]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/gup.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23
24 #include "internal.h"
25
26 struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29 };
30
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37 }
38
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45 }
46
47 /*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60 }
61
62 /*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs,
83 unsigned int flags)
84 {
85 if (flags & FOLL_GET)
86 return try_get_compound_head(page, refs);
87 else if (flags & FOLL_PIN) {
88 int orig_refs = refs;
89
90 /*
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
93 */
94 if (unlikely(flags & FOLL_LONGTERM) &&
95 is_migrate_cma_page(page))
96 return NULL;
97
98 /*
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
102 *
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
105 */
106 if (!hpage_pincount_available(page))
107 refs *= GUP_PIN_COUNTING_BIAS;
108
109 page = try_get_compound_head(page, refs);
110 if (!page)
111 return NULL;
112
113 if (hpage_pincount_available(page))
114 hpage_pincount_add(page, refs);
115
116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 orig_refs);
118
119 return page;
120 }
121
122 WARN_ON_ONCE(1);
123 return NULL;
124 }
125
126 static void put_compound_head(struct page *page, int refs, unsigned int flags)
127 {
128 if (flags & FOLL_PIN) {
129 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
130 refs);
131
132 if (hpage_pincount_available(page))
133 hpage_pincount_sub(page, refs);
134 else
135 refs *= GUP_PIN_COUNTING_BIAS;
136 }
137
138 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
139 /*
140 * Calling put_page() for each ref is unnecessarily slow. Only the last
141 * ref needs a put_page().
142 */
143 if (refs > 1)
144 page_ref_sub(page, refs - 1);
145 put_page(page);
146 }
147
148 /**
149 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
150 *
151 * This might not do anything at all, depending on the flags argument.
152 *
153 * "grab" names in this file mean, "look at flags to decide whether to use
154 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
155 *
156 * @page: pointer to page to be grabbed
157 * @flags: gup flags: these are the FOLL_* flag values.
158 *
159 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
160 * time. Cases:
161 *
162 * FOLL_GET: page's refcount will be incremented by 1.
163 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
164 *
165 * Return: true for success, or if no action was required (if neither FOLL_PIN
166 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
167 * FOLL_PIN was set, but the page could not be grabbed.
168 */
169 bool __must_check try_grab_page(struct page *page, unsigned int flags)
170 {
171 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
172
173 if (flags & FOLL_GET)
174 return try_get_page(page);
175 else if (flags & FOLL_PIN) {
176 int refs = 1;
177
178 page = compound_head(page);
179
180 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
181 return false;
182
183 if (hpage_pincount_available(page))
184 hpage_pincount_add(page, 1);
185 else
186 refs = GUP_PIN_COUNTING_BIAS;
187
188 /*
189 * Similar to try_grab_compound_head(): even if using the
190 * hpage_pincount_add/_sub() routines, be sure to
191 * *also* increment the normal page refcount field at least
192 * once, so that the page really is pinned.
193 */
194 page_ref_add(page, refs);
195
196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
197 }
198
199 return true;
200 }
201
202 /**
203 * unpin_user_page() - release a dma-pinned page
204 * @page: pointer to page to be released
205 *
206 * Pages that were pinned via pin_user_pages*() must be released via either
207 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
208 * that such pages can be separately tracked and uniquely handled. In
209 * particular, interactions with RDMA and filesystems need special handling.
210 */
211 void unpin_user_page(struct page *page)
212 {
213 put_compound_head(compound_head(page), 1, FOLL_PIN);
214 }
215 EXPORT_SYMBOL(unpin_user_page);
216
217 /**
218 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
219 * @pages: array of pages to be maybe marked dirty, and definitely released.
220 * @npages: number of pages in the @pages array.
221 * @make_dirty: whether to mark the pages dirty
222 *
223 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
224 * variants called on that page.
225 *
226 * For each page in the @pages array, make that page (or its head page, if a
227 * compound page) dirty, if @make_dirty is true, and if the page was previously
228 * listed as clean. In any case, releases all pages using unpin_user_page(),
229 * possibly via unpin_user_pages(), for the non-dirty case.
230 *
231 * Please see the unpin_user_page() documentation for details.
232 *
233 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
234 * required, then the caller should a) verify that this is really correct,
235 * because _lock() is usually required, and b) hand code it:
236 * set_page_dirty_lock(), unpin_user_page().
237 *
238 */
239 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
240 bool make_dirty)
241 {
242 unsigned long index;
243
244 /*
245 * TODO: this can be optimized for huge pages: if a series of pages is
246 * physically contiguous and part of the same compound page, then a
247 * single operation to the head page should suffice.
248 */
249
250 if (!make_dirty) {
251 unpin_user_pages(pages, npages);
252 return;
253 }
254
255 for (index = 0; index < npages; index++) {
256 struct page *page = compound_head(pages[index]);
257 /*
258 * Checking PageDirty at this point may race with
259 * clear_page_dirty_for_io(), but that's OK. Two key
260 * cases:
261 *
262 * 1) This code sees the page as already dirty, so it
263 * skips the call to set_page_dirty(). That could happen
264 * because clear_page_dirty_for_io() called
265 * page_mkclean(), followed by set_page_dirty().
266 * However, now the page is going to get written back,
267 * which meets the original intention of setting it
268 * dirty, so all is well: clear_page_dirty_for_io() goes
269 * on to call TestClearPageDirty(), and write the page
270 * back.
271 *
272 * 2) This code sees the page as clean, so it calls
273 * set_page_dirty(). The page stays dirty, despite being
274 * written back, so it gets written back again in the
275 * next writeback cycle. This is harmless.
276 */
277 if (!PageDirty(page))
278 set_page_dirty_lock(page);
279 unpin_user_page(page);
280 }
281 }
282 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
283
284 /**
285 * unpin_user_pages() - release an array of gup-pinned pages.
286 * @pages: array of pages to be marked dirty and released.
287 * @npages: number of pages in the @pages array.
288 *
289 * For each page in the @pages array, release the page using unpin_user_page().
290 *
291 * Please see the unpin_user_page() documentation for details.
292 */
293 void unpin_user_pages(struct page **pages, unsigned long npages)
294 {
295 unsigned long index;
296
297 /*
298 * If this WARN_ON() fires, then the system *might* be leaking pages (by
299 * leaving them pinned), but probably not. More likely, gup/pup returned
300 * a hard -ERRNO error to the caller, who erroneously passed it here.
301 */
302 if (WARN_ON(IS_ERR_VALUE(npages)))
303 return;
304 /*
305 * TODO: this can be optimized for huge pages: if a series of pages is
306 * physically contiguous and part of the same compound page, then a
307 * single operation to the head page should suffice.
308 */
309 for (index = 0; index < npages; index++)
310 unpin_user_page(pages[index]);
311 }
312 EXPORT_SYMBOL(unpin_user_pages);
313
314 #ifdef CONFIG_MMU
315 static struct page *no_page_table(struct vm_area_struct *vma,
316 unsigned int flags)
317 {
318 /*
319 * When core dumping an enormous anonymous area that nobody
320 * has touched so far, we don't want to allocate unnecessary pages or
321 * page tables. Return error instead of NULL to skip handle_mm_fault,
322 * then get_dump_page() will return NULL to leave a hole in the dump.
323 * But we can only make this optimization where a hole would surely
324 * be zero-filled if handle_mm_fault() actually did handle it.
325 */
326 if ((flags & FOLL_DUMP) &&
327 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
328 return ERR_PTR(-EFAULT);
329 return NULL;
330 }
331
332 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
333 pte_t *pte, unsigned int flags)
334 {
335 /* No page to get reference */
336 if (flags & FOLL_GET)
337 return -EFAULT;
338
339 if (flags & FOLL_TOUCH) {
340 pte_t entry = *pte;
341
342 if (flags & FOLL_WRITE)
343 entry = pte_mkdirty(entry);
344 entry = pte_mkyoung(entry);
345
346 if (!pte_same(*pte, entry)) {
347 set_pte_at(vma->vm_mm, address, pte, entry);
348 update_mmu_cache(vma, address, pte);
349 }
350 }
351
352 /* Proper page table entry exists, but no corresponding struct page */
353 return -EEXIST;
354 }
355
356 /*
357 * FOLL_FORCE can write to even unwritable pte's, but only
358 * after we've gone through a COW cycle and they are dirty.
359 */
360 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
361 {
362 return pte_write(pte) ||
363 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
364 }
365
366 static struct page *follow_page_pte(struct vm_area_struct *vma,
367 unsigned long address, pmd_t *pmd, unsigned int flags,
368 struct dev_pagemap **pgmap)
369 {
370 struct mm_struct *mm = vma->vm_mm;
371 struct page *page;
372 spinlock_t *ptl;
373 pte_t *ptep, pte;
374 int ret;
375
376 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
377 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
378 (FOLL_PIN | FOLL_GET)))
379 return ERR_PTR(-EINVAL);
380 retry:
381 if (unlikely(pmd_bad(*pmd)))
382 return no_page_table(vma, flags);
383
384 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
385 pte = *ptep;
386 if (!pte_present(pte)) {
387 swp_entry_t entry;
388 /*
389 * KSM's break_ksm() relies upon recognizing a ksm page
390 * even while it is being migrated, so for that case we
391 * need migration_entry_wait().
392 */
393 if (likely(!(flags & FOLL_MIGRATION)))
394 goto no_page;
395 if (pte_none(pte))
396 goto no_page;
397 entry = pte_to_swp_entry(pte);
398 if (!is_migration_entry(entry))
399 goto no_page;
400 pte_unmap_unlock(ptep, ptl);
401 migration_entry_wait(mm, pmd, address);
402 goto retry;
403 }
404 if ((flags & FOLL_NUMA) && pte_protnone(pte))
405 goto no_page;
406 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
407 pte_unmap_unlock(ptep, ptl);
408 return NULL;
409 }
410
411 page = vm_normal_page(vma, address, pte);
412 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
413 /*
414 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
415 * case since they are only valid while holding the pgmap
416 * reference.
417 */
418 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
419 if (*pgmap)
420 page = pte_page(pte);
421 else
422 goto no_page;
423 } else if (unlikely(!page)) {
424 if (flags & FOLL_DUMP) {
425 /* Avoid special (like zero) pages in core dumps */
426 page = ERR_PTR(-EFAULT);
427 goto out;
428 }
429
430 if (is_zero_pfn(pte_pfn(pte))) {
431 page = pte_page(pte);
432 } else {
433 ret = follow_pfn_pte(vma, address, ptep, flags);
434 page = ERR_PTR(ret);
435 goto out;
436 }
437 }
438
439 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
440 get_page(page);
441 pte_unmap_unlock(ptep, ptl);
442 lock_page(page);
443 ret = split_huge_page(page);
444 unlock_page(page);
445 put_page(page);
446 if (ret)
447 return ERR_PTR(ret);
448 goto retry;
449 }
450
451 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
452 if (unlikely(!try_grab_page(page, flags))) {
453 page = ERR_PTR(-ENOMEM);
454 goto out;
455 }
456 /*
457 * We need to make the page accessible if and only if we are going
458 * to access its content (the FOLL_PIN case). Please see
459 * Documentation/core-api/pin_user_pages.rst for details.
460 */
461 if (flags & FOLL_PIN) {
462 ret = arch_make_page_accessible(page);
463 if (ret) {
464 unpin_user_page(page);
465 page = ERR_PTR(ret);
466 goto out;
467 }
468 }
469 if (flags & FOLL_TOUCH) {
470 if ((flags & FOLL_WRITE) &&
471 !pte_dirty(pte) && !PageDirty(page))
472 set_page_dirty(page);
473 /*
474 * pte_mkyoung() would be more correct here, but atomic care
475 * is needed to avoid losing the dirty bit: it is easier to use
476 * mark_page_accessed().
477 */
478 mark_page_accessed(page);
479 }
480 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
481 /* Do not mlock pte-mapped THP */
482 if (PageTransCompound(page))
483 goto out;
484
485 /*
486 * The preliminary mapping check is mainly to avoid the
487 * pointless overhead of lock_page on the ZERO_PAGE
488 * which might bounce very badly if there is contention.
489 *
490 * If the page is already locked, we don't need to
491 * handle it now - vmscan will handle it later if and
492 * when it attempts to reclaim the page.
493 */
494 if (page->mapping && trylock_page(page)) {
495 lru_add_drain(); /* push cached pages to LRU */
496 /*
497 * Because we lock page here, and migration is
498 * blocked by the pte's page reference, and we
499 * know the page is still mapped, we don't even
500 * need to check for file-cache page truncation.
501 */
502 mlock_vma_page(page);
503 unlock_page(page);
504 }
505 }
506 out:
507 pte_unmap_unlock(ptep, ptl);
508 return page;
509 no_page:
510 pte_unmap_unlock(ptep, ptl);
511 if (!pte_none(pte))
512 return NULL;
513 return no_page_table(vma, flags);
514 }
515
516 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
517 unsigned long address, pud_t *pudp,
518 unsigned int flags,
519 struct follow_page_context *ctx)
520 {
521 pmd_t *pmd, pmdval;
522 spinlock_t *ptl;
523 struct page *page;
524 struct mm_struct *mm = vma->vm_mm;
525
526 pmd = pmd_offset(pudp, address);
527 /*
528 * The READ_ONCE() will stabilize the pmdval in a register or
529 * on the stack so that it will stop changing under the code.
530 */
531 pmdval = READ_ONCE(*pmd);
532 if (pmd_none(pmdval))
533 return no_page_table(vma, flags);
534 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
535 page = follow_huge_pmd(mm, address, pmd, flags);
536 if (page)
537 return page;
538 return no_page_table(vma, flags);
539 }
540 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
541 page = follow_huge_pd(vma, address,
542 __hugepd(pmd_val(pmdval)), flags,
543 PMD_SHIFT);
544 if (page)
545 return page;
546 return no_page_table(vma, flags);
547 }
548 retry:
549 if (!pmd_present(pmdval)) {
550 if (likely(!(flags & FOLL_MIGRATION)))
551 return no_page_table(vma, flags);
552 VM_BUG_ON(thp_migration_supported() &&
553 !is_pmd_migration_entry(pmdval));
554 if (is_pmd_migration_entry(pmdval))
555 pmd_migration_entry_wait(mm, pmd);
556 pmdval = READ_ONCE(*pmd);
557 /*
558 * MADV_DONTNEED may convert the pmd to null because
559 * mmap_lock is held in read mode
560 */
561 if (pmd_none(pmdval))
562 return no_page_table(vma, flags);
563 goto retry;
564 }
565 if (pmd_devmap(pmdval)) {
566 ptl = pmd_lock(mm, pmd);
567 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
568 spin_unlock(ptl);
569 if (page)
570 return page;
571 }
572 if (likely(!pmd_trans_huge(pmdval)))
573 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
574
575 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
576 return no_page_table(vma, flags);
577
578 retry_locked:
579 ptl = pmd_lock(mm, pmd);
580 if (unlikely(pmd_none(*pmd))) {
581 spin_unlock(ptl);
582 return no_page_table(vma, flags);
583 }
584 if (unlikely(!pmd_present(*pmd))) {
585 spin_unlock(ptl);
586 if (likely(!(flags & FOLL_MIGRATION)))
587 return no_page_table(vma, flags);
588 pmd_migration_entry_wait(mm, pmd);
589 goto retry_locked;
590 }
591 if (unlikely(!pmd_trans_huge(*pmd))) {
592 spin_unlock(ptl);
593 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
594 }
595 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
596 int ret;
597 page = pmd_page(*pmd);
598 if (is_huge_zero_page(page)) {
599 spin_unlock(ptl);
600 ret = 0;
601 split_huge_pmd(vma, pmd, address);
602 if (pmd_trans_unstable(pmd))
603 ret = -EBUSY;
604 } else if (flags & FOLL_SPLIT) {
605 if (unlikely(!try_get_page(page))) {
606 spin_unlock(ptl);
607 return ERR_PTR(-ENOMEM);
608 }
609 spin_unlock(ptl);
610 lock_page(page);
611 ret = split_huge_page(page);
612 unlock_page(page);
613 put_page(page);
614 if (pmd_none(*pmd))
615 return no_page_table(vma, flags);
616 } else { /* flags & FOLL_SPLIT_PMD */
617 spin_unlock(ptl);
618 split_huge_pmd(vma, pmd, address);
619 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
620 }
621
622 return ret ? ERR_PTR(ret) :
623 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
624 }
625 page = follow_trans_huge_pmd(vma, address, pmd, flags);
626 spin_unlock(ptl);
627 ctx->page_mask = HPAGE_PMD_NR - 1;
628 return page;
629 }
630
631 static struct page *follow_pud_mask(struct vm_area_struct *vma,
632 unsigned long address, p4d_t *p4dp,
633 unsigned int flags,
634 struct follow_page_context *ctx)
635 {
636 pud_t *pud;
637 spinlock_t *ptl;
638 struct page *page;
639 struct mm_struct *mm = vma->vm_mm;
640
641 pud = pud_offset(p4dp, address);
642 if (pud_none(*pud))
643 return no_page_table(vma, flags);
644 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
645 page = follow_huge_pud(mm, address, pud, flags);
646 if (page)
647 return page;
648 return no_page_table(vma, flags);
649 }
650 if (is_hugepd(__hugepd(pud_val(*pud)))) {
651 page = follow_huge_pd(vma, address,
652 __hugepd(pud_val(*pud)), flags,
653 PUD_SHIFT);
654 if (page)
655 return page;
656 return no_page_table(vma, flags);
657 }
658 if (pud_devmap(*pud)) {
659 ptl = pud_lock(mm, pud);
660 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
661 spin_unlock(ptl);
662 if (page)
663 return page;
664 }
665 if (unlikely(pud_bad(*pud)))
666 return no_page_table(vma, flags);
667
668 return follow_pmd_mask(vma, address, pud, flags, ctx);
669 }
670
671 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
672 unsigned long address, pgd_t *pgdp,
673 unsigned int flags,
674 struct follow_page_context *ctx)
675 {
676 p4d_t *p4d;
677 struct page *page;
678
679 p4d = p4d_offset(pgdp, address);
680 if (p4d_none(*p4d))
681 return no_page_table(vma, flags);
682 BUILD_BUG_ON(p4d_huge(*p4d));
683 if (unlikely(p4d_bad(*p4d)))
684 return no_page_table(vma, flags);
685
686 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
687 page = follow_huge_pd(vma, address,
688 __hugepd(p4d_val(*p4d)), flags,
689 P4D_SHIFT);
690 if (page)
691 return page;
692 return no_page_table(vma, flags);
693 }
694 return follow_pud_mask(vma, address, p4d, flags, ctx);
695 }
696
697 /**
698 * follow_page_mask - look up a page descriptor from a user-virtual address
699 * @vma: vm_area_struct mapping @address
700 * @address: virtual address to look up
701 * @flags: flags modifying lookup behaviour
702 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
703 * pointer to output page_mask
704 *
705 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
706 *
707 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
708 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
709 *
710 * On output, the @ctx->page_mask is set according to the size of the page.
711 *
712 * Return: the mapped (struct page *), %NULL if no mapping exists, or
713 * an error pointer if there is a mapping to something not represented
714 * by a page descriptor (see also vm_normal_page()).
715 */
716 static struct page *follow_page_mask(struct vm_area_struct *vma,
717 unsigned long address, unsigned int flags,
718 struct follow_page_context *ctx)
719 {
720 pgd_t *pgd;
721 struct page *page;
722 struct mm_struct *mm = vma->vm_mm;
723
724 ctx->page_mask = 0;
725
726 /* make this handle hugepd */
727 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
728 if (!IS_ERR(page)) {
729 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
730 return page;
731 }
732
733 pgd = pgd_offset(mm, address);
734
735 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
736 return no_page_table(vma, flags);
737
738 if (pgd_huge(*pgd)) {
739 page = follow_huge_pgd(mm, address, pgd, flags);
740 if (page)
741 return page;
742 return no_page_table(vma, flags);
743 }
744 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
745 page = follow_huge_pd(vma, address,
746 __hugepd(pgd_val(*pgd)), flags,
747 PGDIR_SHIFT);
748 if (page)
749 return page;
750 return no_page_table(vma, flags);
751 }
752
753 return follow_p4d_mask(vma, address, pgd, flags, ctx);
754 }
755
756 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
757 unsigned int foll_flags)
758 {
759 struct follow_page_context ctx = { NULL };
760 struct page *page;
761
762 page = follow_page_mask(vma, address, foll_flags, &ctx);
763 if (ctx.pgmap)
764 put_dev_pagemap(ctx.pgmap);
765 return page;
766 }
767
768 static int get_gate_page(struct mm_struct *mm, unsigned long address,
769 unsigned int gup_flags, struct vm_area_struct **vma,
770 struct page **page)
771 {
772 pgd_t *pgd;
773 p4d_t *p4d;
774 pud_t *pud;
775 pmd_t *pmd;
776 pte_t *pte;
777 int ret = -EFAULT;
778
779 /* user gate pages are read-only */
780 if (gup_flags & FOLL_WRITE)
781 return -EFAULT;
782 if (address > TASK_SIZE)
783 pgd = pgd_offset_k(address);
784 else
785 pgd = pgd_offset_gate(mm, address);
786 if (pgd_none(*pgd))
787 return -EFAULT;
788 p4d = p4d_offset(pgd, address);
789 if (p4d_none(*p4d))
790 return -EFAULT;
791 pud = pud_offset(p4d, address);
792 if (pud_none(*pud))
793 return -EFAULT;
794 pmd = pmd_offset(pud, address);
795 if (!pmd_present(*pmd))
796 return -EFAULT;
797 VM_BUG_ON(pmd_trans_huge(*pmd));
798 pte = pte_offset_map(pmd, address);
799 if (pte_none(*pte))
800 goto unmap;
801 *vma = get_gate_vma(mm);
802 if (!page)
803 goto out;
804 *page = vm_normal_page(*vma, address, *pte);
805 if (!*page) {
806 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
807 goto unmap;
808 *page = pte_page(*pte);
809 }
810 if (unlikely(!try_grab_page(*page, gup_flags))) {
811 ret = -ENOMEM;
812 goto unmap;
813 }
814 out:
815 ret = 0;
816 unmap:
817 pte_unmap(pte);
818 return ret;
819 }
820
821 /*
822 * mmap_lock must be held on entry. If @locked != NULL and *@flags
823 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
824 * is, *@locked will be set to 0 and -EBUSY returned.
825 */
826 static int faultin_page(struct vm_area_struct *vma,
827 unsigned long address, unsigned int *flags, int *locked)
828 {
829 unsigned int fault_flags = 0;
830 vm_fault_t ret;
831
832 /* mlock all present pages, but do not fault in new pages */
833 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
834 return -ENOENT;
835 if (*flags & FOLL_WRITE)
836 fault_flags |= FAULT_FLAG_WRITE;
837 if (*flags & FOLL_REMOTE)
838 fault_flags |= FAULT_FLAG_REMOTE;
839 if (locked)
840 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
841 if (*flags & FOLL_NOWAIT)
842 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
843 if (*flags & FOLL_TRIED) {
844 /*
845 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
846 * can co-exist
847 */
848 fault_flags |= FAULT_FLAG_TRIED;
849 }
850
851 ret = handle_mm_fault(vma, address, fault_flags, NULL);
852 if (ret & VM_FAULT_ERROR) {
853 int err = vm_fault_to_errno(ret, *flags);
854
855 if (err)
856 return err;
857 BUG();
858 }
859
860 if (ret & VM_FAULT_RETRY) {
861 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
862 *locked = 0;
863 return -EBUSY;
864 }
865
866 /*
867 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
868 * necessary, even if maybe_mkwrite decided not to set pte_write. We
869 * can thus safely do subsequent page lookups as if they were reads.
870 * But only do so when looping for pte_write is futile: in some cases
871 * userspace may also be wanting to write to the gotten user page,
872 * which a read fault here might prevent (a readonly page might get
873 * reCOWed by userspace write).
874 */
875 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
876 *flags |= FOLL_COW;
877 return 0;
878 }
879
880 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
881 {
882 vm_flags_t vm_flags = vma->vm_flags;
883 int write = (gup_flags & FOLL_WRITE);
884 int foreign = (gup_flags & FOLL_REMOTE);
885
886 if (vm_flags & (VM_IO | VM_PFNMAP))
887 return -EFAULT;
888
889 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
890 return -EFAULT;
891
892 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
893 return -EOPNOTSUPP;
894
895 if (write) {
896 if (!(vm_flags & VM_WRITE)) {
897 if (!(gup_flags & FOLL_FORCE))
898 return -EFAULT;
899 /*
900 * We used to let the write,force case do COW in a
901 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
902 * set a breakpoint in a read-only mapping of an
903 * executable, without corrupting the file (yet only
904 * when that file had been opened for writing!).
905 * Anon pages in shared mappings are surprising: now
906 * just reject it.
907 */
908 if (!is_cow_mapping(vm_flags))
909 return -EFAULT;
910 }
911 } else if (!(vm_flags & VM_READ)) {
912 if (!(gup_flags & FOLL_FORCE))
913 return -EFAULT;
914 /*
915 * Is there actually any vma we can reach here which does not
916 * have VM_MAYREAD set?
917 */
918 if (!(vm_flags & VM_MAYREAD))
919 return -EFAULT;
920 }
921 /*
922 * gups are always data accesses, not instruction
923 * fetches, so execute=false here
924 */
925 if (!arch_vma_access_permitted(vma, write, false, foreign))
926 return -EFAULT;
927 return 0;
928 }
929
930 /**
931 * __get_user_pages() - pin user pages in memory
932 * @mm: mm_struct of target mm
933 * @start: starting user address
934 * @nr_pages: number of pages from start to pin
935 * @gup_flags: flags modifying pin behaviour
936 * @pages: array that receives pointers to the pages pinned.
937 * Should be at least nr_pages long. Or NULL, if caller
938 * only intends to ensure the pages are faulted in.
939 * @vmas: array of pointers to vmas corresponding to each page.
940 * Or NULL if the caller does not require them.
941 * @locked: whether we're still with the mmap_lock held
942 *
943 * Returns either number of pages pinned (which may be less than the
944 * number requested), or an error. Details about the return value:
945 *
946 * -- If nr_pages is 0, returns 0.
947 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
948 * -- If nr_pages is >0, and some pages were pinned, returns the number of
949 * pages pinned. Again, this may be less than nr_pages.
950 * -- 0 return value is possible when the fault would need to be retried.
951 *
952 * The caller is responsible for releasing returned @pages, via put_page().
953 *
954 * @vmas are valid only as long as mmap_lock is held.
955 *
956 * Must be called with mmap_lock held. It may be released. See below.
957 *
958 * __get_user_pages walks a process's page tables and takes a reference to
959 * each struct page that each user address corresponds to at a given
960 * instant. That is, it takes the page that would be accessed if a user
961 * thread accesses the given user virtual address at that instant.
962 *
963 * This does not guarantee that the page exists in the user mappings when
964 * __get_user_pages returns, and there may even be a completely different
965 * page there in some cases (eg. if mmapped pagecache has been invalidated
966 * and subsequently re faulted). However it does guarantee that the page
967 * won't be freed completely. And mostly callers simply care that the page
968 * contains data that was valid *at some point in time*. Typically, an IO
969 * or similar operation cannot guarantee anything stronger anyway because
970 * locks can't be held over the syscall boundary.
971 *
972 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
973 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
974 * appropriate) must be called after the page is finished with, and
975 * before put_page is called.
976 *
977 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
978 * released by an up_read(). That can happen if @gup_flags does not
979 * have FOLL_NOWAIT.
980 *
981 * A caller using such a combination of @locked and @gup_flags
982 * must therefore hold the mmap_lock for reading only, and recognize
983 * when it's been released. Otherwise, it must be held for either
984 * reading or writing and will not be released.
985 *
986 * In most cases, get_user_pages or get_user_pages_fast should be used
987 * instead of __get_user_pages. __get_user_pages should be used only if
988 * you need some special @gup_flags.
989 */
990 static long __get_user_pages(struct mm_struct *mm,
991 unsigned long start, unsigned long nr_pages,
992 unsigned int gup_flags, struct page **pages,
993 struct vm_area_struct **vmas, int *locked)
994 {
995 long ret = 0, i = 0;
996 struct vm_area_struct *vma = NULL;
997 struct follow_page_context ctx = { NULL };
998
999 if (!nr_pages)
1000 return 0;
1001
1002 start = untagged_addr(start);
1003
1004 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1005
1006 /*
1007 * If FOLL_FORCE is set then do not force a full fault as the hinting
1008 * fault information is unrelated to the reference behaviour of a task
1009 * using the address space
1010 */
1011 if (!(gup_flags & FOLL_FORCE))
1012 gup_flags |= FOLL_NUMA;
1013
1014 do {
1015 struct page *page;
1016 unsigned int foll_flags = gup_flags;
1017 unsigned int page_increm;
1018
1019 /* first iteration or cross vma bound */
1020 if (!vma || start >= vma->vm_end) {
1021 vma = find_extend_vma(mm, start);
1022 if (!vma && in_gate_area(mm, start)) {
1023 ret = get_gate_page(mm, start & PAGE_MASK,
1024 gup_flags, &vma,
1025 pages ? &pages[i] : NULL);
1026 if (ret)
1027 goto out;
1028 ctx.page_mask = 0;
1029 goto next_page;
1030 }
1031
1032 if (!vma) {
1033 ret = -EFAULT;
1034 goto out;
1035 }
1036 ret = check_vma_flags(vma, gup_flags);
1037 if (ret)
1038 goto out;
1039
1040 if (is_vm_hugetlb_page(vma)) {
1041 i = follow_hugetlb_page(mm, vma, pages, vmas,
1042 &start, &nr_pages, i,
1043 gup_flags, locked);
1044 if (locked && *locked == 0) {
1045 /*
1046 * We've got a VM_FAULT_RETRY
1047 * and we've lost mmap_lock.
1048 * We must stop here.
1049 */
1050 BUG_ON(gup_flags & FOLL_NOWAIT);
1051 BUG_ON(ret != 0);
1052 goto out;
1053 }
1054 continue;
1055 }
1056 }
1057 retry:
1058 /*
1059 * If we have a pending SIGKILL, don't keep faulting pages and
1060 * potentially allocating memory.
1061 */
1062 if (fatal_signal_pending(current)) {
1063 ret = -EINTR;
1064 goto out;
1065 }
1066 cond_resched();
1067
1068 page = follow_page_mask(vma, start, foll_flags, &ctx);
1069 if (!page) {
1070 ret = faultin_page(vma, start, &foll_flags, locked);
1071 switch (ret) {
1072 case 0:
1073 goto retry;
1074 case -EBUSY:
1075 ret = 0;
1076 fallthrough;
1077 case -EFAULT:
1078 case -ENOMEM:
1079 case -EHWPOISON:
1080 goto out;
1081 case -ENOENT:
1082 goto next_page;
1083 }
1084 BUG();
1085 } else if (PTR_ERR(page) == -EEXIST) {
1086 /*
1087 * Proper page table entry exists, but no corresponding
1088 * struct page.
1089 */
1090 goto next_page;
1091 } else if (IS_ERR(page)) {
1092 ret = PTR_ERR(page);
1093 goto out;
1094 }
1095 if (pages) {
1096 pages[i] = page;
1097 flush_anon_page(vma, page, start);
1098 flush_dcache_page(page);
1099 ctx.page_mask = 0;
1100 }
1101 next_page:
1102 if (vmas) {
1103 vmas[i] = vma;
1104 ctx.page_mask = 0;
1105 }
1106 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1107 if (page_increm > nr_pages)
1108 page_increm = nr_pages;
1109 i += page_increm;
1110 start += page_increm * PAGE_SIZE;
1111 nr_pages -= page_increm;
1112 } while (nr_pages);
1113 out:
1114 if (ctx.pgmap)
1115 put_dev_pagemap(ctx.pgmap);
1116 return i ? i : ret;
1117 }
1118
1119 static bool vma_permits_fault(struct vm_area_struct *vma,
1120 unsigned int fault_flags)
1121 {
1122 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1123 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1124 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1125
1126 if (!(vm_flags & vma->vm_flags))
1127 return false;
1128
1129 /*
1130 * The architecture might have a hardware protection
1131 * mechanism other than read/write that can deny access.
1132 *
1133 * gup always represents data access, not instruction
1134 * fetches, so execute=false here:
1135 */
1136 if (!arch_vma_access_permitted(vma, write, false, foreign))
1137 return false;
1138
1139 return true;
1140 }
1141
1142 /**
1143 * fixup_user_fault() - manually resolve a user page fault
1144 * @mm: mm_struct of target mm
1145 * @address: user address
1146 * @fault_flags:flags to pass down to handle_mm_fault()
1147 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1148 * does not allow retry. If NULL, the caller must guarantee
1149 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1150 *
1151 * This is meant to be called in the specific scenario where for locking reasons
1152 * we try to access user memory in atomic context (within a pagefault_disable()
1153 * section), this returns -EFAULT, and we want to resolve the user fault before
1154 * trying again.
1155 *
1156 * Typically this is meant to be used by the futex code.
1157 *
1158 * The main difference with get_user_pages() is that this function will
1159 * unconditionally call handle_mm_fault() which will in turn perform all the
1160 * necessary SW fixup of the dirty and young bits in the PTE, while
1161 * get_user_pages() only guarantees to update these in the struct page.
1162 *
1163 * This is important for some architectures where those bits also gate the
1164 * access permission to the page because they are maintained in software. On
1165 * such architectures, gup() will not be enough to make a subsequent access
1166 * succeed.
1167 *
1168 * This function will not return with an unlocked mmap_lock. So it has not the
1169 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1170 */
1171 int fixup_user_fault(struct mm_struct *mm,
1172 unsigned long address, unsigned int fault_flags,
1173 bool *unlocked)
1174 {
1175 struct vm_area_struct *vma;
1176 vm_fault_t ret, major = 0;
1177
1178 address = untagged_addr(address);
1179
1180 if (unlocked)
1181 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1182
1183 retry:
1184 vma = find_extend_vma(mm, address);
1185 if (!vma || address < vma->vm_start)
1186 return -EFAULT;
1187
1188 if (!vma_permits_fault(vma, fault_flags))
1189 return -EFAULT;
1190
1191 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1192 fatal_signal_pending(current))
1193 return -EINTR;
1194
1195 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1196 major |= ret & VM_FAULT_MAJOR;
1197 if (ret & VM_FAULT_ERROR) {
1198 int err = vm_fault_to_errno(ret, 0);
1199
1200 if (err)
1201 return err;
1202 BUG();
1203 }
1204
1205 if (ret & VM_FAULT_RETRY) {
1206 mmap_read_lock(mm);
1207 *unlocked = true;
1208 fault_flags |= FAULT_FLAG_TRIED;
1209 goto retry;
1210 }
1211
1212 return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(fixup_user_fault);
1215
1216 /*
1217 * Please note that this function, unlike __get_user_pages will not
1218 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1219 */
1220 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1221 unsigned long start,
1222 unsigned long nr_pages,
1223 struct page **pages,
1224 struct vm_area_struct **vmas,
1225 int *locked,
1226 unsigned int flags)
1227 {
1228 long ret, pages_done;
1229 bool lock_dropped;
1230
1231 if (locked) {
1232 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1233 BUG_ON(vmas);
1234 /* check caller initialized locked */
1235 BUG_ON(*locked != 1);
1236 }
1237
1238 if (flags & FOLL_PIN)
1239 atomic_set(&mm->has_pinned, 1);
1240
1241 /*
1242 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1243 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1244 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1245 * for FOLL_GET, not for the newer FOLL_PIN.
1246 *
1247 * FOLL_PIN always expects pages to be non-null, but no need to assert
1248 * that here, as any failures will be obvious enough.
1249 */
1250 if (pages && !(flags & FOLL_PIN))
1251 flags |= FOLL_GET;
1252
1253 pages_done = 0;
1254 lock_dropped = false;
1255 for (;;) {
1256 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1257 vmas, locked);
1258 if (!locked)
1259 /* VM_FAULT_RETRY couldn't trigger, bypass */
1260 return ret;
1261
1262 /* VM_FAULT_RETRY cannot return errors */
1263 if (!*locked) {
1264 BUG_ON(ret < 0);
1265 BUG_ON(ret >= nr_pages);
1266 }
1267
1268 if (ret > 0) {
1269 nr_pages -= ret;
1270 pages_done += ret;
1271 if (!nr_pages)
1272 break;
1273 }
1274 if (*locked) {
1275 /*
1276 * VM_FAULT_RETRY didn't trigger or it was a
1277 * FOLL_NOWAIT.
1278 */
1279 if (!pages_done)
1280 pages_done = ret;
1281 break;
1282 }
1283 /*
1284 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1285 * For the prefault case (!pages) we only update counts.
1286 */
1287 if (likely(pages))
1288 pages += ret;
1289 start += ret << PAGE_SHIFT;
1290 lock_dropped = true;
1291
1292 retry:
1293 /*
1294 * Repeat on the address that fired VM_FAULT_RETRY
1295 * with both FAULT_FLAG_ALLOW_RETRY and
1296 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1297 * by fatal signals, so we need to check it before we
1298 * start trying again otherwise it can loop forever.
1299 */
1300
1301 if (fatal_signal_pending(current)) {
1302 if (!pages_done)
1303 pages_done = -EINTR;
1304 break;
1305 }
1306
1307 ret = mmap_read_lock_killable(mm);
1308 if (ret) {
1309 BUG_ON(ret > 0);
1310 if (!pages_done)
1311 pages_done = ret;
1312 break;
1313 }
1314
1315 *locked = 1;
1316 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1317 pages, NULL, locked);
1318 if (!*locked) {
1319 /* Continue to retry until we succeeded */
1320 BUG_ON(ret != 0);
1321 goto retry;
1322 }
1323 if (ret != 1) {
1324 BUG_ON(ret > 1);
1325 if (!pages_done)
1326 pages_done = ret;
1327 break;
1328 }
1329 nr_pages--;
1330 pages_done++;
1331 if (!nr_pages)
1332 break;
1333 if (likely(pages))
1334 pages++;
1335 start += PAGE_SIZE;
1336 }
1337 if (lock_dropped && *locked) {
1338 /*
1339 * We must let the caller know we temporarily dropped the lock
1340 * and so the critical section protected by it was lost.
1341 */
1342 mmap_read_unlock(mm);
1343 *locked = 0;
1344 }
1345 return pages_done;
1346 }
1347
1348 /**
1349 * populate_vma_page_range() - populate a range of pages in the vma.
1350 * @vma: target vma
1351 * @start: start address
1352 * @end: end address
1353 * @locked: whether the mmap_lock is still held
1354 *
1355 * This takes care of mlocking the pages too if VM_LOCKED is set.
1356 *
1357 * Return either number of pages pinned in the vma, or a negative error
1358 * code on error.
1359 *
1360 * vma->vm_mm->mmap_lock must be held.
1361 *
1362 * If @locked is NULL, it may be held for read or write and will
1363 * be unperturbed.
1364 *
1365 * If @locked is non-NULL, it must held for read only and may be
1366 * released. If it's released, *@locked will be set to 0.
1367 */
1368 long populate_vma_page_range(struct vm_area_struct *vma,
1369 unsigned long start, unsigned long end, int *locked)
1370 {
1371 struct mm_struct *mm = vma->vm_mm;
1372 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1373 int gup_flags;
1374
1375 VM_BUG_ON(start & ~PAGE_MASK);
1376 VM_BUG_ON(end & ~PAGE_MASK);
1377 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1378 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1379 mmap_assert_locked(mm);
1380
1381 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1382 if (vma->vm_flags & VM_LOCKONFAULT)
1383 gup_flags &= ~FOLL_POPULATE;
1384 /*
1385 * We want to touch writable mappings with a write fault in order
1386 * to break COW, except for shared mappings because these don't COW
1387 * and we would not want to dirty them for nothing.
1388 */
1389 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1390 gup_flags |= FOLL_WRITE;
1391
1392 /*
1393 * We want mlock to succeed for regions that have any permissions
1394 * other than PROT_NONE.
1395 */
1396 if (vma_is_accessible(vma))
1397 gup_flags |= FOLL_FORCE;
1398
1399 /*
1400 * We made sure addr is within a VMA, so the following will
1401 * not result in a stack expansion that recurses back here.
1402 */
1403 return __get_user_pages(mm, start, nr_pages, gup_flags,
1404 NULL, NULL, locked);
1405 }
1406
1407 /*
1408 * __mm_populate - populate and/or mlock pages within a range of address space.
1409 *
1410 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1411 * flags. VMAs must be already marked with the desired vm_flags, and
1412 * mmap_lock must not be held.
1413 */
1414 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1415 {
1416 struct mm_struct *mm = current->mm;
1417 unsigned long end, nstart, nend;
1418 struct vm_area_struct *vma = NULL;
1419 int locked = 0;
1420 long ret = 0;
1421
1422 end = start + len;
1423
1424 for (nstart = start; nstart < end; nstart = nend) {
1425 /*
1426 * We want to fault in pages for [nstart; end) address range.
1427 * Find first corresponding VMA.
1428 */
1429 if (!locked) {
1430 locked = 1;
1431 mmap_read_lock(mm);
1432 vma = find_vma(mm, nstart);
1433 } else if (nstart >= vma->vm_end)
1434 vma = vma->vm_next;
1435 if (!vma || vma->vm_start >= end)
1436 break;
1437 /*
1438 * Set [nstart; nend) to intersection of desired address
1439 * range with the first VMA. Also, skip undesirable VMA types.
1440 */
1441 nend = min(end, vma->vm_end);
1442 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1443 continue;
1444 if (nstart < vma->vm_start)
1445 nstart = vma->vm_start;
1446 /*
1447 * Now fault in a range of pages. populate_vma_page_range()
1448 * double checks the vma flags, so that it won't mlock pages
1449 * if the vma was already munlocked.
1450 */
1451 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1452 if (ret < 0) {
1453 if (ignore_errors) {
1454 ret = 0;
1455 continue; /* continue at next VMA */
1456 }
1457 break;
1458 }
1459 nend = nstart + ret * PAGE_SIZE;
1460 ret = 0;
1461 }
1462 if (locked)
1463 mmap_read_unlock(mm);
1464 return ret; /* 0 or negative error code */
1465 }
1466 #else /* CONFIG_MMU */
1467 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1468 unsigned long nr_pages, struct page **pages,
1469 struct vm_area_struct **vmas, int *locked,
1470 unsigned int foll_flags)
1471 {
1472 struct vm_area_struct *vma;
1473 unsigned long vm_flags;
1474 int i;
1475
1476 /* calculate required read or write permissions.
1477 * If FOLL_FORCE is set, we only require the "MAY" flags.
1478 */
1479 vm_flags = (foll_flags & FOLL_WRITE) ?
1480 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1481 vm_flags &= (foll_flags & FOLL_FORCE) ?
1482 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1483
1484 for (i = 0; i < nr_pages; i++) {
1485 vma = find_vma(mm, start);
1486 if (!vma)
1487 goto finish_or_fault;
1488
1489 /* protect what we can, including chardevs */
1490 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1491 !(vm_flags & vma->vm_flags))
1492 goto finish_or_fault;
1493
1494 if (pages) {
1495 pages[i] = virt_to_page(start);
1496 if (pages[i])
1497 get_page(pages[i]);
1498 }
1499 if (vmas)
1500 vmas[i] = vma;
1501 start = (start + PAGE_SIZE) & PAGE_MASK;
1502 }
1503
1504 return i;
1505
1506 finish_or_fault:
1507 return i ? : -EFAULT;
1508 }
1509 #endif /* !CONFIG_MMU */
1510
1511 /**
1512 * get_dump_page() - pin user page in memory while writing it to core dump
1513 * @addr: user address
1514 *
1515 * Returns struct page pointer of user page pinned for dump,
1516 * to be freed afterwards by put_page().
1517 *
1518 * Returns NULL on any kind of failure - a hole must then be inserted into
1519 * the corefile, to preserve alignment with its headers; and also returns
1520 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1521 * allowing a hole to be left in the corefile to save diskspace.
1522 *
1523 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1524 */
1525 #ifdef CONFIG_ELF_CORE
1526 struct page *get_dump_page(unsigned long addr)
1527 {
1528 struct mm_struct *mm = current->mm;
1529 struct page *page;
1530 int locked = 1;
1531 int ret;
1532
1533 if (mmap_read_lock_killable(mm))
1534 return NULL;
1535 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1536 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1537 if (locked)
1538 mmap_read_unlock(mm);
1539 return (ret == 1) ? page : NULL;
1540 }
1541 #endif /* CONFIG_ELF_CORE */
1542
1543 #ifdef CONFIG_CMA
1544 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1545 unsigned long start,
1546 unsigned long nr_pages,
1547 struct page **pages,
1548 struct vm_area_struct **vmas,
1549 unsigned int gup_flags)
1550 {
1551 unsigned long i;
1552 unsigned long step;
1553 bool drain_allow = true;
1554 bool migrate_allow = true;
1555 LIST_HEAD(cma_page_list);
1556 long ret = nr_pages;
1557 struct migration_target_control mtc = {
1558 .nid = NUMA_NO_NODE,
1559 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1560 };
1561
1562 check_again:
1563 for (i = 0; i < nr_pages;) {
1564
1565 struct page *head = compound_head(pages[i]);
1566
1567 /*
1568 * gup may start from a tail page. Advance step by the left
1569 * part.
1570 */
1571 step = compound_nr(head) - (pages[i] - head);
1572 /*
1573 * If we get a page from the CMA zone, since we are going to
1574 * be pinning these entries, we might as well move them out
1575 * of the CMA zone if possible.
1576 */
1577 if (is_migrate_cma_page(head)) {
1578 if (PageHuge(head))
1579 isolate_huge_page(head, &cma_page_list);
1580 else {
1581 if (!PageLRU(head) && drain_allow) {
1582 lru_add_drain_all();
1583 drain_allow = false;
1584 }
1585
1586 if (!isolate_lru_page(head)) {
1587 list_add_tail(&head->lru, &cma_page_list);
1588 mod_node_page_state(page_pgdat(head),
1589 NR_ISOLATED_ANON +
1590 page_is_file_lru(head),
1591 thp_nr_pages(head));
1592 }
1593 }
1594 }
1595
1596 i += step;
1597 }
1598
1599 if (!list_empty(&cma_page_list)) {
1600 /*
1601 * drop the above get_user_pages reference.
1602 */
1603 if (gup_flags & FOLL_PIN)
1604 unpin_user_pages(pages, nr_pages);
1605 else
1606 for (i = 0; i < nr_pages; i++)
1607 put_page(pages[i]);
1608
1609 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1610 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1611 /*
1612 * some of the pages failed migration. Do get_user_pages
1613 * without migration.
1614 */
1615 migrate_allow = false;
1616
1617 if (!list_empty(&cma_page_list))
1618 putback_movable_pages(&cma_page_list);
1619 }
1620 /*
1621 * We did migrate all the pages, Try to get the page references
1622 * again migrating any new CMA pages which we failed to isolate
1623 * earlier.
1624 */
1625 ret = __get_user_pages_locked(mm, start, nr_pages,
1626 pages, vmas, NULL,
1627 gup_flags);
1628
1629 if ((ret > 0) && migrate_allow) {
1630 nr_pages = ret;
1631 drain_allow = true;
1632 goto check_again;
1633 }
1634 }
1635
1636 return ret;
1637 }
1638 #else
1639 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1640 unsigned long start,
1641 unsigned long nr_pages,
1642 struct page **pages,
1643 struct vm_area_struct **vmas,
1644 unsigned int gup_flags)
1645 {
1646 return nr_pages;
1647 }
1648 #endif /* CONFIG_CMA */
1649
1650 /*
1651 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1652 * allows us to process the FOLL_LONGTERM flag.
1653 */
1654 static long __gup_longterm_locked(struct mm_struct *mm,
1655 unsigned long start,
1656 unsigned long nr_pages,
1657 struct page **pages,
1658 struct vm_area_struct **vmas,
1659 unsigned int gup_flags)
1660 {
1661 unsigned long flags = 0;
1662 long rc;
1663
1664 if (gup_flags & FOLL_LONGTERM)
1665 flags = memalloc_nocma_save();
1666
1667 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
1668 gup_flags);
1669
1670 if (gup_flags & FOLL_LONGTERM) {
1671 if (rc > 0)
1672 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1673 vmas, gup_flags);
1674 memalloc_nocma_restore(flags);
1675 }
1676 return rc;
1677 }
1678
1679 static bool is_valid_gup_flags(unsigned int gup_flags)
1680 {
1681 /*
1682 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1683 * never directly by the caller, so enforce that with an assertion:
1684 */
1685 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1686 return false;
1687 /*
1688 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1689 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1690 * FOLL_PIN.
1691 */
1692 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1693 return false;
1694
1695 return true;
1696 }
1697
1698 #ifdef CONFIG_MMU
1699 static long __get_user_pages_remote(struct mm_struct *mm,
1700 unsigned long start, unsigned long nr_pages,
1701 unsigned int gup_flags, struct page **pages,
1702 struct vm_area_struct **vmas, int *locked)
1703 {
1704 /*
1705 * Parts of FOLL_LONGTERM behavior are incompatible with
1706 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1707 * vmas. However, this only comes up if locked is set, and there are
1708 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1709 * allow what we can.
1710 */
1711 if (gup_flags & FOLL_LONGTERM) {
1712 if (WARN_ON_ONCE(locked))
1713 return -EINVAL;
1714 /*
1715 * This will check the vmas (even if our vmas arg is NULL)
1716 * and return -ENOTSUPP if DAX isn't allowed in this case:
1717 */
1718 return __gup_longterm_locked(mm, start, nr_pages, pages,
1719 vmas, gup_flags | FOLL_TOUCH |
1720 FOLL_REMOTE);
1721 }
1722
1723 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1724 locked,
1725 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1726 }
1727
1728 /**
1729 * get_user_pages_remote() - pin user pages in memory
1730 * @mm: mm_struct of target mm
1731 * @start: starting user address
1732 * @nr_pages: number of pages from start to pin
1733 * @gup_flags: flags modifying lookup behaviour
1734 * @pages: array that receives pointers to the pages pinned.
1735 * Should be at least nr_pages long. Or NULL, if caller
1736 * only intends to ensure the pages are faulted in.
1737 * @vmas: array of pointers to vmas corresponding to each page.
1738 * Or NULL if the caller does not require them.
1739 * @locked: pointer to lock flag indicating whether lock is held and
1740 * subsequently whether VM_FAULT_RETRY functionality can be
1741 * utilised. Lock must initially be held.
1742 *
1743 * Returns either number of pages pinned (which may be less than the
1744 * number requested), or an error. Details about the return value:
1745 *
1746 * -- If nr_pages is 0, returns 0.
1747 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1748 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1749 * pages pinned. Again, this may be less than nr_pages.
1750 *
1751 * The caller is responsible for releasing returned @pages, via put_page().
1752 *
1753 * @vmas are valid only as long as mmap_lock is held.
1754 *
1755 * Must be called with mmap_lock held for read or write.
1756 *
1757 * get_user_pages_remote walks a process's page tables and takes a reference
1758 * to each struct page that each user address corresponds to at a given
1759 * instant. That is, it takes the page that would be accessed if a user
1760 * thread accesses the given user virtual address at that instant.
1761 *
1762 * This does not guarantee that the page exists in the user mappings when
1763 * get_user_pages_remote returns, and there may even be a completely different
1764 * page there in some cases (eg. if mmapped pagecache has been invalidated
1765 * and subsequently re faulted). However it does guarantee that the page
1766 * won't be freed completely. And mostly callers simply care that the page
1767 * contains data that was valid *at some point in time*. Typically, an IO
1768 * or similar operation cannot guarantee anything stronger anyway because
1769 * locks can't be held over the syscall boundary.
1770 *
1771 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1772 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1773 * be called after the page is finished with, and before put_page is called.
1774 *
1775 * get_user_pages_remote is typically used for fewer-copy IO operations,
1776 * to get a handle on the memory by some means other than accesses
1777 * via the user virtual addresses. The pages may be submitted for
1778 * DMA to devices or accessed via their kernel linear mapping (via the
1779 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1780 *
1781 * See also get_user_pages_fast, for performance critical applications.
1782 *
1783 * get_user_pages_remote should be phased out in favor of
1784 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1785 * should use get_user_pages_remote because it cannot pass
1786 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1787 */
1788 long get_user_pages_remote(struct mm_struct *mm,
1789 unsigned long start, unsigned long nr_pages,
1790 unsigned int gup_flags, struct page **pages,
1791 struct vm_area_struct **vmas, int *locked)
1792 {
1793 if (!is_valid_gup_flags(gup_flags))
1794 return -EINVAL;
1795
1796 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1797 pages, vmas, locked);
1798 }
1799 EXPORT_SYMBOL(get_user_pages_remote);
1800
1801 #else /* CONFIG_MMU */
1802 long get_user_pages_remote(struct mm_struct *mm,
1803 unsigned long start, unsigned long nr_pages,
1804 unsigned int gup_flags, struct page **pages,
1805 struct vm_area_struct **vmas, int *locked)
1806 {
1807 return 0;
1808 }
1809
1810 static long __get_user_pages_remote(struct mm_struct *mm,
1811 unsigned long start, unsigned long nr_pages,
1812 unsigned int gup_flags, struct page **pages,
1813 struct vm_area_struct **vmas, int *locked)
1814 {
1815 return 0;
1816 }
1817 #endif /* !CONFIG_MMU */
1818
1819 /**
1820 * get_user_pages() - pin user pages in memory
1821 * @start: starting user address
1822 * @nr_pages: number of pages from start to pin
1823 * @gup_flags: flags modifying lookup behaviour
1824 * @pages: array that receives pointers to the pages pinned.
1825 * Should be at least nr_pages long. Or NULL, if caller
1826 * only intends to ensure the pages are faulted in.
1827 * @vmas: array of pointers to vmas corresponding to each page.
1828 * Or NULL if the caller does not require them.
1829 *
1830 * This is the same as get_user_pages_remote(), just with a less-flexible
1831 * calling convention where we assume that the mm being operated on belongs to
1832 * the current task, and doesn't allow passing of a locked parameter. We also
1833 * obviously don't pass FOLL_REMOTE in here.
1834 */
1835 long get_user_pages(unsigned long start, unsigned long nr_pages,
1836 unsigned int gup_flags, struct page **pages,
1837 struct vm_area_struct **vmas)
1838 {
1839 if (!is_valid_gup_flags(gup_flags))
1840 return -EINVAL;
1841
1842 return __gup_longterm_locked(current->mm, start, nr_pages,
1843 pages, vmas, gup_flags | FOLL_TOUCH);
1844 }
1845 EXPORT_SYMBOL(get_user_pages);
1846
1847 /**
1848 * get_user_pages_locked() - variant of get_user_pages()
1849 *
1850 * @start: starting user address
1851 * @nr_pages: number of pages from start to pin
1852 * @gup_flags: flags modifying lookup behaviour
1853 * @pages: array that receives pointers to the pages pinned.
1854 * Should be at least nr_pages long. Or NULL, if caller
1855 * only intends to ensure the pages are faulted in.
1856 * @locked: pointer to lock flag indicating whether lock is held and
1857 * subsequently whether VM_FAULT_RETRY functionality can be
1858 * utilised. Lock must initially be held.
1859 *
1860 * It is suitable to replace the form:
1861 *
1862 * mmap_read_lock(mm);
1863 * do_something()
1864 * get_user_pages(mm, ..., pages, NULL);
1865 * mmap_read_unlock(mm);
1866 *
1867 * to:
1868 *
1869 * int locked = 1;
1870 * mmap_read_lock(mm);
1871 * do_something()
1872 * get_user_pages_locked(mm, ..., pages, &locked);
1873 * if (locked)
1874 * mmap_read_unlock(mm);
1875 *
1876 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1877 * paths better by using either get_user_pages_locked() or
1878 * get_user_pages_unlocked().
1879 *
1880 */
1881 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1882 unsigned int gup_flags, struct page **pages,
1883 int *locked)
1884 {
1885 /*
1886 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1887 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1888 * vmas. As there are no users of this flag in this call we simply
1889 * disallow this option for now.
1890 */
1891 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1892 return -EINVAL;
1893 /*
1894 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1895 * never directly by the caller, so enforce that:
1896 */
1897 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1898 return -EINVAL;
1899
1900 return __get_user_pages_locked(current->mm, start, nr_pages,
1901 pages, NULL, locked,
1902 gup_flags | FOLL_TOUCH);
1903 }
1904 EXPORT_SYMBOL(get_user_pages_locked);
1905
1906 /*
1907 * get_user_pages_unlocked() is suitable to replace the form:
1908 *
1909 * mmap_read_lock(mm);
1910 * get_user_pages(mm, ..., pages, NULL);
1911 * mmap_read_unlock(mm);
1912 *
1913 * with:
1914 *
1915 * get_user_pages_unlocked(mm, ..., pages);
1916 *
1917 * It is functionally equivalent to get_user_pages_fast so
1918 * get_user_pages_fast should be used instead if specific gup_flags
1919 * (e.g. FOLL_FORCE) are not required.
1920 */
1921 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1922 struct page **pages, unsigned int gup_flags)
1923 {
1924 struct mm_struct *mm = current->mm;
1925 int locked = 1;
1926 long ret;
1927
1928 /*
1929 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1930 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1931 * vmas. As there are no users of this flag in this call we simply
1932 * disallow this option for now.
1933 */
1934 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1935 return -EINVAL;
1936
1937 mmap_read_lock(mm);
1938 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1939 &locked, gup_flags | FOLL_TOUCH);
1940 if (locked)
1941 mmap_read_unlock(mm);
1942 return ret;
1943 }
1944 EXPORT_SYMBOL(get_user_pages_unlocked);
1945
1946 /*
1947 * Fast GUP
1948 *
1949 * get_user_pages_fast attempts to pin user pages by walking the page
1950 * tables directly and avoids taking locks. Thus the walker needs to be
1951 * protected from page table pages being freed from under it, and should
1952 * block any THP splits.
1953 *
1954 * One way to achieve this is to have the walker disable interrupts, and
1955 * rely on IPIs from the TLB flushing code blocking before the page table
1956 * pages are freed. This is unsuitable for architectures that do not need
1957 * to broadcast an IPI when invalidating TLBs.
1958 *
1959 * Another way to achieve this is to batch up page table containing pages
1960 * belonging to more than one mm_user, then rcu_sched a callback to free those
1961 * pages. Disabling interrupts will allow the fast_gup walker to both block
1962 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1963 * (which is a relatively rare event). The code below adopts this strategy.
1964 *
1965 * Before activating this code, please be aware that the following assumptions
1966 * are currently made:
1967 *
1968 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1969 * free pages containing page tables or TLB flushing requires IPI broadcast.
1970 *
1971 * *) ptes can be read atomically by the architecture.
1972 *
1973 * *) access_ok is sufficient to validate userspace address ranges.
1974 *
1975 * The last two assumptions can be relaxed by the addition of helper functions.
1976 *
1977 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1978 */
1979 #ifdef CONFIG_HAVE_FAST_GUP
1980
1981 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1982 unsigned int flags,
1983 struct page **pages)
1984 {
1985 while ((*nr) - nr_start) {
1986 struct page *page = pages[--(*nr)];
1987
1988 ClearPageReferenced(page);
1989 if (flags & FOLL_PIN)
1990 unpin_user_page(page);
1991 else
1992 put_page(page);
1993 }
1994 }
1995
1996 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1997 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1998 unsigned int flags, struct page **pages, int *nr)
1999 {
2000 struct dev_pagemap *pgmap = NULL;
2001 int nr_start = *nr, ret = 0;
2002 pte_t *ptep, *ptem;
2003
2004 ptem = ptep = pte_offset_map(&pmd, addr);
2005 do {
2006 pte_t pte = ptep_get_lockless(ptep);
2007 struct page *head, *page;
2008
2009 /*
2010 * Similar to the PMD case below, NUMA hinting must take slow
2011 * path using the pte_protnone check.
2012 */
2013 if (pte_protnone(pte))
2014 goto pte_unmap;
2015
2016 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2017 goto pte_unmap;
2018
2019 if (pte_devmap(pte)) {
2020 if (unlikely(flags & FOLL_LONGTERM))
2021 goto pte_unmap;
2022
2023 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2024 if (unlikely(!pgmap)) {
2025 undo_dev_pagemap(nr, nr_start, flags, pages);
2026 goto pte_unmap;
2027 }
2028 } else if (pte_special(pte))
2029 goto pte_unmap;
2030
2031 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2032 page = pte_page(pte);
2033
2034 head = try_grab_compound_head(page, 1, flags);
2035 if (!head)
2036 goto pte_unmap;
2037
2038 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2039 put_compound_head(head, 1, flags);
2040 goto pte_unmap;
2041 }
2042
2043 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2044
2045 /*
2046 * We need to make the page accessible if and only if we are
2047 * going to access its content (the FOLL_PIN case). Please
2048 * see Documentation/core-api/pin_user_pages.rst for
2049 * details.
2050 */
2051 if (flags & FOLL_PIN) {
2052 ret = arch_make_page_accessible(page);
2053 if (ret) {
2054 unpin_user_page(page);
2055 goto pte_unmap;
2056 }
2057 }
2058 SetPageReferenced(page);
2059 pages[*nr] = page;
2060 (*nr)++;
2061
2062 } while (ptep++, addr += PAGE_SIZE, addr != end);
2063
2064 ret = 1;
2065
2066 pte_unmap:
2067 if (pgmap)
2068 put_dev_pagemap(pgmap);
2069 pte_unmap(ptem);
2070 return ret;
2071 }
2072 #else
2073
2074 /*
2075 * If we can't determine whether or not a pte is special, then fail immediately
2076 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2077 * to be special.
2078 *
2079 * For a futex to be placed on a THP tail page, get_futex_key requires a
2080 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2081 * useful to have gup_huge_pmd even if we can't operate on ptes.
2082 */
2083 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2084 unsigned int flags, struct page **pages, int *nr)
2085 {
2086 return 0;
2087 }
2088 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2089
2090 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2091 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2092 unsigned long end, unsigned int flags,
2093 struct page **pages, int *nr)
2094 {
2095 int nr_start = *nr;
2096 struct dev_pagemap *pgmap = NULL;
2097
2098 do {
2099 struct page *page = pfn_to_page(pfn);
2100
2101 pgmap = get_dev_pagemap(pfn, pgmap);
2102 if (unlikely(!pgmap)) {
2103 undo_dev_pagemap(nr, nr_start, flags, pages);
2104 return 0;
2105 }
2106 SetPageReferenced(page);
2107 pages[*nr] = page;
2108 if (unlikely(!try_grab_page(page, flags))) {
2109 undo_dev_pagemap(nr, nr_start, flags, pages);
2110 return 0;
2111 }
2112 (*nr)++;
2113 pfn++;
2114 } while (addr += PAGE_SIZE, addr != end);
2115
2116 if (pgmap)
2117 put_dev_pagemap(pgmap);
2118 return 1;
2119 }
2120
2121 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2122 unsigned long end, unsigned int flags,
2123 struct page **pages, int *nr)
2124 {
2125 unsigned long fault_pfn;
2126 int nr_start = *nr;
2127
2128 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2129 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2130 return 0;
2131
2132 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2133 undo_dev_pagemap(nr, nr_start, flags, pages);
2134 return 0;
2135 }
2136 return 1;
2137 }
2138
2139 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2140 unsigned long end, unsigned int flags,
2141 struct page **pages, int *nr)
2142 {
2143 unsigned long fault_pfn;
2144 int nr_start = *nr;
2145
2146 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2147 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2148 return 0;
2149
2150 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2151 undo_dev_pagemap(nr, nr_start, flags, pages);
2152 return 0;
2153 }
2154 return 1;
2155 }
2156 #else
2157 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2158 unsigned long end, unsigned int flags,
2159 struct page **pages, int *nr)
2160 {
2161 BUILD_BUG();
2162 return 0;
2163 }
2164
2165 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2166 unsigned long end, unsigned int flags,
2167 struct page **pages, int *nr)
2168 {
2169 BUILD_BUG();
2170 return 0;
2171 }
2172 #endif
2173
2174 static int record_subpages(struct page *page, unsigned long addr,
2175 unsigned long end, struct page **pages)
2176 {
2177 int nr;
2178
2179 for (nr = 0; addr != end; addr += PAGE_SIZE)
2180 pages[nr++] = page++;
2181
2182 return nr;
2183 }
2184
2185 #ifdef CONFIG_ARCH_HAS_HUGEPD
2186 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2187 unsigned long sz)
2188 {
2189 unsigned long __boundary = (addr + sz) & ~(sz-1);
2190 return (__boundary - 1 < end - 1) ? __boundary : end;
2191 }
2192
2193 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2194 unsigned long end, unsigned int flags,
2195 struct page **pages, int *nr)
2196 {
2197 unsigned long pte_end;
2198 struct page *head, *page;
2199 pte_t pte;
2200 int refs;
2201
2202 pte_end = (addr + sz) & ~(sz-1);
2203 if (pte_end < end)
2204 end = pte_end;
2205
2206 pte = huge_ptep_get(ptep);
2207
2208 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2209 return 0;
2210
2211 /* hugepages are never "special" */
2212 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2213
2214 head = pte_page(pte);
2215 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2216 refs = record_subpages(page, addr, end, pages + *nr);
2217
2218 head = try_grab_compound_head(head, refs, flags);
2219 if (!head)
2220 return 0;
2221
2222 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2223 put_compound_head(head, refs, flags);
2224 return 0;
2225 }
2226
2227 *nr += refs;
2228 SetPageReferenced(head);
2229 return 1;
2230 }
2231
2232 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2233 unsigned int pdshift, unsigned long end, unsigned int flags,
2234 struct page **pages, int *nr)
2235 {
2236 pte_t *ptep;
2237 unsigned long sz = 1UL << hugepd_shift(hugepd);
2238 unsigned long next;
2239
2240 ptep = hugepte_offset(hugepd, addr, pdshift);
2241 do {
2242 next = hugepte_addr_end(addr, end, sz);
2243 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2244 return 0;
2245 } while (ptep++, addr = next, addr != end);
2246
2247 return 1;
2248 }
2249 #else
2250 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2251 unsigned int pdshift, unsigned long end, unsigned int flags,
2252 struct page **pages, int *nr)
2253 {
2254 return 0;
2255 }
2256 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2257
2258 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2259 unsigned long end, unsigned int flags,
2260 struct page **pages, int *nr)
2261 {
2262 struct page *head, *page;
2263 int refs;
2264
2265 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2266 return 0;
2267
2268 if (pmd_devmap(orig)) {
2269 if (unlikely(flags & FOLL_LONGTERM))
2270 return 0;
2271 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2272 pages, nr);
2273 }
2274
2275 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2276 refs = record_subpages(page, addr, end, pages + *nr);
2277
2278 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2279 if (!head)
2280 return 0;
2281
2282 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2283 put_compound_head(head, refs, flags);
2284 return 0;
2285 }
2286
2287 *nr += refs;
2288 SetPageReferenced(head);
2289 return 1;
2290 }
2291
2292 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2293 unsigned long end, unsigned int flags,
2294 struct page **pages, int *nr)
2295 {
2296 struct page *head, *page;
2297 int refs;
2298
2299 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2300 return 0;
2301
2302 if (pud_devmap(orig)) {
2303 if (unlikely(flags & FOLL_LONGTERM))
2304 return 0;
2305 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2306 pages, nr);
2307 }
2308
2309 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2310 refs = record_subpages(page, addr, end, pages + *nr);
2311
2312 head = try_grab_compound_head(pud_page(orig), refs, flags);
2313 if (!head)
2314 return 0;
2315
2316 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2317 put_compound_head(head, refs, flags);
2318 return 0;
2319 }
2320
2321 *nr += refs;
2322 SetPageReferenced(head);
2323 return 1;
2324 }
2325
2326 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2327 unsigned long end, unsigned int flags,
2328 struct page **pages, int *nr)
2329 {
2330 int refs;
2331 struct page *head, *page;
2332
2333 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2334 return 0;
2335
2336 BUILD_BUG_ON(pgd_devmap(orig));
2337
2338 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2339 refs = record_subpages(page, addr, end, pages + *nr);
2340
2341 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2342 if (!head)
2343 return 0;
2344
2345 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2346 put_compound_head(head, refs, flags);
2347 return 0;
2348 }
2349
2350 *nr += refs;
2351 SetPageReferenced(head);
2352 return 1;
2353 }
2354
2355 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2356 unsigned int flags, struct page **pages, int *nr)
2357 {
2358 unsigned long next;
2359 pmd_t *pmdp;
2360
2361 pmdp = pmd_offset_lockless(pudp, pud, addr);
2362 do {
2363 pmd_t pmd = READ_ONCE(*pmdp);
2364
2365 next = pmd_addr_end(addr, end);
2366 if (!pmd_present(pmd))
2367 return 0;
2368
2369 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2370 pmd_devmap(pmd))) {
2371 /*
2372 * NUMA hinting faults need to be handled in the GUP
2373 * slowpath for accounting purposes and so that they
2374 * can be serialised against THP migration.
2375 */
2376 if (pmd_protnone(pmd))
2377 return 0;
2378
2379 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2380 pages, nr))
2381 return 0;
2382
2383 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2384 /*
2385 * architecture have different format for hugetlbfs
2386 * pmd format and THP pmd format
2387 */
2388 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2389 PMD_SHIFT, next, flags, pages, nr))
2390 return 0;
2391 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2392 return 0;
2393 } while (pmdp++, addr = next, addr != end);
2394
2395 return 1;
2396 }
2397
2398 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2399 unsigned int flags, struct page **pages, int *nr)
2400 {
2401 unsigned long next;
2402 pud_t *pudp;
2403
2404 pudp = pud_offset_lockless(p4dp, p4d, addr);
2405 do {
2406 pud_t pud = READ_ONCE(*pudp);
2407
2408 next = pud_addr_end(addr, end);
2409 if (unlikely(!pud_present(pud)))
2410 return 0;
2411 if (unlikely(pud_huge(pud))) {
2412 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2413 pages, nr))
2414 return 0;
2415 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2416 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2417 PUD_SHIFT, next, flags, pages, nr))
2418 return 0;
2419 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2420 return 0;
2421 } while (pudp++, addr = next, addr != end);
2422
2423 return 1;
2424 }
2425
2426 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2427 unsigned int flags, struct page **pages, int *nr)
2428 {
2429 unsigned long next;
2430 p4d_t *p4dp;
2431
2432 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2433 do {
2434 p4d_t p4d = READ_ONCE(*p4dp);
2435
2436 next = p4d_addr_end(addr, end);
2437 if (p4d_none(p4d))
2438 return 0;
2439 BUILD_BUG_ON(p4d_huge(p4d));
2440 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2441 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2442 P4D_SHIFT, next, flags, pages, nr))
2443 return 0;
2444 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2445 return 0;
2446 } while (p4dp++, addr = next, addr != end);
2447
2448 return 1;
2449 }
2450
2451 static void gup_pgd_range(unsigned long addr, unsigned long end,
2452 unsigned int flags, struct page **pages, int *nr)
2453 {
2454 unsigned long next;
2455 pgd_t *pgdp;
2456
2457 pgdp = pgd_offset(current->mm, addr);
2458 do {
2459 pgd_t pgd = READ_ONCE(*pgdp);
2460
2461 next = pgd_addr_end(addr, end);
2462 if (pgd_none(pgd))
2463 return;
2464 if (unlikely(pgd_huge(pgd))) {
2465 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2466 pages, nr))
2467 return;
2468 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2469 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2470 PGDIR_SHIFT, next, flags, pages, nr))
2471 return;
2472 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2473 return;
2474 } while (pgdp++, addr = next, addr != end);
2475 }
2476 #else
2477 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2478 unsigned int flags, struct page **pages, int *nr)
2479 {
2480 }
2481 #endif /* CONFIG_HAVE_FAST_GUP */
2482
2483 #ifndef gup_fast_permitted
2484 /*
2485 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2486 * we need to fall back to the slow version:
2487 */
2488 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2489 {
2490 return true;
2491 }
2492 #endif
2493
2494 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2495 unsigned int gup_flags, struct page **pages)
2496 {
2497 int ret;
2498
2499 /*
2500 * FIXME: FOLL_LONGTERM does not work with
2501 * get_user_pages_unlocked() (see comments in that function)
2502 */
2503 if (gup_flags & FOLL_LONGTERM) {
2504 mmap_read_lock(current->mm);
2505 ret = __gup_longterm_locked(current->mm,
2506 start, nr_pages,
2507 pages, NULL, gup_flags);
2508 mmap_read_unlock(current->mm);
2509 } else {
2510 ret = get_user_pages_unlocked(start, nr_pages,
2511 pages, gup_flags);
2512 }
2513
2514 return ret;
2515 }
2516
2517 static unsigned long lockless_pages_from_mm(unsigned long start,
2518 unsigned long end,
2519 unsigned int gup_flags,
2520 struct page **pages)
2521 {
2522 unsigned long flags;
2523 int nr_pinned = 0;
2524 unsigned seq;
2525
2526 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2527 !gup_fast_permitted(start, end))
2528 return 0;
2529
2530 if (gup_flags & FOLL_PIN) {
2531 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2532 if (seq & 1)
2533 return 0;
2534 }
2535
2536 /*
2537 * Disable interrupts. The nested form is used, in order to allow full,
2538 * general purpose use of this routine.
2539 *
2540 * With interrupts disabled, we block page table pages from being freed
2541 * from under us. See struct mmu_table_batch comments in
2542 * include/asm-generic/tlb.h for more details.
2543 *
2544 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2545 * that come from THPs splitting.
2546 */
2547 local_irq_save(flags);
2548 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2549 local_irq_restore(flags);
2550
2551 /*
2552 * When pinning pages for DMA there could be a concurrent write protect
2553 * from fork() via copy_page_range(), in this case always fail fast GUP.
2554 */
2555 if (gup_flags & FOLL_PIN) {
2556 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2557 unpin_user_pages(pages, nr_pinned);
2558 return 0;
2559 }
2560 }
2561 return nr_pinned;
2562 }
2563
2564 static int internal_get_user_pages_fast(unsigned long start,
2565 unsigned long nr_pages,
2566 unsigned int gup_flags,
2567 struct page **pages)
2568 {
2569 unsigned long len, end;
2570 unsigned long nr_pinned;
2571 int ret;
2572
2573 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2574 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2575 FOLL_FAST_ONLY)))
2576 return -EINVAL;
2577
2578 if (gup_flags & FOLL_PIN)
2579 atomic_set(&current->mm->has_pinned, 1);
2580
2581 if (!(gup_flags & FOLL_FAST_ONLY))
2582 might_lock_read(&current->mm->mmap_lock);
2583
2584 start = untagged_addr(start) & PAGE_MASK;
2585 len = nr_pages << PAGE_SHIFT;
2586 if (check_add_overflow(start, len, &end))
2587 return 0;
2588 if (unlikely(!access_ok((void __user *)start, len)))
2589 return -EFAULT;
2590
2591 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2592 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2593 return nr_pinned;
2594
2595 /* Slow path: try to get the remaining pages with get_user_pages */
2596 start += nr_pinned << PAGE_SHIFT;
2597 pages += nr_pinned;
2598 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2599 pages);
2600 if (ret < 0) {
2601 /*
2602 * The caller has to unpin the pages we already pinned so
2603 * returning -errno is not an option
2604 */
2605 if (nr_pinned)
2606 return nr_pinned;
2607 return ret;
2608 }
2609 return ret + nr_pinned;
2610 }
2611
2612 /**
2613 * get_user_pages_fast_only() - pin user pages in memory
2614 * @start: starting user address
2615 * @nr_pages: number of pages from start to pin
2616 * @gup_flags: flags modifying pin behaviour
2617 * @pages: array that receives pointers to the pages pinned.
2618 * Should be at least nr_pages long.
2619 *
2620 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2621 * the regular GUP.
2622 * Note a difference with get_user_pages_fast: this always returns the
2623 * number of pages pinned, 0 if no pages were pinned.
2624 *
2625 * If the architecture does not support this function, simply return with no
2626 * pages pinned.
2627 *
2628 * Careful, careful! COW breaking can go either way, so a non-write
2629 * access can get ambiguous page results. If you call this function without
2630 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2631 */
2632 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2633 unsigned int gup_flags, struct page **pages)
2634 {
2635 int nr_pinned;
2636 /*
2637 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2638 * because gup fast is always a "pin with a +1 page refcount" request.
2639 *
2640 * FOLL_FAST_ONLY is required in order to match the API description of
2641 * this routine: no fall back to regular ("slow") GUP.
2642 */
2643 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2644
2645 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2646 pages);
2647
2648 /*
2649 * As specified in the API description above, this routine is not
2650 * allowed to return negative values. However, the common core
2651 * routine internal_get_user_pages_fast() *can* return -errno.
2652 * Therefore, correct for that here:
2653 */
2654 if (nr_pinned < 0)
2655 nr_pinned = 0;
2656
2657 return nr_pinned;
2658 }
2659 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2660
2661 /**
2662 * get_user_pages_fast() - pin user pages in memory
2663 * @start: starting user address
2664 * @nr_pages: number of pages from start to pin
2665 * @gup_flags: flags modifying pin behaviour
2666 * @pages: array that receives pointers to the pages pinned.
2667 * Should be at least nr_pages long.
2668 *
2669 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2670 * If not successful, it will fall back to taking the lock and
2671 * calling get_user_pages().
2672 *
2673 * Returns number of pages pinned. This may be fewer than the number requested.
2674 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2675 * -errno.
2676 */
2677 int get_user_pages_fast(unsigned long start, int nr_pages,
2678 unsigned int gup_flags, struct page **pages)
2679 {
2680 if (!is_valid_gup_flags(gup_flags))
2681 return -EINVAL;
2682
2683 /*
2684 * The caller may or may not have explicitly set FOLL_GET; either way is
2685 * OK. However, internally (within mm/gup.c), gup fast variants must set
2686 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2687 * request.
2688 */
2689 gup_flags |= FOLL_GET;
2690 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2691 }
2692 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2693
2694 /**
2695 * pin_user_pages_fast() - pin user pages in memory without taking locks
2696 *
2697 * @start: starting user address
2698 * @nr_pages: number of pages from start to pin
2699 * @gup_flags: flags modifying pin behaviour
2700 * @pages: array that receives pointers to the pages pinned.
2701 * Should be at least nr_pages long.
2702 *
2703 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2704 * get_user_pages_fast() for documentation on the function arguments, because
2705 * the arguments here are identical.
2706 *
2707 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2708 * see Documentation/core-api/pin_user_pages.rst for further details.
2709 */
2710 int pin_user_pages_fast(unsigned long start, int nr_pages,
2711 unsigned int gup_flags, struct page **pages)
2712 {
2713 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2714 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2715 return -EINVAL;
2716
2717 gup_flags |= FOLL_PIN;
2718 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2719 }
2720 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2721
2722 /*
2723 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2724 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2725 *
2726 * The API rules are the same, too: no negative values may be returned.
2727 */
2728 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2729 unsigned int gup_flags, struct page **pages)
2730 {
2731 int nr_pinned;
2732
2733 /*
2734 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2735 * rules require returning 0, rather than -errno:
2736 */
2737 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2738 return 0;
2739 /*
2740 * FOLL_FAST_ONLY is required in order to match the API description of
2741 * this routine: no fall back to regular ("slow") GUP.
2742 */
2743 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2744 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2745 pages);
2746 /*
2747 * This routine is not allowed to return negative values. However,
2748 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2749 * correct for that here:
2750 */
2751 if (nr_pinned < 0)
2752 nr_pinned = 0;
2753
2754 return nr_pinned;
2755 }
2756 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2757
2758 /**
2759 * pin_user_pages_remote() - pin pages of a remote process
2760 *
2761 * @mm: mm_struct of target mm
2762 * @start: starting user address
2763 * @nr_pages: number of pages from start to pin
2764 * @gup_flags: flags modifying lookup behaviour
2765 * @pages: array that receives pointers to the pages pinned.
2766 * Should be at least nr_pages long. Or NULL, if caller
2767 * only intends to ensure the pages are faulted in.
2768 * @vmas: array of pointers to vmas corresponding to each page.
2769 * Or NULL if the caller does not require them.
2770 * @locked: pointer to lock flag indicating whether lock is held and
2771 * subsequently whether VM_FAULT_RETRY functionality can be
2772 * utilised. Lock must initially be held.
2773 *
2774 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2775 * get_user_pages_remote() for documentation on the function arguments, because
2776 * the arguments here are identical.
2777 *
2778 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2779 * see Documentation/core-api/pin_user_pages.rst for details.
2780 */
2781 long pin_user_pages_remote(struct mm_struct *mm,
2782 unsigned long start, unsigned long nr_pages,
2783 unsigned int gup_flags, struct page **pages,
2784 struct vm_area_struct **vmas, int *locked)
2785 {
2786 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2787 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2788 return -EINVAL;
2789
2790 gup_flags |= FOLL_PIN;
2791 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2792 pages, vmas, locked);
2793 }
2794 EXPORT_SYMBOL(pin_user_pages_remote);
2795
2796 /**
2797 * pin_user_pages() - pin user pages in memory for use by other devices
2798 *
2799 * @start: starting user address
2800 * @nr_pages: number of pages from start to pin
2801 * @gup_flags: flags modifying lookup behaviour
2802 * @pages: array that receives pointers to the pages pinned.
2803 * Should be at least nr_pages long. Or NULL, if caller
2804 * only intends to ensure the pages are faulted in.
2805 * @vmas: array of pointers to vmas corresponding to each page.
2806 * Or NULL if the caller does not require them.
2807 *
2808 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2809 * FOLL_PIN is set.
2810 *
2811 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2812 * see Documentation/core-api/pin_user_pages.rst for details.
2813 */
2814 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2815 unsigned int gup_flags, struct page **pages,
2816 struct vm_area_struct **vmas)
2817 {
2818 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2819 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2820 return -EINVAL;
2821
2822 gup_flags |= FOLL_PIN;
2823 return __gup_longterm_locked(current->mm, start, nr_pages,
2824 pages, vmas, gup_flags);
2825 }
2826 EXPORT_SYMBOL(pin_user_pages);
2827
2828 /*
2829 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2830 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2831 * FOLL_PIN and rejects FOLL_GET.
2832 */
2833 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2834 struct page **pages, unsigned int gup_flags)
2835 {
2836 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2837 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2838 return -EINVAL;
2839
2840 gup_flags |= FOLL_PIN;
2841 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2842 }
2843 EXPORT_SYMBOL(pin_user_pages_unlocked);
2844
2845 /*
2846 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2847 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2848 * FOLL_GET.
2849 */
2850 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2851 unsigned int gup_flags, struct page **pages,
2852 int *locked)
2853 {
2854 /*
2855 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2856 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2857 * vmas. As there are no users of this flag in this call we simply
2858 * disallow this option for now.
2859 */
2860 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2861 return -EINVAL;
2862
2863 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2864 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2865 return -EINVAL;
2866
2867 gup_flags |= FOLL_PIN;
2868 return __get_user_pages_locked(current->mm, start, nr_pages,
2869 pages, NULL, locked,
2870 gup_flags | FOLL_TOUCH);
2871 }
2872 EXPORT_SYMBOL(pin_user_pages_locked);