /*
1765 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1766 * allows us to process the FOLL_LONGTERM flag.
1767 */
1768 static long __gup_longterm_locked(struct task_struct *tsk,
1769 struct mm_struct *mm,
1770 unsigned long start,
1771 unsigned long nr_pages,
1772 struct page **pages,
1773 struct vm_area_struct **vmas,
1774 unsigned int gup_flags)
1775 {
1776 struct vm_area_struct **vmas_tmp = vmas;
1777 unsigned long flags = 0;
1778 long rc, i;
1779
1780 if (gup_flags & FOLL_LONGTERM) {
1781 if (!pages)
1782 return -EINVAL;
1783
1784 if (!vmas_tmp) {
1785 vmas_tmp = kcalloc(nr_pages,
1786 sizeof(struct vm_area_struct *),
1787 GFP_KERNEL);
1788 if (!vmas_tmp)
1789 return -ENOMEM;
1790 }
1791 flags = memalloc_nocma_save();
1792 }
1793
1794 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1795 vmas_tmp, NULL, gup_flags);
1796
1797 if (gup_flags & FOLL_LONGTERM) {
1798 memalloc_nocma_restore(flags);
1799 if (rc < 0)
1800 goto out;
1801
1802 if (check_dax_vmas(vmas_tmp, rc)) {
1803 for (i = 0; i < rc; i++)
1804 put_page(pages[i]);
1805 rc = -EOPNOTSUPP;
1806 goto out;
1807 }
1808
1809 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1810 vmas_tmp, gup_flags);
1811 }
1812
1813 out:
1814 if (vmas_tmp != vmas)
1815 kfree(vmas_tmp);
1816 return rc;
1817 }
1818 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1819 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1820 struct mm_struct *mm,
1821 unsigned long start,
1822 unsigned long nr_pages,
1823 struct page **pages,
1824 struct vm_area_struct **vmas,
1825 unsigned int flags)
1826 {
1827 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1828 NULL, flags);
1829 }
1830 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1831
1832 #ifdef CONFIG_MMU
1833 static long __get_user_pages_remote(struct task_struct *tsk,
1834 struct mm_struct *mm,
1835 unsigned long start, unsigned long nr_pages,
1836 unsigned int gup_flags, struct page **pages,
1837 struct vm_area_struct **vmas, int *locked)
1838 {
1839 /*
1840 * Parts of FOLL_LONGTERM behavior are incompatible with
1841 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1842 * vmas. However, this only comes up if locked is set, and there are
1843 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1844 * allow what we can.
1845 */
1846 if (gup_flags & FOLL_LONGTERM) {
1847 if (WARN_ON_ONCE(locked))
1848 return -EINVAL;
1849 /*
1850 * This will check the vmas (even if our vmas arg is NULL)
1851 * and return -ENOTSUPP if DAX isn't allowed in this case:
1852 */
1853 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1854 vmas, gup_flags | FOLL_TOUCH |
1855 FOLL_REMOTE);
1856 }
1857
1858 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1859 locked,
1860 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1861 }
1862
1863 /**
1864 * get_user_pages_remote() - pin user pages in memory
1865 * @tsk: the task_struct to use for page fault accounting, or
1866 * NULL if faults are not to be recorded.
1867 * @mm: mm_struct of target mm
1868 * @start: starting user address
1869 * @nr_pages: number of pages from start to pin
1870 * @gup_flags: flags modifying lookup behaviour
1871 * @pages: array that receives pointers to the pages pinned.
1872 * Should be at least nr_pages long. Or NULL, if caller
1873 * only intends to ensure the pages are faulted in.
1874 * @vmas: array of pointers to vmas corresponding to each page.
1875 * Or NULL if the caller does not require them.
1876 * @locked: pointer to lock flag indicating whether lock is held and
1877 * subsequently whether VM_FAULT_RETRY functionality can be
1878 * utilised. Lock must initially be held.
1879 *
1880 * Returns either number of pages pinned (which may be less than the
1881 * number requested), or an error. Details about the return value:
1882 *
1883 * -- If nr_pages is 0, returns 0.
1884 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1885 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1886 * pages pinned. Again, this may be less than nr_pages.
1887 *
1888 * The caller is responsible for releasing returned @pages, via put_page().
1889 *
1890 * @vmas are valid only as long as mmap_sem is held.
1891 *
1892 * Must be called with mmap_sem held for read or write.
1893 *
1894 * get_user_pages_remote walks a process's page tables and takes a reference
1895 * to each struct page that each user address corresponds to at a given
1896 * instant. That is, it takes the page that would be accessed if a user
1897 * thread accesses the given user virtual address at that instant.
1898 *
1899 * This does not guarantee that the page exists in the user mappings when
1900 * get_user_pages_remote returns, and there may even be a completely different
1901 * page there in some cases (eg. if mmapped pagecache has been invalidated
1902 * and subsequently re faulted). However it does guarantee that the page
1903 * won't be freed completely. And mostly callers simply care that the page
1904 * contains data that was valid *at some point in time*. Typically, an IO
1905 * or similar operation cannot guarantee anything stronger anyway because
1906 * locks can't be held over the syscall boundary.
1907 *
1908 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1909 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1910 * be called after the page is finished with, and before put_page is called.
1911 *
1912 * get_user_pages_remote is typically used for fewer-copy IO operations,
1913 * to get a handle on the memory by some means other than accesses
1914 * via the user virtual addresses. The pages may be submitted for
1915 * DMA to devices or accessed via their kernel linear mapping (via the
1916 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1917 *
1918 * See also get_user_pages_fast, for performance critical applications.
1919 *
1920 * get_user_pages_remote should be phased out in favor of
1921 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1922 * should use get_user_pages_remote because it cannot pass
1923 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1924 */
1925 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1926 unsigned long start, unsigned long nr_pages,
1927 unsigned int gup_flags, struct page **pages,
1928 struct vm_area_struct **vmas, int *locked)
1929 {
1930 /*
1931 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1932 * never directly by the caller, so enforce that with an assertion:
1933 */
1934 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1935 return -EINVAL;
1936
1937 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1938 pages, vmas, locked);
1939 }
1940 EXPORT_SYMBOL(get_user_pages_remote);
1941
1942 #else /* CONFIG_MMU */
1943 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1944 unsigned long start, unsigned long nr_pages,
1945 unsigned int gup_flags, struct page **pages,
1946 struct vm_area_struct **vmas, int *locked)
1947 {
1948 return 0;
1949 }
1950
1951 static long __get_user_pages_remote(struct task_struct *tsk,
1952 struct mm_struct *mm,
1953 unsigned long start, unsigned long nr_pages,
1954 unsigned int gup_flags, struct page **pages,
1955 struct vm_area_struct **vmas, int *locked)
1956 {
1957 return 0;
1958 }
1959 #endif /* !CONFIG_MMU */
1960
1961 /**
1962 * get_user_pages() - pin user pages in memory
1963 * @start: starting user address
1964 * @nr_pages: number of pages from start to pin
1965 * @gup_flags: flags modifying lookup behaviour
1966 * @pages: array that receives pointers to the pages pinned.
1967 * Should be at least nr_pages long. Or NULL, if caller
1968 * only intends to ensure the pages are faulted in.
1969 * @vmas: array of pointers to vmas corresponding to each page.
1970 * Or NULL if the caller does not require them.
1971 *
1972 * This is the same as get_user_pages_remote(), just with a
1973 * less-flexible calling convention where we assume that the task
1974 * and mm being operated on are the current task's and don't allow
1975 * passing of a locked parameter. We also obviously don't pass
1976 * FOLL_REMOTE in here.
1977 */
1978 long get_user_pages(unsigned long start, unsigned long nr_pages,
1979 unsigned int gup_flags, struct page **pages,
1980 struct vm_area_struct **vmas)
1981 {
1982 /*
1983 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1984 * never directly by the caller, so enforce that with an assertion:
1985 */
1986 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1987 return -EINVAL;
1988
1989 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1990 pages, vmas, gup_flags | FOLL_TOUCH);
1991 }
1992 EXPORT_SYMBOL(get_user_pages);
1993
1994 /**
1995 * get_user_pages_locked() is suitable to replace the form:
1996 *
1997 * down_read(&mm->mmap_sem);
1998 * do_something()
1999 * get_user_pages(tsk, mm, ..., pages, NULL);
2000 * up_read(&mm->mmap_sem);
2001 *
2002 * to:
2003 *
2004 * int locked = 1;
2005 * down_read(&mm->mmap_sem);
2006 * do_something()
2007 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
2008 * if (locked)
2009 * up_read(&mm->mmap_sem);
2010 *
2011 * @start: starting user address
2012 * @nr_pages: number of pages from start to pin
2013 * @gup_flags: flags modifying lookup behaviour
2014 * @pages: array that receives pointers to the pages pinned.
2015 * Should be at least nr_pages long. Or NULL, if caller
2016 * only intends to ensure the pages are faulted in.
2017 * @locked: pointer to lock flag indicating whether lock is held and
2018 * subsequently whether VM_FAULT_RETRY functionality can be
2019 * utilised. Lock must initially be held.
2020 *
2021 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2022 * paths better by using either get_user_pages_locked() or
2023 * get_user_pages_unlocked().
2024 *
2025 */
2026 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2027 unsigned int gup_flags, struct page **pages,
2028 int *locked)
2029 {
2030 /*
2031 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2032 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2033 * vmas. As there are no users of this flag in this call we simply
2034 * disallow this option for now.
2035 */
2036 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2037 return -EINVAL;
2038
2039 return __get_user_pages_locked(current, current->mm, start, nr_pages,
2040 pages, NULL, locked,
2041 gup_flags | FOLL_TOUCH);
2042 }
2043 EXPORT_SYMBOL(get_user_pages_locked);
2044
2045 /*
2046 * get_user_pages_unlocked() is suitable to replace the form:
2047 *
2048 * down_read(&mm->mmap_sem);
2049 * get_user_pages(tsk, mm, ..., pages, NULL);
2050 * up_read(&mm->mmap_sem);
2051 *
2052 * with:
2053 *
2054 * get_user_pages_unlocked(tsk, mm, ..., pages);
2055 *
2056 * It is functionally equivalent to get_user_pages_fast so
2057 * get_user_pages_fast should be used instead if specific gup_flags
2058 * (e.g. FOLL_FORCE) are not required.
2059 */
2060 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2061 struct page **pages, unsigned int gup_flags)
2062 {
2063 struct mm_struct *mm = current->mm;
2064 int locked = 1;
2065 long ret;
2066
2067 /*
2068 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2069 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2070 * vmas. As there are no users of this flag in this call we simply
2071 * disallow this option for now.
2072 */
2073 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2074 return -EINVAL;
2075
2076 down_read(&mm->mmap_sem);
2077 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2078 &locked, gup_flags | FOLL_TOUCH);
2079 if (locked)
2080 up_read(&mm->mmap_sem);
2081 return ret;
2082 }
2083 EXPORT_SYMBOL(get_user_pages_unlocked);
2084
2085 /*
2086 * Fast GUP
2087 *
2088 * get_user_pages_fast attempts to pin user pages by walking the page
2089 * tables directly and avoids taking locks. Thus the walker needs to be
2090 * protected from page table pages being freed from under it, and should
2091 * block any THP splits.
2092 *
2093 * One way to achieve this is to have the walker disable interrupts, and
2094 * rely on IPIs from the TLB flushing code blocking before the page table
2095 * pages are freed. This is unsuitable for architectures that do not need
2096 * to broadcast an IPI when invalidating TLBs.
2097 *
2098 * Another way to achieve this is to batch up page table containing pages
2099 * belonging to more than one mm_user, then rcu_sched a callback to free those
2100 * pages. Disabling interrupts will allow the fast_gup walker to both block
2101 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2102 * (which is a relatively rare event). The code below adopts this strategy.
2103 *
2104 * Before activating this code, please be aware that the following assumptions
2105 * are currently made:
2106 *
2107 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2108 * free pages containing page tables or TLB flushing requires IPI broadcast.
2109 *
2110 * *) ptes can be read atomically by the architecture.
2111 *
2112 * *) access_ok is sufficient to validate userspace address ranges.
2113 *
2114 * The last two assumptions can be relaxed by the addition of helper functions.
2115 *
2116 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2117 */
2118 #ifdef CONFIG_HAVE_FAST_GUP
2119
2120 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2121 {
2122 if (flags & FOLL_PIN) {
2123 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2124 refs);
2125
2126 if (hpage_pincount_available(page))
2127 hpage_pincount_sub(page, refs);
2128 else
2129 refs *= GUP_PIN_COUNTING_BIAS;
2130 }
2131
2132 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2133 /*
2134 * Calling put_page() for each ref is unnecessarily slow. Only the last
2135 * ref needs a put_page().
2136 */
2137 if (refs > 1)
2138 page_ref_sub(page, refs - 1);
2139 put_page(page);
2140 }
2141
2142 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2143
2144 /*
2145 * WARNING: only to be used in the get_user_pages_fast() implementation.
2146 *
2147 * With get_user_pages_fast(), we walk down the pagetables without taking any
2148 * locks. For this we would like to load the pointers atomically, but sometimes
2149 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2150 * we do have is the guarantee that a PTE will only either go from not present
2151 * to present, or present to not present or both -- it will not switch to a
2152 * completely different present page without a TLB flush in between; something
2153 * that we are blocking by holding interrupts off.
2154 *
2155 * Setting ptes from not present to present goes:
2156 *
2157 * ptep->pte_high = h;
2158 * smp_wmb();
2159 * ptep->pte_low = l;
2160 *
2161 * And present to not present goes:
2162 *
2163 * ptep->pte_low = 0;
2164 * smp_wmb();
2165 * ptep->pte_high = 0;
2166 *
2167 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2168 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2169 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2170 * picked up a changed pte high. We might have gotten rubbish values from
2171 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2172 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2173 * operates on present ptes we're safe.
2174 */
2175 static inline pte_t gup_get_pte(pte_t *ptep)
2176 {
2177 pte_t pte;
2178
2179 do {
2180 pte.pte_low = ptep->pte_low;
2181 smp_rmb();
2182 pte.pte_high = ptep->pte_high;
2183 smp_rmb();
2184 } while (unlikely(pte.pte_low != ptep->pte_low));
2185
2186 return pte;
2187 }
2188 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2189 /*
2190 * We require that the PTE can be read atomically.
2191 */
2192 static inline pte_t gup_get_pte(pte_t *ptep)
2193 {
2194 return READ_ONCE(*ptep);
2195 }
2196 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2197
2198 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2199 unsigned int flags,
2200 struct page **pages)
2201 {
2202 while ((*nr) - nr_start) {
2203 struct page *page = pages[--(*nr)];
2204
2205 ClearPageReferenced(page);
2206 if (flags & FOLL_PIN)
2207 unpin_user_page(page);
2208 else
2209 put_page(page);
2210 }
2211 }
2212
2213 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2214 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2215 unsigned int flags, struct page **pages, int *nr)
2216 {
2217 struct dev_pagemap *pgmap = NULL;
2218 int nr_start = *nr, ret = 0;
2219 pte_t *ptep, *ptem;
2220
2221 ptem = ptep = pte_offset_map(&pmd, addr);
2222 do {
2223 pte_t pte = gup_get_pte(ptep);
2224 struct page *head, *page;
2225
2226 /*
2227 * Similar to the PMD case below, NUMA hinting must take slow
2228 * path using the pte_protnone check.
2229 */
2230 if (pte_protnone(pte))
2231 goto pte_unmap;
2232
2233 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2234 goto pte_unmap;
2235
2236 if (pte_devmap(pte)) {
2237 if (unlikely(flags & FOLL_LONGTERM))
2238 goto pte_unmap;
2239
2240 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2241 if (unlikely(!pgmap)) {
2242 undo_dev_pagemap(nr, nr_start, flags, pages);
2243 goto pte_unmap;
2244 }
2245 } else if (pte_special(pte))
2246 goto pte_unmap;
2247
2248 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2249 page = pte_page(pte);
2250
2251 head = try_grab_compound_head(page, 1, flags);
2252 if (!head)
2253 goto pte_unmap;
2254
2255 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2256 put_compound_head(head, 1, flags);
2257 goto pte_unmap;
2258 }
2259
2260 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2261
2262 /*
2263 * We need to make the page accessible if and only if we are
2264 * going to access its content (the FOLL_PIN case). Please
2265 * see Documentation/core-api/pin_user_pages.rst for
2266 * details.
2267 */
2268 if (flags & FOLL_PIN) {
2269 ret = arch_make_page_accessible(page);
2270 if (ret) {
2271 unpin_user_page(page);
2272 goto pte_unmap;
2273 }
2274 }
2275 SetPageReferenced(page);
2276 pages[*nr] = page;
2277 (*nr)++;
2278
2279 } while (ptep++, addr += PAGE_SIZE, addr != end);
2280
2281 ret = 1;
2282
2283 pte_unmap:
2284 if (pgmap)
2285 put_dev_pagemap(pgmap);
2286 pte_unmap(ptem);
2287 return ret;
2288 }
2289 #else
2290
2291 /*
2292 * If we can't determine whether or not a pte is special, then fail immediately
2293 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2294 * to be special.
2295 *
2296 * For a futex to be placed on a THP tail page, get_futex_key requires a
2297 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2298 * useful to have gup_huge_pmd even if we can't operate on ptes.
2299 */
2300 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2301 unsigned int flags, struct page **pages, int *nr)
2302 {
2303 return 0;
2304 }
2305 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2306
2307 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2308 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2309 unsigned long end, unsigned int flags,
2310 struct page **pages, int *nr)
2311 {
2312 int nr_start = *nr;
2313 struct dev_pagemap *pgmap = NULL;
2314
2315 do {
2316 struct page *page = pfn_to_page(pfn);
2317
2318 pgmap = get_dev_pagemap(pfn, pgmap);
2319 if (unlikely(!pgmap)) {
2320 undo_dev_pagemap(nr, nr_start, flags, pages);
2321 return 0;
2322 }
2323 SetPageReferenced(page);
2324 pages[*nr] = page;
2325 if (unlikely(!try_grab_page(page, flags))) {
2326 undo_dev_pagemap(nr, nr_start, flags, pages);
2327 return 0;
2328 }
2329 (*nr)++;
2330 pfn++;
2331 } while (addr += PAGE_SIZE, addr != end);
2332
2333 if (pgmap)
2334 put_dev_pagemap(pgmap);
2335 return 1;
2336 }
2337
2338 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2339 unsigned long end, unsigned int flags,
2340 struct page **pages, int *nr)
2341 {
2342 unsigned long fault_pfn;
2343 int nr_start = *nr;
2344
2345 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2346 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2347 return 0;
2348
2349 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2350 undo_dev_pagemap(nr, nr_start, flags, pages);
2351 return 0;
2352 }
2353 return 1;
2354 }
2355
2356 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2357 unsigned long end, unsigned int flags,
2358 struct page **pages, int *nr)
2359 {
2360 unsigned long fault_pfn;
2361 int nr_start = *nr;
2362
2363 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2364 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2365 return 0;
2366
2367 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2368 undo_dev_pagemap(nr, nr_start, flags, pages);
2369 return 0;
2370 }
2371 return 1;
2372 }
2373 #else
2374 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2375 unsigned long end, unsigned int flags,
2376 struct page **pages, int *nr)
2377 {
2378 BUILD_BUG();
2379 return 0;
2380 }
2381
2382 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2383 unsigned long end, unsigned int flags,
2384 struct page **pages, int *nr)
2385 {
2386 BUILD_BUG();
2387 return 0;
2388 }
2389 #endif
2390
2391 static int record_subpages(struct page *page, unsigned long addr,
2392 unsigned long end, struct page **pages)
2393 {
2394 int nr;
2395
2396 for (nr = 0; addr != end; addr += PAGE_SIZE)
2397 pages[nr++] = page++;
2398
2399 return nr;
2400 }
2401
2402 #ifdef CONFIG_ARCH_HAS_HUGEPD
2403 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2404 unsigned long sz)
2405 {
2406 unsigned long __boundary = (addr + sz) & ~(sz-1);
2407 return (__boundary - 1 < end - 1) ? __boundary : end;
2408 }
2409
2410 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2411 unsigned long end, unsigned int flags,
2412 struct page **pages, int *nr)
2413 {
2414 unsigned long pte_end;
2415 struct page *head, *page;
2416 pte_t pte;
2417 int refs;
2418
2419 pte_end = (addr + sz) & ~(sz-1);
2420 if (pte_end < end)
2421 end = pte_end;
2422
2423 pte = READ_ONCE(*ptep);
2424
2425 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2426 return 0;
2427
2428 /* hugepages are never "special" */
2429 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2430
2431 head = pte_page(pte);
2432 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2433 refs = record_subpages(page, addr, end, pages + *nr);
2434
2435 head = try_grab_compound_head(head, refs, flags);
2436 if (!head)
2437 return 0;
2438
2439 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2440 put_compound_head(head, refs, flags);
2441 return 0;
2442 }
2443
2444 *nr += refs;
2445 SetPageReferenced(head);
2446 return 1;
2447 }
2448
2449 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2450 unsigned int pdshift, unsigned long end, unsigned int flags,
2451 struct page **pages, int *nr)
2452 {
2453 pte_t *ptep;
2454 unsigned long sz = 1UL << hugepd_shift(hugepd);
2455 unsigned long next;
2456
2457 ptep = hugepte_offset(hugepd, addr, pdshift);
2458 do {
2459 next = hugepte_addr_end(addr, end, sz);
2460 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2461 return 0;
2462 } while (ptep++, addr = next, addr != end);
2463
2464 return 1;
2465 }
2466 #else
2467 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2468 unsigned int pdshift, unsigned long end, unsigned int flags,
2469 struct page **pages, int *nr)
2470 {
2471 return 0;
2472 }
2473 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2474
2475 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2476 unsigned long end, unsigned int flags,
2477 struct page **pages, int *nr)
2478 {
2479 struct page *head, *page;
2480 int refs;
2481
2482 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2483 return 0;
2484
2485 if (pmd_devmap(orig)) {
2486 if (unlikely(flags & FOLL_LONGTERM))
2487 return 0;
2488 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2489 pages, nr);
2490 }
2491
2492 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2493 refs = record_subpages(page, addr, end, pages + *nr);
2494
2495 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2496 if (!head)
2497 return 0;
2498
2499 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2500 put_compound_head(head, refs, flags);
2501 return 0;
2502 }
2503
2504 *nr += refs;
2505 SetPageReferenced(head);
2506 return 1;
2507 }
2508
2509 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2510 unsigned long end, unsigned int flags,
2511 struct page **pages, int *nr)
2512 {
2513 struct page *head, *page;
2514 int refs;
2515
2516 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2517 return 0;
2518
2519 if (pud_devmap(orig)) {
2520 if (unlikely(flags & FOLL_LONGTERM))
2521 return 0;
2522 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2523 pages, nr);
2524 }
2525
2526 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2527 refs = record_subpages(page, addr, end, pages + *nr);
2528
2529 head = try_grab_compound_head(pud_page(orig), refs, flags);
2530 if (!head)
2531 return 0;
2532
2533 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2534 put_compound_head(head, refs, flags);
2535 return 0;
2536 }
2537
2538 *nr += refs;
2539 SetPageReferenced(head);
2540 return 1;
2541 }
2542
2543 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2544 unsigned long end, unsigned int flags,
2545 struct page **pages, int *nr)
2546 {
2547 int refs;
2548 struct page *head, *page;
2549
2550 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2551 return 0;
2552
2553 BUILD_BUG_ON(pgd_devmap(orig));
2554
2555 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2556 refs = record_subpages(page, addr, end, pages + *nr);
2557
2558 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2559 if (!head)
2560 return 0;
2561
2562 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2563 put_compound_head(head, refs, flags);
2564 return 0;
2565 }
2566
2567 *nr += refs;
2568 SetPageReferenced(head);
2569 return 1;
2570 }
2571
2572 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2573 unsigned int flags, struct page **pages, int *nr)
2574 {
2575 unsigned long next;
2576 pmd_t *pmdp;
2577
2578 pmdp = pmd_offset(&pud, addr);
2579 do {
2580 pmd_t pmd = READ_ONCE(*pmdp);
2581
2582 next = pmd_addr_end(addr, end);
2583 if (!pmd_present(pmd))
2584 return 0;
2585
2586 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2587 pmd_devmap(pmd))) {
2588 /*
2589 * NUMA hinting faults need to be handled in the GUP
2590 * slowpath for accounting purposes and so that they
2591 * can be serialised against THP migration.
2592 */
2593 if (pmd_protnone(pmd))
2594 return 0;
2595
2596 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2597 pages, nr))
2598 return 0;
2599
2600 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2601 /*
2602 * architecture have different format for hugetlbfs
2603 * pmd format and THP pmd format
2604 */
2605 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2606 PMD_SHIFT, next, flags, pages, nr))
2607 return 0;
2608 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2609 return 0;
2610 } while (pmdp++, addr = next, addr != end);
2611
2612 return 1;
2613 }
2614
2615 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2616 unsigned int flags, struct page **pages, int *nr)
2617 {
2618 unsigned long next;
2619 pud_t *pudp;
2620
2621 pudp = pud_offset(&p4d, addr);
2622 do {
2623 pud_t pud = READ_ONCE(*pudp);
2624
2625 next = pud_addr_end(addr, end);
2626 if (unlikely(!pud_present(pud)))
2627 return 0;
2628 if (unlikely(pud_huge(pud))) {
2629 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2630 pages, nr))
2631 return 0;
2632 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2633 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2634 PUD_SHIFT, next, flags, pages, nr))
2635 return 0;
2636 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2637 return 0;
2638 } while (pudp++, addr = next, addr != end);
2639
2640 return 1;
2641 }
2642
2643 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2644 unsigned int flags, struct page **pages, int *nr)
2645 {
2646 unsigned long next;
2647 p4d_t *p4dp;
2648
2649 p4dp = p4d_offset(&pgd, addr);
2650 do {
2651 p4d_t p4d = READ_ONCE(*p4dp);
2652
2653 next = p4d_addr_end(addr, end);
2654 if (p4d_none(p4d))
2655 return 0;
2656 BUILD_BUG_ON(p4d_huge(p4d));
2657 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2658 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2659 P4D_SHIFT, next, flags, pages, nr))
2660 return 0;
2661 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2662 return 0;
2663 } while (p4dp++, addr = next, addr != end);
2664
2665 return 1;
2666 }
2667
2668 static void gup_pgd_range(unsigned long addr, unsigned long end,
2669 unsigned int flags, struct page **pages, int *nr)
2670 {
2671 unsigned long next;
2672 pgd_t *pgdp;
2673
2674 pgdp = pgd_offset(current->mm, addr);
2675 do {
2676 pgd_t pgd = READ_ONCE(*pgdp);
2677
2678 next = pgd_addr_end(addr, end);
2679 if (pgd_none(pgd))
2680 return;
2681 if (unlikely(pgd_huge(pgd))) {
2682 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2683 pages, nr))
2684 return;
2685 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2686 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2687 PGDIR_SHIFT, next, flags, pages, nr))
2688 return;
2689 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2690 return;
2691 } while (pgdp++, addr = next, addr != end);
2692 }
2693 #else
2694 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2695 unsigned int flags, struct page **pages, int *nr)
2696 {
2697 }
2698 #endif /* CONFIG_HAVE_FAST_GUP */
2699
2700 #ifndef gup_fast_permitted
2701 /*
2702 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2703 * we need to fall back to the slow version:
2704 */
2705 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2706 {
2707 return true;
2708 }
2709 #endif
2710
2711 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2712 unsigned int gup_flags, struct page **pages)
2713 {
2714 int ret;
2715
2716 /*
2717 * FIXME: FOLL_LONGTERM does not work with
2718 * get_user_pages_unlocked() (see comments in that function)
2719 */
2720 if (gup_flags & FOLL_LONGTERM) {
2721 down_read(&current->mm->mmap_sem);
2722 ret = __gup_longterm_locked(current, current->mm,
2723 start, nr_pages,
2724 pages, NULL, gup_flags);
2725 up_read(&current->mm->mmap_sem);
2726 } else {
2727 ret = get_user_pages_unlocked(start, nr_pages,
2728 pages, gup_flags);
2729 }
2730
2731 return ret;
2732 }
2733
2734 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2735 unsigned int gup_flags,
2736 struct page **pages)
2737 {
2738 unsigned long addr, len, end;
2739 unsigned long flags;
2740 int nr_pinned = 0, ret = 0;
2741
2742 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2743 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2744 FOLL_FAST_ONLY)))
2745 return -EINVAL;
2746
2747 if (!(gup_flags & FOLL_FAST_ONLY))
2748 might_lock_read(&current->mm->mmap_sem);
2749
2750 start = untagged_addr(start) & PAGE_MASK;
2751 addr = start;
2752 len = (unsigned long) nr_pages << PAGE_SHIFT;
2753 end = start + len;
2754
2755 if (end <= start)
2756 return 0;
2757 if (unlikely(!access_ok((void __user *)start, len)))
2758 return -EFAULT;
2759
2760 /*
2761 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2762 * because get_user_pages() may need to cause an early COW in
2763 * order to avoid confusing the normal COW routines. So only
2764 * targets that are already writable are safe to do by just
2765 * looking at the page tables.
2766 *
2767 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here,
2768 * because there is no slow path to fall back on. But you'd
2769 * better be careful about possible COW pages - you'll get _a_
2770 * COW page, but not necessarily the one you intended to get
2771 * depending on what COW event happens after this. COW may break
2772 * the page copy in a random direction.
2773 *
2774 * Disable interrupts. The nested form is used, in order to allow
2775 * full, general purpose use of this routine.
2776 *
2777 * With interrupts disabled, we block page table pages from being
2778 * freed from under us. See struct mmu_table_batch comments in
2779 * include/asm-generic/tlb.h for more details.
2780 *
2781 * We do not adopt an rcu_read_lock(.) here as we also want to
2782 * block IPIs that come from THPs splitting.
2783 */
2784 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2785 unsigned long fast_flags = gup_flags;
2786 if (!(gup_flags & FOLL_FAST_ONLY))
2787 fast_flags |= FOLL_WRITE;
2788
2789 local_irq_save(flags);
2790 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2791 local_irq_restore(flags);
2792 ret = nr_pinned;
2793 }
2794
2795 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2796 /* Try to get the remaining pages with get_user_pages */
2797 start += nr_pinned << PAGE_SHIFT;
2798 pages += nr_pinned;
2799
2800 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2801 gup_flags, pages);
2802
2803 /* Have to be a bit careful with return values */
2804 if (nr_pinned > 0) {
2805 if (ret < 0)
2806 ret = nr_pinned;
2807 else
2808 ret += nr_pinned;
2809 }
2810 }
2811
2812 return ret;
2813 }
2814 /**
2815 * get_user_pages_fast_only() - pin user pages in memory
2816 * @start: starting user address
2817 * @nr_pages: number of pages from start to pin
2818 * @gup_flags: flags modifying pin behaviour
2819 * @pages: array that receives pointers to the pages pinned.
2820 * Should be at least nr_pages long.
2821 *
2822 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2823 * the regular GUP.
2824 * Note a difference with get_user_pages_fast: this always returns the
2825 * number of pages pinned, 0 if no pages were pinned.
2826 *
2827 * If the architecture does not support this function, simply return with no
2828 * pages pinned.
2829 *
2830 * Careful, careful! COW breaking can go either way, so a non-write
2831 * access can get ambiguous page results. If you call this function without
2832 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2833 */
2834 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2835 unsigned int gup_flags, struct page **pages)
2836 {
2837 int nr_pinned;
2838 /*
2839 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2840 * because gup fast is always a "pin with a +1 page refcount" request.
2841 *
2842 * FOLL_FAST_ONLY is required in order to match the API description of
2843 * this routine: no fall back to regular ("slow") GUP.
2844 */
2845 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2846
2847 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2848 pages);
2849
2850 /*
2851 * As specified in the API description above, this routine is not
2852 * allowed to return negative values. However, the common core
2853 * routine internal_get_user_pages_fast() *can* return -errno.
2854 * Therefore, correct for that here:
2855 */
2856 if (nr_pinned < 0)
2857 nr_pinned = 0;
2858
2859 return nr_pinned;
2860 }
2861 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2862
2863 /**
2864 * get_user_pages_fast() - pin user pages in memory
2865 * @start: starting user address
2866 * @nr_pages: number of pages from start to pin
2867 * @gup_flags: flags modifying pin behaviour
2868 * @pages: array that receives pointers to the pages pinned.
2869 * Should be at least nr_pages long.
2870 *
2871 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2872 * If not successful, it will fall back to taking the lock and
2873 * calling get_user_pages().
2874 *
2875 * Returns number of pages pinned. This may be fewer than the number requested.
2876 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2877 * -errno.
2878 */
2879 int get_user_pages_fast(unsigned long start, int nr_pages,
2880 unsigned int gup_flags, struct page **pages)
2881 {
2882 /*
2883 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2884 * never directly by the caller, so enforce that:
2885 */
2886 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2887 return -EINVAL;
2888
2889 /*
2890 * The caller may or may not have explicitly set FOLL_GET; either way is
2891 * OK. However, internally (within mm/gup.c), gup fast variants must set
2892 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2893 * request.
2894 */
2895 gup_flags |= FOLL_GET;
2896 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2897 }
2898 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2899
2900 /**
2901 * pin_user_pages_fast() - pin user pages in memory without taking locks
2902 *
2903 * @start: starting user address
2904 * @nr_pages: number of pages from start to pin
2905 * @gup_flags: flags modifying pin behaviour
2906 * @pages: array that receives pointers to the pages pinned.
2907 * Should be at least nr_pages long.
2908 *
2909 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2910 * get_user_pages_fast() for documentation on the function arguments, because
2911 * the arguments here are identical.
2912 *
2913 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2914 * see Documentation/core-api/pin_user_pages.rst for further details.
2915 *
2916 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2917 * is NOT intended for Case 2 (RDMA: long-term pins).
2918 */
2919 int pin_user_pages_fast(unsigned long start, int nr_pages,
2920 unsigned int gup_flags, struct page **pages)
2921 {
2922 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2923 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2924 return -EINVAL;
2925
2926 gup_flags |= FOLL_PIN;
2927 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2928 }
2929 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2930
2931 /*
2932 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2933 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2934 *
2935 * The API rules are the same, too: no negative values may be returned.
2936 */
2937 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2938 unsigned int gup_flags, struct page **pages)
2939 {
2940 int nr_pinned;
2941
2942 /*
2943 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2944 * rules require returning 0, rather than -errno:
2945 */
2946 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2947 return 0;
2948 /*
2949 * FOLL_FAST_ONLY is required in order to match the API description of
2950 * this routine: no fall back to regular ("slow") GUP.
2951 */
2952 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2953 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2954 pages);
2955 /*
2956 * This routine is not allowed to return negative values. However,
2957 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2958 * correct for that here:
2959 */
2960 if (nr_pinned < 0)
2961 nr_pinned = 0;
2962
2963 return nr_pinned;
2964 }
2965 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2966
2967 /**
2968 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2969 *
2970 * @tsk: the task_struct to use for page fault accounting, or
2971 * NULL if faults are not to be recorded.
2972 * @mm: mm_struct of target mm
2973 * @start: starting user address
2974 * @nr_pages: number of pages from start to pin
2975 * @gup_flags: flags modifying lookup behaviour
2976 * @pages: array that receives pointers to the pages pinned.
2977 * Should be at least nr_pages long. Or NULL, if caller
2978 * only intends to ensure the pages are faulted in.
2979 * @vmas: array of pointers to vmas corresponding to each page.
2980 * Or NULL if the caller does not require them.
2981 * @locked: pointer to lock flag indicating whether lock is held and
2982 * subsequently whether VM_FAULT_RETRY functionality can be
2983 * utilised. Lock must initially be held.
2984 *
2985 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2986 * get_user_pages_remote() for documentation on the function arguments, because
2987 * the arguments here are identical.
2988 *
2989 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2990 * see Documentation/core-api/pin_user_pages.rst for details.
2991 *
2992 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2993 * is NOT intended for Case 2 (RDMA: long-term pins).
2994 */
2995 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2996 unsigned long start, unsigned long nr_pages,
2997 unsigned int gup_flags, struct page **pages,
2998 struct vm_area_struct **vmas, int *locked)
2999 {
3000 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3001 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3002 return -EINVAL;
3003
3004 gup_flags |= FOLL_PIN;
3005 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
3006 pages, vmas, locked);
3007 }
3008 EXPORT_SYMBOL(pin_user_pages_remote);
3009
3010 /**
3011 * pin_user_pages() - pin user pages in memory for use by other devices
3012 *
3013 * @start: starting user address
3014 * @nr_pages: number of pages from start to pin
3015 * @gup_flags: flags modifying lookup behaviour
3016 * @pages: array that receives pointers to the pages pinned.
3017 * Should be at least nr_pages long. Or NULL, if caller
3018 * only intends to ensure the pages are faulted in.
3019 * @vmas: array of pointers to vmas corresponding to each page.
3020 * Or NULL if the caller does not require them.
3021 *
3022 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3023 * FOLL_PIN is set.
3024 *
3025 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3026 * see Documentation/core-api/pin_user_pages.rst for details.
3027 *
3028 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
3029 * is NOT intended for Case 2 (RDMA: long-term pins).
3030 */
3031 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3032 unsigned int gup_flags, struct page **pages,
3033 struct vm_area_struct **vmas)
3034 {
3035 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3036 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3037 return -EINVAL;
3038
3039 gup_flags |= FOLL_PIN;
3040 return __gup_longterm_locked(current, current->mm, start, nr_pages,
3041 pages, vmas, gup_flags);
3042 }
3043 EXPORT_SYMBOL(pin_user_pages);
3044
3045 /*
3046 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3047 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3048 * FOLL_PIN and rejects FOLL_GET.
3049 */
3050 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3051 struct page **pages, unsigned int gup_flags)
3052 {
3053 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3054 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3055 return -EINVAL;
3056
3057 gup_flags |= FOLL_PIN;
3058 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3059 }
3060 EXPORT_SYMBOL(pin_user_pages_unlocked);