]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/gup.c
scsi: aic7xxx: fix EISA support
[mirror_ubuntu-bionic-kernel.git] / mm / gup.c
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20
21 #include "internal.h"
22
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
25 {
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37 }
38
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41 {
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61 }
62
63 /*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 struct mm_struct *mm = vma->vm_mm;
77 struct dev_pagemap *pgmap = NULL;
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
81
82 retry:
83 if (unlikely(pmd_bad(*pmd)))
84 return no_page_table(vma, flags);
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
97 if (pte_none(pte))
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
104 goto retry;
105 }
106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 goto no_page;
108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
112
113 page = vm_normal_page(vma, address, pte);
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
140 }
141
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
155 if (flags & FOLL_GET) {
156 if (unlikely(!try_get_page(page))) {
157 page = ERR_PTR(-ENOMEM);
158 goto out;
159 }
160
161 /* drop the pgmap reference now that we hold the page */
162 if (pgmap) {
163 put_dev_pagemap(pgmap);
164 pgmap = NULL;
165 }
166 }
167 if (flags & FOLL_TOUCH) {
168 if ((flags & FOLL_WRITE) &&
169 !pte_dirty(pte) && !PageDirty(page))
170 set_page_dirty(page);
171 /*
172 * pte_mkyoung() would be more correct here, but atomic care
173 * is needed to avoid losing the dirty bit: it is easier to use
174 * mark_page_accessed().
175 */
176 mark_page_accessed(page);
177 }
178 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
179 /* Do not mlock pte-mapped THP */
180 if (PageTransCompound(page))
181 goto out;
182
183 /*
184 * The preliminary mapping check is mainly to avoid the
185 * pointless overhead of lock_page on the ZERO_PAGE
186 * which might bounce very badly if there is contention.
187 *
188 * If the page is already locked, we don't need to
189 * handle it now - vmscan will handle it later if and
190 * when it attempts to reclaim the page.
191 */
192 if (page->mapping && trylock_page(page)) {
193 lru_add_drain(); /* push cached pages to LRU */
194 /*
195 * Because we lock page here, and migration is
196 * blocked by the pte's page reference, and we
197 * know the page is still mapped, we don't even
198 * need to check for file-cache page truncation.
199 */
200 mlock_vma_page(page);
201 unlock_page(page);
202 }
203 }
204 out:
205 pte_unmap_unlock(ptep, ptl);
206 return page;
207 no_page:
208 pte_unmap_unlock(ptep, ptl);
209 if (!pte_none(pte))
210 return NULL;
211 return no_page_table(vma, flags);
212 }
213
214 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
215 unsigned long address, pud_t *pudp,
216 unsigned int flags, unsigned int *page_mask)
217 {
218 pmd_t *pmd;
219 spinlock_t *ptl;
220 struct page *page;
221 struct mm_struct *mm = vma->vm_mm;
222
223 pmd = pmd_offset(pudp, address);
224 if (pmd_none(*pmd))
225 return no_page_table(vma, flags);
226 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
227 page = follow_huge_pmd(mm, address, pmd, flags);
228 if (page)
229 return page;
230 return no_page_table(vma, flags);
231 }
232 if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
233 page = follow_huge_pd(vma, address,
234 __hugepd(pmd_val(*pmd)), flags,
235 PMD_SHIFT);
236 if (page)
237 return page;
238 return no_page_table(vma, flags);
239 }
240 retry:
241 if (!pmd_present(*pmd)) {
242 if (likely(!(flags & FOLL_MIGRATION)))
243 return no_page_table(vma, flags);
244 VM_BUG_ON(thp_migration_supported() &&
245 !is_pmd_migration_entry(*pmd));
246 if (is_pmd_migration_entry(*pmd))
247 pmd_migration_entry_wait(mm, pmd);
248 goto retry;
249 }
250 if (pmd_devmap(*pmd)) {
251 ptl = pmd_lock(mm, pmd);
252 page = follow_devmap_pmd(vma, address, pmd, flags);
253 spin_unlock(ptl);
254 if (page)
255 return page;
256 }
257 if (likely(!pmd_trans_huge(*pmd)))
258 return follow_page_pte(vma, address, pmd, flags);
259
260 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
261 return no_page_table(vma, flags);
262
263 retry_locked:
264 ptl = pmd_lock(mm, pmd);
265 if (unlikely(!pmd_present(*pmd))) {
266 spin_unlock(ptl);
267 if (likely(!(flags & FOLL_MIGRATION)))
268 return no_page_table(vma, flags);
269 pmd_migration_entry_wait(mm, pmd);
270 goto retry_locked;
271 }
272 if (unlikely(!pmd_trans_huge(*pmd))) {
273 spin_unlock(ptl);
274 return follow_page_pte(vma, address, pmd, flags);
275 }
276 if (flags & FOLL_SPLIT) {
277 int ret;
278 page = pmd_page(*pmd);
279 if (is_huge_zero_page(page)) {
280 spin_unlock(ptl);
281 ret = 0;
282 split_huge_pmd(vma, pmd, address);
283 if (pmd_trans_unstable(pmd))
284 ret = -EBUSY;
285 } else {
286 if (unlikely(!try_get_page(page))) {
287 spin_unlock(ptl);
288 return ERR_PTR(-ENOMEM);
289 }
290 spin_unlock(ptl);
291 lock_page(page);
292 ret = split_huge_page(page);
293 unlock_page(page);
294 put_page(page);
295 if (pmd_none(*pmd))
296 return no_page_table(vma, flags);
297 }
298
299 return ret ? ERR_PTR(ret) :
300 follow_page_pte(vma, address, pmd, flags);
301 }
302 page = follow_trans_huge_pmd(vma, address, pmd, flags);
303 spin_unlock(ptl);
304 *page_mask = HPAGE_PMD_NR - 1;
305 return page;
306 }
307
308
309 static struct page *follow_pud_mask(struct vm_area_struct *vma,
310 unsigned long address, p4d_t *p4dp,
311 unsigned int flags, unsigned int *page_mask)
312 {
313 pud_t *pud;
314 spinlock_t *ptl;
315 struct page *page;
316 struct mm_struct *mm = vma->vm_mm;
317
318 pud = pud_offset(p4dp, address);
319 if (pud_none(*pud))
320 return no_page_table(vma, flags);
321 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
322 page = follow_huge_pud(mm, address, pud, flags);
323 if (page)
324 return page;
325 return no_page_table(vma, flags);
326 }
327 if (is_hugepd(__hugepd(pud_val(*pud)))) {
328 page = follow_huge_pd(vma, address,
329 __hugepd(pud_val(*pud)), flags,
330 PUD_SHIFT);
331 if (page)
332 return page;
333 return no_page_table(vma, flags);
334 }
335 if (pud_devmap(*pud)) {
336 ptl = pud_lock(mm, pud);
337 page = follow_devmap_pud(vma, address, pud, flags);
338 spin_unlock(ptl);
339 if (page)
340 return page;
341 }
342 if (unlikely(pud_bad(*pud)))
343 return no_page_table(vma, flags);
344
345 return follow_pmd_mask(vma, address, pud, flags, page_mask);
346 }
347
348
349 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
350 unsigned long address, pgd_t *pgdp,
351 unsigned int flags, unsigned int *page_mask)
352 {
353 p4d_t *p4d;
354 struct page *page;
355
356 p4d = p4d_offset(pgdp, address);
357 if (p4d_none(*p4d))
358 return no_page_table(vma, flags);
359 BUILD_BUG_ON(p4d_huge(*p4d));
360 if (unlikely(p4d_bad(*p4d)))
361 return no_page_table(vma, flags);
362
363 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
364 page = follow_huge_pd(vma, address,
365 __hugepd(p4d_val(*p4d)), flags,
366 P4D_SHIFT);
367 if (page)
368 return page;
369 return no_page_table(vma, flags);
370 }
371 return follow_pud_mask(vma, address, p4d, flags, page_mask);
372 }
373
374 /**
375 * follow_page_mask - look up a page descriptor from a user-virtual address
376 * @vma: vm_area_struct mapping @address
377 * @address: virtual address to look up
378 * @flags: flags modifying lookup behaviour
379 * @page_mask: on output, *page_mask is set according to the size of the page
380 *
381 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
382 *
383 * Returns the mapped (struct page *), %NULL if no mapping exists, or
384 * an error pointer if there is a mapping to something not represented
385 * by a page descriptor (see also vm_normal_page()).
386 */
387 struct page *follow_page_mask(struct vm_area_struct *vma,
388 unsigned long address, unsigned int flags,
389 unsigned int *page_mask)
390 {
391 pgd_t *pgd;
392 struct page *page;
393 struct mm_struct *mm = vma->vm_mm;
394
395 *page_mask = 0;
396
397 /* make this handle hugepd */
398 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
399 if (!IS_ERR(page)) {
400 BUG_ON(flags & FOLL_GET);
401 return page;
402 }
403
404 pgd = pgd_offset(mm, address);
405
406 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
407 return no_page_table(vma, flags);
408
409 if (pgd_huge(*pgd)) {
410 page = follow_huge_pgd(mm, address, pgd, flags);
411 if (page)
412 return page;
413 return no_page_table(vma, flags);
414 }
415 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
416 page = follow_huge_pd(vma, address,
417 __hugepd(pgd_val(*pgd)), flags,
418 PGDIR_SHIFT);
419 if (page)
420 return page;
421 return no_page_table(vma, flags);
422 }
423
424 return follow_p4d_mask(vma, address, pgd, flags, page_mask);
425 }
426
427 static int get_gate_page(struct mm_struct *mm, unsigned long address,
428 unsigned int gup_flags, struct vm_area_struct **vma,
429 struct page **page)
430 {
431 pgd_t *pgd;
432 p4d_t *p4d;
433 pud_t *pud;
434 pmd_t *pmd;
435 pte_t *pte;
436 int ret = -EFAULT;
437
438 /* user gate pages are read-only */
439 if (gup_flags & FOLL_WRITE)
440 return -EFAULT;
441 if (address > TASK_SIZE)
442 pgd = pgd_offset_k(address);
443 else
444 pgd = pgd_offset_gate(mm, address);
445 BUG_ON(pgd_none(*pgd));
446 p4d = p4d_offset(pgd, address);
447 BUG_ON(p4d_none(*p4d));
448 pud = pud_offset(p4d, address);
449 BUG_ON(pud_none(*pud));
450 pmd = pmd_offset(pud, address);
451 if (!pmd_present(*pmd))
452 return -EFAULT;
453 VM_BUG_ON(pmd_trans_huge(*pmd));
454 pte = pte_offset_map(pmd, address);
455 if (pte_none(*pte))
456 goto unmap;
457 *vma = get_gate_vma(mm);
458 if (!page)
459 goto out;
460 *page = vm_normal_page(*vma, address, *pte);
461 if (!*page) {
462 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
463 goto unmap;
464 *page = pte_page(*pte);
465
466 /*
467 * This should never happen (a device public page in the gate
468 * area).
469 */
470 if (is_device_public_page(*page))
471 goto unmap;
472 }
473 if (unlikely(!try_get_page(*page))) {
474 ret = -ENOMEM;
475 goto unmap;
476 }
477 out:
478 ret = 0;
479 unmap:
480 pte_unmap(pte);
481 return ret;
482 }
483
484 /*
485 * mmap_sem must be held on entry. If @nonblocking != NULL and
486 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
487 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
488 */
489 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
490 unsigned long address, unsigned int *flags, int *nonblocking)
491 {
492 unsigned int fault_flags = 0;
493 int ret;
494
495 /* mlock all present pages, but do not fault in new pages */
496 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
497 return -ENOENT;
498 if (*flags & FOLL_WRITE)
499 fault_flags |= FAULT_FLAG_WRITE;
500 if (*flags & FOLL_REMOTE)
501 fault_flags |= FAULT_FLAG_REMOTE;
502 if (nonblocking)
503 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
504 if (*flags & FOLL_NOWAIT)
505 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
506 if (*flags & FOLL_TRIED) {
507 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
508 fault_flags |= FAULT_FLAG_TRIED;
509 }
510
511 ret = handle_mm_fault(vma, address, fault_flags);
512 if (ret & VM_FAULT_ERROR) {
513 int err = vm_fault_to_errno(ret, *flags);
514
515 if (err)
516 return err;
517 BUG();
518 }
519
520 if (tsk) {
521 if (ret & VM_FAULT_MAJOR)
522 tsk->maj_flt++;
523 else
524 tsk->min_flt++;
525 }
526
527 if (ret & VM_FAULT_RETRY) {
528 if (nonblocking)
529 *nonblocking = 0;
530 return -EBUSY;
531 }
532
533 /*
534 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
535 * necessary, even if maybe_mkwrite decided not to set pte_write. We
536 * can thus safely do subsequent page lookups as if they were reads.
537 * But only do so when looping for pte_write is futile: in some cases
538 * userspace may also be wanting to write to the gotten user page,
539 * which a read fault here might prevent (a readonly page might get
540 * reCOWed by userspace write).
541 */
542 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
543 *flags |= FOLL_COW;
544 return 0;
545 }
546
547 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
548 {
549 vm_flags_t vm_flags = vma->vm_flags;
550 int write = (gup_flags & FOLL_WRITE);
551 int foreign = (gup_flags & FOLL_REMOTE);
552
553 if (vm_flags & (VM_IO | VM_PFNMAP))
554 return -EFAULT;
555
556 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
557 return -EFAULT;
558
559 if (write) {
560 if (!(vm_flags & VM_WRITE)) {
561 if (!(gup_flags & FOLL_FORCE))
562 return -EFAULT;
563 /*
564 * We used to let the write,force case do COW in a
565 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
566 * set a breakpoint in a read-only mapping of an
567 * executable, without corrupting the file (yet only
568 * when that file had been opened for writing!).
569 * Anon pages in shared mappings are surprising: now
570 * just reject it.
571 */
572 if (!is_cow_mapping(vm_flags))
573 return -EFAULT;
574 }
575 } else if (!(vm_flags & VM_READ)) {
576 if (!(gup_flags & FOLL_FORCE))
577 return -EFAULT;
578 /*
579 * Is there actually any vma we can reach here which does not
580 * have VM_MAYREAD set?
581 */
582 if (!(vm_flags & VM_MAYREAD))
583 return -EFAULT;
584 }
585 /*
586 * gups are always data accesses, not instruction
587 * fetches, so execute=false here
588 */
589 if (!arch_vma_access_permitted(vma, write, false, foreign))
590 return -EFAULT;
591 return 0;
592 }
593
594 /**
595 * __get_user_pages() - pin user pages in memory
596 * @tsk: task_struct of target task
597 * @mm: mm_struct of target mm
598 * @start: starting user address
599 * @nr_pages: number of pages from start to pin
600 * @gup_flags: flags modifying pin behaviour
601 * @pages: array that receives pointers to the pages pinned.
602 * Should be at least nr_pages long. Or NULL, if caller
603 * only intends to ensure the pages are faulted in.
604 * @vmas: array of pointers to vmas corresponding to each page.
605 * Or NULL if the caller does not require them.
606 * @nonblocking: whether waiting for disk IO or mmap_sem contention
607 *
608 * Returns number of pages pinned. This may be fewer than the number
609 * requested. If nr_pages is 0 or negative, returns 0. If no pages
610 * were pinned, returns -errno. Each page returned must be released
611 * with a put_page() call when it is finished with. vmas will only
612 * remain valid while mmap_sem is held.
613 *
614 * Must be called with mmap_sem held. It may be released. See below.
615 *
616 * __get_user_pages walks a process's page tables and takes a reference to
617 * each struct page that each user address corresponds to at a given
618 * instant. That is, it takes the page that would be accessed if a user
619 * thread accesses the given user virtual address at that instant.
620 *
621 * This does not guarantee that the page exists in the user mappings when
622 * __get_user_pages returns, and there may even be a completely different
623 * page there in some cases (eg. if mmapped pagecache has been invalidated
624 * and subsequently re faulted). However it does guarantee that the page
625 * won't be freed completely. And mostly callers simply care that the page
626 * contains data that was valid *at some point in time*. Typically, an IO
627 * or similar operation cannot guarantee anything stronger anyway because
628 * locks can't be held over the syscall boundary.
629 *
630 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
631 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
632 * appropriate) must be called after the page is finished with, and
633 * before put_page is called.
634 *
635 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
636 * or mmap_sem contention, and if waiting is needed to pin all pages,
637 * *@nonblocking will be set to 0. Further, if @gup_flags does not
638 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
639 * this case.
640 *
641 * A caller using such a combination of @nonblocking and @gup_flags
642 * must therefore hold the mmap_sem for reading only, and recognize
643 * when it's been released. Otherwise, it must be held for either
644 * reading or writing and will not be released.
645 *
646 * In most cases, get_user_pages or get_user_pages_fast should be used
647 * instead of __get_user_pages. __get_user_pages should be used only if
648 * you need some special @gup_flags.
649 */
650 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
651 unsigned long start, unsigned long nr_pages,
652 unsigned int gup_flags, struct page **pages,
653 struct vm_area_struct **vmas, int *nonblocking)
654 {
655 long i = 0;
656 unsigned int page_mask;
657 struct vm_area_struct *vma = NULL;
658
659 if (!nr_pages)
660 return 0;
661
662 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
663
664 /*
665 * If FOLL_FORCE is set then do not force a full fault as the hinting
666 * fault information is unrelated to the reference behaviour of a task
667 * using the address space
668 */
669 if (!(gup_flags & FOLL_FORCE))
670 gup_flags |= FOLL_NUMA;
671
672 do {
673 struct page *page;
674 unsigned int foll_flags = gup_flags;
675 unsigned int page_increm;
676
677 /* first iteration or cross vma bound */
678 if (!vma || start >= vma->vm_end) {
679 vma = find_extend_vma(mm, start);
680 if (!vma && in_gate_area(mm, start)) {
681 int ret;
682 ret = get_gate_page(mm, start & PAGE_MASK,
683 gup_flags, &vma,
684 pages ? &pages[i] : NULL);
685 if (ret)
686 return i ? : ret;
687 page_mask = 0;
688 goto next_page;
689 }
690
691 if (!vma || check_vma_flags(vma, gup_flags))
692 return i ? : -EFAULT;
693 if (is_vm_hugetlb_page(vma)) {
694 i = follow_hugetlb_page(mm, vma, pages, vmas,
695 &start, &nr_pages, i,
696 gup_flags, nonblocking);
697 continue;
698 }
699 }
700 retry:
701 /*
702 * If we have a pending SIGKILL, don't keep faulting pages and
703 * potentially allocating memory.
704 */
705 if (unlikely(fatal_signal_pending(current)))
706 return i ? i : -ERESTARTSYS;
707 cond_resched();
708 page = follow_page_mask(vma, start, foll_flags, &page_mask);
709 if (!page) {
710 int ret;
711 ret = faultin_page(tsk, vma, start, &foll_flags,
712 nonblocking);
713 switch (ret) {
714 case 0:
715 goto retry;
716 case -EFAULT:
717 case -ENOMEM:
718 case -EHWPOISON:
719 return i ? i : ret;
720 case -EBUSY:
721 return i;
722 case -ENOENT:
723 goto next_page;
724 }
725 BUG();
726 } else if (PTR_ERR(page) == -EEXIST) {
727 /*
728 * Proper page table entry exists, but no corresponding
729 * struct page.
730 */
731 goto next_page;
732 } else if (IS_ERR(page)) {
733 return i ? i : PTR_ERR(page);
734 }
735 if (pages) {
736 pages[i] = page;
737 flush_anon_page(vma, page, start);
738 flush_dcache_page(page);
739 page_mask = 0;
740 }
741 next_page:
742 if (vmas) {
743 vmas[i] = vma;
744 page_mask = 0;
745 }
746 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
747 if (page_increm > nr_pages)
748 page_increm = nr_pages;
749 i += page_increm;
750 start += page_increm * PAGE_SIZE;
751 nr_pages -= page_increm;
752 } while (nr_pages);
753 return i;
754 }
755
756 static bool vma_permits_fault(struct vm_area_struct *vma,
757 unsigned int fault_flags)
758 {
759 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
760 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
761 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
762
763 if (!(vm_flags & vma->vm_flags))
764 return false;
765
766 /*
767 * The architecture might have a hardware protection
768 * mechanism other than read/write that can deny access.
769 *
770 * gup always represents data access, not instruction
771 * fetches, so execute=false here:
772 */
773 if (!arch_vma_access_permitted(vma, write, false, foreign))
774 return false;
775
776 return true;
777 }
778
779 /*
780 * fixup_user_fault() - manually resolve a user page fault
781 * @tsk: the task_struct to use for page fault accounting, or
782 * NULL if faults are not to be recorded.
783 * @mm: mm_struct of target mm
784 * @address: user address
785 * @fault_flags:flags to pass down to handle_mm_fault()
786 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
787 * does not allow retry
788 *
789 * This is meant to be called in the specific scenario where for locking reasons
790 * we try to access user memory in atomic context (within a pagefault_disable()
791 * section), this returns -EFAULT, and we want to resolve the user fault before
792 * trying again.
793 *
794 * Typically this is meant to be used by the futex code.
795 *
796 * The main difference with get_user_pages() is that this function will
797 * unconditionally call handle_mm_fault() which will in turn perform all the
798 * necessary SW fixup of the dirty and young bits in the PTE, while
799 * get_user_pages() only guarantees to update these in the struct page.
800 *
801 * This is important for some architectures where those bits also gate the
802 * access permission to the page because they are maintained in software. On
803 * such architectures, gup() will not be enough to make a subsequent access
804 * succeed.
805 *
806 * This function will not return with an unlocked mmap_sem. So it has not the
807 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
808 */
809 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
810 unsigned long address, unsigned int fault_flags,
811 bool *unlocked)
812 {
813 struct vm_area_struct *vma;
814 int ret, major = 0;
815
816 if (unlocked)
817 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
818
819 retry:
820 vma = find_extend_vma(mm, address);
821 if (!vma || address < vma->vm_start)
822 return -EFAULT;
823
824 if (!vma_permits_fault(vma, fault_flags))
825 return -EFAULT;
826
827 ret = handle_mm_fault(vma, address, fault_flags);
828 major |= ret & VM_FAULT_MAJOR;
829 if (ret & VM_FAULT_ERROR) {
830 int err = vm_fault_to_errno(ret, 0);
831
832 if (err)
833 return err;
834 BUG();
835 }
836
837 if (ret & VM_FAULT_RETRY) {
838 down_read(&mm->mmap_sem);
839 if (!(fault_flags & FAULT_FLAG_TRIED)) {
840 *unlocked = true;
841 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
842 fault_flags |= FAULT_FLAG_TRIED;
843 goto retry;
844 }
845 }
846
847 if (tsk) {
848 if (major)
849 tsk->maj_flt++;
850 else
851 tsk->min_flt++;
852 }
853 return 0;
854 }
855 EXPORT_SYMBOL_GPL(fixup_user_fault);
856
857 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
858 struct mm_struct *mm,
859 unsigned long start,
860 unsigned long nr_pages,
861 struct page **pages,
862 struct vm_area_struct **vmas,
863 int *locked, bool notify_drop,
864 unsigned int flags)
865 {
866 long ret, pages_done;
867 bool lock_dropped;
868
869 if (locked) {
870 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
871 BUG_ON(vmas);
872 /* check caller initialized locked */
873 BUG_ON(*locked != 1);
874 }
875
876 if (pages)
877 flags |= FOLL_GET;
878
879 pages_done = 0;
880 lock_dropped = false;
881 for (;;) {
882 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
883 vmas, locked);
884 if (!locked)
885 /* VM_FAULT_RETRY couldn't trigger, bypass */
886 return ret;
887
888 /* VM_FAULT_RETRY cannot return errors */
889 if (!*locked) {
890 BUG_ON(ret < 0);
891 BUG_ON(ret >= nr_pages);
892 }
893
894 if (!pages)
895 /* If it's a prefault don't insist harder */
896 return ret;
897
898 if (ret > 0) {
899 nr_pages -= ret;
900 pages_done += ret;
901 if (!nr_pages)
902 break;
903 }
904 if (*locked) {
905 /* VM_FAULT_RETRY didn't trigger */
906 if (!pages_done)
907 pages_done = ret;
908 break;
909 }
910 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
911 pages += ret;
912 start += ret << PAGE_SHIFT;
913
914 /*
915 * Repeat on the address that fired VM_FAULT_RETRY
916 * without FAULT_FLAG_ALLOW_RETRY but with
917 * FAULT_FLAG_TRIED.
918 */
919 *locked = 1;
920 lock_dropped = true;
921 down_read(&mm->mmap_sem);
922 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
923 pages, NULL, NULL);
924 if (ret != 1) {
925 BUG_ON(ret > 1);
926 if (!pages_done)
927 pages_done = ret;
928 break;
929 }
930 nr_pages--;
931 pages_done++;
932 if (!nr_pages)
933 break;
934 pages++;
935 start += PAGE_SIZE;
936 }
937 if (notify_drop && lock_dropped && *locked) {
938 /*
939 * We must let the caller know we temporarily dropped the lock
940 * and so the critical section protected by it was lost.
941 */
942 up_read(&mm->mmap_sem);
943 *locked = 0;
944 }
945 return pages_done;
946 }
947
948 /*
949 * We can leverage the VM_FAULT_RETRY functionality in the page fault
950 * paths better by using either get_user_pages_locked() or
951 * get_user_pages_unlocked().
952 *
953 * get_user_pages_locked() is suitable to replace the form:
954 *
955 * down_read(&mm->mmap_sem);
956 * do_something()
957 * get_user_pages(tsk, mm, ..., pages, NULL);
958 * up_read(&mm->mmap_sem);
959 *
960 * to:
961 *
962 * int locked = 1;
963 * down_read(&mm->mmap_sem);
964 * do_something()
965 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
966 * if (locked)
967 * up_read(&mm->mmap_sem);
968 */
969 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
970 unsigned int gup_flags, struct page **pages,
971 int *locked)
972 {
973 return __get_user_pages_locked(current, current->mm, start, nr_pages,
974 pages, NULL, locked, true,
975 gup_flags | FOLL_TOUCH);
976 }
977 EXPORT_SYMBOL(get_user_pages_locked);
978
979 /*
980 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
981 * tsk, mm to be specified.
982 *
983 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
984 * caller if required (just like with __get_user_pages). "FOLL_GET"
985 * is set implicitly if "pages" is non-NULL.
986 */
987 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
988 struct mm_struct *mm, unsigned long start,
989 unsigned long nr_pages, struct page **pages,
990 unsigned int gup_flags)
991 {
992 long ret;
993 int locked = 1;
994
995 down_read(&mm->mmap_sem);
996 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
997 &locked, false, gup_flags);
998 if (locked)
999 up_read(&mm->mmap_sem);
1000 return ret;
1001 }
1002
1003 /*
1004 * get_user_pages_unlocked() is suitable to replace the form:
1005 *
1006 * down_read(&mm->mmap_sem);
1007 * get_user_pages(tsk, mm, ..., pages, NULL);
1008 * up_read(&mm->mmap_sem);
1009 *
1010 * with:
1011 *
1012 * get_user_pages_unlocked(tsk, mm, ..., pages);
1013 *
1014 * It is functionally equivalent to get_user_pages_fast so
1015 * get_user_pages_fast should be used instead if specific gup_flags
1016 * (e.g. FOLL_FORCE) are not required.
1017 */
1018 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1019 struct page **pages, unsigned int gup_flags)
1020 {
1021 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
1022 pages, gup_flags | FOLL_TOUCH);
1023 }
1024 EXPORT_SYMBOL(get_user_pages_unlocked);
1025
1026 /*
1027 * get_user_pages_remote() - pin user pages in memory
1028 * @tsk: the task_struct to use for page fault accounting, or
1029 * NULL if faults are not to be recorded.
1030 * @mm: mm_struct of target mm
1031 * @start: starting user address
1032 * @nr_pages: number of pages from start to pin
1033 * @gup_flags: flags modifying lookup behaviour
1034 * @pages: array that receives pointers to the pages pinned.
1035 * Should be at least nr_pages long. Or NULL, if caller
1036 * only intends to ensure the pages are faulted in.
1037 * @vmas: array of pointers to vmas corresponding to each page.
1038 * Or NULL if the caller does not require them.
1039 * @locked: pointer to lock flag indicating whether lock is held and
1040 * subsequently whether VM_FAULT_RETRY functionality can be
1041 * utilised. Lock must initially be held.
1042 *
1043 * Returns number of pages pinned. This may be fewer than the number
1044 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1045 * were pinned, returns -errno. Each page returned must be released
1046 * with a put_page() call when it is finished with. vmas will only
1047 * remain valid while mmap_sem is held.
1048 *
1049 * Must be called with mmap_sem held for read or write.
1050 *
1051 * get_user_pages walks a process's page tables and takes a reference to
1052 * each struct page that each user address corresponds to at a given
1053 * instant. That is, it takes the page that would be accessed if a user
1054 * thread accesses the given user virtual address at that instant.
1055 *
1056 * This does not guarantee that the page exists in the user mappings when
1057 * get_user_pages returns, and there may even be a completely different
1058 * page there in some cases (eg. if mmapped pagecache has been invalidated
1059 * and subsequently re faulted). However it does guarantee that the page
1060 * won't be freed completely. And mostly callers simply care that the page
1061 * contains data that was valid *at some point in time*. Typically, an IO
1062 * or similar operation cannot guarantee anything stronger anyway because
1063 * locks can't be held over the syscall boundary.
1064 *
1065 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1066 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1067 * be called after the page is finished with, and before put_page is called.
1068 *
1069 * get_user_pages is typically used for fewer-copy IO operations, to get a
1070 * handle on the memory by some means other than accesses via the user virtual
1071 * addresses. The pages may be submitted for DMA to devices or accessed via
1072 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1073 * use the correct cache flushing APIs.
1074 *
1075 * See also get_user_pages_fast, for performance critical applications.
1076 *
1077 * get_user_pages should be phased out in favor of
1078 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1079 * should use get_user_pages because it cannot pass
1080 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1081 */
1082 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1083 unsigned long start, unsigned long nr_pages,
1084 unsigned int gup_flags, struct page **pages,
1085 struct vm_area_struct **vmas, int *locked)
1086 {
1087 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1088 locked, true,
1089 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1090 }
1091 EXPORT_SYMBOL(get_user_pages_remote);
1092
1093 /*
1094 * This is the same as get_user_pages_remote(), just with a
1095 * less-flexible calling convention where we assume that the task
1096 * and mm being operated on are the current task's and don't allow
1097 * passing of a locked parameter. We also obviously don't pass
1098 * FOLL_REMOTE in here.
1099 */
1100 long get_user_pages(unsigned long start, unsigned long nr_pages,
1101 unsigned int gup_flags, struct page **pages,
1102 struct vm_area_struct **vmas)
1103 {
1104 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1105 pages, vmas, NULL, false,
1106 gup_flags | FOLL_TOUCH);
1107 }
1108 EXPORT_SYMBOL(get_user_pages);
1109
1110 #ifdef CONFIG_FS_DAX
1111 /*
1112 * This is the same as get_user_pages() in that it assumes we are
1113 * operating on the current task's mm, but it goes further to validate
1114 * that the vmas associated with the address range are suitable for
1115 * longterm elevated page reference counts. For example, filesystem-dax
1116 * mappings are subject to the lifetime enforced by the filesystem and
1117 * we need guarantees that longterm users like RDMA and V4L2 only
1118 * establish mappings that have a kernel enforced revocation mechanism.
1119 *
1120 * "longterm" == userspace controlled elevated page count lifetime.
1121 * Contrast this to iov_iter_get_pages() usages which are transient.
1122 */
1123 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1124 unsigned int gup_flags, struct page **pages,
1125 struct vm_area_struct **vmas_arg)
1126 {
1127 struct vm_area_struct **vmas = vmas_arg;
1128 struct vm_area_struct *vma_prev = NULL;
1129 long rc, i;
1130
1131 if (!pages)
1132 return -EINVAL;
1133
1134 if (!vmas) {
1135 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1136 GFP_KERNEL);
1137 if (!vmas)
1138 return -ENOMEM;
1139 }
1140
1141 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1142
1143 for (i = 0; i < rc; i++) {
1144 struct vm_area_struct *vma = vmas[i];
1145
1146 if (vma == vma_prev)
1147 continue;
1148
1149 vma_prev = vma;
1150
1151 if (vma_is_fsdax(vma))
1152 break;
1153 }
1154
1155 /*
1156 * Either get_user_pages() failed, or the vma validation
1157 * succeeded, in either case we don't need to put_page() before
1158 * returning.
1159 */
1160 if (i >= rc)
1161 goto out;
1162
1163 for (i = 0; i < rc; i++)
1164 put_page(pages[i]);
1165 rc = -EOPNOTSUPP;
1166 out:
1167 if (vmas != vmas_arg)
1168 kfree(vmas);
1169 return rc;
1170 }
1171 EXPORT_SYMBOL(get_user_pages_longterm);
1172 #endif /* CONFIG_FS_DAX */
1173
1174 /**
1175 * populate_vma_page_range() - populate a range of pages in the vma.
1176 * @vma: target vma
1177 * @start: start address
1178 * @end: end address
1179 * @nonblocking:
1180 *
1181 * This takes care of mlocking the pages too if VM_LOCKED is set.
1182 *
1183 * return 0 on success, negative error code on error.
1184 *
1185 * vma->vm_mm->mmap_sem must be held.
1186 *
1187 * If @nonblocking is NULL, it may be held for read or write and will
1188 * be unperturbed.
1189 *
1190 * If @nonblocking is non-NULL, it must held for read only and may be
1191 * released. If it's released, *@nonblocking will be set to 0.
1192 */
1193 long populate_vma_page_range(struct vm_area_struct *vma,
1194 unsigned long start, unsigned long end, int *nonblocking)
1195 {
1196 struct mm_struct *mm = vma->vm_mm;
1197 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1198 int gup_flags;
1199
1200 VM_BUG_ON(start & ~PAGE_MASK);
1201 VM_BUG_ON(end & ~PAGE_MASK);
1202 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1203 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1204 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1205
1206 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1207 if (vma->vm_flags & VM_LOCKONFAULT)
1208 gup_flags &= ~FOLL_POPULATE;
1209 /*
1210 * We want to touch writable mappings with a write fault in order
1211 * to break COW, except for shared mappings because these don't COW
1212 * and we would not want to dirty them for nothing.
1213 */
1214 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1215 gup_flags |= FOLL_WRITE;
1216
1217 /*
1218 * We want mlock to succeed for regions that have any permissions
1219 * other than PROT_NONE.
1220 */
1221 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1222 gup_flags |= FOLL_FORCE;
1223
1224 /*
1225 * We made sure addr is within a VMA, so the following will
1226 * not result in a stack expansion that recurses back here.
1227 */
1228 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1229 NULL, NULL, nonblocking);
1230 }
1231
1232 /*
1233 * __mm_populate - populate and/or mlock pages within a range of address space.
1234 *
1235 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1236 * flags. VMAs must be already marked with the desired vm_flags, and
1237 * mmap_sem must not be held.
1238 */
1239 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1240 {
1241 struct mm_struct *mm = current->mm;
1242 unsigned long end, nstart, nend;
1243 struct vm_area_struct *vma = NULL;
1244 int locked = 0;
1245 long ret = 0;
1246
1247 end = start + len;
1248
1249 for (nstart = start; nstart < end; nstart = nend) {
1250 /*
1251 * We want to fault in pages for [nstart; end) address range.
1252 * Find first corresponding VMA.
1253 */
1254 if (!locked) {
1255 locked = 1;
1256 down_read(&mm->mmap_sem);
1257 vma = find_vma(mm, nstart);
1258 } else if (nstart >= vma->vm_end)
1259 vma = vma->vm_next;
1260 if (!vma || vma->vm_start >= end)
1261 break;
1262 /*
1263 * Set [nstart; nend) to intersection of desired address
1264 * range with the first VMA. Also, skip undesirable VMA types.
1265 */
1266 nend = min(end, vma->vm_end);
1267 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1268 continue;
1269 if (nstart < vma->vm_start)
1270 nstart = vma->vm_start;
1271 /*
1272 * Now fault in a range of pages. populate_vma_page_range()
1273 * double checks the vma flags, so that it won't mlock pages
1274 * if the vma was already munlocked.
1275 */
1276 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1277 if (ret < 0) {
1278 if (ignore_errors) {
1279 ret = 0;
1280 continue; /* continue at next VMA */
1281 }
1282 break;
1283 }
1284 nend = nstart + ret * PAGE_SIZE;
1285 ret = 0;
1286 }
1287 if (locked)
1288 up_read(&mm->mmap_sem);
1289 return ret; /* 0 or negative error code */
1290 }
1291
1292 /**
1293 * get_dump_page() - pin user page in memory while writing it to core dump
1294 * @addr: user address
1295 *
1296 * Returns struct page pointer of user page pinned for dump,
1297 * to be freed afterwards by put_page().
1298 *
1299 * Returns NULL on any kind of failure - a hole must then be inserted into
1300 * the corefile, to preserve alignment with its headers; and also returns
1301 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1302 * allowing a hole to be left in the corefile to save diskspace.
1303 *
1304 * Called without mmap_sem, but after all other threads have been killed.
1305 */
1306 #ifdef CONFIG_ELF_CORE
1307 struct page *get_dump_page(unsigned long addr)
1308 {
1309 struct vm_area_struct *vma;
1310 struct page *page;
1311
1312 if (__get_user_pages(current, current->mm, addr, 1,
1313 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1314 NULL) < 1)
1315 return NULL;
1316 flush_cache_page(vma, addr, page_to_pfn(page));
1317 return page;
1318 }
1319 #endif /* CONFIG_ELF_CORE */
1320
1321 /*
1322 * Generic Fast GUP
1323 *
1324 * get_user_pages_fast attempts to pin user pages by walking the page
1325 * tables directly and avoids taking locks. Thus the walker needs to be
1326 * protected from page table pages being freed from under it, and should
1327 * block any THP splits.
1328 *
1329 * One way to achieve this is to have the walker disable interrupts, and
1330 * rely on IPIs from the TLB flushing code blocking before the page table
1331 * pages are freed. This is unsuitable for architectures that do not need
1332 * to broadcast an IPI when invalidating TLBs.
1333 *
1334 * Another way to achieve this is to batch up page table containing pages
1335 * belonging to more than one mm_user, then rcu_sched a callback to free those
1336 * pages. Disabling interrupts will allow the fast_gup walker to both block
1337 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1338 * (which is a relatively rare event). The code below adopts this strategy.
1339 *
1340 * Before activating this code, please be aware that the following assumptions
1341 * are currently made:
1342 *
1343 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1344 * free pages containing page tables or TLB flushing requires IPI broadcast.
1345 *
1346 * *) ptes can be read atomically by the architecture.
1347 *
1348 * *) access_ok is sufficient to validate userspace address ranges.
1349 *
1350 * The last two assumptions can be relaxed by the addition of helper functions.
1351 *
1352 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1353 */
1354 #ifdef CONFIG_HAVE_GENERIC_GUP
1355
1356 #ifndef gup_get_pte
1357 /*
1358 * We assume that the PTE can be read atomically. If this is not the case for
1359 * your architecture, please provide the helper.
1360 */
1361 static inline pte_t gup_get_pte(pte_t *ptep)
1362 {
1363 return READ_ONCE(*ptep);
1364 }
1365 #endif
1366
1367 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1368 {
1369 while ((*nr) - nr_start) {
1370 struct page *page = pages[--(*nr)];
1371
1372 ClearPageReferenced(page);
1373 put_page(page);
1374 }
1375 }
1376
1377 /*
1378 * Return the compund head page with ref appropriately incremented,
1379 * or NULL if that failed.
1380 */
1381 static inline struct page *try_get_compound_head(struct page *page, int refs)
1382 {
1383 struct page *head = compound_head(page);
1384 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1385 return NULL;
1386 if (unlikely(!page_cache_add_speculative(head, refs)))
1387 return NULL;
1388 return head;
1389 }
1390
1391 #ifdef __HAVE_ARCH_PTE_SPECIAL
1392 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1393 int write, struct page **pages, int *nr)
1394 {
1395 struct dev_pagemap *pgmap = NULL;
1396 int nr_start = *nr, ret = 0;
1397 pte_t *ptep, *ptem;
1398
1399 ptem = ptep = pte_offset_map(&pmd, addr);
1400 do {
1401 pte_t pte = gup_get_pte(ptep);
1402 struct page *head, *page;
1403
1404 /*
1405 * Similar to the PMD case below, NUMA hinting must take slow
1406 * path using the pte_protnone check.
1407 */
1408 if (pte_protnone(pte))
1409 goto pte_unmap;
1410
1411 if (!pte_access_permitted(pte, write))
1412 goto pte_unmap;
1413
1414 if (pte_devmap(pte)) {
1415 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1416 if (unlikely(!pgmap)) {
1417 undo_dev_pagemap(nr, nr_start, pages);
1418 goto pte_unmap;
1419 }
1420 } else if (pte_special(pte))
1421 goto pte_unmap;
1422
1423 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1424 page = pte_page(pte);
1425
1426 head = try_get_compound_head(page, 1);
1427 if (!head)
1428 goto pte_unmap;
1429
1430 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1431 put_page(head);
1432 goto pte_unmap;
1433 }
1434
1435 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1436
1437 put_dev_pagemap(pgmap);
1438 SetPageReferenced(page);
1439 pages[*nr] = page;
1440 (*nr)++;
1441
1442 } while (ptep++, addr += PAGE_SIZE, addr != end);
1443
1444 ret = 1;
1445
1446 pte_unmap:
1447 pte_unmap(ptem);
1448 return ret;
1449 }
1450 #else
1451
1452 /*
1453 * If we can't determine whether or not a pte is special, then fail immediately
1454 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1455 * to be special.
1456 *
1457 * For a futex to be placed on a THP tail page, get_futex_key requires a
1458 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1459 * useful to have gup_huge_pmd even if we can't operate on ptes.
1460 */
1461 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1462 int write, struct page **pages, int *nr)
1463 {
1464 return 0;
1465 }
1466 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1467
1468 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1469 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1470 unsigned long end, struct page **pages, int *nr)
1471 {
1472 int nr_start = *nr;
1473 struct dev_pagemap *pgmap = NULL;
1474
1475 do {
1476 struct page *page = pfn_to_page(pfn);
1477
1478 pgmap = get_dev_pagemap(pfn, pgmap);
1479 if (unlikely(!pgmap)) {
1480 undo_dev_pagemap(nr, nr_start, pages);
1481 return 0;
1482 }
1483 SetPageReferenced(page);
1484 pages[*nr] = page;
1485 get_page(page);
1486 put_dev_pagemap(pgmap);
1487 (*nr)++;
1488 pfn++;
1489 } while (addr += PAGE_SIZE, addr != end);
1490 return 1;
1491 }
1492
1493 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1494 unsigned long end, struct page **pages, int *nr)
1495 {
1496 unsigned long fault_pfn;
1497 int nr_start = *nr;
1498
1499 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1500 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1501 return 0;
1502
1503 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1504 undo_dev_pagemap(nr, nr_start, pages);
1505 return 0;
1506 }
1507 return 1;
1508 }
1509
1510 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1511 unsigned long end, struct page **pages, int *nr)
1512 {
1513 unsigned long fault_pfn;
1514 int nr_start = *nr;
1515
1516 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1517 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1518 return 0;
1519
1520 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1521 undo_dev_pagemap(nr, nr_start, pages);
1522 return 0;
1523 }
1524 return 1;
1525 }
1526 #else
1527 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1528 unsigned long end, struct page **pages, int *nr)
1529 {
1530 BUILD_BUG();
1531 return 0;
1532 }
1533
1534 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1535 unsigned long end, struct page **pages, int *nr)
1536 {
1537 BUILD_BUG();
1538 return 0;
1539 }
1540 #endif
1541
1542 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1543 unsigned long end, int write, struct page **pages, int *nr)
1544 {
1545 struct page *head, *page;
1546 int refs;
1547
1548 if (!pmd_access_permitted(orig, write))
1549 return 0;
1550
1551 if (pmd_devmap(orig))
1552 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1553
1554 refs = 0;
1555 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1556 do {
1557 pages[*nr] = page;
1558 (*nr)++;
1559 page++;
1560 refs++;
1561 } while (addr += PAGE_SIZE, addr != end);
1562
1563 head = try_get_compound_head(pmd_page(orig), refs);
1564 if (!head) {
1565 *nr -= refs;
1566 return 0;
1567 }
1568
1569 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1570 *nr -= refs;
1571 while (refs--)
1572 put_page(head);
1573 return 0;
1574 }
1575
1576 SetPageReferenced(head);
1577 return 1;
1578 }
1579
1580 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1581 unsigned long end, int write, struct page **pages, int *nr)
1582 {
1583 struct page *head, *page;
1584 int refs;
1585
1586 if (!pud_access_permitted(orig, write))
1587 return 0;
1588
1589 if (pud_devmap(orig))
1590 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1591
1592 refs = 0;
1593 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1594 do {
1595 pages[*nr] = page;
1596 (*nr)++;
1597 page++;
1598 refs++;
1599 } while (addr += PAGE_SIZE, addr != end);
1600
1601 head = try_get_compound_head(pud_page(orig), refs);
1602 if (!head) {
1603 *nr -= refs;
1604 return 0;
1605 }
1606
1607 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1608 *nr -= refs;
1609 while (refs--)
1610 put_page(head);
1611 return 0;
1612 }
1613
1614 SetPageReferenced(head);
1615 return 1;
1616 }
1617
1618 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1619 unsigned long end, int write,
1620 struct page **pages, int *nr)
1621 {
1622 int refs;
1623 struct page *head, *page;
1624
1625 if (!pgd_access_permitted(orig, write))
1626 return 0;
1627
1628 BUILD_BUG_ON(pgd_devmap(orig));
1629 refs = 0;
1630 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1631 do {
1632 pages[*nr] = page;
1633 (*nr)++;
1634 page++;
1635 refs++;
1636 } while (addr += PAGE_SIZE, addr != end);
1637
1638 head = try_get_compound_head(pgd_page(orig), refs);
1639 if (!head) {
1640 *nr -= refs;
1641 return 0;
1642 }
1643
1644 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1645 *nr -= refs;
1646 while (refs--)
1647 put_page(head);
1648 return 0;
1649 }
1650
1651 SetPageReferenced(head);
1652 return 1;
1653 }
1654
1655 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1656 int write, struct page **pages, int *nr)
1657 {
1658 unsigned long next;
1659 pmd_t *pmdp;
1660
1661 pmdp = pmd_offset(&pud, addr);
1662 do {
1663 pmd_t pmd = READ_ONCE(*pmdp);
1664
1665 next = pmd_addr_end(addr, end);
1666 if (!pmd_present(pmd))
1667 return 0;
1668
1669 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
1670 pmd_devmap(pmd))) {
1671 /*
1672 * NUMA hinting faults need to be handled in the GUP
1673 * slowpath for accounting purposes and so that they
1674 * can be serialised against THP migration.
1675 */
1676 if (pmd_protnone(pmd))
1677 return 0;
1678
1679 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1680 pages, nr))
1681 return 0;
1682
1683 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1684 /*
1685 * architecture have different format for hugetlbfs
1686 * pmd format and THP pmd format
1687 */
1688 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1689 PMD_SHIFT, next, write, pages, nr))
1690 return 0;
1691 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1692 return 0;
1693 } while (pmdp++, addr = next, addr != end);
1694
1695 return 1;
1696 }
1697
1698 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1699 int write, struct page **pages, int *nr)
1700 {
1701 unsigned long next;
1702 pud_t *pudp;
1703
1704 pudp = pud_offset(&p4d, addr);
1705 do {
1706 pud_t pud = READ_ONCE(*pudp);
1707
1708 next = pud_addr_end(addr, end);
1709 if (pud_none(pud))
1710 return 0;
1711 if (unlikely(pud_huge(pud))) {
1712 if (!gup_huge_pud(pud, pudp, addr, next, write,
1713 pages, nr))
1714 return 0;
1715 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1716 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1717 PUD_SHIFT, next, write, pages, nr))
1718 return 0;
1719 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1720 return 0;
1721 } while (pudp++, addr = next, addr != end);
1722
1723 return 1;
1724 }
1725
1726 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1727 int write, struct page **pages, int *nr)
1728 {
1729 unsigned long next;
1730 p4d_t *p4dp;
1731
1732 p4dp = p4d_offset(&pgd, addr);
1733 do {
1734 p4d_t p4d = READ_ONCE(*p4dp);
1735
1736 next = p4d_addr_end(addr, end);
1737 if (p4d_none(p4d))
1738 return 0;
1739 BUILD_BUG_ON(p4d_huge(p4d));
1740 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1741 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1742 P4D_SHIFT, next, write, pages, nr))
1743 return 0;
1744 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1745 return 0;
1746 } while (p4dp++, addr = next, addr != end);
1747
1748 return 1;
1749 }
1750
1751 static void gup_pgd_range(unsigned long addr, unsigned long end,
1752 int write, struct page **pages, int *nr)
1753 {
1754 unsigned long next;
1755 pgd_t *pgdp;
1756
1757 pgdp = pgd_offset(current->mm, addr);
1758 do {
1759 pgd_t pgd = READ_ONCE(*pgdp);
1760
1761 next = pgd_addr_end(addr, end);
1762 if (pgd_none(pgd))
1763 return;
1764 if (unlikely(pgd_huge(pgd))) {
1765 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1766 pages, nr))
1767 return;
1768 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1769 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1770 PGDIR_SHIFT, next, write, pages, nr))
1771 return;
1772 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1773 return;
1774 } while (pgdp++, addr = next, addr != end);
1775 }
1776
1777 #ifndef gup_fast_permitted
1778 /*
1779 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1780 * we need to fall back to the slow version:
1781 */
1782 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1783 {
1784 unsigned long len, end;
1785
1786 len = (unsigned long) nr_pages << PAGE_SHIFT;
1787 end = start + len;
1788 return end >= start;
1789 }
1790 #endif
1791
1792 /*
1793 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1794 * the regular GUP. It will only return non-negative values.
1795 */
1796 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1797 struct page **pages)
1798 {
1799 unsigned long addr, len, end;
1800 unsigned long flags;
1801 int nr = 0;
1802
1803 start &= PAGE_MASK;
1804 addr = start;
1805 len = (unsigned long) nr_pages << PAGE_SHIFT;
1806 end = start + len;
1807
1808 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1809 (void __user *)start, len)))
1810 return 0;
1811
1812 /*
1813 * Disable interrupts. We use the nested form as we can already have
1814 * interrupts disabled by get_futex_key.
1815 *
1816 * With interrupts disabled, we block page table pages from being
1817 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1818 * for more details.
1819 *
1820 * We do not adopt an rcu_read_lock(.) here as we also want to
1821 * block IPIs that come from THPs splitting.
1822 */
1823
1824 if (gup_fast_permitted(start, nr_pages, write)) {
1825 local_irq_save(flags);
1826 gup_pgd_range(addr, end, write, pages, &nr);
1827 local_irq_restore(flags);
1828 }
1829
1830 return nr;
1831 }
1832
1833 /**
1834 * get_user_pages_fast() - pin user pages in memory
1835 * @start: starting user address
1836 * @nr_pages: number of pages from start to pin
1837 * @write: whether pages will be written to
1838 * @pages: array that receives pointers to the pages pinned.
1839 * Should be at least nr_pages long.
1840 *
1841 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1842 * If not successful, it will fall back to taking the lock and
1843 * calling get_user_pages().
1844 *
1845 * Returns number of pages pinned. This may be fewer than the number
1846 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1847 * were pinned, returns -errno.
1848 */
1849 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1850 struct page **pages)
1851 {
1852 unsigned long addr, len, end;
1853 int nr = 0, ret = 0;
1854
1855 start &= PAGE_MASK;
1856 addr = start;
1857 len = (unsigned long) nr_pages << PAGE_SHIFT;
1858 end = start + len;
1859
1860 if (nr_pages <= 0)
1861 return 0;
1862
1863 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1864 (void __user *)start, len)))
1865 return -EFAULT;
1866
1867 if (gup_fast_permitted(start, nr_pages, write)) {
1868 local_irq_disable();
1869 gup_pgd_range(addr, end, write, pages, &nr);
1870 local_irq_enable();
1871 ret = nr;
1872 }
1873
1874 if (nr < nr_pages) {
1875 /* Try to get the remaining pages with get_user_pages */
1876 start += nr << PAGE_SHIFT;
1877 pages += nr;
1878
1879 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1880 write ? FOLL_WRITE : 0);
1881
1882 /* Have to be a bit careful with return values */
1883 if (nr > 0) {
1884 if (ret < 0)
1885 ret = nr;
1886 else
1887 ret += nr;
1888 }
1889 }
1890
1891 return ret;
1892 }
1893
1894 #endif /* CONFIG_HAVE_GENERIC_GUP */