]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/gup.c
platform/x86: hp-wmi: Fix hp_wmi_read_int() reporting error (0x05)
[mirror_ubuntu-jammy-kernel.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38 }
39
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46 }
47
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 return;
54 #endif
55
56 /*
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
59 */
60 if (refs > 1)
61 page_ref_sub(page, refs - 1);
62 put_page(page);
63 }
64
65 /*
66 * Return the compound head page with ref appropriately incremented,
67 * or NULL if that failed.
68 */
69 static inline struct page *try_get_compound_head(struct page *page, int refs)
70 {
71 struct page *head = compound_head(page);
72
73 if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 return NULL;
75 if (unlikely(!page_cache_add_speculative(head, refs)))
76 return NULL;
77
78 /*
79 * At this point we have a stable reference to the head page; but it
80 * could be that between the compound_head() lookup and the refcount
81 * increment, the compound page was split, in which case we'd end up
82 * holding a reference on a page that has nothing to do with the page
83 * we were given anymore.
84 * So now that the head page is stable, recheck that the pages still
85 * belong together.
86 */
87 if (unlikely(compound_head(page) != head)) {
88 put_page_refs(head, refs);
89 return NULL;
90 }
91
92 return head;
93 }
94
95 /**
96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97 * flags-dependent amount.
98 *
99 * Even though the name includes "compound_head", this function is still
100 * appropriate for callers that have a non-compound @page to get.
101 *
102 * @page: pointer to page to be grabbed
103 * @refs: the value to (effectively) add to the page's refcount
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
106 * "grab" names in this file mean, "look at flags to decide whether to use
107 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
113 * FOLL_GET: page's refcount will be incremented by @refs.
114 *
115 * FOLL_PIN on compound pages that are > two pages long: page's refcount will
116 * be incremented by @refs, and page[2].hpage_pinned_refcount will be
117 * incremented by @refs * GUP_PIN_COUNTING_BIAS.
118 *
119 * FOLL_PIN on normal pages, or compound pages that are two pages long:
120 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
121 *
122 * Return: head page (with refcount appropriately incremented) for success, or
123 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124 * considered failure, and furthermore, a likely bug in the caller, so a warning
125 * is also emitted.
126 */
127 __maybe_unused struct page *try_grab_compound_head(struct page *page,
128 int refs, unsigned int flags)
129 {
130 if (flags & FOLL_GET)
131 return try_get_compound_head(page, refs);
132 else if (flags & FOLL_PIN) {
133 /*
134 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 * right zone, so fail and let the caller fall back to the slow
136 * path.
137 */
138 if (unlikely((flags & FOLL_LONGTERM) &&
139 !is_pinnable_page(page)))
140 return NULL;
141
142 /*
143 * CAUTION: Don't use compound_head() on the page before this
144 * point, the result won't be stable.
145 */
146 page = try_get_compound_head(page, refs);
147 if (!page)
148 return NULL;
149
150 /*
151 * When pinning a compound page of order > 1 (which is what
152 * hpage_pincount_available() checks for), use an exact count to
153 * track it, via hpage_pincount_add/_sub().
154 *
155 * However, be sure to *also* increment the normal page refcount
156 * field at least once, so that the page really is pinned.
157 * That's why the refcount from the earlier
158 * try_get_compound_head() is left intact.
159 */
160 if (hpage_pincount_available(page))
161 hpage_pincount_add(page, refs);
162 else
163 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
164
165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
166 refs);
167
168 return page;
169 }
170
171 WARN_ON_ONCE(1);
172 return NULL;
173 }
174
175 static void put_compound_head(struct page *page, int refs, unsigned int flags)
176 {
177 if (flags & FOLL_PIN) {
178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179 refs);
180
181 if (hpage_pincount_available(page))
182 hpage_pincount_sub(page, refs);
183 else
184 refs *= GUP_PIN_COUNTING_BIAS;
185 }
186
187 put_page_refs(page, refs);
188 }
189
190 /**
191 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192 *
193 * This might not do anything at all, depending on the flags argument.
194 *
195 * "grab" names in this file mean, "look at flags to decide whether to use
196 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197 *
198 * @page: pointer to page to be grabbed
199 * @flags: gup flags: these are the FOLL_* flag values.
200 *
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202 * time. Cases: please see the try_grab_compound_head() documentation, with
203 * "refs=1".
204 *
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
208 */
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
212
213 if (flags & FOLL_GET)
214 return try_get_page(page);
215 else if (flags & FOLL_PIN) {
216 int refs = 1;
217
218 page = compound_head(page);
219
220 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
221 return false;
222
223 if (hpage_pincount_available(page))
224 hpage_pincount_add(page, 1);
225 else
226 refs = GUP_PIN_COUNTING_BIAS;
227
228 /*
229 * Similar to try_grab_compound_head(): even if using the
230 * hpage_pincount_add/_sub() routines, be sure to
231 * *also* increment the normal page refcount field at least
232 * once, so that the page really is pinned.
233 */
234 page_ref_add(page, refs);
235
236 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
237 }
238
239 return true;
240 }
241
242 /**
243 * unpin_user_page() - release a dma-pinned page
244 * @page: pointer to page to be released
245 *
246 * Pages that were pinned via pin_user_pages*() must be released via either
247 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
248 * that such pages can be separately tracked and uniquely handled. In
249 * particular, interactions with RDMA and filesystems need special handling.
250 */
251 void unpin_user_page(struct page *page)
252 {
253 put_compound_head(compound_head(page), 1, FOLL_PIN);
254 }
255 EXPORT_SYMBOL(unpin_user_page);
256
257 static inline void compound_range_next(unsigned long i, unsigned long npages,
258 struct page **list, struct page **head,
259 unsigned int *ntails)
260 {
261 struct page *next, *page;
262 unsigned int nr = 1;
263
264 if (i >= npages)
265 return;
266
267 next = *list + i;
268 page = compound_head(next);
269 if (PageCompound(page) && compound_order(page) >= 1)
270 nr = min_t(unsigned int,
271 page + compound_nr(page) - next, npages - i);
272
273 *head = page;
274 *ntails = nr;
275 }
276
277 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
278 for (__i = 0, \
279 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
280 __i < __npages; __i += __ntails, \
281 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
282
283 static inline void compound_next(unsigned long i, unsigned long npages,
284 struct page **list, struct page **head,
285 unsigned int *ntails)
286 {
287 struct page *page;
288 unsigned int nr;
289
290 if (i >= npages)
291 return;
292
293 page = compound_head(list[i]);
294 for (nr = i + 1; nr < npages; nr++) {
295 if (compound_head(list[nr]) != page)
296 break;
297 }
298
299 *head = page;
300 *ntails = nr - i;
301 }
302
303 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
304 for (__i = 0, \
305 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
306 __i < __npages; __i += __ntails, \
307 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
308
309 /**
310 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
311 * @pages: array of pages to be maybe marked dirty, and definitely released.
312 * @npages: number of pages in the @pages array.
313 * @make_dirty: whether to mark the pages dirty
314 *
315 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
316 * variants called on that page.
317 *
318 * For each page in the @pages array, make that page (or its head page, if a
319 * compound page) dirty, if @make_dirty is true, and if the page was previously
320 * listed as clean. In any case, releases all pages using unpin_user_page(),
321 * possibly via unpin_user_pages(), for the non-dirty case.
322 *
323 * Please see the unpin_user_page() documentation for details.
324 *
325 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
326 * required, then the caller should a) verify that this is really correct,
327 * because _lock() is usually required, and b) hand code it:
328 * set_page_dirty_lock(), unpin_user_page().
329 *
330 */
331 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
332 bool make_dirty)
333 {
334 unsigned long index;
335 struct page *head;
336 unsigned int ntails;
337
338 if (!make_dirty) {
339 unpin_user_pages(pages, npages);
340 return;
341 }
342
343 for_each_compound_head(index, pages, npages, head, ntails) {
344 /*
345 * Checking PageDirty at this point may race with
346 * clear_page_dirty_for_io(), but that's OK. Two key
347 * cases:
348 *
349 * 1) This code sees the page as already dirty, so it
350 * skips the call to set_page_dirty(). That could happen
351 * because clear_page_dirty_for_io() called
352 * page_mkclean(), followed by set_page_dirty().
353 * However, now the page is going to get written back,
354 * which meets the original intention of setting it
355 * dirty, so all is well: clear_page_dirty_for_io() goes
356 * on to call TestClearPageDirty(), and write the page
357 * back.
358 *
359 * 2) This code sees the page as clean, so it calls
360 * set_page_dirty(). The page stays dirty, despite being
361 * written back, so it gets written back again in the
362 * next writeback cycle. This is harmless.
363 */
364 if (!PageDirty(head))
365 set_page_dirty_lock(head);
366 put_compound_head(head, ntails, FOLL_PIN);
367 }
368 }
369 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
370
371 /**
372 * unpin_user_page_range_dirty_lock() - release and optionally dirty
373 * gup-pinned page range
374 *
375 * @page: the starting page of a range maybe marked dirty, and definitely released.
376 * @npages: number of consecutive pages to release.
377 * @make_dirty: whether to mark the pages dirty
378 *
379 * "gup-pinned page range" refers to a range of pages that has had one of the
380 * pin_user_pages() variants called on that page.
381 *
382 * For the page ranges defined by [page .. page+npages], make that range (or
383 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
384 * page range was previously listed as clean.
385 *
386 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
387 * required, then the caller should a) verify that this is really correct,
388 * because _lock() is usually required, and b) hand code it:
389 * set_page_dirty_lock(), unpin_user_page().
390 *
391 */
392 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
393 bool make_dirty)
394 {
395 unsigned long index;
396 struct page *head;
397 unsigned int ntails;
398
399 for_each_compound_range(index, &page, npages, head, ntails) {
400 if (make_dirty && !PageDirty(head))
401 set_page_dirty_lock(head);
402 put_compound_head(head, ntails, FOLL_PIN);
403 }
404 }
405 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
406
407 /**
408 * unpin_user_pages() - release an array of gup-pinned pages.
409 * @pages: array of pages to be marked dirty and released.
410 * @npages: number of pages in the @pages array.
411 *
412 * For each page in the @pages array, release the page using unpin_user_page().
413 *
414 * Please see the unpin_user_page() documentation for details.
415 */
416 void unpin_user_pages(struct page **pages, unsigned long npages)
417 {
418 unsigned long index;
419 struct page *head;
420 unsigned int ntails;
421
422 /*
423 * If this WARN_ON() fires, then the system *might* be leaking pages (by
424 * leaving them pinned), but probably not. More likely, gup/pup returned
425 * a hard -ERRNO error to the caller, who erroneously passed it here.
426 */
427 if (WARN_ON(IS_ERR_VALUE(npages)))
428 return;
429
430 for_each_compound_head(index, pages, npages, head, ntails)
431 put_compound_head(head, ntails, FOLL_PIN);
432 }
433 EXPORT_SYMBOL(unpin_user_pages);
434
435 /*
436 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
437 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
438 * cache bouncing on large SMP machines for concurrent pinned gups.
439 */
440 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
441 {
442 if (!test_bit(MMF_HAS_PINNED, mm_flags))
443 set_bit(MMF_HAS_PINNED, mm_flags);
444 }
445
446 #ifdef CONFIG_MMU
447 static struct page *no_page_table(struct vm_area_struct *vma,
448 unsigned int flags)
449 {
450 /*
451 * When core dumping an enormous anonymous area that nobody
452 * has touched so far, we don't want to allocate unnecessary pages or
453 * page tables. Return error instead of NULL to skip handle_mm_fault,
454 * then get_dump_page() will return NULL to leave a hole in the dump.
455 * But we can only make this optimization where a hole would surely
456 * be zero-filled if handle_mm_fault() actually did handle it.
457 */
458 if ((flags & FOLL_DUMP) &&
459 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
460 return ERR_PTR(-EFAULT);
461 return NULL;
462 }
463
464 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
465 pte_t *pte, unsigned int flags)
466 {
467 /* No page to get reference */
468 if (flags & FOLL_GET)
469 return -EFAULT;
470
471 if (flags & FOLL_TOUCH) {
472 pte_t entry = *pte;
473
474 if (flags & FOLL_WRITE)
475 entry = pte_mkdirty(entry);
476 entry = pte_mkyoung(entry);
477
478 if (!pte_same(*pte, entry)) {
479 set_pte_at(vma->vm_mm, address, pte, entry);
480 update_mmu_cache(vma, address, pte);
481 }
482 }
483
484 /* Proper page table entry exists, but no corresponding struct page */
485 return -EEXIST;
486 }
487
488 /*
489 * FOLL_FORCE can write to even unwritable pte's, but only
490 * after we've gone through a COW cycle and they are dirty.
491 */
492 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
493 {
494 return pte_write(pte) ||
495 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
496 }
497
498 static struct page *follow_page_pte(struct vm_area_struct *vma,
499 unsigned long address, pmd_t *pmd, unsigned int flags,
500 struct dev_pagemap **pgmap)
501 {
502 struct mm_struct *mm = vma->vm_mm;
503 struct page *page;
504 spinlock_t *ptl;
505 pte_t *ptep, pte;
506 int ret;
507
508 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
509 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
510 (FOLL_PIN | FOLL_GET)))
511 return ERR_PTR(-EINVAL);
512 retry:
513 if (unlikely(pmd_bad(*pmd)))
514 return no_page_table(vma, flags);
515
516 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
517 pte = *ptep;
518 if (!pte_present(pte)) {
519 swp_entry_t entry;
520 /*
521 * KSM's break_ksm() relies upon recognizing a ksm page
522 * even while it is being migrated, so for that case we
523 * need migration_entry_wait().
524 */
525 if (likely(!(flags & FOLL_MIGRATION)))
526 goto no_page;
527 if (pte_none(pte))
528 goto no_page;
529 entry = pte_to_swp_entry(pte);
530 if (!is_migration_entry(entry))
531 goto no_page;
532 pte_unmap_unlock(ptep, ptl);
533 migration_entry_wait(mm, pmd, address);
534 goto retry;
535 }
536 if ((flags & FOLL_NUMA) && pte_protnone(pte))
537 goto no_page;
538 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
539 pte_unmap_unlock(ptep, ptl);
540 return NULL;
541 }
542
543 page = vm_normal_page(vma, address, pte);
544 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
545 /*
546 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
547 * case since they are only valid while holding the pgmap
548 * reference.
549 */
550 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
551 if (*pgmap)
552 page = pte_page(pte);
553 else
554 goto no_page;
555 } else if (unlikely(!page)) {
556 if (flags & FOLL_DUMP) {
557 /* Avoid special (like zero) pages in core dumps */
558 page = ERR_PTR(-EFAULT);
559 goto out;
560 }
561
562 if (is_zero_pfn(pte_pfn(pte))) {
563 page = pte_page(pte);
564 } else {
565 ret = follow_pfn_pte(vma, address, ptep, flags);
566 page = ERR_PTR(ret);
567 goto out;
568 }
569 }
570
571 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
572 if (unlikely(!try_grab_page(page, flags))) {
573 page = ERR_PTR(-ENOMEM);
574 goto out;
575 }
576 /*
577 * We need to make the page accessible if and only if we are going
578 * to access its content (the FOLL_PIN case). Please see
579 * Documentation/core-api/pin_user_pages.rst for details.
580 */
581 if (flags & FOLL_PIN) {
582 ret = arch_make_page_accessible(page);
583 if (ret) {
584 unpin_user_page(page);
585 page = ERR_PTR(ret);
586 goto out;
587 }
588 }
589 if (flags & FOLL_TOUCH) {
590 if ((flags & FOLL_WRITE) &&
591 !pte_dirty(pte) && !PageDirty(page))
592 set_page_dirty(page);
593 /*
594 * pte_mkyoung() would be more correct here, but atomic care
595 * is needed to avoid losing the dirty bit: it is easier to use
596 * mark_page_accessed().
597 */
598 mark_page_accessed(page);
599 }
600 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
601 /* Do not mlock pte-mapped THP */
602 if (PageTransCompound(page))
603 goto out;
604
605 /*
606 * The preliminary mapping check is mainly to avoid the
607 * pointless overhead of lock_page on the ZERO_PAGE
608 * which might bounce very badly if there is contention.
609 *
610 * If the page is already locked, we don't need to
611 * handle it now - vmscan will handle it later if and
612 * when it attempts to reclaim the page.
613 */
614 if (page->mapping && trylock_page(page)) {
615 lru_add_drain(); /* push cached pages to LRU */
616 /*
617 * Because we lock page here, and migration is
618 * blocked by the pte's page reference, and we
619 * know the page is still mapped, we don't even
620 * need to check for file-cache page truncation.
621 */
622 mlock_vma_page(page);
623 unlock_page(page);
624 }
625 }
626 out:
627 pte_unmap_unlock(ptep, ptl);
628 return page;
629 no_page:
630 pte_unmap_unlock(ptep, ptl);
631 if (!pte_none(pte))
632 return NULL;
633 return no_page_table(vma, flags);
634 }
635
636 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
637 unsigned long address, pud_t *pudp,
638 unsigned int flags,
639 struct follow_page_context *ctx)
640 {
641 pmd_t *pmd, pmdval;
642 spinlock_t *ptl;
643 struct page *page;
644 struct mm_struct *mm = vma->vm_mm;
645
646 pmd = pmd_offset(pudp, address);
647 /*
648 * The READ_ONCE() will stabilize the pmdval in a register or
649 * on the stack so that it will stop changing under the code.
650 */
651 pmdval = READ_ONCE(*pmd);
652 if (pmd_none(pmdval))
653 return no_page_table(vma, flags);
654 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
655 page = follow_huge_pmd(mm, address, pmd, flags);
656 if (page)
657 return page;
658 return no_page_table(vma, flags);
659 }
660 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
661 page = follow_huge_pd(vma, address,
662 __hugepd(pmd_val(pmdval)), flags,
663 PMD_SHIFT);
664 if (page)
665 return page;
666 return no_page_table(vma, flags);
667 }
668 retry:
669 if (!pmd_present(pmdval)) {
670 if (likely(!(flags & FOLL_MIGRATION)))
671 return no_page_table(vma, flags);
672 VM_BUG_ON(thp_migration_supported() &&
673 !is_pmd_migration_entry(pmdval));
674 if (is_pmd_migration_entry(pmdval))
675 pmd_migration_entry_wait(mm, pmd);
676 pmdval = READ_ONCE(*pmd);
677 /*
678 * MADV_DONTNEED may convert the pmd to null because
679 * mmap_lock is held in read mode
680 */
681 if (pmd_none(pmdval))
682 return no_page_table(vma, flags);
683 goto retry;
684 }
685 if (pmd_devmap(pmdval)) {
686 ptl = pmd_lock(mm, pmd);
687 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
688 spin_unlock(ptl);
689 if (page)
690 return page;
691 }
692 if (likely(!pmd_trans_huge(pmdval)))
693 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
694
695 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
696 return no_page_table(vma, flags);
697
698 retry_locked:
699 ptl = pmd_lock(mm, pmd);
700 if (unlikely(pmd_none(*pmd))) {
701 spin_unlock(ptl);
702 return no_page_table(vma, flags);
703 }
704 if (unlikely(!pmd_present(*pmd))) {
705 spin_unlock(ptl);
706 if (likely(!(flags & FOLL_MIGRATION)))
707 return no_page_table(vma, flags);
708 pmd_migration_entry_wait(mm, pmd);
709 goto retry_locked;
710 }
711 if (unlikely(!pmd_trans_huge(*pmd))) {
712 spin_unlock(ptl);
713 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
714 }
715 if (flags & FOLL_SPLIT_PMD) {
716 int ret;
717 page = pmd_page(*pmd);
718 if (is_huge_zero_page(page)) {
719 spin_unlock(ptl);
720 ret = 0;
721 split_huge_pmd(vma, pmd, address);
722 if (pmd_trans_unstable(pmd))
723 ret = -EBUSY;
724 } else {
725 spin_unlock(ptl);
726 split_huge_pmd(vma, pmd, address);
727 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
728 }
729
730 return ret ? ERR_PTR(ret) :
731 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
732 }
733 page = follow_trans_huge_pmd(vma, address, pmd, flags);
734 spin_unlock(ptl);
735 ctx->page_mask = HPAGE_PMD_NR - 1;
736 return page;
737 }
738
739 static struct page *follow_pud_mask(struct vm_area_struct *vma,
740 unsigned long address, p4d_t *p4dp,
741 unsigned int flags,
742 struct follow_page_context *ctx)
743 {
744 pud_t *pud;
745 spinlock_t *ptl;
746 struct page *page;
747 struct mm_struct *mm = vma->vm_mm;
748
749 pud = pud_offset(p4dp, address);
750 if (pud_none(*pud))
751 return no_page_table(vma, flags);
752 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
753 page = follow_huge_pud(mm, address, pud, flags);
754 if (page)
755 return page;
756 return no_page_table(vma, flags);
757 }
758 if (is_hugepd(__hugepd(pud_val(*pud)))) {
759 page = follow_huge_pd(vma, address,
760 __hugepd(pud_val(*pud)), flags,
761 PUD_SHIFT);
762 if (page)
763 return page;
764 return no_page_table(vma, flags);
765 }
766 if (pud_devmap(*pud)) {
767 ptl = pud_lock(mm, pud);
768 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
769 spin_unlock(ptl);
770 if (page)
771 return page;
772 }
773 if (unlikely(pud_bad(*pud)))
774 return no_page_table(vma, flags);
775
776 return follow_pmd_mask(vma, address, pud, flags, ctx);
777 }
778
779 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
780 unsigned long address, pgd_t *pgdp,
781 unsigned int flags,
782 struct follow_page_context *ctx)
783 {
784 p4d_t *p4d;
785 struct page *page;
786
787 p4d = p4d_offset(pgdp, address);
788 if (p4d_none(*p4d))
789 return no_page_table(vma, flags);
790 BUILD_BUG_ON(p4d_huge(*p4d));
791 if (unlikely(p4d_bad(*p4d)))
792 return no_page_table(vma, flags);
793
794 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
795 page = follow_huge_pd(vma, address,
796 __hugepd(p4d_val(*p4d)), flags,
797 P4D_SHIFT);
798 if (page)
799 return page;
800 return no_page_table(vma, flags);
801 }
802 return follow_pud_mask(vma, address, p4d, flags, ctx);
803 }
804
805 /**
806 * follow_page_mask - look up a page descriptor from a user-virtual address
807 * @vma: vm_area_struct mapping @address
808 * @address: virtual address to look up
809 * @flags: flags modifying lookup behaviour
810 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
811 * pointer to output page_mask
812 *
813 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
814 *
815 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
816 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
817 *
818 * On output, the @ctx->page_mask is set according to the size of the page.
819 *
820 * Return: the mapped (struct page *), %NULL if no mapping exists, or
821 * an error pointer if there is a mapping to something not represented
822 * by a page descriptor (see also vm_normal_page()).
823 */
824 static struct page *follow_page_mask(struct vm_area_struct *vma,
825 unsigned long address, unsigned int flags,
826 struct follow_page_context *ctx)
827 {
828 pgd_t *pgd;
829 struct page *page;
830 struct mm_struct *mm = vma->vm_mm;
831
832 ctx->page_mask = 0;
833
834 /* make this handle hugepd */
835 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
836 if (!IS_ERR(page)) {
837 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
838 return page;
839 }
840
841 pgd = pgd_offset(mm, address);
842
843 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
844 return no_page_table(vma, flags);
845
846 if (pgd_huge(*pgd)) {
847 page = follow_huge_pgd(mm, address, pgd, flags);
848 if (page)
849 return page;
850 return no_page_table(vma, flags);
851 }
852 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
853 page = follow_huge_pd(vma, address,
854 __hugepd(pgd_val(*pgd)), flags,
855 PGDIR_SHIFT);
856 if (page)
857 return page;
858 return no_page_table(vma, flags);
859 }
860
861 return follow_p4d_mask(vma, address, pgd, flags, ctx);
862 }
863
864 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
865 unsigned int foll_flags)
866 {
867 struct follow_page_context ctx = { NULL };
868 struct page *page;
869
870 if (vma_is_secretmem(vma))
871 return NULL;
872
873 page = follow_page_mask(vma, address, foll_flags, &ctx);
874 if (ctx.pgmap)
875 put_dev_pagemap(ctx.pgmap);
876 return page;
877 }
878
879 static int get_gate_page(struct mm_struct *mm, unsigned long address,
880 unsigned int gup_flags, struct vm_area_struct **vma,
881 struct page **page)
882 {
883 pgd_t *pgd;
884 p4d_t *p4d;
885 pud_t *pud;
886 pmd_t *pmd;
887 pte_t *pte;
888 int ret = -EFAULT;
889
890 /* user gate pages are read-only */
891 if (gup_flags & FOLL_WRITE)
892 return -EFAULT;
893 if (address > TASK_SIZE)
894 pgd = pgd_offset_k(address);
895 else
896 pgd = pgd_offset_gate(mm, address);
897 if (pgd_none(*pgd))
898 return -EFAULT;
899 p4d = p4d_offset(pgd, address);
900 if (p4d_none(*p4d))
901 return -EFAULT;
902 pud = pud_offset(p4d, address);
903 if (pud_none(*pud))
904 return -EFAULT;
905 pmd = pmd_offset(pud, address);
906 if (!pmd_present(*pmd))
907 return -EFAULT;
908 VM_BUG_ON(pmd_trans_huge(*pmd));
909 pte = pte_offset_map(pmd, address);
910 if (pte_none(*pte))
911 goto unmap;
912 *vma = get_gate_vma(mm);
913 if (!page)
914 goto out;
915 *page = vm_normal_page(*vma, address, *pte);
916 if (!*page) {
917 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
918 goto unmap;
919 *page = pte_page(*pte);
920 }
921 if (unlikely(!try_grab_page(*page, gup_flags))) {
922 ret = -ENOMEM;
923 goto unmap;
924 }
925 out:
926 ret = 0;
927 unmap:
928 pte_unmap(pte);
929 return ret;
930 }
931
932 /*
933 * mmap_lock must be held on entry. If @locked != NULL and *@flags
934 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
935 * is, *@locked will be set to 0 and -EBUSY returned.
936 */
937 static int faultin_page(struct vm_area_struct *vma,
938 unsigned long address, unsigned int *flags, int *locked)
939 {
940 unsigned int fault_flags = 0;
941 vm_fault_t ret;
942
943 /* mlock all present pages, but do not fault in new pages */
944 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
945 return -ENOENT;
946 if (*flags & FOLL_NOFAULT)
947 return -EFAULT;
948 if (*flags & FOLL_WRITE)
949 fault_flags |= FAULT_FLAG_WRITE;
950 if (*flags & FOLL_REMOTE)
951 fault_flags |= FAULT_FLAG_REMOTE;
952 if (locked)
953 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
954 if (*flags & FOLL_NOWAIT)
955 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
956 if (*flags & FOLL_TRIED) {
957 /*
958 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
959 * can co-exist
960 */
961 fault_flags |= FAULT_FLAG_TRIED;
962 }
963
964 ret = handle_mm_fault(vma, address, fault_flags, NULL);
965 if (ret & VM_FAULT_ERROR) {
966 int err = vm_fault_to_errno(ret, *flags);
967
968 if (err)
969 return err;
970 BUG();
971 }
972
973 if (ret & VM_FAULT_RETRY) {
974 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
975 *locked = 0;
976 return -EBUSY;
977 }
978
979 /*
980 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
981 * necessary, even if maybe_mkwrite decided not to set pte_write. We
982 * can thus safely do subsequent page lookups as if they were reads.
983 * But only do so when looping for pte_write is futile: in some cases
984 * userspace may also be wanting to write to the gotten user page,
985 * which a read fault here might prevent (a readonly page might get
986 * reCOWed by userspace write).
987 */
988 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
989 *flags |= FOLL_COW;
990 return 0;
991 }
992
993 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
994 {
995 vm_flags_t vm_flags = vma->vm_flags;
996 int write = (gup_flags & FOLL_WRITE);
997 int foreign = (gup_flags & FOLL_REMOTE);
998
999 if (vm_flags & (VM_IO | VM_PFNMAP))
1000 return -EFAULT;
1001
1002 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1003 return -EFAULT;
1004
1005 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1006 return -EOPNOTSUPP;
1007
1008 if (vma_is_secretmem(vma))
1009 return -EFAULT;
1010
1011 if (write) {
1012 if (!(vm_flags & VM_WRITE)) {
1013 if (!(gup_flags & FOLL_FORCE))
1014 return -EFAULT;
1015 /*
1016 * We used to let the write,force case do COW in a
1017 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1018 * set a breakpoint in a read-only mapping of an
1019 * executable, without corrupting the file (yet only
1020 * when that file had been opened for writing!).
1021 * Anon pages in shared mappings are surprising: now
1022 * just reject it.
1023 */
1024 if (!is_cow_mapping(vm_flags))
1025 return -EFAULT;
1026 }
1027 } else if (!(vm_flags & VM_READ)) {
1028 if (!(gup_flags & FOLL_FORCE))
1029 return -EFAULT;
1030 /*
1031 * Is there actually any vma we can reach here which does not
1032 * have VM_MAYREAD set?
1033 */
1034 if (!(vm_flags & VM_MAYREAD))
1035 return -EFAULT;
1036 }
1037 /*
1038 * gups are always data accesses, not instruction
1039 * fetches, so execute=false here
1040 */
1041 if (!arch_vma_access_permitted(vma, write, false, foreign))
1042 return -EFAULT;
1043 return 0;
1044 }
1045
1046 /**
1047 * __get_user_pages() - pin user pages in memory
1048 * @mm: mm_struct of target mm
1049 * @start: starting user address
1050 * @nr_pages: number of pages from start to pin
1051 * @gup_flags: flags modifying pin behaviour
1052 * @pages: array that receives pointers to the pages pinned.
1053 * Should be at least nr_pages long. Or NULL, if caller
1054 * only intends to ensure the pages are faulted in.
1055 * @vmas: array of pointers to vmas corresponding to each page.
1056 * Or NULL if the caller does not require them.
1057 * @locked: whether we're still with the mmap_lock held
1058 *
1059 * Returns either number of pages pinned (which may be less than the
1060 * number requested), or an error. Details about the return value:
1061 *
1062 * -- If nr_pages is 0, returns 0.
1063 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1064 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1065 * pages pinned. Again, this may be less than nr_pages.
1066 * -- 0 return value is possible when the fault would need to be retried.
1067 *
1068 * The caller is responsible for releasing returned @pages, via put_page().
1069 *
1070 * @vmas are valid only as long as mmap_lock is held.
1071 *
1072 * Must be called with mmap_lock held. It may be released. See below.
1073 *
1074 * __get_user_pages walks a process's page tables and takes a reference to
1075 * each struct page that each user address corresponds to at a given
1076 * instant. That is, it takes the page that would be accessed if a user
1077 * thread accesses the given user virtual address at that instant.
1078 *
1079 * This does not guarantee that the page exists in the user mappings when
1080 * __get_user_pages returns, and there may even be a completely different
1081 * page there in some cases (eg. if mmapped pagecache has been invalidated
1082 * and subsequently re faulted). However it does guarantee that the page
1083 * won't be freed completely. And mostly callers simply care that the page
1084 * contains data that was valid *at some point in time*. Typically, an IO
1085 * or similar operation cannot guarantee anything stronger anyway because
1086 * locks can't be held over the syscall boundary.
1087 *
1088 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1089 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1090 * appropriate) must be called after the page is finished with, and
1091 * before put_page is called.
1092 *
1093 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1094 * released by an up_read(). That can happen if @gup_flags does not
1095 * have FOLL_NOWAIT.
1096 *
1097 * A caller using such a combination of @locked and @gup_flags
1098 * must therefore hold the mmap_lock for reading only, and recognize
1099 * when it's been released. Otherwise, it must be held for either
1100 * reading or writing and will not be released.
1101 *
1102 * In most cases, get_user_pages or get_user_pages_fast should be used
1103 * instead of __get_user_pages. __get_user_pages should be used only if
1104 * you need some special @gup_flags.
1105 */
1106 static long __get_user_pages(struct mm_struct *mm,
1107 unsigned long start, unsigned long nr_pages,
1108 unsigned int gup_flags, struct page **pages,
1109 struct vm_area_struct **vmas, int *locked)
1110 {
1111 long ret = 0, i = 0;
1112 struct vm_area_struct *vma = NULL;
1113 struct follow_page_context ctx = { NULL };
1114
1115 if (!nr_pages)
1116 return 0;
1117
1118 start = untagged_addr(start);
1119
1120 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1121
1122 /*
1123 * If FOLL_FORCE is set then do not force a full fault as the hinting
1124 * fault information is unrelated to the reference behaviour of a task
1125 * using the address space
1126 */
1127 if (!(gup_flags & FOLL_FORCE))
1128 gup_flags |= FOLL_NUMA;
1129
1130 do {
1131 struct page *page;
1132 unsigned int foll_flags = gup_flags;
1133 unsigned int page_increm;
1134
1135 /* first iteration or cross vma bound */
1136 if (!vma || start >= vma->vm_end) {
1137 vma = find_extend_vma(mm, start);
1138 if (!vma && in_gate_area(mm, start)) {
1139 ret = get_gate_page(mm, start & PAGE_MASK,
1140 gup_flags, &vma,
1141 pages ? &pages[i] : NULL);
1142 if (ret)
1143 goto out;
1144 ctx.page_mask = 0;
1145 goto next_page;
1146 }
1147
1148 if (!vma) {
1149 ret = -EFAULT;
1150 goto out;
1151 }
1152 ret = check_vma_flags(vma, gup_flags);
1153 if (ret)
1154 goto out;
1155
1156 if (is_vm_hugetlb_page(vma)) {
1157 i = follow_hugetlb_page(mm, vma, pages, vmas,
1158 &start, &nr_pages, i,
1159 gup_flags, locked);
1160 if (locked && *locked == 0) {
1161 /*
1162 * We've got a VM_FAULT_RETRY
1163 * and we've lost mmap_lock.
1164 * We must stop here.
1165 */
1166 BUG_ON(gup_flags & FOLL_NOWAIT);
1167 goto out;
1168 }
1169 continue;
1170 }
1171 }
1172 retry:
1173 /*
1174 * If we have a pending SIGKILL, don't keep faulting pages and
1175 * potentially allocating memory.
1176 */
1177 if (fatal_signal_pending(current)) {
1178 ret = -EINTR;
1179 goto out;
1180 }
1181 cond_resched();
1182
1183 page = follow_page_mask(vma, start, foll_flags, &ctx);
1184 if (!page) {
1185 ret = faultin_page(vma, start, &foll_flags, locked);
1186 switch (ret) {
1187 case 0:
1188 goto retry;
1189 case -EBUSY:
1190 ret = 0;
1191 fallthrough;
1192 case -EFAULT:
1193 case -ENOMEM:
1194 case -EHWPOISON:
1195 goto out;
1196 case -ENOENT:
1197 goto next_page;
1198 }
1199 BUG();
1200 } else if (PTR_ERR(page) == -EEXIST) {
1201 /*
1202 * Proper page table entry exists, but no corresponding
1203 * struct page.
1204 */
1205 goto next_page;
1206 } else if (IS_ERR(page)) {
1207 ret = PTR_ERR(page);
1208 goto out;
1209 }
1210 if (pages) {
1211 pages[i] = page;
1212 flush_anon_page(vma, page, start);
1213 flush_dcache_page(page);
1214 ctx.page_mask = 0;
1215 }
1216 next_page:
1217 if (vmas) {
1218 vmas[i] = vma;
1219 ctx.page_mask = 0;
1220 }
1221 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1222 if (page_increm > nr_pages)
1223 page_increm = nr_pages;
1224 i += page_increm;
1225 start += page_increm * PAGE_SIZE;
1226 nr_pages -= page_increm;
1227 } while (nr_pages);
1228 out:
1229 if (ctx.pgmap)
1230 put_dev_pagemap(ctx.pgmap);
1231 return i ? i : ret;
1232 }
1233
1234 static bool vma_permits_fault(struct vm_area_struct *vma,
1235 unsigned int fault_flags)
1236 {
1237 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1238 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1239 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1240
1241 if (!(vm_flags & vma->vm_flags))
1242 return false;
1243
1244 /*
1245 * The architecture might have a hardware protection
1246 * mechanism other than read/write that can deny access.
1247 *
1248 * gup always represents data access, not instruction
1249 * fetches, so execute=false here:
1250 */
1251 if (!arch_vma_access_permitted(vma, write, false, foreign))
1252 return false;
1253
1254 return true;
1255 }
1256
1257 /**
1258 * fixup_user_fault() - manually resolve a user page fault
1259 * @mm: mm_struct of target mm
1260 * @address: user address
1261 * @fault_flags:flags to pass down to handle_mm_fault()
1262 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1263 * does not allow retry. If NULL, the caller must guarantee
1264 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1265 *
1266 * This is meant to be called in the specific scenario where for locking reasons
1267 * we try to access user memory in atomic context (within a pagefault_disable()
1268 * section), this returns -EFAULT, and we want to resolve the user fault before
1269 * trying again.
1270 *
1271 * Typically this is meant to be used by the futex code.
1272 *
1273 * The main difference with get_user_pages() is that this function will
1274 * unconditionally call handle_mm_fault() which will in turn perform all the
1275 * necessary SW fixup of the dirty and young bits in the PTE, while
1276 * get_user_pages() only guarantees to update these in the struct page.
1277 *
1278 * This is important for some architectures where those bits also gate the
1279 * access permission to the page because they are maintained in software. On
1280 * such architectures, gup() will not be enough to make a subsequent access
1281 * succeed.
1282 *
1283 * This function will not return with an unlocked mmap_lock. So it has not the
1284 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1285 */
1286 int fixup_user_fault(struct mm_struct *mm,
1287 unsigned long address, unsigned int fault_flags,
1288 bool *unlocked)
1289 {
1290 struct vm_area_struct *vma;
1291 vm_fault_t ret;
1292
1293 address = untagged_addr(address);
1294
1295 if (unlocked)
1296 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1297
1298 retry:
1299 vma = find_extend_vma(mm, address);
1300 if (!vma || address < vma->vm_start)
1301 return -EFAULT;
1302
1303 if (!vma_permits_fault(vma, fault_flags))
1304 return -EFAULT;
1305
1306 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1307 fatal_signal_pending(current))
1308 return -EINTR;
1309
1310 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1311 if (ret & VM_FAULT_ERROR) {
1312 int err = vm_fault_to_errno(ret, 0);
1313
1314 if (err)
1315 return err;
1316 BUG();
1317 }
1318
1319 if (ret & VM_FAULT_RETRY) {
1320 mmap_read_lock(mm);
1321 *unlocked = true;
1322 fault_flags |= FAULT_FLAG_TRIED;
1323 goto retry;
1324 }
1325
1326 return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(fixup_user_fault);
1329
1330 /*
1331 * Please note that this function, unlike __get_user_pages will not
1332 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1333 */
1334 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1335 unsigned long start,
1336 unsigned long nr_pages,
1337 struct page **pages,
1338 struct vm_area_struct **vmas,
1339 int *locked,
1340 unsigned int flags)
1341 {
1342 long ret, pages_done;
1343 bool lock_dropped;
1344
1345 if (locked) {
1346 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1347 BUG_ON(vmas);
1348 /* check caller initialized locked */
1349 BUG_ON(*locked != 1);
1350 }
1351
1352 if (flags & FOLL_PIN)
1353 mm_set_has_pinned_flag(&mm->flags);
1354
1355 /*
1356 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1357 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1358 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1359 * for FOLL_GET, not for the newer FOLL_PIN.
1360 *
1361 * FOLL_PIN always expects pages to be non-null, but no need to assert
1362 * that here, as any failures will be obvious enough.
1363 */
1364 if (pages && !(flags & FOLL_PIN))
1365 flags |= FOLL_GET;
1366
1367 pages_done = 0;
1368 lock_dropped = false;
1369 for (;;) {
1370 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1371 vmas, locked);
1372 if (!locked)
1373 /* VM_FAULT_RETRY couldn't trigger, bypass */
1374 return ret;
1375
1376 /* VM_FAULT_RETRY cannot return errors */
1377 if (!*locked) {
1378 BUG_ON(ret < 0);
1379 BUG_ON(ret >= nr_pages);
1380 }
1381
1382 if (ret > 0) {
1383 nr_pages -= ret;
1384 pages_done += ret;
1385 if (!nr_pages)
1386 break;
1387 }
1388 if (*locked) {
1389 /*
1390 * VM_FAULT_RETRY didn't trigger or it was a
1391 * FOLL_NOWAIT.
1392 */
1393 if (!pages_done)
1394 pages_done = ret;
1395 break;
1396 }
1397 /*
1398 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1399 * For the prefault case (!pages) we only update counts.
1400 */
1401 if (likely(pages))
1402 pages += ret;
1403 start += ret << PAGE_SHIFT;
1404 lock_dropped = true;
1405
1406 retry:
1407 /*
1408 * Repeat on the address that fired VM_FAULT_RETRY
1409 * with both FAULT_FLAG_ALLOW_RETRY and
1410 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1411 * by fatal signals, so we need to check it before we
1412 * start trying again otherwise it can loop forever.
1413 */
1414
1415 if (fatal_signal_pending(current)) {
1416 if (!pages_done)
1417 pages_done = -EINTR;
1418 break;
1419 }
1420
1421 ret = mmap_read_lock_killable(mm);
1422 if (ret) {
1423 BUG_ON(ret > 0);
1424 if (!pages_done)
1425 pages_done = ret;
1426 break;
1427 }
1428
1429 *locked = 1;
1430 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1431 pages, NULL, locked);
1432 if (!*locked) {
1433 /* Continue to retry until we succeeded */
1434 BUG_ON(ret != 0);
1435 goto retry;
1436 }
1437 if (ret != 1) {
1438 BUG_ON(ret > 1);
1439 if (!pages_done)
1440 pages_done = ret;
1441 break;
1442 }
1443 nr_pages--;
1444 pages_done++;
1445 if (!nr_pages)
1446 break;
1447 if (likely(pages))
1448 pages++;
1449 start += PAGE_SIZE;
1450 }
1451 if (lock_dropped && *locked) {
1452 /*
1453 * We must let the caller know we temporarily dropped the lock
1454 * and so the critical section protected by it was lost.
1455 */
1456 mmap_read_unlock(mm);
1457 *locked = 0;
1458 }
1459 return pages_done;
1460 }
1461
1462 /**
1463 * populate_vma_page_range() - populate a range of pages in the vma.
1464 * @vma: target vma
1465 * @start: start address
1466 * @end: end address
1467 * @locked: whether the mmap_lock is still held
1468 *
1469 * This takes care of mlocking the pages too if VM_LOCKED is set.
1470 *
1471 * Return either number of pages pinned in the vma, or a negative error
1472 * code on error.
1473 *
1474 * vma->vm_mm->mmap_lock must be held.
1475 *
1476 * If @locked is NULL, it may be held for read or write and will
1477 * be unperturbed.
1478 *
1479 * If @locked is non-NULL, it must held for read only and may be
1480 * released. If it's released, *@locked will be set to 0.
1481 */
1482 long populate_vma_page_range(struct vm_area_struct *vma,
1483 unsigned long start, unsigned long end, int *locked)
1484 {
1485 struct mm_struct *mm = vma->vm_mm;
1486 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1487 int gup_flags;
1488
1489 VM_BUG_ON(!PAGE_ALIGNED(start));
1490 VM_BUG_ON(!PAGE_ALIGNED(end));
1491 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1492 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1493 mmap_assert_locked(mm);
1494
1495 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1496 if (vma->vm_flags & VM_LOCKONFAULT)
1497 gup_flags &= ~FOLL_POPULATE;
1498 /*
1499 * We want to touch writable mappings with a write fault in order
1500 * to break COW, except for shared mappings because these don't COW
1501 * and we would not want to dirty them for nothing.
1502 */
1503 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1504 gup_flags |= FOLL_WRITE;
1505
1506 /*
1507 * We want mlock to succeed for regions that have any permissions
1508 * other than PROT_NONE.
1509 */
1510 if (vma_is_accessible(vma))
1511 gup_flags |= FOLL_FORCE;
1512
1513 /*
1514 * We made sure addr is within a VMA, so the following will
1515 * not result in a stack expansion that recurses back here.
1516 */
1517 return __get_user_pages(mm, start, nr_pages, gup_flags,
1518 NULL, NULL, locked);
1519 }
1520
1521 /*
1522 * faultin_vma_page_range() - populate (prefault) page tables inside the
1523 * given VMA range readable/writable
1524 *
1525 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1526 *
1527 * @vma: target vma
1528 * @start: start address
1529 * @end: end address
1530 * @write: whether to prefault readable or writable
1531 * @locked: whether the mmap_lock is still held
1532 *
1533 * Returns either number of processed pages in the vma, or a negative error
1534 * code on error (see __get_user_pages()).
1535 *
1536 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1537 * covered by the VMA.
1538 *
1539 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1540 *
1541 * If @locked is non-NULL, it must held for read only and may be released. If
1542 * it's released, *@locked will be set to 0.
1543 */
1544 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1545 unsigned long end, bool write, int *locked)
1546 {
1547 struct mm_struct *mm = vma->vm_mm;
1548 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1549 int gup_flags;
1550
1551 VM_BUG_ON(!PAGE_ALIGNED(start));
1552 VM_BUG_ON(!PAGE_ALIGNED(end));
1553 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1554 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1555 mmap_assert_locked(mm);
1556
1557 /*
1558 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1559 * the page dirty with FOLL_WRITE -- which doesn't make a
1560 * difference with !FOLL_FORCE, because the page is writable
1561 * in the page table.
1562 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1563 * a poisoned page.
1564 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1565 * !FOLL_FORCE: Require proper access permissions.
1566 */
1567 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1568 if (write)
1569 gup_flags |= FOLL_WRITE;
1570
1571 /*
1572 * We want to report -EINVAL instead of -EFAULT for any permission
1573 * problems or incompatible mappings.
1574 */
1575 if (check_vma_flags(vma, gup_flags))
1576 return -EINVAL;
1577
1578 return __get_user_pages(mm, start, nr_pages, gup_flags,
1579 NULL, NULL, locked);
1580 }
1581
1582 /*
1583 * __mm_populate - populate and/or mlock pages within a range of address space.
1584 *
1585 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1586 * flags. VMAs must be already marked with the desired vm_flags, and
1587 * mmap_lock must not be held.
1588 */
1589 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1590 {
1591 struct mm_struct *mm = current->mm;
1592 unsigned long end, nstart, nend;
1593 struct vm_area_struct *vma = NULL;
1594 int locked = 0;
1595 long ret = 0;
1596
1597 end = start + len;
1598
1599 for (nstart = start; nstart < end; nstart = nend) {
1600 /*
1601 * We want to fault in pages for [nstart; end) address range.
1602 * Find first corresponding VMA.
1603 */
1604 if (!locked) {
1605 locked = 1;
1606 mmap_read_lock(mm);
1607 vma = find_vma(mm, nstart);
1608 } else if (nstart >= vma->vm_end)
1609 vma = vma->vm_next;
1610 if (!vma || vma->vm_start >= end)
1611 break;
1612 /*
1613 * Set [nstart; nend) to intersection of desired address
1614 * range with the first VMA. Also, skip undesirable VMA types.
1615 */
1616 nend = min(end, vma->vm_end);
1617 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1618 continue;
1619 if (nstart < vma->vm_start)
1620 nstart = vma->vm_start;
1621 /*
1622 * Now fault in a range of pages. populate_vma_page_range()
1623 * double checks the vma flags, so that it won't mlock pages
1624 * if the vma was already munlocked.
1625 */
1626 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1627 if (ret < 0) {
1628 if (ignore_errors) {
1629 ret = 0;
1630 continue; /* continue at next VMA */
1631 }
1632 break;
1633 }
1634 nend = nstart + ret * PAGE_SIZE;
1635 ret = 0;
1636 }
1637 if (locked)
1638 mmap_read_unlock(mm);
1639 return ret; /* 0 or negative error code */
1640 }
1641 #else /* CONFIG_MMU */
1642 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1643 unsigned long nr_pages, struct page **pages,
1644 struct vm_area_struct **vmas, int *locked,
1645 unsigned int foll_flags)
1646 {
1647 struct vm_area_struct *vma;
1648 unsigned long vm_flags;
1649 long i;
1650
1651 /* calculate required read or write permissions.
1652 * If FOLL_FORCE is set, we only require the "MAY" flags.
1653 */
1654 vm_flags = (foll_flags & FOLL_WRITE) ?
1655 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1656 vm_flags &= (foll_flags & FOLL_FORCE) ?
1657 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1658
1659 for (i = 0; i < nr_pages; i++) {
1660 vma = find_vma(mm, start);
1661 if (!vma)
1662 goto finish_or_fault;
1663
1664 /* protect what we can, including chardevs */
1665 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1666 !(vm_flags & vma->vm_flags))
1667 goto finish_or_fault;
1668
1669 if (pages) {
1670 pages[i] = virt_to_page(start);
1671 if (pages[i])
1672 get_page(pages[i]);
1673 }
1674 if (vmas)
1675 vmas[i] = vma;
1676 start = (start + PAGE_SIZE) & PAGE_MASK;
1677 }
1678
1679 return i;
1680
1681 finish_or_fault:
1682 return i ? : -EFAULT;
1683 }
1684 #endif /* !CONFIG_MMU */
1685
1686 /**
1687 * fault_in_writeable - fault in userspace address range for writing
1688 * @uaddr: start of address range
1689 * @size: size of address range
1690 *
1691 * Returns the number of bytes not faulted in (like copy_to_user() and
1692 * copy_from_user()).
1693 */
1694 size_t fault_in_writeable(char __user *uaddr, size_t size)
1695 {
1696 char __user *start = uaddr, *end;
1697
1698 if (unlikely(size == 0))
1699 return 0;
1700 if (!PAGE_ALIGNED(uaddr)) {
1701 if (unlikely(__put_user(0, uaddr) != 0))
1702 return size;
1703 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1704 }
1705 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1706 if (unlikely(end < start))
1707 end = NULL;
1708 while (uaddr != end) {
1709 if (unlikely(__put_user(0, uaddr) != 0))
1710 goto out;
1711 uaddr += PAGE_SIZE;
1712 }
1713
1714 out:
1715 if (size > uaddr - start)
1716 return size - (uaddr - start);
1717 return 0;
1718 }
1719 EXPORT_SYMBOL(fault_in_writeable);
1720
1721 /*
1722 * fault_in_safe_writeable - fault in an address range for writing
1723 * @uaddr: start of address range
1724 * @size: length of address range
1725 *
1726 * Faults in an address range for writing. This is primarily useful when we
1727 * already know that some or all of the pages in the address range aren't in
1728 * memory.
1729 *
1730 * Unlike fault_in_writeable(), this function is non-destructive.
1731 *
1732 * Note that we don't pin or otherwise hold the pages referenced that we fault
1733 * in. There's no guarantee that they'll stay in memory for any duration of
1734 * time.
1735 *
1736 * Returns the number of bytes not faulted in, like copy_to_user() and
1737 * copy_from_user().
1738 */
1739 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1740 {
1741 unsigned long start = (unsigned long)uaddr, end;
1742 struct mm_struct *mm = current->mm;
1743 bool unlocked = false;
1744
1745 if (unlikely(size == 0))
1746 return 0;
1747 end = PAGE_ALIGN(start + size);
1748 if (end < start)
1749 end = 0;
1750
1751 mmap_read_lock(mm);
1752 do {
1753 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1754 break;
1755 start = (start + PAGE_SIZE) & PAGE_MASK;
1756 } while (start != end);
1757 mmap_read_unlock(mm);
1758
1759 if (size > (unsigned long)uaddr - start)
1760 return size - ((unsigned long)uaddr - start);
1761 return 0;
1762 }
1763 EXPORT_SYMBOL(fault_in_safe_writeable);
1764
1765 /**
1766 * fault_in_readable - fault in userspace address range for reading
1767 * @uaddr: start of user address range
1768 * @size: size of user address range
1769 *
1770 * Returns the number of bytes not faulted in (like copy_to_user() and
1771 * copy_from_user()).
1772 */
1773 size_t fault_in_readable(const char __user *uaddr, size_t size)
1774 {
1775 const char __user *start = uaddr, *end;
1776 volatile char c;
1777
1778 if (unlikely(size == 0))
1779 return 0;
1780 if (!PAGE_ALIGNED(uaddr)) {
1781 if (unlikely(__get_user(c, uaddr) != 0))
1782 return size;
1783 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1784 }
1785 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1786 if (unlikely(end < start))
1787 end = NULL;
1788 while (uaddr != end) {
1789 if (unlikely(__get_user(c, uaddr) != 0))
1790 goto out;
1791 uaddr += PAGE_SIZE;
1792 }
1793
1794 out:
1795 (void)c;
1796 if (size > uaddr - start)
1797 return size - (uaddr - start);
1798 return 0;
1799 }
1800 EXPORT_SYMBOL(fault_in_readable);
1801
1802 /**
1803 * get_dump_page() - pin user page in memory while writing it to core dump
1804 * @addr: user address
1805 *
1806 * Returns struct page pointer of user page pinned for dump,
1807 * to be freed afterwards by put_page().
1808 *
1809 * Returns NULL on any kind of failure - a hole must then be inserted into
1810 * the corefile, to preserve alignment with its headers; and also returns
1811 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1812 * allowing a hole to be left in the corefile to save disk space.
1813 *
1814 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1815 */
1816 #ifdef CONFIG_ELF_CORE
1817 struct page *get_dump_page(unsigned long addr)
1818 {
1819 struct mm_struct *mm = current->mm;
1820 struct page *page;
1821 int locked = 1;
1822 int ret;
1823
1824 if (mmap_read_lock_killable(mm))
1825 return NULL;
1826 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1827 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1828 if (locked)
1829 mmap_read_unlock(mm);
1830 return (ret == 1) ? page : NULL;
1831 }
1832 #endif /* CONFIG_ELF_CORE */
1833
1834 #ifdef CONFIG_MIGRATION
1835 /*
1836 * Check whether all pages are pinnable, if so return number of pages. If some
1837 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1838 * pages were migrated, or if some pages were not successfully isolated.
1839 * Return negative error if migration fails.
1840 */
1841 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1842 struct page **pages,
1843 unsigned int gup_flags)
1844 {
1845 unsigned long i;
1846 unsigned long isolation_error_count = 0;
1847 bool drain_allow = true;
1848 LIST_HEAD(movable_page_list);
1849 long ret = 0;
1850 struct page *prev_head = NULL;
1851 struct page *head;
1852 struct migration_target_control mtc = {
1853 .nid = NUMA_NO_NODE,
1854 .gfp_mask = GFP_USER | __GFP_NOWARN,
1855 };
1856
1857 for (i = 0; i < nr_pages; i++) {
1858 head = compound_head(pages[i]);
1859 if (head == prev_head)
1860 continue;
1861 prev_head = head;
1862 /*
1863 * If we get a movable page, since we are going to be pinning
1864 * these entries, try to move them out if possible.
1865 */
1866 if (!is_pinnable_page(head)) {
1867 if (PageHuge(head)) {
1868 if (!isolate_huge_page(head, &movable_page_list))
1869 isolation_error_count++;
1870 } else {
1871 if (!PageLRU(head) && drain_allow) {
1872 lru_add_drain_all();
1873 drain_allow = false;
1874 }
1875
1876 if (isolate_lru_page(head)) {
1877 isolation_error_count++;
1878 continue;
1879 }
1880 list_add_tail(&head->lru, &movable_page_list);
1881 mod_node_page_state(page_pgdat(head),
1882 NR_ISOLATED_ANON +
1883 page_is_file_lru(head),
1884 thp_nr_pages(head));
1885 }
1886 }
1887 }
1888
1889 /*
1890 * If list is empty, and no isolation errors, means that all pages are
1891 * in the correct zone.
1892 */
1893 if (list_empty(&movable_page_list) && !isolation_error_count)
1894 return nr_pages;
1895
1896 if (gup_flags & FOLL_PIN) {
1897 unpin_user_pages(pages, nr_pages);
1898 } else {
1899 for (i = 0; i < nr_pages; i++)
1900 put_page(pages[i]);
1901 }
1902 if (!list_empty(&movable_page_list)) {
1903 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1904 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1905 MR_LONGTERM_PIN, NULL);
1906 if (ret && !list_empty(&movable_page_list))
1907 putback_movable_pages(&movable_page_list);
1908 }
1909
1910 return ret > 0 ? -ENOMEM : ret;
1911 }
1912 #else
1913 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1914 struct page **pages,
1915 unsigned int gup_flags)
1916 {
1917 return nr_pages;
1918 }
1919 #endif /* CONFIG_MIGRATION */
1920
1921 /*
1922 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1923 * allows us to process the FOLL_LONGTERM flag.
1924 */
1925 static long __gup_longterm_locked(struct mm_struct *mm,
1926 unsigned long start,
1927 unsigned long nr_pages,
1928 struct page **pages,
1929 struct vm_area_struct **vmas,
1930 unsigned int gup_flags)
1931 {
1932 unsigned int flags;
1933 long rc;
1934
1935 if (!(gup_flags & FOLL_LONGTERM))
1936 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1937 NULL, gup_flags);
1938 flags = memalloc_pin_save();
1939 do {
1940 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1941 NULL, gup_flags);
1942 if (rc <= 0)
1943 break;
1944 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1945 } while (!rc);
1946 memalloc_pin_restore(flags);
1947
1948 return rc;
1949 }
1950
1951 static bool is_valid_gup_flags(unsigned int gup_flags)
1952 {
1953 /*
1954 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1955 * never directly by the caller, so enforce that with an assertion:
1956 */
1957 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1958 return false;
1959 /*
1960 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1961 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1962 * FOLL_PIN.
1963 */
1964 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1965 return false;
1966
1967 return true;
1968 }
1969
1970 #ifdef CONFIG_MMU
1971 static long __get_user_pages_remote(struct mm_struct *mm,
1972 unsigned long start, unsigned long nr_pages,
1973 unsigned int gup_flags, struct page **pages,
1974 struct vm_area_struct **vmas, int *locked)
1975 {
1976 /*
1977 * Parts of FOLL_LONGTERM behavior are incompatible with
1978 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1979 * vmas. However, this only comes up if locked is set, and there are
1980 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1981 * allow what we can.
1982 */
1983 if (gup_flags & FOLL_LONGTERM) {
1984 if (WARN_ON_ONCE(locked))
1985 return -EINVAL;
1986 /*
1987 * This will check the vmas (even if our vmas arg is NULL)
1988 * and return -ENOTSUPP if DAX isn't allowed in this case:
1989 */
1990 return __gup_longterm_locked(mm, start, nr_pages, pages,
1991 vmas, gup_flags | FOLL_TOUCH |
1992 FOLL_REMOTE);
1993 }
1994
1995 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1996 locked,
1997 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1998 }
1999
2000 /**
2001 * get_user_pages_remote() - pin user pages in memory
2002 * @mm: mm_struct of target mm
2003 * @start: starting user address
2004 * @nr_pages: number of pages from start to pin
2005 * @gup_flags: flags modifying lookup behaviour
2006 * @pages: array that receives pointers to the pages pinned.
2007 * Should be at least nr_pages long. Or NULL, if caller
2008 * only intends to ensure the pages are faulted in.
2009 * @vmas: array of pointers to vmas corresponding to each page.
2010 * Or NULL if the caller does not require them.
2011 * @locked: pointer to lock flag indicating whether lock is held and
2012 * subsequently whether VM_FAULT_RETRY functionality can be
2013 * utilised. Lock must initially be held.
2014 *
2015 * Returns either number of pages pinned (which may be less than the
2016 * number requested), or an error. Details about the return value:
2017 *
2018 * -- If nr_pages is 0, returns 0.
2019 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2020 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2021 * pages pinned. Again, this may be less than nr_pages.
2022 *
2023 * The caller is responsible for releasing returned @pages, via put_page().
2024 *
2025 * @vmas are valid only as long as mmap_lock is held.
2026 *
2027 * Must be called with mmap_lock held for read or write.
2028 *
2029 * get_user_pages_remote walks a process's page tables and takes a reference
2030 * to each struct page that each user address corresponds to at a given
2031 * instant. That is, it takes the page that would be accessed if a user
2032 * thread accesses the given user virtual address at that instant.
2033 *
2034 * This does not guarantee that the page exists in the user mappings when
2035 * get_user_pages_remote returns, and there may even be a completely different
2036 * page there in some cases (eg. if mmapped pagecache has been invalidated
2037 * and subsequently re faulted). However it does guarantee that the page
2038 * won't be freed completely. And mostly callers simply care that the page
2039 * contains data that was valid *at some point in time*. Typically, an IO
2040 * or similar operation cannot guarantee anything stronger anyway because
2041 * locks can't be held over the syscall boundary.
2042 *
2043 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2044 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2045 * be called after the page is finished with, and before put_page is called.
2046 *
2047 * get_user_pages_remote is typically used for fewer-copy IO operations,
2048 * to get a handle on the memory by some means other than accesses
2049 * via the user virtual addresses. The pages may be submitted for
2050 * DMA to devices or accessed via their kernel linear mapping (via the
2051 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2052 *
2053 * See also get_user_pages_fast, for performance critical applications.
2054 *
2055 * get_user_pages_remote should be phased out in favor of
2056 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2057 * should use get_user_pages_remote because it cannot pass
2058 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2059 */
2060 long get_user_pages_remote(struct mm_struct *mm,
2061 unsigned long start, unsigned long nr_pages,
2062 unsigned int gup_flags, struct page **pages,
2063 struct vm_area_struct **vmas, int *locked)
2064 {
2065 if (!is_valid_gup_flags(gup_flags))
2066 return -EINVAL;
2067
2068 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2069 pages, vmas, locked);
2070 }
2071 EXPORT_SYMBOL(get_user_pages_remote);
2072
2073 #else /* CONFIG_MMU */
2074 long get_user_pages_remote(struct mm_struct *mm,
2075 unsigned long start, unsigned long nr_pages,
2076 unsigned int gup_flags, struct page **pages,
2077 struct vm_area_struct **vmas, int *locked)
2078 {
2079 return 0;
2080 }
2081
2082 static long __get_user_pages_remote(struct mm_struct *mm,
2083 unsigned long start, unsigned long nr_pages,
2084 unsigned int gup_flags, struct page **pages,
2085 struct vm_area_struct **vmas, int *locked)
2086 {
2087 return 0;
2088 }
2089 #endif /* !CONFIG_MMU */
2090
2091 /**
2092 * get_user_pages() - pin user pages in memory
2093 * @start: starting user address
2094 * @nr_pages: number of pages from start to pin
2095 * @gup_flags: flags modifying lookup behaviour
2096 * @pages: array that receives pointers to the pages pinned.
2097 * Should be at least nr_pages long. Or NULL, if caller
2098 * only intends to ensure the pages are faulted in.
2099 * @vmas: array of pointers to vmas corresponding to each page.
2100 * Or NULL if the caller does not require them.
2101 *
2102 * This is the same as get_user_pages_remote(), just with a less-flexible
2103 * calling convention where we assume that the mm being operated on belongs to
2104 * the current task, and doesn't allow passing of a locked parameter. We also
2105 * obviously don't pass FOLL_REMOTE in here.
2106 */
2107 long get_user_pages(unsigned long start, unsigned long nr_pages,
2108 unsigned int gup_flags, struct page **pages,
2109 struct vm_area_struct **vmas)
2110 {
2111 if (!is_valid_gup_flags(gup_flags))
2112 return -EINVAL;
2113
2114 return __gup_longterm_locked(current->mm, start, nr_pages,
2115 pages, vmas, gup_flags | FOLL_TOUCH);
2116 }
2117 EXPORT_SYMBOL(get_user_pages);
2118
2119 /**
2120 * get_user_pages_locked() - variant of get_user_pages()
2121 *
2122 * @start: starting user address
2123 * @nr_pages: number of pages from start to pin
2124 * @gup_flags: flags modifying lookup behaviour
2125 * @pages: array that receives pointers to the pages pinned.
2126 * Should be at least nr_pages long. Or NULL, if caller
2127 * only intends to ensure the pages are faulted in.
2128 * @locked: pointer to lock flag indicating whether lock is held and
2129 * subsequently whether VM_FAULT_RETRY functionality can be
2130 * utilised. Lock must initially be held.
2131 *
2132 * It is suitable to replace the form:
2133 *
2134 * mmap_read_lock(mm);
2135 * do_something()
2136 * get_user_pages(mm, ..., pages, NULL);
2137 * mmap_read_unlock(mm);
2138 *
2139 * to:
2140 *
2141 * int locked = 1;
2142 * mmap_read_lock(mm);
2143 * do_something()
2144 * get_user_pages_locked(mm, ..., pages, &locked);
2145 * if (locked)
2146 * mmap_read_unlock(mm);
2147 *
2148 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2149 * paths better by using either get_user_pages_locked() or
2150 * get_user_pages_unlocked().
2151 *
2152 */
2153 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2154 unsigned int gup_flags, struct page **pages,
2155 int *locked)
2156 {
2157 /*
2158 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2159 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2160 * vmas. As there are no users of this flag in this call we simply
2161 * disallow this option for now.
2162 */
2163 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2164 return -EINVAL;
2165 /*
2166 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2167 * never directly by the caller, so enforce that:
2168 */
2169 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2170 return -EINVAL;
2171
2172 return __get_user_pages_locked(current->mm, start, nr_pages,
2173 pages, NULL, locked,
2174 gup_flags | FOLL_TOUCH);
2175 }
2176 EXPORT_SYMBOL(get_user_pages_locked);
2177
2178 /*
2179 * get_user_pages_unlocked() is suitable to replace the form:
2180 *
2181 * mmap_read_lock(mm);
2182 * get_user_pages(mm, ..., pages, NULL);
2183 * mmap_read_unlock(mm);
2184 *
2185 * with:
2186 *
2187 * get_user_pages_unlocked(mm, ..., pages);
2188 *
2189 * It is functionally equivalent to get_user_pages_fast so
2190 * get_user_pages_fast should be used instead if specific gup_flags
2191 * (e.g. FOLL_FORCE) are not required.
2192 */
2193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2194 struct page **pages, unsigned int gup_flags)
2195 {
2196 struct mm_struct *mm = current->mm;
2197 int locked = 1;
2198 long ret;
2199
2200 /*
2201 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2202 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2203 * vmas. As there are no users of this flag in this call we simply
2204 * disallow this option for now.
2205 */
2206 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2207 return -EINVAL;
2208
2209 mmap_read_lock(mm);
2210 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2211 &locked, gup_flags | FOLL_TOUCH);
2212 if (locked)
2213 mmap_read_unlock(mm);
2214 return ret;
2215 }
2216 EXPORT_SYMBOL(get_user_pages_unlocked);
2217
2218 /*
2219 * Fast GUP
2220 *
2221 * get_user_pages_fast attempts to pin user pages by walking the page
2222 * tables directly and avoids taking locks. Thus the walker needs to be
2223 * protected from page table pages being freed from under it, and should
2224 * block any THP splits.
2225 *
2226 * One way to achieve this is to have the walker disable interrupts, and
2227 * rely on IPIs from the TLB flushing code blocking before the page table
2228 * pages are freed. This is unsuitable for architectures that do not need
2229 * to broadcast an IPI when invalidating TLBs.
2230 *
2231 * Another way to achieve this is to batch up page table containing pages
2232 * belonging to more than one mm_user, then rcu_sched a callback to free those
2233 * pages. Disabling interrupts will allow the fast_gup walker to both block
2234 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2235 * (which is a relatively rare event). The code below adopts this strategy.
2236 *
2237 * Before activating this code, please be aware that the following assumptions
2238 * are currently made:
2239 *
2240 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2241 * free pages containing page tables or TLB flushing requires IPI broadcast.
2242 *
2243 * *) ptes can be read atomically by the architecture.
2244 *
2245 * *) access_ok is sufficient to validate userspace address ranges.
2246 *
2247 * The last two assumptions can be relaxed by the addition of helper functions.
2248 *
2249 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2250 */
2251 #ifdef CONFIG_HAVE_FAST_GUP
2252
2253 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2254 unsigned int flags,
2255 struct page **pages)
2256 {
2257 while ((*nr) - nr_start) {
2258 struct page *page = pages[--(*nr)];
2259
2260 ClearPageReferenced(page);
2261 if (flags & FOLL_PIN)
2262 unpin_user_page(page);
2263 else
2264 put_page(page);
2265 }
2266 }
2267
2268 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2269 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2270 unsigned int flags, struct page **pages, int *nr)
2271 {
2272 struct dev_pagemap *pgmap = NULL;
2273 int nr_start = *nr, ret = 0;
2274 pte_t *ptep, *ptem;
2275
2276 ptem = ptep = pte_offset_map(&pmd, addr);
2277 do {
2278 pte_t pte = ptep_get_lockless(ptep);
2279 struct page *head, *page;
2280
2281 /*
2282 * Similar to the PMD case below, NUMA hinting must take slow
2283 * path using the pte_protnone check.
2284 */
2285 if (pte_protnone(pte))
2286 goto pte_unmap;
2287
2288 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2289 goto pte_unmap;
2290
2291 if (pte_devmap(pte)) {
2292 if (unlikely(flags & FOLL_LONGTERM))
2293 goto pte_unmap;
2294
2295 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2296 if (unlikely(!pgmap)) {
2297 undo_dev_pagemap(nr, nr_start, flags, pages);
2298 goto pte_unmap;
2299 }
2300 } else if (pte_special(pte))
2301 goto pte_unmap;
2302
2303 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2304 page = pte_page(pte);
2305
2306 head = try_grab_compound_head(page, 1, flags);
2307 if (!head)
2308 goto pte_unmap;
2309
2310 if (unlikely(page_is_secretmem(page))) {
2311 put_compound_head(head, 1, flags);
2312 goto pte_unmap;
2313 }
2314
2315 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2316 put_compound_head(head, 1, flags);
2317 goto pte_unmap;
2318 }
2319
2320 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2321
2322 /*
2323 * We need to make the page accessible if and only if we are
2324 * going to access its content (the FOLL_PIN case). Please
2325 * see Documentation/core-api/pin_user_pages.rst for
2326 * details.
2327 */
2328 if (flags & FOLL_PIN) {
2329 ret = arch_make_page_accessible(page);
2330 if (ret) {
2331 unpin_user_page(page);
2332 goto pte_unmap;
2333 }
2334 }
2335 SetPageReferenced(page);
2336 pages[*nr] = page;
2337 (*nr)++;
2338
2339 } while (ptep++, addr += PAGE_SIZE, addr != end);
2340
2341 ret = 1;
2342
2343 pte_unmap:
2344 if (pgmap)
2345 put_dev_pagemap(pgmap);
2346 pte_unmap(ptem);
2347 return ret;
2348 }
2349 #else
2350
2351 /*
2352 * If we can't determine whether or not a pte is special, then fail immediately
2353 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2354 * to be special.
2355 *
2356 * For a futex to be placed on a THP tail page, get_futex_key requires a
2357 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2358 * useful to have gup_huge_pmd even if we can't operate on ptes.
2359 */
2360 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2361 unsigned int flags, struct page **pages, int *nr)
2362 {
2363 return 0;
2364 }
2365 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2366
2367 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2368 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2369 unsigned long end, unsigned int flags,
2370 struct page **pages, int *nr)
2371 {
2372 int nr_start = *nr;
2373 struct dev_pagemap *pgmap = NULL;
2374 int ret = 1;
2375
2376 do {
2377 struct page *page = pfn_to_page(pfn);
2378
2379 pgmap = get_dev_pagemap(pfn, pgmap);
2380 if (unlikely(!pgmap)) {
2381 undo_dev_pagemap(nr, nr_start, flags, pages);
2382 ret = 0;
2383 break;
2384 }
2385 SetPageReferenced(page);
2386 pages[*nr] = page;
2387 if (unlikely(!try_grab_page(page, flags))) {
2388 undo_dev_pagemap(nr, nr_start, flags, pages);
2389 ret = 0;
2390 break;
2391 }
2392 (*nr)++;
2393 pfn++;
2394 } while (addr += PAGE_SIZE, addr != end);
2395
2396 put_dev_pagemap(pgmap);
2397 return ret;
2398 }
2399
2400 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2401 unsigned long end, unsigned int flags,
2402 struct page **pages, int *nr)
2403 {
2404 unsigned long fault_pfn;
2405 int nr_start = *nr;
2406
2407 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2408 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2409 return 0;
2410
2411 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2412 undo_dev_pagemap(nr, nr_start, flags, pages);
2413 return 0;
2414 }
2415 return 1;
2416 }
2417
2418 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2419 unsigned long end, unsigned int flags,
2420 struct page **pages, int *nr)
2421 {
2422 unsigned long fault_pfn;
2423 int nr_start = *nr;
2424
2425 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2426 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2427 return 0;
2428
2429 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2430 undo_dev_pagemap(nr, nr_start, flags, pages);
2431 return 0;
2432 }
2433 return 1;
2434 }
2435 #else
2436 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2437 unsigned long end, unsigned int flags,
2438 struct page **pages, int *nr)
2439 {
2440 BUILD_BUG();
2441 return 0;
2442 }
2443
2444 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2445 unsigned long end, unsigned int flags,
2446 struct page **pages, int *nr)
2447 {
2448 BUILD_BUG();
2449 return 0;
2450 }
2451 #endif
2452
2453 static int record_subpages(struct page *page, unsigned long addr,
2454 unsigned long end, struct page **pages)
2455 {
2456 int nr;
2457
2458 for (nr = 0; addr != end; addr += PAGE_SIZE)
2459 pages[nr++] = page++;
2460
2461 return nr;
2462 }
2463
2464 #ifdef CONFIG_ARCH_HAS_HUGEPD
2465 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2466 unsigned long sz)
2467 {
2468 unsigned long __boundary = (addr + sz) & ~(sz-1);
2469 return (__boundary - 1 < end - 1) ? __boundary : end;
2470 }
2471
2472 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2473 unsigned long end, unsigned int flags,
2474 struct page **pages, int *nr)
2475 {
2476 unsigned long pte_end;
2477 struct page *head, *page;
2478 pte_t pte;
2479 int refs;
2480
2481 pte_end = (addr + sz) & ~(sz-1);
2482 if (pte_end < end)
2483 end = pte_end;
2484
2485 pte = huge_ptep_get(ptep);
2486
2487 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2488 return 0;
2489
2490 /* hugepages are never "special" */
2491 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2492
2493 head = pte_page(pte);
2494 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2495 refs = record_subpages(page, addr, end, pages + *nr);
2496
2497 head = try_grab_compound_head(head, refs, flags);
2498 if (!head)
2499 return 0;
2500
2501 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2502 put_compound_head(head, refs, flags);
2503 return 0;
2504 }
2505
2506 *nr += refs;
2507 SetPageReferenced(head);
2508 return 1;
2509 }
2510
2511 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2512 unsigned int pdshift, unsigned long end, unsigned int flags,
2513 struct page **pages, int *nr)
2514 {
2515 pte_t *ptep;
2516 unsigned long sz = 1UL << hugepd_shift(hugepd);
2517 unsigned long next;
2518
2519 ptep = hugepte_offset(hugepd, addr, pdshift);
2520 do {
2521 next = hugepte_addr_end(addr, end, sz);
2522 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2523 return 0;
2524 } while (ptep++, addr = next, addr != end);
2525
2526 return 1;
2527 }
2528 #else
2529 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2530 unsigned int pdshift, unsigned long end, unsigned int flags,
2531 struct page **pages, int *nr)
2532 {
2533 return 0;
2534 }
2535 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2536
2537 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2538 unsigned long end, unsigned int flags,
2539 struct page **pages, int *nr)
2540 {
2541 struct page *head, *page;
2542 int refs;
2543
2544 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2545 return 0;
2546
2547 if (pmd_devmap(orig)) {
2548 if (unlikely(flags & FOLL_LONGTERM))
2549 return 0;
2550 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2551 pages, nr);
2552 }
2553
2554 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2555 refs = record_subpages(page, addr, end, pages + *nr);
2556
2557 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2558 if (!head)
2559 return 0;
2560
2561 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2562 put_compound_head(head, refs, flags);
2563 return 0;
2564 }
2565
2566 *nr += refs;
2567 SetPageReferenced(head);
2568 return 1;
2569 }
2570
2571 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2572 unsigned long end, unsigned int flags,
2573 struct page **pages, int *nr)
2574 {
2575 struct page *head, *page;
2576 int refs;
2577
2578 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2579 return 0;
2580
2581 if (pud_devmap(orig)) {
2582 if (unlikely(flags & FOLL_LONGTERM))
2583 return 0;
2584 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2585 pages, nr);
2586 }
2587
2588 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2589 refs = record_subpages(page, addr, end, pages + *nr);
2590
2591 head = try_grab_compound_head(pud_page(orig), refs, flags);
2592 if (!head)
2593 return 0;
2594
2595 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2596 put_compound_head(head, refs, flags);
2597 return 0;
2598 }
2599
2600 *nr += refs;
2601 SetPageReferenced(head);
2602 return 1;
2603 }
2604
2605 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2606 unsigned long end, unsigned int flags,
2607 struct page **pages, int *nr)
2608 {
2609 int refs;
2610 struct page *head, *page;
2611
2612 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2613 return 0;
2614
2615 BUILD_BUG_ON(pgd_devmap(orig));
2616
2617 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2618 refs = record_subpages(page, addr, end, pages + *nr);
2619
2620 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2621 if (!head)
2622 return 0;
2623
2624 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2625 put_compound_head(head, refs, flags);
2626 return 0;
2627 }
2628
2629 *nr += refs;
2630 SetPageReferenced(head);
2631 return 1;
2632 }
2633
2634 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2635 unsigned int flags, struct page **pages, int *nr)
2636 {
2637 unsigned long next;
2638 pmd_t *pmdp;
2639
2640 pmdp = pmd_offset_lockless(pudp, pud, addr);
2641 do {
2642 pmd_t pmd = READ_ONCE(*pmdp);
2643
2644 next = pmd_addr_end(addr, end);
2645 if (!pmd_present(pmd))
2646 return 0;
2647
2648 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2649 pmd_devmap(pmd))) {
2650 /*
2651 * NUMA hinting faults need to be handled in the GUP
2652 * slowpath for accounting purposes and so that they
2653 * can be serialised against THP migration.
2654 */
2655 if (pmd_protnone(pmd))
2656 return 0;
2657
2658 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2659 pages, nr))
2660 return 0;
2661
2662 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2663 /*
2664 * architecture have different format for hugetlbfs
2665 * pmd format and THP pmd format
2666 */
2667 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2668 PMD_SHIFT, next, flags, pages, nr))
2669 return 0;
2670 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2671 return 0;
2672 } while (pmdp++, addr = next, addr != end);
2673
2674 return 1;
2675 }
2676
2677 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2678 unsigned int flags, struct page **pages, int *nr)
2679 {
2680 unsigned long next;
2681 pud_t *pudp;
2682
2683 pudp = pud_offset_lockless(p4dp, p4d, addr);
2684 do {
2685 pud_t pud = READ_ONCE(*pudp);
2686
2687 next = pud_addr_end(addr, end);
2688 if (unlikely(!pud_present(pud)))
2689 return 0;
2690 if (unlikely(pud_huge(pud))) {
2691 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2692 pages, nr))
2693 return 0;
2694 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2695 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2696 PUD_SHIFT, next, flags, pages, nr))
2697 return 0;
2698 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2699 return 0;
2700 } while (pudp++, addr = next, addr != end);
2701
2702 return 1;
2703 }
2704
2705 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2706 unsigned int flags, struct page **pages, int *nr)
2707 {
2708 unsigned long next;
2709 p4d_t *p4dp;
2710
2711 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2712 do {
2713 p4d_t p4d = READ_ONCE(*p4dp);
2714
2715 next = p4d_addr_end(addr, end);
2716 if (p4d_none(p4d))
2717 return 0;
2718 BUILD_BUG_ON(p4d_huge(p4d));
2719 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2720 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2721 P4D_SHIFT, next, flags, pages, nr))
2722 return 0;
2723 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2724 return 0;
2725 } while (p4dp++, addr = next, addr != end);
2726
2727 return 1;
2728 }
2729
2730 static void gup_pgd_range(unsigned long addr, unsigned long end,
2731 unsigned int flags, struct page **pages, int *nr)
2732 {
2733 unsigned long next;
2734 pgd_t *pgdp;
2735
2736 pgdp = pgd_offset(current->mm, addr);
2737 do {
2738 pgd_t pgd = READ_ONCE(*pgdp);
2739
2740 next = pgd_addr_end(addr, end);
2741 if (pgd_none(pgd))
2742 return;
2743 if (unlikely(pgd_huge(pgd))) {
2744 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2745 pages, nr))
2746 return;
2747 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2748 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2749 PGDIR_SHIFT, next, flags, pages, nr))
2750 return;
2751 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2752 return;
2753 } while (pgdp++, addr = next, addr != end);
2754 }
2755 #else
2756 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2757 unsigned int flags, struct page **pages, int *nr)
2758 {
2759 }
2760 #endif /* CONFIG_HAVE_FAST_GUP */
2761
2762 #ifndef gup_fast_permitted
2763 /*
2764 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2765 * we need to fall back to the slow version:
2766 */
2767 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2768 {
2769 return true;
2770 }
2771 #endif
2772
2773 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2774 unsigned int gup_flags, struct page **pages)
2775 {
2776 int ret;
2777
2778 /*
2779 * FIXME: FOLL_LONGTERM does not work with
2780 * get_user_pages_unlocked() (see comments in that function)
2781 */
2782 if (gup_flags & FOLL_LONGTERM) {
2783 mmap_read_lock(current->mm);
2784 ret = __gup_longterm_locked(current->mm,
2785 start, nr_pages,
2786 pages, NULL, gup_flags);
2787 mmap_read_unlock(current->mm);
2788 } else {
2789 ret = get_user_pages_unlocked(start, nr_pages,
2790 pages, gup_flags);
2791 }
2792
2793 return ret;
2794 }
2795
2796 static unsigned long lockless_pages_from_mm(unsigned long start,
2797 unsigned long end,
2798 unsigned int gup_flags,
2799 struct page **pages)
2800 {
2801 unsigned long flags;
2802 int nr_pinned = 0;
2803 unsigned seq;
2804
2805 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2806 !gup_fast_permitted(start, end))
2807 return 0;
2808
2809 if (gup_flags & FOLL_PIN) {
2810 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2811 if (seq & 1)
2812 return 0;
2813 }
2814
2815 /*
2816 * Disable interrupts. The nested form is used, in order to allow full,
2817 * general purpose use of this routine.
2818 *
2819 * With interrupts disabled, we block page table pages from being freed
2820 * from under us. See struct mmu_table_batch comments in
2821 * include/asm-generic/tlb.h for more details.
2822 *
2823 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2824 * that come from THPs splitting.
2825 */
2826 local_irq_save(flags);
2827 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2828 local_irq_restore(flags);
2829
2830 /*
2831 * When pinning pages for DMA there could be a concurrent write protect
2832 * from fork() via copy_page_range(), in this case always fail fast GUP.
2833 */
2834 if (gup_flags & FOLL_PIN) {
2835 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2836 unpin_user_pages(pages, nr_pinned);
2837 return 0;
2838 }
2839 }
2840 return nr_pinned;
2841 }
2842
2843 static int internal_get_user_pages_fast(unsigned long start,
2844 unsigned long nr_pages,
2845 unsigned int gup_flags,
2846 struct page **pages)
2847 {
2848 unsigned long len, end;
2849 unsigned long nr_pinned;
2850 int ret;
2851
2852 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2853 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2854 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2855 return -EINVAL;
2856
2857 if (gup_flags & FOLL_PIN)
2858 mm_set_has_pinned_flag(&current->mm->flags);
2859
2860 if (!(gup_flags & FOLL_FAST_ONLY))
2861 might_lock_read(&current->mm->mmap_lock);
2862
2863 start = untagged_addr(start) & PAGE_MASK;
2864 len = nr_pages << PAGE_SHIFT;
2865 if (check_add_overflow(start, len, &end))
2866 return 0;
2867 if (unlikely(!access_ok((void __user *)start, len)))
2868 return -EFAULT;
2869
2870 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2871 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2872 return nr_pinned;
2873
2874 /* Slow path: try to get the remaining pages with get_user_pages */
2875 start += nr_pinned << PAGE_SHIFT;
2876 pages += nr_pinned;
2877 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2878 pages);
2879 if (ret < 0) {
2880 /*
2881 * The caller has to unpin the pages we already pinned so
2882 * returning -errno is not an option
2883 */
2884 if (nr_pinned)
2885 return nr_pinned;
2886 return ret;
2887 }
2888 return ret + nr_pinned;
2889 }
2890
2891 /**
2892 * get_user_pages_fast_only() - pin user pages in memory
2893 * @start: starting user address
2894 * @nr_pages: number of pages from start to pin
2895 * @gup_flags: flags modifying pin behaviour
2896 * @pages: array that receives pointers to the pages pinned.
2897 * Should be at least nr_pages long.
2898 *
2899 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2900 * the regular GUP.
2901 * Note a difference with get_user_pages_fast: this always returns the
2902 * number of pages pinned, 0 if no pages were pinned.
2903 *
2904 * If the architecture does not support this function, simply return with no
2905 * pages pinned.
2906 *
2907 * Careful, careful! COW breaking can go either way, so a non-write
2908 * access can get ambiguous page results. If you call this function without
2909 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2910 */
2911 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2912 unsigned int gup_flags, struct page **pages)
2913 {
2914 int nr_pinned;
2915 /*
2916 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2917 * because gup fast is always a "pin with a +1 page refcount" request.
2918 *
2919 * FOLL_FAST_ONLY is required in order to match the API description of
2920 * this routine: no fall back to regular ("slow") GUP.
2921 */
2922 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2923
2924 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2925 pages);
2926
2927 /*
2928 * As specified in the API description above, this routine is not
2929 * allowed to return negative values. However, the common core
2930 * routine internal_get_user_pages_fast() *can* return -errno.
2931 * Therefore, correct for that here:
2932 */
2933 if (nr_pinned < 0)
2934 nr_pinned = 0;
2935
2936 return nr_pinned;
2937 }
2938 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2939
2940 /**
2941 * get_user_pages_fast() - pin user pages in memory
2942 * @start: starting user address
2943 * @nr_pages: number of pages from start to pin
2944 * @gup_flags: flags modifying pin behaviour
2945 * @pages: array that receives pointers to the pages pinned.
2946 * Should be at least nr_pages long.
2947 *
2948 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2949 * If not successful, it will fall back to taking the lock and
2950 * calling get_user_pages().
2951 *
2952 * Returns number of pages pinned. This may be fewer than the number requested.
2953 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2954 * -errno.
2955 */
2956 int get_user_pages_fast(unsigned long start, int nr_pages,
2957 unsigned int gup_flags, struct page **pages)
2958 {
2959 if (!is_valid_gup_flags(gup_flags))
2960 return -EINVAL;
2961
2962 /*
2963 * The caller may or may not have explicitly set FOLL_GET; either way is
2964 * OK. However, internally (within mm/gup.c), gup fast variants must set
2965 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2966 * request.
2967 */
2968 gup_flags |= FOLL_GET;
2969 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2970 }
2971 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2972
2973 /**
2974 * pin_user_pages_fast() - pin user pages in memory without taking locks
2975 *
2976 * @start: starting user address
2977 * @nr_pages: number of pages from start to pin
2978 * @gup_flags: flags modifying pin behaviour
2979 * @pages: array that receives pointers to the pages pinned.
2980 * Should be at least nr_pages long.
2981 *
2982 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2983 * get_user_pages_fast() for documentation on the function arguments, because
2984 * the arguments here are identical.
2985 *
2986 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2987 * see Documentation/core-api/pin_user_pages.rst for further details.
2988 */
2989 int pin_user_pages_fast(unsigned long start, int nr_pages,
2990 unsigned int gup_flags, struct page **pages)
2991 {
2992 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2993 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2994 return -EINVAL;
2995
2996 gup_flags |= FOLL_PIN;
2997 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2998 }
2999 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3000
3001 /*
3002 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3003 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3004 *
3005 * The API rules are the same, too: no negative values may be returned.
3006 */
3007 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3008 unsigned int gup_flags, struct page **pages)
3009 {
3010 int nr_pinned;
3011
3012 /*
3013 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3014 * rules require returning 0, rather than -errno:
3015 */
3016 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3017 return 0;
3018 /*
3019 * FOLL_FAST_ONLY is required in order to match the API description of
3020 * this routine: no fall back to regular ("slow") GUP.
3021 */
3022 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3023 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3024 pages);
3025 /*
3026 * This routine is not allowed to return negative values. However,
3027 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3028 * correct for that here:
3029 */
3030 if (nr_pinned < 0)
3031 nr_pinned = 0;
3032
3033 return nr_pinned;
3034 }
3035 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3036
3037 /**
3038 * pin_user_pages_remote() - pin pages of a remote process
3039 *
3040 * @mm: mm_struct of target mm
3041 * @start: starting user address
3042 * @nr_pages: number of pages from start to pin
3043 * @gup_flags: flags modifying lookup behaviour
3044 * @pages: array that receives pointers to the pages pinned.
3045 * Should be at least nr_pages long. Or NULL, if caller
3046 * only intends to ensure the pages are faulted in.
3047 * @vmas: array of pointers to vmas corresponding to each page.
3048 * Or NULL if the caller does not require them.
3049 * @locked: pointer to lock flag indicating whether lock is held and
3050 * subsequently whether VM_FAULT_RETRY functionality can be
3051 * utilised. Lock must initially be held.
3052 *
3053 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3054 * get_user_pages_remote() for documentation on the function arguments, because
3055 * the arguments here are identical.
3056 *
3057 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3058 * see Documentation/core-api/pin_user_pages.rst for details.
3059 */
3060 long pin_user_pages_remote(struct mm_struct *mm,
3061 unsigned long start, unsigned long nr_pages,
3062 unsigned int gup_flags, struct page **pages,
3063 struct vm_area_struct **vmas, int *locked)
3064 {
3065 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3066 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3067 return -EINVAL;
3068
3069 gup_flags |= FOLL_PIN;
3070 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3071 pages, vmas, locked);
3072 }
3073 EXPORT_SYMBOL(pin_user_pages_remote);
3074
3075 /**
3076 * pin_user_pages() - pin user pages in memory for use by other devices
3077 *
3078 * @start: starting user address
3079 * @nr_pages: number of pages from start to pin
3080 * @gup_flags: flags modifying lookup behaviour
3081 * @pages: array that receives pointers to the pages pinned.
3082 * Should be at least nr_pages long. Or NULL, if caller
3083 * only intends to ensure the pages are faulted in.
3084 * @vmas: array of pointers to vmas corresponding to each page.
3085 * Or NULL if the caller does not require them.
3086 *
3087 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3088 * FOLL_PIN is set.
3089 *
3090 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3091 * see Documentation/core-api/pin_user_pages.rst for details.
3092 */
3093 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3094 unsigned int gup_flags, struct page **pages,
3095 struct vm_area_struct **vmas)
3096 {
3097 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3098 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3099 return -EINVAL;
3100
3101 gup_flags |= FOLL_PIN;
3102 return __gup_longterm_locked(current->mm, start, nr_pages,
3103 pages, vmas, gup_flags);
3104 }
3105 EXPORT_SYMBOL(pin_user_pages);
3106
3107 /*
3108 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3109 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3110 * FOLL_PIN and rejects FOLL_GET.
3111 */
3112 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3113 struct page **pages, unsigned int gup_flags)
3114 {
3115 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3116 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3117 return -EINVAL;
3118
3119 gup_flags |= FOLL_PIN;
3120 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3121 }
3122 EXPORT_SYMBOL(pin_user_pages_unlocked);
3123
3124 /*
3125 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3126 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3127 * FOLL_GET.
3128 */
3129 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3130 unsigned int gup_flags, struct page **pages,
3131 int *locked)
3132 {
3133 /*
3134 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3135 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3136 * vmas. As there are no users of this flag in this call we simply
3137 * disallow this option for now.
3138 */
3139 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3140 return -EINVAL;
3141
3142 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3143 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3144 return -EINVAL;
3145
3146 gup_flags |= FOLL_PIN;
3147 return __get_user_pages_locked(current->mm, start, nr_pages,
3148 pages, NULL, locked,
3149 gup_flags | FOLL_TOUCH);
3150 }
3151 EXPORT_SYMBOL(pin_user_pages_locked);