]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/gup.c
Merge tag 'usb-5.9-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-jammy-kernel.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23
24 #include "internal.h"
25
26 struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29 };
30
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37 }
38
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45 }
46
47 /*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60 }
61
62 /*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs,
83 unsigned int flags)
84 {
85 if (flags & FOLL_GET)
86 return try_get_compound_head(page, refs);
87 else if (flags & FOLL_PIN) {
88 int orig_refs = refs;
89
90 /*
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
93 */
94 if (unlikely(flags & FOLL_LONGTERM) &&
95 is_migrate_cma_page(page))
96 return NULL;
97
98 /*
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
102 *
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
105 */
106 if (!hpage_pincount_available(page))
107 refs *= GUP_PIN_COUNTING_BIAS;
108
109 page = try_get_compound_head(page, refs);
110 if (!page)
111 return NULL;
112
113 if (hpage_pincount_available(page))
114 hpage_pincount_add(page, refs);
115
116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 orig_refs);
118
119 return page;
120 }
121
122 WARN_ON_ONCE(1);
123 return NULL;
124 }
125
126 /**
127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128 *
129 * This might not do anything at all, depending on the flags argument.
130 *
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133 *
134 * @page: pointer to page to be grabbed
135 * @flags: gup flags: these are the FOLL_* flag values.
136 *
137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138 * time. Cases:
139 *
140 * FOLL_GET: page's refcount will be incremented by 1.
141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142 *
143 * Return: true for success, or if no action was required (if neither FOLL_PIN
144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145 * FOLL_PIN was set, but the page could not be grabbed.
146 */
147 bool __must_check try_grab_page(struct page *page, unsigned int flags)
148 {
149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150
151 if (flags & FOLL_GET)
152 return try_get_page(page);
153 else if (flags & FOLL_PIN) {
154 int refs = 1;
155
156 page = compound_head(page);
157
158 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 return false;
160
161 if (hpage_pincount_available(page))
162 hpage_pincount_add(page, 1);
163 else
164 refs = GUP_PIN_COUNTING_BIAS;
165
166 /*
167 * Similar to try_grab_compound_head(): even if using the
168 * hpage_pincount_add/_sub() routines, be sure to
169 * *also* increment the normal page refcount field at least
170 * once, so that the page really is pinned.
171 */
172 page_ref_add(page, refs);
173
174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175 }
176
177 return true;
178 }
179
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page *page)
182 {
183 int count, refs = 1;
184
185 if (!page_is_devmap_managed(page))
186 return false;
187
188 if (hpage_pincount_available(page))
189 hpage_pincount_sub(page, 1);
190 else
191 refs = GUP_PIN_COUNTING_BIAS;
192
193 count = page_ref_sub_return(page, refs);
194
195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196 /*
197 * devmap page refcounts are 1-based, rather than 0-based: if
198 * refcount is 1, then the page is free and the refcount is
199 * stable because nobody holds a reference on the page.
200 */
201 if (count == 1)
202 free_devmap_managed_page(page);
203 else if (!count)
204 __put_page(page);
205
206 return true;
207 }
208 #else
209 static bool __unpin_devmap_managed_user_page(struct page *page)
210 {
211 return false;
212 }
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
214
215 /**
216 * unpin_user_page() - release a dma-pinned page
217 * @page: pointer to page to be released
218 *
219 * Pages that were pinned via pin_user_pages*() must be released via either
220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221 * that such pages can be separately tracked and uniquely handled. In
222 * particular, interactions with RDMA and filesystems need special handling.
223 */
224 void unpin_user_page(struct page *page)
225 {
226 int refs = 1;
227
228 page = compound_head(page);
229
230 /*
231 * For devmap managed pages we need to catch refcount transition from
232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 * page is free and we need to inform the device driver through
234 * callback. See include/linux/memremap.h and HMM for details.
235 */
236 if (__unpin_devmap_managed_user_page(page))
237 return;
238
239 if (hpage_pincount_available(page))
240 hpage_pincount_sub(page, 1);
241 else
242 refs = GUP_PIN_COUNTING_BIAS;
243
244 if (page_ref_sub_and_test(page, refs))
245 __put_page(page);
246
247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248 }
249 EXPORT_SYMBOL(unpin_user_page);
250
251 /**
252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253 * @pages: array of pages to be maybe marked dirty, and definitely released.
254 * @npages: number of pages in the @pages array.
255 * @make_dirty: whether to mark the pages dirty
256 *
257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258 * variants called on that page.
259 *
260 * For each page in the @pages array, make that page (or its head page, if a
261 * compound page) dirty, if @make_dirty is true, and if the page was previously
262 * listed as clean. In any case, releases all pages using unpin_user_page(),
263 * possibly via unpin_user_pages(), for the non-dirty case.
264 *
265 * Please see the unpin_user_page() documentation for details.
266 *
267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268 * required, then the caller should a) verify that this is really correct,
269 * because _lock() is usually required, and b) hand code it:
270 * set_page_dirty_lock(), unpin_user_page().
271 *
272 */
273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 bool make_dirty)
275 {
276 unsigned long index;
277
278 /*
279 * TODO: this can be optimized for huge pages: if a series of pages is
280 * physically contiguous and part of the same compound page, then a
281 * single operation to the head page should suffice.
282 */
283
284 if (!make_dirty) {
285 unpin_user_pages(pages, npages);
286 return;
287 }
288
289 for (index = 0; index < npages; index++) {
290 struct page *page = compound_head(pages[index]);
291 /*
292 * Checking PageDirty at this point may race with
293 * clear_page_dirty_for_io(), but that's OK. Two key
294 * cases:
295 *
296 * 1) This code sees the page as already dirty, so it
297 * skips the call to set_page_dirty(). That could happen
298 * because clear_page_dirty_for_io() called
299 * page_mkclean(), followed by set_page_dirty().
300 * However, now the page is going to get written back,
301 * which meets the original intention of setting it
302 * dirty, so all is well: clear_page_dirty_for_io() goes
303 * on to call TestClearPageDirty(), and write the page
304 * back.
305 *
306 * 2) This code sees the page as clean, so it calls
307 * set_page_dirty(). The page stays dirty, despite being
308 * written back, so it gets written back again in the
309 * next writeback cycle. This is harmless.
310 */
311 if (!PageDirty(page))
312 set_page_dirty_lock(page);
313 unpin_user_page(page);
314 }
315 }
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317
318 /**
319 * unpin_user_pages() - release an array of gup-pinned pages.
320 * @pages: array of pages to be marked dirty and released.
321 * @npages: number of pages in the @pages array.
322 *
323 * For each page in the @pages array, release the page using unpin_user_page().
324 *
325 * Please see the unpin_user_page() documentation for details.
326 */
327 void unpin_user_pages(struct page **pages, unsigned long npages)
328 {
329 unsigned long index;
330
331 /*
332 * TODO: this can be optimized for huge pages: if a series of pages is
333 * physically contiguous and part of the same compound page, then a
334 * single operation to the head page should suffice.
335 */
336 for (index = 0; index < npages; index++)
337 unpin_user_page(pages[index]);
338 }
339 EXPORT_SYMBOL(unpin_user_pages);
340
341 #ifdef CONFIG_MMU
342 static struct page *no_page_table(struct vm_area_struct *vma,
343 unsigned int flags)
344 {
345 /*
346 * When core dumping an enormous anonymous area that nobody
347 * has touched so far, we don't want to allocate unnecessary pages or
348 * page tables. Return error instead of NULL to skip handle_mm_fault,
349 * then get_dump_page() will return NULL to leave a hole in the dump.
350 * But we can only make this optimization where a hole would surely
351 * be zero-filled if handle_mm_fault() actually did handle it.
352 */
353 if ((flags & FOLL_DUMP) &&
354 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
355 return ERR_PTR(-EFAULT);
356 return NULL;
357 }
358
359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 pte_t *pte, unsigned int flags)
361 {
362 /* No page to get reference */
363 if (flags & FOLL_GET)
364 return -EFAULT;
365
366 if (flags & FOLL_TOUCH) {
367 pte_t entry = *pte;
368
369 if (flags & FOLL_WRITE)
370 entry = pte_mkdirty(entry);
371 entry = pte_mkyoung(entry);
372
373 if (!pte_same(*pte, entry)) {
374 set_pte_at(vma->vm_mm, address, pte, entry);
375 update_mmu_cache(vma, address, pte);
376 }
377 }
378
379 /* Proper page table entry exists, but no corresponding struct page */
380 return -EEXIST;
381 }
382
383 /*
384 * FOLL_FORCE can write to even unwritable pte's, but only
385 * after we've gone through a COW cycle and they are dirty.
386 */
387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388 {
389 return pte_write(pte) ||
390 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
391 }
392
393 static struct page *follow_page_pte(struct vm_area_struct *vma,
394 unsigned long address, pmd_t *pmd, unsigned int flags,
395 struct dev_pagemap **pgmap)
396 {
397 struct mm_struct *mm = vma->vm_mm;
398 struct page *page;
399 spinlock_t *ptl;
400 pte_t *ptep, pte;
401 int ret;
402
403 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
404 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
405 (FOLL_PIN | FOLL_GET)))
406 return ERR_PTR(-EINVAL);
407 retry:
408 if (unlikely(pmd_bad(*pmd)))
409 return no_page_table(vma, flags);
410
411 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
412 pte = *ptep;
413 if (!pte_present(pte)) {
414 swp_entry_t entry;
415 /*
416 * KSM's break_ksm() relies upon recognizing a ksm page
417 * even while it is being migrated, so for that case we
418 * need migration_entry_wait().
419 */
420 if (likely(!(flags & FOLL_MIGRATION)))
421 goto no_page;
422 if (pte_none(pte))
423 goto no_page;
424 entry = pte_to_swp_entry(pte);
425 if (!is_migration_entry(entry))
426 goto no_page;
427 pte_unmap_unlock(ptep, ptl);
428 migration_entry_wait(mm, pmd, address);
429 goto retry;
430 }
431 if ((flags & FOLL_NUMA) && pte_protnone(pte))
432 goto no_page;
433 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
434 pte_unmap_unlock(ptep, ptl);
435 return NULL;
436 }
437
438 page = vm_normal_page(vma, address, pte);
439 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
440 /*
441 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
442 * case since they are only valid while holding the pgmap
443 * reference.
444 */
445 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
446 if (*pgmap)
447 page = pte_page(pte);
448 else
449 goto no_page;
450 } else if (unlikely(!page)) {
451 if (flags & FOLL_DUMP) {
452 /* Avoid special (like zero) pages in core dumps */
453 page = ERR_PTR(-EFAULT);
454 goto out;
455 }
456
457 if (is_zero_pfn(pte_pfn(pte))) {
458 page = pte_page(pte);
459 } else {
460 ret = follow_pfn_pte(vma, address, ptep, flags);
461 page = ERR_PTR(ret);
462 goto out;
463 }
464 }
465
466 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
467 get_page(page);
468 pte_unmap_unlock(ptep, ptl);
469 lock_page(page);
470 ret = split_huge_page(page);
471 unlock_page(page);
472 put_page(page);
473 if (ret)
474 return ERR_PTR(ret);
475 goto retry;
476 }
477
478 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
479 if (unlikely(!try_grab_page(page, flags))) {
480 page = ERR_PTR(-ENOMEM);
481 goto out;
482 }
483 /*
484 * We need to make the page accessible if and only if we are going
485 * to access its content (the FOLL_PIN case). Please see
486 * Documentation/core-api/pin_user_pages.rst for details.
487 */
488 if (flags & FOLL_PIN) {
489 ret = arch_make_page_accessible(page);
490 if (ret) {
491 unpin_user_page(page);
492 page = ERR_PTR(ret);
493 goto out;
494 }
495 }
496 if (flags & FOLL_TOUCH) {
497 if ((flags & FOLL_WRITE) &&
498 !pte_dirty(pte) && !PageDirty(page))
499 set_page_dirty(page);
500 /*
501 * pte_mkyoung() would be more correct here, but atomic care
502 * is needed to avoid losing the dirty bit: it is easier to use
503 * mark_page_accessed().
504 */
505 mark_page_accessed(page);
506 }
507 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
508 /* Do not mlock pte-mapped THP */
509 if (PageTransCompound(page))
510 goto out;
511
512 /*
513 * The preliminary mapping check is mainly to avoid the
514 * pointless overhead of lock_page on the ZERO_PAGE
515 * which might bounce very badly if there is contention.
516 *
517 * If the page is already locked, we don't need to
518 * handle it now - vmscan will handle it later if and
519 * when it attempts to reclaim the page.
520 */
521 if (page->mapping && trylock_page(page)) {
522 lru_add_drain(); /* push cached pages to LRU */
523 /*
524 * Because we lock page here, and migration is
525 * blocked by the pte's page reference, and we
526 * know the page is still mapped, we don't even
527 * need to check for file-cache page truncation.
528 */
529 mlock_vma_page(page);
530 unlock_page(page);
531 }
532 }
533 out:
534 pte_unmap_unlock(ptep, ptl);
535 return page;
536 no_page:
537 pte_unmap_unlock(ptep, ptl);
538 if (!pte_none(pte))
539 return NULL;
540 return no_page_table(vma, flags);
541 }
542
543 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
544 unsigned long address, pud_t *pudp,
545 unsigned int flags,
546 struct follow_page_context *ctx)
547 {
548 pmd_t *pmd, pmdval;
549 spinlock_t *ptl;
550 struct page *page;
551 struct mm_struct *mm = vma->vm_mm;
552
553 pmd = pmd_offset(pudp, address);
554 /*
555 * The READ_ONCE() will stabilize the pmdval in a register or
556 * on the stack so that it will stop changing under the code.
557 */
558 pmdval = READ_ONCE(*pmd);
559 if (pmd_none(pmdval))
560 return no_page_table(vma, flags);
561 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
562 page = follow_huge_pmd(mm, address, pmd, flags);
563 if (page)
564 return page;
565 return no_page_table(vma, flags);
566 }
567 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
568 page = follow_huge_pd(vma, address,
569 __hugepd(pmd_val(pmdval)), flags,
570 PMD_SHIFT);
571 if (page)
572 return page;
573 return no_page_table(vma, flags);
574 }
575 retry:
576 if (!pmd_present(pmdval)) {
577 if (likely(!(flags & FOLL_MIGRATION)))
578 return no_page_table(vma, flags);
579 VM_BUG_ON(thp_migration_supported() &&
580 !is_pmd_migration_entry(pmdval));
581 if (is_pmd_migration_entry(pmdval))
582 pmd_migration_entry_wait(mm, pmd);
583 pmdval = READ_ONCE(*pmd);
584 /*
585 * MADV_DONTNEED may convert the pmd to null because
586 * mmap_lock is held in read mode
587 */
588 if (pmd_none(pmdval))
589 return no_page_table(vma, flags);
590 goto retry;
591 }
592 if (pmd_devmap(pmdval)) {
593 ptl = pmd_lock(mm, pmd);
594 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
595 spin_unlock(ptl);
596 if (page)
597 return page;
598 }
599 if (likely(!pmd_trans_huge(pmdval)))
600 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
601
602 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
603 return no_page_table(vma, flags);
604
605 retry_locked:
606 ptl = pmd_lock(mm, pmd);
607 if (unlikely(pmd_none(*pmd))) {
608 spin_unlock(ptl);
609 return no_page_table(vma, flags);
610 }
611 if (unlikely(!pmd_present(*pmd))) {
612 spin_unlock(ptl);
613 if (likely(!(flags & FOLL_MIGRATION)))
614 return no_page_table(vma, flags);
615 pmd_migration_entry_wait(mm, pmd);
616 goto retry_locked;
617 }
618 if (unlikely(!pmd_trans_huge(*pmd))) {
619 spin_unlock(ptl);
620 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
621 }
622 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
623 int ret;
624 page = pmd_page(*pmd);
625 if (is_huge_zero_page(page)) {
626 spin_unlock(ptl);
627 ret = 0;
628 split_huge_pmd(vma, pmd, address);
629 if (pmd_trans_unstable(pmd))
630 ret = -EBUSY;
631 } else if (flags & FOLL_SPLIT) {
632 if (unlikely(!try_get_page(page))) {
633 spin_unlock(ptl);
634 return ERR_PTR(-ENOMEM);
635 }
636 spin_unlock(ptl);
637 lock_page(page);
638 ret = split_huge_page(page);
639 unlock_page(page);
640 put_page(page);
641 if (pmd_none(*pmd))
642 return no_page_table(vma, flags);
643 } else { /* flags & FOLL_SPLIT_PMD */
644 spin_unlock(ptl);
645 split_huge_pmd(vma, pmd, address);
646 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
647 }
648
649 return ret ? ERR_PTR(ret) :
650 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
651 }
652 page = follow_trans_huge_pmd(vma, address, pmd, flags);
653 spin_unlock(ptl);
654 ctx->page_mask = HPAGE_PMD_NR - 1;
655 return page;
656 }
657
658 static struct page *follow_pud_mask(struct vm_area_struct *vma,
659 unsigned long address, p4d_t *p4dp,
660 unsigned int flags,
661 struct follow_page_context *ctx)
662 {
663 pud_t *pud;
664 spinlock_t *ptl;
665 struct page *page;
666 struct mm_struct *mm = vma->vm_mm;
667
668 pud = pud_offset(p4dp, address);
669 if (pud_none(*pud))
670 return no_page_table(vma, flags);
671 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
672 page = follow_huge_pud(mm, address, pud, flags);
673 if (page)
674 return page;
675 return no_page_table(vma, flags);
676 }
677 if (is_hugepd(__hugepd(pud_val(*pud)))) {
678 page = follow_huge_pd(vma, address,
679 __hugepd(pud_val(*pud)), flags,
680 PUD_SHIFT);
681 if (page)
682 return page;
683 return no_page_table(vma, flags);
684 }
685 if (pud_devmap(*pud)) {
686 ptl = pud_lock(mm, pud);
687 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
688 spin_unlock(ptl);
689 if (page)
690 return page;
691 }
692 if (unlikely(pud_bad(*pud)))
693 return no_page_table(vma, flags);
694
695 return follow_pmd_mask(vma, address, pud, flags, ctx);
696 }
697
698 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
699 unsigned long address, pgd_t *pgdp,
700 unsigned int flags,
701 struct follow_page_context *ctx)
702 {
703 p4d_t *p4d;
704 struct page *page;
705
706 p4d = p4d_offset(pgdp, address);
707 if (p4d_none(*p4d))
708 return no_page_table(vma, flags);
709 BUILD_BUG_ON(p4d_huge(*p4d));
710 if (unlikely(p4d_bad(*p4d)))
711 return no_page_table(vma, flags);
712
713 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
714 page = follow_huge_pd(vma, address,
715 __hugepd(p4d_val(*p4d)), flags,
716 P4D_SHIFT);
717 if (page)
718 return page;
719 return no_page_table(vma, flags);
720 }
721 return follow_pud_mask(vma, address, p4d, flags, ctx);
722 }
723
724 /**
725 * follow_page_mask - look up a page descriptor from a user-virtual address
726 * @vma: vm_area_struct mapping @address
727 * @address: virtual address to look up
728 * @flags: flags modifying lookup behaviour
729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
730 * pointer to output page_mask
731 *
732 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
733 *
734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
735 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
736 *
737 * On output, the @ctx->page_mask is set according to the size of the page.
738 *
739 * Return: the mapped (struct page *), %NULL if no mapping exists, or
740 * an error pointer if there is a mapping to something not represented
741 * by a page descriptor (see also vm_normal_page()).
742 */
743 static struct page *follow_page_mask(struct vm_area_struct *vma,
744 unsigned long address, unsigned int flags,
745 struct follow_page_context *ctx)
746 {
747 pgd_t *pgd;
748 struct page *page;
749 struct mm_struct *mm = vma->vm_mm;
750
751 ctx->page_mask = 0;
752
753 /* make this handle hugepd */
754 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
755 if (!IS_ERR(page)) {
756 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
757 return page;
758 }
759
760 pgd = pgd_offset(mm, address);
761
762 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
763 return no_page_table(vma, flags);
764
765 if (pgd_huge(*pgd)) {
766 page = follow_huge_pgd(mm, address, pgd, flags);
767 if (page)
768 return page;
769 return no_page_table(vma, flags);
770 }
771 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
772 page = follow_huge_pd(vma, address,
773 __hugepd(pgd_val(*pgd)), flags,
774 PGDIR_SHIFT);
775 if (page)
776 return page;
777 return no_page_table(vma, flags);
778 }
779
780 return follow_p4d_mask(vma, address, pgd, flags, ctx);
781 }
782
783 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
784 unsigned int foll_flags)
785 {
786 struct follow_page_context ctx = { NULL };
787 struct page *page;
788
789 page = follow_page_mask(vma, address, foll_flags, &ctx);
790 if (ctx.pgmap)
791 put_dev_pagemap(ctx.pgmap);
792 return page;
793 }
794
795 static int get_gate_page(struct mm_struct *mm, unsigned long address,
796 unsigned int gup_flags, struct vm_area_struct **vma,
797 struct page **page)
798 {
799 pgd_t *pgd;
800 p4d_t *p4d;
801 pud_t *pud;
802 pmd_t *pmd;
803 pte_t *pte;
804 int ret = -EFAULT;
805
806 /* user gate pages are read-only */
807 if (gup_flags & FOLL_WRITE)
808 return -EFAULT;
809 if (address > TASK_SIZE)
810 pgd = pgd_offset_k(address);
811 else
812 pgd = pgd_offset_gate(mm, address);
813 if (pgd_none(*pgd))
814 return -EFAULT;
815 p4d = p4d_offset(pgd, address);
816 if (p4d_none(*p4d))
817 return -EFAULT;
818 pud = pud_offset(p4d, address);
819 if (pud_none(*pud))
820 return -EFAULT;
821 pmd = pmd_offset(pud, address);
822 if (!pmd_present(*pmd))
823 return -EFAULT;
824 VM_BUG_ON(pmd_trans_huge(*pmd));
825 pte = pte_offset_map(pmd, address);
826 if (pte_none(*pte))
827 goto unmap;
828 *vma = get_gate_vma(mm);
829 if (!page)
830 goto out;
831 *page = vm_normal_page(*vma, address, *pte);
832 if (!*page) {
833 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
834 goto unmap;
835 *page = pte_page(*pte);
836 }
837 if (unlikely(!try_grab_page(*page, gup_flags))) {
838 ret = -ENOMEM;
839 goto unmap;
840 }
841 out:
842 ret = 0;
843 unmap:
844 pte_unmap(pte);
845 return ret;
846 }
847
848 /*
849 * mmap_lock must be held on entry. If @locked != NULL and *@flags
850 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
851 * is, *@locked will be set to 0 and -EBUSY returned.
852 */
853 static int faultin_page(struct vm_area_struct *vma,
854 unsigned long address, unsigned int *flags, int *locked)
855 {
856 unsigned int fault_flags = 0;
857 vm_fault_t ret;
858
859 /* mlock all present pages, but do not fault in new pages */
860 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
861 return -ENOENT;
862 if (*flags & FOLL_WRITE)
863 fault_flags |= FAULT_FLAG_WRITE;
864 if (*flags & FOLL_REMOTE)
865 fault_flags |= FAULT_FLAG_REMOTE;
866 if (locked)
867 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
868 if (*flags & FOLL_NOWAIT)
869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
870 if (*flags & FOLL_TRIED) {
871 /*
872 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
873 * can co-exist
874 */
875 fault_flags |= FAULT_FLAG_TRIED;
876 }
877
878 ret = handle_mm_fault(vma, address, fault_flags, NULL);
879 if (ret & VM_FAULT_ERROR) {
880 int err = vm_fault_to_errno(ret, *flags);
881
882 if (err)
883 return err;
884 BUG();
885 }
886
887 if (ret & VM_FAULT_RETRY) {
888 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
889 *locked = 0;
890 return -EBUSY;
891 }
892
893 /*
894 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
895 * necessary, even if maybe_mkwrite decided not to set pte_write. We
896 * can thus safely do subsequent page lookups as if they were reads.
897 * But only do so when looping for pte_write is futile: in some cases
898 * userspace may also be wanting to write to the gotten user page,
899 * which a read fault here might prevent (a readonly page might get
900 * reCOWed by userspace write).
901 */
902 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
903 *flags |= FOLL_COW;
904 return 0;
905 }
906
907 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
908 {
909 vm_flags_t vm_flags = vma->vm_flags;
910 int write = (gup_flags & FOLL_WRITE);
911 int foreign = (gup_flags & FOLL_REMOTE);
912
913 if (vm_flags & (VM_IO | VM_PFNMAP))
914 return -EFAULT;
915
916 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
917 return -EFAULT;
918
919 if (write) {
920 if (!(vm_flags & VM_WRITE)) {
921 if (!(gup_flags & FOLL_FORCE))
922 return -EFAULT;
923 /*
924 * We used to let the write,force case do COW in a
925 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
926 * set a breakpoint in a read-only mapping of an
927 * executable, without corrupting the file (yet only
928 * when that file had been opened for writing!).
929 * Anon pages in shared mappings are surprising: now
930 * just reject it.
931 */
932 if (!is_cow_mapping(vm_flags))
933 return -EFAULT;
934 }
935 } else if (!(vm_flags & VM_READ)) {
936 if (!(gup_flags & FOLL_FORCE))
937 return -EFAULT;
938 /*
939 * Is there actually any vma we can reach here which does not
940 * have VM_MAYREAD set?
941 */
942 if (!(vm_flags & VM_MAYREAD))
943 return -EFAULT;
944 }
945 /*
946 * gups are always data accesses, not instruction
947 * fetches, so execute=false here
948 */
949 if (!arch_vma_access_permitted(vma, write, false, foreign))
950 return -EFAULT;
951 return 0;
952 }
953
954 /**
955 * __get_user_pages() - pin user pages in memory
956 * @mm: mm_struct of target mm
957 * @start: starting user address
958 * @nr_pages: number of pages from start to pin
959 * @gup_flags: flags modifying pin behaviour
960 * @pages: array that receives pointers to the pages pinned.
961 * Should be at least nr_pages long. Or NULL, if caller
962 * only intends to ensure the pages are faulted in.
963 * @vmas: array of pointers to vmas corresponding to each page.
964 * Or NULL if the caller does not require them.
965 * @locked: whether we're still with the mmap_lock held
966 *
967 * Returns either number of pages pinned (which may be less than the
968 * number requested), or an error. Details about the return value:
969 *
970 * -- If nr_pages is 0, returns 0.
971 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
972 * -- If nr_pages is >0, and some pages were pinned, returns the number of
973 * pages pinned. Again, this may be less than nr_pages.
974 * -- 0 return value is possible when the fault would need to be retried.
975 *
976 * The caller is responsible for releasing returned @pages, via put_page().
977 *
978 * @vmas are valid only as long as mmap_lock is held.
979 *
980 * Must be called with mmap_lock held. It may be released. See below.
981 *
982 * __get_user_pages walks a process's page tables and takes a reference to
983 * each struct page that each user address corresponds to at a given
984 * instant. That is, it takes the page that would be accessed if a user
985 * thread accesses the given user virtual address at that instant.
986 *
987 * This does not guarantee that the page exists in the user mappings when
988 * __get_user_pages returns, and there may even be a completely different
989 * page there in some cases (eg. if mmapped pagecache has been invalidated
990 * and subsequently re faulted). However it does guarantee that the page
991 * won't be freed completely. And mostly callers simply care that the page
992 * contains data that was valid *at some point in time*. Typically, an IO
993 * or similar operation cannot guarantee anything stronger anyway because
994 * locks can't be held over the syscall boundary.
995 *
996 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
997 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
998 * appropriate) must be called after the page is finished with, and
999 * before put_page is called.
1000 *
1001 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1002 * released by an up_read(). That can happen if @gup_flags does not
1003 * have FOLL_NOWAIT.
1004 *
1005 * A caller using such a combination of @locked and @gup_flags
1006 * must therefore hold the mmap_lock for reading only, and recognize
1007 * when it's been released. Otherwise, it must be held for either
1008 * reading or writing and will not be released.
1009 *
1010 * In most cases, get_user_pages or get_user_pages_fast should be used
1011 * instead of __get_user_pages. __get_user_pages should be used only if
1012 * you need some special @gup_flags.
1013 */
1014 static long __get_user_pages(struct mm_struct *mm,
1015 unsigned long start, unsigned long nr_pages,
1016 unsigned int gup_flags, struct page **pages,
1017 struct vm_area_struct **vmas, int *locked)
1018 {
1019 long ret = 0, i = 0;
1020 struct vm_area_struct *vma = NULL;
1021 struct follow_page_context ctx = { NULL };
1022
1023 if (!nr_pages)
1024 return 0;
1025
1026 start = untagged_addr(start);
1027
1028 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1029
1030 /*
1031 * If FOLL_FORCE is set then do not force a full fault as the hinting
1032 * fault information is unrelated to the reference behaviour of a task
1033 * using the address space
1034 */
1035 if (!(gup_flags & FOLL_FORCE))
1036 gup_flags |= FOLL_NUMA;
1037
1038 do {
1039 struct page *page;
1040 unsigned int foll_flags = gup_flags;
1041 unsigned int page_increm;
1042
1043 /* first iteration or cross vma bound */
1044 if (!vma || start >= vma->vm_end) {
1045 vma = find_extend_vma(mm, start);
1046 if (!vma && in_gate_area(mm, start)) {
1047 ret = get_gate_page(mm, start & PAGE_MASK,
1048 gup_flags, &vma,
1049 pages ? &pages[i] : NULL);
1050 if (ret)
1051 goto out;
1052 ctx.page_mask = 0;
1053 goto next_page;
1054 }
1055
1056 if (!vma || check_vma_flags(vma, gup_flags)) {
1057 ret = -EFAULT;
1058 goto out;
1059 }
1060 if (is_vm_hugetlb_page(vma)) {
1061 i = follow_hugetlb_page(mm, vma, pages, vmas,
1062 &start, &nr_pages, i,
1063 gup_flags, locked);
1064 if (locked && *locked == 0) {
1065 /*
1066 * We've got a VM_FAULT_RETRY
1067 * and we've lost mmap_lock.
1068 * We must stop here.
1069 */
1070 BUG_ON(gup_flags & FOLL_NOWAIT);
1071 BUG_ON(ret != 0);
1072 goto out;
1073 }
1074 continue;
1075 }
1076 }
1077 retry:
1078 /*
1079 * If we have a pending SIGKILL, don't keep faulting pages and
1080 * potentially allocating memory.
1081 */
1082 if (fatal_signal_pending(current)) {
1083 ret = -EINTR;
1084 goto out;
1085 }
1086 cond_resched();
1087
1088 page = follow_page_mask(vma, start, foll_flags, &ctx);
1089 if (!page) {
1090 ret = faultin_page(vma, start, &foll_flags, locked);
1091 switch (ret) {
1092 case 0:
1093 goto retry;
1094 case -EBUSY:
1095 ret = 0;
1096 fallthrough;
1097 case -EFAULT:
1098 case -ENOMEM:
1099 case -EHWPOISON:
1100 goto out;
1101 case -ENOENT:
1102 goto next_page;
1103 }
1104 BUG();
1105 } else if (PTR_ERR(page) == -EEXIST) {
1106 /*
1107 * Proper page table entry exists, but no corresponding
1108 * struct page.
1109 */
1110 goto next_page;
1111 } else if (IS_ERR(page)) {
1112 ret = PTR_ERR(page);
1113 goto out;
1114 }
1115 if (pages) {
1116 pages[i] = page;
1117 flush_anon_page(vma, page, start);
1118 flush_dcache_page(page);
1119 ctx.page_mask = 0;
1120 }
1121 next_page:
1122 if (vmas) {
1123 vmas[i] = vma;
1124 ctx.page_mask = 0;
1125 }
1126 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1127 if (page_increm > nr_pages)
1128 page_increm = nr_pages;
1129 i += page_increm;
1130 start += page_increm * PAGE_SIZE;
1131 nr_pages -= page_increm;
1132 } while (nr_pages);
1133 out:
1134 if (ctx.pgmap)
1135 put_dev_pagemap(ctx.pgmap);
1136 return i ? i : ret;
1137 }
1138
1139 static bool vma_permits_fault(struct vm_area_struct *vma,
1140 unsigned int fault_flags)
1141 {
1142 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1143 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1144 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1145
1146 if (!(vm_flags & vma->vm_flags))
1147 return false;
1148
1149 /*
1150 * The architecture might have a hardware protection
1151 * mechanism other than read/write that can deny access.
1152 *
1153 * gup always represents data access, not instruction
1154 * fetches, so execute=false here:
1155 */
1156 if (!arch_vma_access_permitted(vma, write, false, foreign))
1157 return false;
1158
1159 return true;
1160 }
1161
1162 /**
1163 * fixup_user_fault() - manually resolve a user page fault
1164 * @mm: mm_struct of target mm
1165 * @address: user address
1166 * @fault_flags:flags to pass down to handle_mm_fault()
1167 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1168 * does not allow retry. If NULL, the caller must guarantee
1169 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1170 *
1171 * This is meant to be called in the specific scenario where for locking reasons
1172 * we try to access user memory in atomic context (within a pagefault_disable()
1173 * section), this returns -EFAULT, and we want to resolve the user fault before
1174 * trying again.
1175 *
1176 * Typically this is meant to be used by the futex code.
1177 *
1178 * The main difference with get_user_pages() is that this function will
1179 * unconditionally call handle_mm_fault() which will in turn perform all the
1180 * necessary SW fixup of the dirty and young bits in the PTE, while
1181 * get_user_pages() only guarantees to update these in the struct page.
1182 *
1183 * This is important for some architectures where those bits also gate the
1184 * access permission to the page because they are maintained in software. On
1185 * such architectures, gup() will not be enough to make a subsequent access
1186 * succeed.
1187 *
1188 * This function will not return with an unlocked mmap_lock. So it has not the
1189 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1190 */
1191 int fixup_user_fault(struct mm_struct *mm,
1192 unsigned long address, unsigned int fault_flags,
1193 bool *unlocked)
1194 {
1195 struct vm_area_struct *vma;
1196 vm_fault_t ret, major = 0;
1197
1198 address = untagged_addr(address);
1199
1200 if (unlocked)
1201 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1202
1203 retry:
1204 vma = find_extend_vma(mm, address);
1205 if (!vma || address < vma->vm_start)
1206 return -EFAULT;
1207
1208 if (!vma_permits_fault(vma, fault_flags))
1209 return -EFAULT;
1210
1211 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1212 fatal_signal_pending(current))
1213 return -EINTR;
1214
1215 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1216 major |= ret & VM_FAULT_MAJOR;
1217 if (ret & VM_FAULT_ERROR) {
1218 int err = vm_fault_to_errno(ret, 0);
1219
1220 if (err)
1221 return err;
1222 BUG();
1223 }
1224
1225 if (ret & VM_FAULT_RETRY) {
1226 mmap_read_lock(mm);
1227 *unlocked = true;
1228 fault_flags |= FAULT_FLAG_TRIED;
1229 goto retry;
1230 }
1231
1232 return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(fixup_user_fault);
1235
1236 /*
1237 * Please note that this function, unlike __get_user_pages will not
1238 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1239 */
1240 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1241 unsigned long start,
1242 unsigned long nr_pages,
1243 struct page **pages,
1244 struct vm_area_struct **vmas,
1245 int *locked,
1246 unsigned int flags)
1247 {
1248 long ret, pages_done;
1249 bool lock_dropped;
1250
1251 if (locked) {
1252 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1253 BUG_ON(vmas);
1254 /* check caller initialized locked */
1255 BUG_ON(*locked != 1);
1256 }
1257
1258 /*
1259 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1260 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1261 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1262 * for FOLL_GET, not for the newer FOLL_PIN.
1263 *
1264 * FOLL_PIN always expects pages to be non-null, but no need to assert
1265 * that here, as any failures will be obvious enough.
1266 */
1267 if (pages && !(flags & FOLL_PIN))
1268 flags |= FOLL_GET;
1269
1270 pages_done = 0;
1271 lock_dropped = false;
1272 for (;;) {
1273 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1274 vmas, locked);
1275 if (!locked)
1276 /* VM_FAULT_RETRY couldn't trigger, bypass */
1277 return ret;
1278
1279 /* VM_FAULT_RETRY cannot return errors */
1280 if (!*locked) {
1281 BUG_ON(ret < 0);
1282 BUG_ON(ret >= nr_pages);
1283 }
1284
1285 if (ret > 0) {
1286 nr_pages -= ret;
1287 pages_done += ret;
1288 if (!nr_pages)
1289 break;
1290 }
1291 if (*locked) {
1292 /*
1293 * VM_FAULT_RETRY didn't trigger or it was a
1294 * FOLL_NOWAIT.
1295 */
1296 if (!pages_done)
1297 pages_done = ret;
1298 break;
1299 }
1300 /*
1301 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1302 * For the prefault case (!pages) we only update counts.
1303 */
1304 if (likely(pages))
1305 pages += ret;
1306 start += ret << PAGE_SHIFT;
1307 lock_dropped = true;
1308
1309 retry:
1310 /*
1311 * Repeat on the address that fired VM_FAULT_RETRY
1312 * with both FAULT_FLAG_ALLOW_RETRY and
1313 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1314 * by fatal signals, so we need to check it before we
1315 * start trying again otherwise it can loop forever.
1316 */
1317
1318 if (fatal_signal_pending(current)) {
1319 if (!pages_done)
1320 pages_done = -EINTR;
1321 break;
1322 }
1323
1324 ret = mmap_read_lock_killable(mm);
1325 if (ret) {
1326 BUG_ON(ret > 0);
1327 if (!pages_done)
1328 pages_done = ret;
1329 break;
1330 }
1331
1332 *locked = 1;
1333 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1334 pages, NULL, locked);
1335 if (!*locked) {
1336 /* Continue to retry until we succeeded */
1337 BUG_ON(ret != 0);
1338 goto retry;
1339 }
1340 if (ret != 1) {
1341 BUG_ON(ret > 1);
1342 if (!pages_done)
1343 pages_done = ret;
1344 break;
1345 }
1346 nr_pages--;
1347 pages_done++;
1348 if (!nr_pages)
1349 break;
1350 if (likely(pages))
1351 pages++;
1352 start += PAGE_SIZE;
1353 }
1354 if (lock_dropped && *locked) {
1355 /*
1356 * We must let the caller know we temporarily dropped the lock
1357 * and so the critical section protected by it was lost.
1358 */
1359 mmap_read_unlock(mm);
1360 *locked = 0;
1361 }
1362 return pages_done;
1363 }
1364
1365 /**
1366 * populate_vma_page_range() - populate a range of pages in the vma.
1367 * @vma: target vma
1368 * @start: start address
1369 * @end: end address
1370 * @locked: whether the mmap_lock is still held
1371 *
1372 * This takes care of mlocking the pages too if VM_LOCKED is set.
1373 *
1374 * Return either number of pages pinned in the vma, or a negative error
1375 * code on error.
1376 *
1377 * vma->vm_mm->mmap_lock must be held.
1378 *
1379 * If @locked is NULL, it may be held for read or write and will
1380 * be unperturbed.
1381 *
1382 * If @locked is non-NULL, it must held for read only and may be
1383 * released. If it's released, *@locked will be set to 0.
1384 */
1385 long populate_vma_page_range(struct vm_area_struct *vma,
1386 unsigned long start, unsigned long end, int *locked)
1387 {
1388 struct mm_struct *mm = vma->vm_mm;
1389 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1390 int gup_flags;
1391
1392 VM_BUG_ON(start & ~PAGE_MASK);
1393 VM_BUG_ON(end & ~PAGE_MASK);
1394 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1395 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1396 mmap_assert_locked(mm);
1397
1398 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1399 if (vma->vm_flags & VM_LOCKONFAULT)
1400 gup_flags &= ~FOLL_POPULATE;
1401 /*
1402 * We want to touch writable mappings with a write fault in order
1403 * to break COW, except for shared mappings because these don't COW
1404 * and we would not want to dirty them for nothing.
1405 */
1406 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1407 gup_flags |= FOLL_WRITE;
1408
1409 /*
1410 * We want mlock to succeed for regions that have any permissions
1411 * other than PROT_NONE.
1412 */
1413 if (vma_is_accessible(vma))
1414 gup_flags |= FOLL_FORCE;
1415
1416 /*
1417 * We made sure addr is within a VMA, so the following will
1418 * not result in a stack expansion that recurses back here.
1419 */
1420 return __get_user_pages(mm, start, nr_pages, gup_flags,
1421 NULL, NULL, locked);
1422 }
1423
1424 /*
1425 * __mm_populate - populate and/or mlock pages within a range of address space.
1426 *
1427 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1428 * flags. VMAs must be already marked with the desired vm_flags, and
1429 * mmap_lock must not be held.
1430 */
1431 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1432 {
1433 struct mm_struct *mm = current->mm;
1434 unsigned long end, nstart, nend;
1435 struct vm_area_struct *vma = NULL;
1436 int locked = 0;
1437 long ret = 0;
1438
1439 end = start + len;
1440
1441 for (nstart = start; nstart < end; nstart = nend) {
1442 /*
1443 * We want to fault in pages for [nstart; end) address range.
1444 * Find first corresponding VMA.
1445 */
1446 if (!locked) {
1447 locked = 1;
1448 mmap_read_lock(mm);
1449 vma = find_vma(mm, nstart);
1450 } else if (nstart >= vma->vm_end)
1451 vma = vma->vm_next;
1452 if (!vma || vma->vm_start >= end)
1453 break;
1454 /*
1455 * Set [nstart; nend) to intersection of desired address
1456 * range with the first VMA. Also, skip undesirable VMA types.
1457 */
1458 nend = min(end, vma->vm_end);
1459 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1460 continue;
1461 if (nstart < vma->vm_start)
1462 nstart = vma->vm_start;
1463 /*
1464 * Now fault in a range of pages. populate_vma_page_range()
1465 * double checks the vma flags, so that it won't mlock pages
1466 * if the vma was already munlocked.
1467 */
1468 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1469 if (ret < 0) {
1470 if (ignore_errors) {
1471 ret = 0;
1472 continue; /* continue at next VMA */
1473 }
1474 break;
1475 }
1476 nend = nstart + ret * PAGE_SIZE;
1477 ret = 0;
1478 }
1479 if (locked)
1480 mmap_read_unlock(mm);
1481 return ret; /* 0 or negative error code */
1482 }
1483
1484 /**
1485 * get_dump_page() - pin user page in memory while writing it to core dump
1486 * @addr: user address
1487 *
1488 * Returns struct page pointer of user page pinned for dump,
1489 * to be freed afterwards by put_page().
1490 *
1491 * Returns NULL on any kind of failure - a hole must then be inserted into
1492 * the corefile, to preserve alignment with its headers; and also returns
1493 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1494 * allowing a hole to be left in the corefile to save diskspace.
1495 *
1496 * Called without mmap_lock, but after all other threads have been killed.
1497 */
1498 #ifdef CONFIG_ELF_CORE
1499 struct page *get_dump_page(unsigned long addr)
1500 {
1501 struct vm_area_struct *vma;
1502 struct page *page;
1503
1504 if (__get_user_pages(current->mm, addr, 1,
1505 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1506 NULL) < 1)
1507 return NULL;
1508 flush_cache_page(vma, addr, page_to_pfn(page));
1509 return page;
1510 }
1511 #endif /* CONFIG_ELF_CORE */
1512 #else /* CONFIG_MMU */
1513 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1514 unsigned long nr_pages, struct page **pages,
1515 struct vm_area_struct **vmas, int *locked,
1516 unsigned int foll_flags)
1517 {
1518 struct vm_area_struct *vma;
1519 unsigned long vm_flags;
1520 int i;
1521
1522 /* calculate required read or write permissions.
1523 * If FOLL_FORCE is set, we only require the "MAY" flags.
1524 */
1525 vm_flags = (foll_flags & FOLL_WRITE) ?
1526 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1527 vm_flags &= (foll_flags & FOLL_FORCE) ?
1528 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1529
1530 for (i = 0; i < nr_pages; i++) {
1531 vma = find_vma(mm, start);
1532 if (!vma)
1533 goto finish_or_fault;
1534
1535 /* protect what we can, including chardevs */
1536 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1537 !(vm_flags & vma->vm_flags))
1538 goto finish_or_fault;
1539
1540 if (pages) {
1541 pages[i] = virt_to_page(start);
1542 if (pages[i])
1543 get_page(pages[i]);
1544 }
1545 if (vmas)
1546 vmas[i] = vma;
1547 start = (start + PAGE_SIZE) & PAGE_MASK;
1548 }
1549
1550 return i;
1551
1552 finish_or_fault:
1553 return i ? : -EFAULT;
1554 }
1555 #endif /* !CONFIG_MMU */
1556
1557 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1558 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1559 {
1560 long i;
1561 struct vm_area_struct *vma_prev = NULL;
1562
1563 for (i = 0; i < nr_pages; i++) {
1564 struct vm_area_struct *vma = vmas[i];
1565
1566 if (vma == vma_prev)
1567 continue;
1568
1569 vma_prev = vma;
1570
1571 if (vma_is_fsdax(vma))
1572 return true;
1573 }
1574 return false;
1575 }
1576
1577 #ifdef CONFIG_CMA
1578 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1579 unsigned long start,
1580 unsigned long nr_pages,
1581 struct page **pages,
1582 struct vm_area_struct **vmas,
1583 unsigned int gup_flags)
1584 {
1585 unsigned long i;
1586 unsigned long step;
1587 bool drain_allow = true;
1588 bool migrate_allow = true;
1589 LIST_HEAD(cma_page_list);
1590 long ret = nr_pages;
1591 struct migration_target_control mtc = {
1592 .nid = NUMA_NO_NODE,
1593 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1594 };
1595
1596 check_again:
1597 for (i = 0; i < nr_pages;) {
1598
1599 struct page *head = compound_head(pages[i]);
1600
1601 /*
1602 * gup may start from a tail page. Advance step by the left
1603 * part.
1604 */
1605 step = compound_nr(head) - (pages[i] - head);
1606 /*
1607 * If we get a page from the CMA zone, since we are going to
1608 * be pinning these entries, we might as well move them out
1609 * of the CMA zone if possible.
1610 */
1611 if (is_migrate_cma_page(head)) {
1612 if (PageHuge(head))
1613 isolate_huge_page(head, &cma_page_list);
1614 else {
1615 if (!PageLRU(head) && drain_allow) {
1616 lru_add_drain_all();
1617 drain_allow = false;
1618 }
1619
1620 if (!isolate_lru_page(head)) {
1621 list_add_tail(&head->lru, &cma_page_list);
1622 mod_node_page_state(page_pgdat(head),
1623 NR_ISOLATED_ANON +
1624 page_is_file_lru(head),
1625 thp_nr_pages(head));
1626 }
1627 }
1628 }
1629
1630 i += step;
1631 }
1632
1633 if (!list_empty(&cma_page_list)) {
1634 /*
1635 * drop the above get_user_pages reference.
1636 */
1637 for (i = 0; i < nr_pages; i++)
1638 put_page(pages[i]);
1639
1640 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1641 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1642 /*
1643 * some of the pages failed migration. Do get_user_pages
1644 * without migration.
1645 */
1646 migrate_allow = false;
1647
1648 if (!list_empty(&cma_page_list))
1649 putback_movable_pages(&cma_page_list);
1650 }
1651 /*
1652 * We did migrate all the pages, Try to get the page references
1653 * again migrating any new CMA pages which we failed to isolate
1654 * earlier.
1655 */
1656 ret = __get_user_pages_locked(mm, start, nr_pages,
1657 pages, vmas, NULL,
1658 gup_flags);
1659
1660 if ((ret > 0) && migrate_allow) {
1661 nr_pages = ret;
1662 drain_allow = true;
1663 goto check_again;
1664 }
1665 }
1666
1667 return ret;
1668 }
1669 #else
1670 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1671 unsigned long start,
1672 unsigned long nr_pages,
1673 struct page **pages,
1674 struct vm_area_struct **vmas,
1675 unsigned int gup_flags)
1676 {
1677 return nr_pages;
1678 }
1679 #endif /* CONFIG_CMA */
1680
1681 /*
1682 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1683 * allows us to process the FOLL_LONGTERM flag.
1684 */
1685 static long __gup_longterm_locked(struct mm_struct *mm,
1686 unsigned long start,
1687 unsigned long nr_pages,
1688 struct page **pages,
1689 struct vm_area_struct **vmas,
1690 unsigned int gup_flags)
1691 {
1692 struct vm_area_struct **vmas_tmp = vmas;
1693 unsigned long flags = 0;
1694 long rc, i;
1695
1696 if (gup_flags & FOLL_LONGTERM) {
1697 if (!pages)
1698 return -EINVAL;
1699
1700 if (!vmas_tmp) {
1701 vmas_tmp = kcalloc(nr_pages,
1702 sizeof(struct vm_area_struct *),
1703 GFP_KERNEL);
1704 if (!vmas_tmp)
1705 return -ENOMEM;
1706 }
1707 flags = memalloc_nocma_save();
1708 }
1709
1710 rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1711 vmas_tmp, NULL, gup_flags);
1712
1713 if (gup_flags & FOLL_LONGTERM) {
1714 if (rc < 0)
1715 goto out;
1716
1717 if (check_dax_vmas(vmas_tmp, rc)) {
1718 for (i = 0; i < rc; i++)
1719 put_page(pages[i]);
1720 rc = -EOPNOTSUPP;
1721 goto out;
1722 }
1723
1724 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1725 vmas_tmp, gup_flags);
1726 out:
1727 memalloc_nocma_restore(flags);
1728 }
1729
1730 if (vmas_tmp != vmas)
1731 kfree(vmas_tmp);
1732 return rc;
1733 }
1734 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1735 static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1736 unsigned long start,
1737 unsigned long nr_pages,
1738 struct page **pages,
1739 struct vm_area_struct **vmas,
1740 unsigned int flags)
1741 {
1742 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1743 NULL, flags);
1744 }
1745 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1746
1747 #ifdef CONFIG_MMU
1748 static long __get_user_pages_remote(struct mm_struct *mm,
1749 unsigned long start, unsigned long nr_pages,
1750 unsigned int gup_flags, struct page **pages,
1751 struct vm_area_struct **vmas, int *locked)
1752 {
1753 /*
1754 * Parts of FOLL_LONGTERM behavior are incompatible with
1755 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1756 * vmas. However, this only comes up if locked is set, and there are
1757 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1758 * allow what we can.
1759 */
1760 if (gup_flags & FOLL_LONGTERM) {
1761 if (WARN_ON_ONCE(locked))
1762 return -EINVAL;
1763 /*
1764 * This will check the vmas (even if our vmas arg is NULL)
1765 * and return -ENOTSUPP if DAX isn't allowed in this case:
1766 */
1767 return __gup_longterm_locked(mm, start, nr_pages, pages,
1768 vmas, gup_flags | FOLL_TOUCH |
1769 FOLL_REMOTE);
1770 }
1771
1772 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1773 locked,
1774 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1775 }
1776
1777 /**
1778 * get_user_pages_remote() - pin user pages in memory
1779 * @mm: mm_struct of target mm
1780 * @start: starting user address
1781 * @nr_pages: number of pages from start to pin
1782 * @gup_flags: flags modifying lookup behaviour
1783 * @pages: array that receives pointers to the pages pinned.
1784 * Should be at least nr_pages long. Or NULL, if caller
1785 * only intends to ensure the pages are faulted in.
1786 * @vmas: array of pointers to vmas corresponding to each page.
1787 * Or NULL if the caller does not require them.
1788 * @locked: pointer to lock flag indicating whether lock is held and
1789 * subsequently whether VM_FAULT_RETRY functionality can be
1790 * utilised. Lock must initially be held.
1791 *
1792 * Returns either number of pages pinned (which may be less than the
1793 * number requested), or an error. Details about the return value:
1794 *
1795 * -- If nr_pages is 0, returns 0.
1796 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1797 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1798 * pages pinned. Again, this may be less than nr_pages.
1799 *
1800 * The caller is responsible for releasing returned @pages, via put_page().
1801 *
1802 * @vmas are valid only as long as mmap_lock is held.
1803 *
1804 * Must be called with mmap_lock held for read or write.
1805 *
1806 * get_user_pages_remote walks a process's page tables and takes a reference
1807 * to each struct page that each user address corresponds to at a given
1808 * instant. That is, it takes the page that would be accessed if a user
1809 * thread accesses the given user virtual address at that instant.
1810 *
1811 * This does not guarantee that the page exists in the user mappings when
1812 * get_user_pages_remote returns, and there may even be a completely different
1813 * page there in some cases (eg. if mmapped pagecache has been invalidated
1814 * and subsequently re faulted). However it does guarantee that the page
1815 * won't be freed completely. And mostly callers simply care that the page
1816 * contains data that was valid *at some point in time*. Typically, an IO
1817 * or similar operation cannot guarantee anything stronger anyway because
1818 * locks can't be held over the syscall boundary.
1819 *
1820 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1821 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1822 * be called after the page is finished with, and before put_page is called.
1823 *
1824 * get_user_pages_remote is typically used for fewer-copy IO operations,
1825 * to get a handle on the memory by some means other than accesses
1826 * via the user virtual addresses. The pages may be submitted for
1827 * DMA to devices or accessed via their kernel linear mapping (via the
1828 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1829 *
1830 * See also get_user_pages_fast, for performance critical applications.
1831 *
1832 * get_user_pages_remote should be phased out in favor of
1833 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1834 * should use get_user_pages_remote because it cannot pass
1835 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1836 */
1837 long get_user_pages_remote(struct mm_struct *mm,
1838 unsigned long start, unsigned long nr_pages,
1839 unsigned int gup_flags, struct page **pages,
1840 struct vm_area_struct **vmas, int *locked)
1841 {
1842 /*
1843 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1844 * never directly by the caller, so enforce that with an assertion:
1845 */
1846 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1847 return -EINVAL;
1848
1849 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1850 pages, vmas, locked);
1851 }
1852 EXPORT_SYMBOL(get_user_pages_remote);
1853
1854 #else /* CONFIG_MMU */
1855 long get_user_pages_remote(struct mm_struct *mm,
1856 unsigned long start, unsigned long nr_pages,
1857 unsigned int gup_flags, struct page **pages,
1858 struct vm_area_struct **vmas, int *locked)
1859 {
1860 return 0;
1861 }
1862
1863 static long __get_user_pages_remote(struct mm_struct *mm,
1864 unsigned long start, unsigned long nr_pages,
1865 unsigned int gup_flags, struct page **pages,
1866 struct vm_area_struct **vmas, int *locked)
1867 {
1868 return 0;
1869 }
1870 #endif /* !CONFIG_MMU */
1871
1872 /**
1873 * get_user_pages() - pin user pages in memory
1874 * @start: starting user address
1875 * @nr_pages: number of pages from start to pin
1876 * @gup_flags: flags modifying lookup behaviour
1877 * @pages: array that receives pointers to the pages pinned.
1878 * Should be at least nr_pages long. Or NULL, if caller
1879 * only intends to ensure the pages are faulted in.
1880 * @vmas: array of pointers to vmas corresponding to each page.
1881 * Or NULL if the caller does not require them.
1882 *
1883 * This is the same as get_user_pages_remote(), just with a less-flexible
1884 * calling convention where we assume that the mm being operated on belongs to
1885 * the current task, and doesn't allow passing of a locked parameter. We also
1886 * obviously don't pass FOLL_REMOTE in here.
1887 */
1888 long get_user_pages(unsigned long start, unsigned long nr_pages,
1889 unsigned int gup_flags, struct page **pages,
1890 struct vm_area_struct **vmas)
1891 {
1892 /*
1893 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1894 * never directly by the caller, so enforce that with an assertion:
1895 */
1896 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1897 return -EINVAL;
1898
1899 return __gup_longterm_locked(current->mm, start, nr_pages,
1900 pages, vmas, gup_flags | FOLL_TOUCH);
1901 }
1902 EXPORT_SYMBOL(get_user_pages);
1903
1904 /**
1905 * get_user_pages_locked() is suitable to replace the form:
1906 *
1907 * mmap_read_lock(mm);
1908 * do_something()
1909 * get_user_pages(mm, ..., pages, NULL);
1910 * mmap_read_unlock(mm);
1911 *
1912 * to:
1913 *
1914 * int locked = 1;
1915 * mmap_read_lock(mm);
1916 * do_something()
1917 * get_user_pages_locked(mm, ..., pages, &locked);
1918 * if (locked)
1919 * mmap_read_unlock(mm);
1920 *
1921 * @start: starting user address
1922 * @nr_pages: number of pages from start to pin
1923 * @gup_flags: flags modifying lookup behaviour
1924 * @pages: array that receives pointers to the pages pinned.
1925 * Should be at least nr_pages long. Or NULL, if caller
1926 * only intends to ensure the pages are faulted in.
1927 * @locked: pointer to lock flag indicating whether lock is held and
1928 * subsequently whether VM_FAULT_RETRY functionality can be
1929 * utilised. Lock must initially be held.
1930 *
1931 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1932 * paths better by using either get_user_pages_locked() or
1933 * get_user_pages_unlocked().
1934 *
1935 */
1936 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1937 unsigned int gup_flags, struct page **pages,
1938 int *locked)
1939 {
1940 /*
1941 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1942 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1943 * vmas. As there are no users of this flag in this call we simply
1944 * disallow this option for now.
1945 */
1946 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1947 return -EINVAL;
1948 /*
1949 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1950 * never directly by the caller, so enforce that:
1951 */
1952 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1953 return -EINVAL;
1954
1955 return __get_user_pages_locked(current->mm, start, nr_pages,
1956 pages, NULL, locked,
1957 gup_flags | FOLL_TOUCH);
1958 }
1959 EXPORT_SYMBOL(get_user_pages_locked);
1960
1961 /*
1962 * get_user_pages_unlocked() is suitable to replace the form:
1963 *
1964 * mmap_read_lock(mm);
1965 * get_user_pages(mm, ..., pages, NULL);
1966 * mmap_read_unlock(mm);
1967 *
1968 * with:
1969 *
1970 * get_user_pages_unlocked(mm, ..., pages);
1971 *
1972 * It is functionally equivalent to get_user_pages_fast so
1973 * get_user_pages_fast should be used instead if specific gup_flags
1974 * (e.g. FOLL_FORCE) are not required.
1975 */
1976 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1977 struct page **pages, unsigned int gup_flags)
1978 {
1979 struct mm_struct *mm = current->mm;
1980 int locked = 1;
1981 long ret;
1982
1983 /*
1984 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1985 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1986 * vmas. As there are no users of this flag in this call we simply
1987 * disallow this option for now.
1988 */
1989 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1990 return -EINVAL;
1991
1992 mmap_read_lock(mm);
1993 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1994 &locked, gup_flags | FOLL_TOUCH);
1995 if (locked)
1996 mmap_read_unlock(mm);
1997 return ret;
1998 }
1999 EXPORT_SYMBOL(get_user_pages_unlocked);
2000
2001 /*
2002 * Fast GUP
2003 *
2004 * get_user_pages_fast attempts to pin user pages by walking the page
2005 * tables directly and avoids taking locks. Thus the walker needs to be
2006 * protected from page table pages being freed from under it, and should
2007 * block any THP splits.
2008 *
2009 * One way to achieve this is to have the walker disable interrupts, and
2010 * rely on IPIs from the TLB flushing code blocking before the page table
2011 * pages are freed. This is unsuitable for architectures that do not need
2012 * to broadcast an IPI when invalidating TLBs.
2013 *
2014 * Another way to achieve this is to batch up page table containing pages
2015 * belonging to more than one mm_user, then rcu_sched a callback to free those
2016 * pages. Disabling interrupts will allow the fast_gup walker to both block
2017 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2018 * (which is a relatively rare event). The code below adopts this strategy.
2019 *
2020 * Before activating this code, please be aware that the following assumptions
2021 * are currently made:
2022 *
2023 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2024 * free pages containing page tables or TLB flushing requires IPI broadcast.
2025 *
2026 * *) ptes can be read atomically by the architecture.
2027 *
2028 * *) access_ok is sufficient to validate userspace address ranges.
2029 *
2030 * The last two assumptions can be relaxed by the addition of helper functions.
2031 *
2032 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2033 */
2034 #ifdef CONFIG_HAVE_FAST_GUP
2035
2036 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2037 {
2038 if (flags & FOLL_PIN) {
2039 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2040 refs);
2041
2042 if (hpage_pincount_available(page))
2043 hpage_pincount_sub(page, refs);
2044 else
2045 refs *= GUP_PIN_COUNTING_BIAS;
2046 }
2047
2048 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2049 /*
2050 * Calling put_page() for each ref is unnecessarily slow. Only the last
2051 * ref needs a put_page().
2052 */
2053 if (refs > 1)
2054 page_ref_sub(page, refs - 1);
2055 put_page(page);
2056 }
2057
2058 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2059
2060 /*
2061 * WARNING: only to be used in the get_user_pages_fast() implementation.
2062 *
2063 * With get_user_pages_fast(), we walk down the pagetables without taking any
2064 * locks. For this we would like to load the pointers atomically, but sometimes
2065 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2066 * we do have is the guarantee that a PTE will only either go from not present
2067 * to present, or present to not present or both -- it will not switch to a
2068 * completely different present page without a TLB flush in between; something
2069 * that we are blocking by holding interrupts off.
2070 *
2071 * Setting ptes from not present to present goes:
2072 *
2073 * ptep->pte_high = h;
2074 * smp_wmb();
2075 * ptep->pte_low = l;
2076 *
2077 * And present to not present goes:
2078 *
2079 * ptep->pte_low = 0;
2080 * smp_wmb();
2081 * ptep->pte_high = 0;
2082 *
2083 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2084 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2085 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2086 * picked up a changed pte high. We might have gotten rubbish values from
2087 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2088 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2089 * operates on present ptes we're safe.
2090 */
2091 static inline pte_t gup_get_pte(pte_t *ptep)
2092 {
2093 pte_t pte;
2094
2095 do {
2096 pte.pte_low = ptep->pte_low;
2097 smp_rmb();
2098 pte.pte_high = ptep->pte_high;
2099 smp_rmb();
2100 } while (unlikely(pte.pte_low != ptep->pte_low));
2101
2102 return pte;
2103 }
2104 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2105 /*
2106 * We require that the PTE can be read atomically.
2107 */
2108 static inline pte_t gup_get_pte(pte_t *ptep)
2109 {
2110 return ptep_get(ptep);
2111 }
2112 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2113
2114 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2115 unsigned int flags,
2116 struct page **pages)
2117 {
2118 while ((*nr) - nr_start) {
2119 struct page *page = pages[--(*nr)];
2120
2121 ClearPageReferenced(page);
2122 if (flags & FOLL_PIN)
2123 unpin_user_page(page);
2124 else
2125 put_page(page);
2126 }
2127 }
2128
2129 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2130 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2131 unsigned int flags, struct page **pages, int *nr)
2132 {
2133 struct dev_pagemap *pgmap = NULL;
2134 int nr_start = *nr, ret = 0;
2135 pte_t *ptep, *ptem;
2136
2137 ptem = ptep = pte_offset_map(&pmd, addr);
2138 do {
2139 pte_t pte = gup_get_pte(ptep);
2140 struct page *head, *page;
2141
2142 /*
2143 * Similar to the PMD case below, NUMA hinting must take slow
2144 * path using the pte_protnone check.
2145 */
2146 if (pte_protnone(pte))
2147 goto pte_unmap;
2148
2149 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2150 goto pte_unmap;
2151
2152 if (pte_devmap(pte)) {
2153 if (unlikely(flags & FOLL_LONGTERM))
2154 goto pte_unmap;
2155
2156 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2157 if (unlikely(!pgmap)) {
2158 undo_dev_pagemap(nr, nr_start, flags, pages);
2159 goto pte_unmap;
2160 }
2161 } else if (pte_special(pte))
2162 goto pte_unmap;
2163
2164 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2165 page = pte_page(pte);
2166
2167 head = try_grab_compound_head(page, 1, flags);
2168 if (!head)
2169 goto pte_unmap;
2170
2171 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2172 put_compound_head(head, 1, flags);
2173 goto pte_unmap;
2174 }
2175
2176 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2177
2178 /*
2179 * We need to make the page accessible if and only if we are
2180 * going to access its content (the FOLL_PIN case). Please
2181 * see Documentation/core-api/pin_user_pages.rst for
2182 * details.
2183 */
2184 if (flags & FOLL_PIN) {
2185 ret = arch_make_page_accessible(page);
2186 if (ret) {
2187 unpin_user_page(page);
2188 goto pte_unmap;
2189 }
2190 }
2191 SetPageReferenced(page);
2192 pages[*nr] = page;
2193 (*nr)++;
2194
2195 } while (ptep++, addr += PAGE_SIZE, addr != end);
2196
2197 ret = 1;
2198
2199 pte_unmap:
2200 if (pgmap)
2201 put_dev_pagemap(pgmap);
2202 pte_unmap(ptem);
2203 return ret;
2204 }
2205 #else
2206
2207 /*
2208 * If we can't determine whether or not a pte is special, then fail immediately
2209 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2210 * to be special.
2211 *
2212 * For a futex to be placed on a THP tail page, get_futex_key requires a
2213 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2214 * useful to have gup_huge_pmd even if we can't operate on ptes.
2215 */
2216 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2217 unsigned int flags, struct page **pages, int *nr)
2218 {
2219 return 0;
2220 }
2221 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2222
2223 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2224 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2225 unsigned long end, unsigned int flags,
2226 struct page **pages, int *nr)
2227 {
2228 int nr_start = *nr;
2229 struct dev_pagemap *pgmap = NULL;
2230
2231 do {
2232 struct page *page = pfn_to_page(pfn);
2233
2234 pgmap = get_dev_pagemap(pfn, pgmap);
2235 if (unlikely(!pgmap)) {
2236 undo_dev_pagemap(nr, nr_start, flags, pages);
2237 return 0;
2238 }
2239 SetPageReferenced(page);
2240 pages[*nr] = page;
2241 if (unlikely(!try_grab_page(page, flags))) {
2242 undo_dev_pagemap(nr, nr_start, flags, pages);
2243 return 0;
2244 }
2245 (*nr)++;
2246 pfn++;
2247 } while (addr += PAGE_SIZE, addr != end);
2248
2249 if (pgmap)
2250 put_dev_pagemap(pgmap);
2251 return 1;
2252 }
2253
2254 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2255 unsigned long end, unsigned int flags,
2256 struct page **pages, int *nr)
2257 {
2258 unsigned long fault_pfn;
2259 int nr_start = *nr;
2260
2261 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2262 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2263 return 0;
2264
2265 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2266 undo_dev_pagemap(nr, nr_start, flags, pages);
2267 return 0;
2268 }
2269 return 1;
2270 }
2271
2272 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2273 unsigned long end, unsigned int flags,
2274 struct page **pages, int *nr)
2275 {
2276 unsigned long fault_pfn;
2277 int nr_start = *nr;
2278
2279 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2280 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2281 return 0;
2282
2283 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2284 undo_dev_pagemap(nr, nr_start, flags, pages);
2285 return 0;
2286 }
2287 return 1;
2288 }
2289 #else
2290 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2291 unsigned long end, unsigned int flags,
2292 struct page **pages, int *nr)
2293 {
2294 BUILD_BUG();
2295 return 0;
2296 }
2297
2298 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2299 unsigned long end, unsigned int flags,
2300 struct page **pages, int *nr)
2301 {
2302 BUILD_BUG();
2303 return 0;
2304 }
2305 #endif
2306
2307 static int record_subpages(struct page *page, unsigned long addr,
2308 unsigned long end, struct page **pages)
2309 {
2310 int nr;
2311
2312 for (nr = 0; addr != end; addr += PAGE_SIZE)
2313 pages[nr++] = page++;
2314
2315 return nr;
2316 }
2317
2318 #ifdef CONFIG_ARCH_HAS_HUGEPD
2319 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2320 unsigned long sz)
2321 {
2322 unsigned long __boundary = (addr + sz) & ~(sz-1);
2323 return (__boundary - 1 < end - 1) ? __boundary : end;
2324 }
2325
2326 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2327 unsigned long end, unsigned int flags,
2328 struct page **pages, int *nr)
2329 {
2330 unsigned long pte_end;
2331 struct page *head, *page;
2332 pte_t pte;
2333 int refs;
2334
2335 pte_end = (addr + sz) & ~(sz-1);
2336 if (pte_end < end)
2337 end = pte_end;
2338
2339 pte = huge_ptep_get(ptep);
2340
2341 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2342 return 0;
2343
2344 /* hugepages are never "special" */
2345 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2346
2347 head = pte_page(pte);
2348 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2349 refs = record_subpages(page, addr, end, pages + *nr);
2350
2351 head = try_grab_compound_head(head, refs, flags);
2352 if (!head)
2353 return 0;
2354
2355 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2356 put_compound_head(head, refs, flags);
2357 return 0;
2358 }
2359
2360 *nr += refs;
2361 SetPageReferenced(head);
2362 return 1;
2363 }
2364
2365 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2366 unsigned int pdshift, unsigned long end, unsigned int flags,
2367 struct page **pages, int *nr)
2368 {
2369 pte_t *ptep;
2370 unsigned long sz = 1UL << hugepd_shift(hugepd);
2371 unsigned long next;
2372
2373 ptep = hugepte_offset(hugepd, addr, pdshift);
2374 do {
2375 next = hugepte_addr_end(addr, end, sz);
2376 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2377 return 0;
2378 } while (ptep++, addr = next, addr != end);
2379
2380 return 1;
2381 }
2382 #else
2383 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2384 unsigned int pdshift, unsigned long end, unsigned int flags,
2385 struct page **pages, int *nr)
2386 {
2387 return 0;
2388 }
2389 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2390
2391 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2392 unsigned long end, unsigned int flags,
2393 struct page **pages, int *nr)
2394 {
2395 struct page *head, *page;
2396 int refs;
2397
2398 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2399 return 0;
2400
2401 if (pmd_devmap(orig)) {
2402 if (unlikely(flags & FOLL_LONGTERM))
2403 return 0;
2404 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2405 pages, nr);
2406 }
2407
2408 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2409 refs = record_subpages(page, addr, end, pages + *nr);
2410
2411 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2412 if (!head)
2413 return 0;
2414
2415 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2416 put_compound_head(head, refs, flags);
2417 return 0;
2418 }
2419
2420 *nr += refs;
2421 SetPageReferenced(head);
2422 return 1;
2423 }
2424
2425 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2426 unsigned long end, unsigned int flags,
2427 struct page **pages, int *nr)
2428 {
2429 struct page *head, *page;
2430 int refs;
2431
2432 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2433 return 0;
2434
2435 if (pud_devmap(orig)) {
2436 if (unlikely(flags & FOLL_LONGTERM))
2437 return 0;
2438 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2439 pages, nr);
2440 }
2441
2442 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2443 refs = record_subpages(page, addr, end, pages + *nr);
2444
2445 head = try_grab_compound_head(pud_page(orig), refs, flags);
2446 if (!head)
2447 return 0;
2448
2449 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2450 put_compound_head(head, refs, flags);
2451 return 0;
2452 }
2453
2454 *nr += refs;
2455 SetPageReferenced(head);
2456 return 1;
2457 }
2458
2459 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2460 unsigned long end, unsigned int flags,
2461 struct page **pages, int *nr)
2462 {
2463 int refs;
2464 struct page *head, *page;
2465
2466 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2467 return 0;
2468
2469 BUILD_BUG_ON(pgd_devmap(orig));
2470
2471 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2472 refs = record_subpages(page, addr, end, pages + *nr);
2473
2474 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2475 if (!head)
2476 return 0;
2477
2478 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2479 put_compound_head(head, refs, flags);
2480 return 0;
2481 }
2482
2483 *nr += refs;
2484 SetPageReferenced(head);
2485 return 1;
2486 }
2487
2488 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2489 unsigned int flags, struct page **pages, int *nr)
2490 {
2491 unsigned long next;
2492 pmd_t *pmdp;
2493
2494 pmdp = pmd_offset(&pud, addr);
2495 do {
2496 pmd_t pmd = READ_ONCE(*pmdp);
2497
2498 next = pmd_addr_end(addr, end);
2499 if (!pmd_present(pmd))
2500 return 0;
2501
2502 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2503 pmd_devmap(pmd))) {
2504 /*
2505 * NUMA hinting faults need to be handled in the GUP
2506 * slowpath for accounting purposes and so that they
2507 * can be serialised against THP migration.
2508 */
2509 if (pmd_protnone(pmd))
2510 return 0;
2511
2512 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2513 pages, nr))
2514 return 0;
2515
2516 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2517 /*
2518 * architecture have different format for hugetlbfs
2519 * pmd format and THP pmd format
2520 */
2521 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2522 PMD_SHIFT, next, flags, pages, nr))
2523 return 0;
2524 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2525 return 0;
2526 } while (pmdp++, addr = next, addr != end);
2527
2528 return 1;
2529 }
2530
2531 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2532 unsigned int flags, struct page **pages, int *nr)
2533 {
2534 unsigned long next;
2535 pud_t *pudp;
2536
2537 pudp = pud_offset(&p4d, addr);
2538 do {
2539 pud_t pud = READ_ONCE(*pudp);
2540
2541 next = pud_addr_end(addr, end);
2542 if (unlikely(!pud_present(pud)))
2543 return 0;
2544 if (unlikely(pud_huge(pud))) {
2545 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2546 pages, nr))
2547 return 0;
2548 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2549 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2550 PUD_SHIFT, next, flags, pages, nr))
2551 return 0;
2552 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2553 return 0;
2554 } while (pudp++, addr = next, addr != end);
2555
2556 return 1;
2557 }
2558
2559 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2560 unsigned int flags, struct page **pages, int *nr)
2561 {
2562 unsigned long next;
2563 p4d_t *p4dp;
2564
2565 p4dp = p4d_offset(&pgd, addr);
2566 do {
2567 p4d_t p4d = READ_ONCE(*p4dp);
2568
2569 next = p4d_addr_end(addr, end);
2570 if (p4d_none(p4d))
2571 return 0;
2572 BUILD_BUG_ON(p4d_huge(p4d));
2573 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2574 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2575 P4D_SHIFT, next, flags, pages, nr))
2576 return 0;
2577 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2578 return 0;
2579 } while (p4dp++, addr = next, addr != end);
2580
2581 return 1;
2582 }
2583
2584 static void gup_pgd_range(unsigned long addr, unsigned long end,
2585 unsigned int flags, struct page **pages, int *nr)
2586 {
2587 unsigned long next;
2588 pgd_t *pgdp;
2589
2590 pgdp = pgd_offset(current->mm, addr);
2591 do {
2592 pgd_t pgd = READ_ONCE(*pgdp);
2593
2594 next = pgd_addr_end(addr, end);
2595 if (pgd_none(pgd))
2596 return;
2597 if (unlikely(pgd_huge(pgd))) {
2598 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2599 pages, nr))
2600 return;
2601 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2602 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2603 PGDIR_SHIFT, next, flags, pages, nr))
2604 return;
2605 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2606 return;
2607 } while (pgdp++, addr = next, addr != end);
2608 }
2609 #else
2610 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2611 unsigned int flags, struct page **pages, int *nr)
2612 {
2613 }
2614 #endif /* CONFIG_HAVE_FAST_GUP */
2615
2616 #ifndef gup_fast_permitted
2617 /*
2618 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2619 * we need to fall back to the slow version:
2620 */
2621 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2622 {
2623 return true;
2624 }
2625 #endif
2626
2627 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2628 unsigned int gup_flags, struct page **pages)
2629 {
2630 int ret;
2631
2632 /*
2633 * FIXME: FOLL_LONGTERM does not work with
2634 * get_user_pages_unlocked() (see comments in that function)
2635 */
2636 if (gup_flags & FOLL_LONGTERM) {
2637 mmap_read_lock(current->mm);
2638 ret = __gup_longterm_locked(current->mm,
2639 start, nr_pages,
2640 pages, NULL, gup_flags);
2641 mmap_read_unlock(current->mm);
2642 } else {
2643 ret = get_user_pages_unlocked(start, nr_pages,
2644 pages, gup_flags);
2645 }
2646
2647 return ret;
2648 }
2649
2650 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2651 unsigned int gup_flags,
2652 struct page **pages)
2653 {
2654 unsigned long addr, len, end;
2655 unsigned long flags;
2656 int nr_pinned = 0, ret = 0;
2657
2658 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2659 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2660 FOLL_FAST_ONLY)))
2661 return -EINVAL;
2662
2663 if (!(gup_flags & FOLL_FAST_ONLY))
2664 might_lock_read(&current->mm->mmap_lock);
2665
2666 start = untagged_addr(start) & PAGE_MASK;
2667 addr = start;
2668 len = (unsigned long) nr_pages << PAGE_SHIFT;
2669 end = start + len;
2670
2671 if (end <= start)
2672 return 0;
2673 if (unlikely(!access_ok((void __user *)start, len)))
2674 return -EFAULT;
2675
2676 /*
2677 * Disable interrupts. The nested form is used, in order to allow
2678 * full, general purpose use of this routine.
2679 *
2680 * With interrupts disabled, we block page table pages from being
2681 * freed from under us. See struct mmu_table_batch comments in
2682 * include/asm-generic/tlb.h for more details.
2683 *
2684 * We do not adopt an rcu_read_lock(.) here as we also want to
2685 * block IPIs that come from THPs splitting.
2686 */
2687 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2688 unsigned long fast_flags = gup_flags;
2689
2690 local_irq_save(flags);
2691 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2692 local_irq_restore(flags);
2693 ret = nr_pinned;
2694 }
2695
2696 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2697 /* Try to get the remaining pages with get_user_pages */
2698 start += nr_pinned << PAGE_SHIFT;
2699 pages += nr_pinned;
2700
2701 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2702 gup_flags, pages);
2703
2704 /* Have to be a bit careful with return values */
2705 if (nr_pinned > 0) {
2706 if (ret < 0)
2707 ret = nr_pinned;
2708 else
2709 ret += nr_pinned;
2710 }
2711 }
2712
2713 return ret;
2714 }
2715 /**
2716 * get_user_pages_fast_only() - pin user pages in memory
2717 * @start: starting user address
2718 * @nr_pages: number of pages from start to pin
2719 * @gup_flags: flags modifying pin behaviour
2720 * @pages: array that receives pointers to the pages pinned.
2721 * Should be at least nr_pages long.
2722 *
2723 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2724 * the regular GUP.
2725 * Note a difference with get_user_pages_fast: this always returns the
2726 * number of pages pinned, 0 if no pages were pinned.
2727 *
2728 * If the architecture does not support this function, simply return with no
2729 * pages pinned.
2730 *
2731 * Careful, careful! COW breaking can go either way, so a non-write
2732 * access can get ambiguous page results. If you call this function without
2733 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2734 */
2735 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2736 unsigned int gup_flags, struct page **pages)
2737 {
2738 int nr_pinned;
2739 /*
2740 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2741 * because gup fast is always a "pin with a +1 page refcount" request.
2742 *
2743 * FOLL_FAST_ONLY is required in order to match the API description of
2744 * this routine: no fall back to regular ("slow") GUP.
2745 */
2746 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2747
2748 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2749 pages);
2750
2751 /*
2752 * As specified in the API description above, this routine is not
2753 * allowed to return negative values. However, the common core
2754 * routine internal_get_user_pages_fast() *can* return -errno.
2755 * Therefore, correct for that here:
2756 */
2757 if (nr_pinned < 0)
2758 nr_pinned = 0;
2759
2760 return nr_pinned;
2761 }
2762 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2763
2764 /**
2765 * get_user_pages_fast() - pin user pages in memory
2766 * @start: starting user address
2767 * @nr_pages: number of pages from start to pin
2768 * @gup_flags: flags modifying pin behaviour
2769 * @pages: array that receives pointers to the pages pinned.
2770 * Should be at least nr_pages long.
2771 *
2772 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2773 * If not successful, it will fall back to taking the lock and
2774 * calling get_user_pages().
2775 *
2776 * Returns number of pages pinned. This may be fewer than the number requested.
2777 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2778 * -errno.
2779 */
2780 int get_user_pages_fast(unsigned long start, int nr_pages,
2781 unsigned int gup_flags, struct page **pages)
2782 {
2783 /*
2784 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2785 * never directly by the caller, so enforce that:
2786 */
2787 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2788 return -EINVAL;
2789
2790 /*
2791 * The caller may or may not have explicitly set FOLL_GET; either way is
2792 * OK. However, internally (within mm/gup.c), gup fast variants must set
2793 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2794 * request.
2795 */
2796 gup_flags |= FOLL_GET;
2797 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2798 }
2799 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2800
2801 /**
2802 * pin_user_pages_fast() - pin user pages in memory without taking locks
2803 *
2804 * @start: starting user address
2805 * @nr_pages: number of pages from start to pin
2806 * @gup_flags: flags modifying pin behaviour
2807 * @pages: array that receives pointers to the pages pinned.
2808 * Should be at least nr_pages long.
2809 *
2810 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2811 * get_user_pages_fast() for documentation on the function arguments, because
2812 * the arguments here are identical.
2813 *
2814 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2815 * see Documentation/core-api/pin_user_pages.rst for further details.
2816 */
2817 int pin_user_pages_fast(unsigned long start, int nr_pages,
2818 unsigned int gup_flags, struct page **pages)
2819 {
2820 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2821 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2822 return -EINVAL;
2823
2824 gup_flags |= FOLL_PIN;
2825 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2826 }
2827 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2828
2829 /*
2830 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2831 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2832 *
2833 * The API rules are the same, too: no negative values may be returned.
2834 */
2835 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2836 unsigned int gup_flags, struct page **pages)
2837 {
2838 int nr_pinned;
2839
2840 /*
2841 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2842 * rules require returning 0, rather than -errno:
2843 */
2844 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2845 return 0;
2846 /*
2847 * FOLL_FAST_ONLY is required in order to match the API description of
2848 * this routine: no fall back to regular ("slow") GUP.
2849 */
2850 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2851 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2852 pages);
2853 /*
2854 * This routine is not allowed to return negative values. However,
2855 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2856 * correct for that here:
2857 */
2858 if (nr_pinned < 0)
2859 nr_pinned = 0;
2860
2861 return nr_pinned;
2862 }
2863 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2864
2865 /**
2866 * pin_user_pages_remote() - pin pages of a remote process
2867 *
2868 * @mm: mm_struct of target mm
2869 * @start: starting user address
2870 * @nr_pages: number of pages from start to pin
2871 * @gup_flags: flags modifying lookup behaviour
2872 * @pages: array that receives pointers to the pages pinned.
2873 * Should be at least nr_pages long. Or NULL, if caller
2874 * only intends to ensure the pages are faulted in.
2875 * @vmas: array of pointers to vmas corresponding to each page.
2876 * Or NULL if the caller does not require them.
2877 * @locked: pointer to lock flag indicating whether lock is held and
2878 * subsequently whether VM_FAULT_RETRY functionality can be
2879 * utilised. Lock must initially be held.
2880 *
2881 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2882 * get_user_pages_remote() for documentation on the function arguments, because
2883 * the arguments here are identical.
2884 *
2885 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2886 * see Documentation/core-api/pin_user_pages.rst for details.
2887 */
2888 long pin_user_pages_remote(struct mm_struct *mm,
2889 unsigned long start, unsigned long nr_pages,
2890 unsigned int gup_flags, struct page **pages,
2891 struct vm_area_struct **vmas, int *locked)
2892 {
2893 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2894 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2895 return -EINVAL;
2896
2897 gup_flags |= FOLL_PIN;
2898 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2899 pages, vmas, locked);
2900 }
2901 EXPORT_SYMBOL(pin_user_pages_remote);
2902
2903 /**
2904 * pin_user_pages() - pin user pages in memory for use by other devices
2905 *
2906 * @start: starting user address
2907 * @nr_pages: number of pages from start to pin
2908 * @gup_flags: flags modifying lookup behaviour
2909 * @pages: array that receives pointers to the pages pinned.
2910 * Should be at least nr_pages long. Or NULL, if caller
2911 * only intends to ensure the pages are faulted in.
2912 * @vmas: array of pointers to vmas corresponding to each page.
2913 * Or NULL if the caller does not require them.
2914 *
2915 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2916 * FOLL_PIN is set.
2917 *
2918 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2919 * see Documentation/core-api/pin_user_pages.rst for details.
2920 */
2921 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2922 unsigned int gup_flags, struct page **pages,
2923 struct vm_area_struct **vmas)
2924 {
2925 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2926 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2927 return -EINVAL;
2928
2929 gup_flags |= FOLL_PIN;
2930 return __gup_longterm_locked(current->mm, start, nr_pages,
2931 pages, vmas, gup_flags);
2932 }
2933 EXPORT_SYMBOL(pin_user_pages);
2934
2935 /*
2936 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2937 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2938 * FOLL_PIN and rejects FOLL_GET.
2939 */
2940 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2941 struct page **pages, unsigned int gup_flags)
2942 {
2943 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2944 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2945 return -EINVAL;
2946
2947 gup_flags |= FOLL_PIN;
2948 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2949 }
2950 EXPORT_SYMBOL(pin_user_pages_unlocked);
2951
2952 /*
2953 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2954 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2955 * FOLL_GET.
2956 */
2957 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2958 unsigned int gup_flags, struct page **pages,
2959 int *locked)
2960 {
2961 /*
2962 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2963 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2964 * vmas. As there are no users of this flag in this call we simply
2965 * disallow this option for now.
2966 */
2967 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2968 return -EINVAL;
2969
2970 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2971 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2972 return -EINVAL;
2973
2974 gup_flags |= FOLL_PIN;
2975 return __get_user_pages_locked(current->mm, start, nr_pages,
2976 pages, NULL, locked,
2977 gup_flags | FOLL_TOUCH);
2978 }
2979 EXPORT_SYMBOL(pin_user_pages_locked);