]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/gup.c
Merge tag 'trace-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-kernels.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38 }
39
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46 }
47
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 return;
54 #endif
55
56 /*
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
59 */
60 if (refs > 1)
61 page_ref_sub(page, refs - 1);
62 put_page(page);
63 }
64
65 /**
66 * try_get_compound_head() - return the compound head page with refcount
67 * appropriately incremented, or NULL if that failed.
68 *
69 * This handles potential refcount overflow correctly. It also works correctly
70 * for various lockless get_user_pages()-related callers, due to the use of
71 * page_cache_add_speculative().
72 *
73 * Even though the name includes "compound_head", this function is still
74 * appropriate for callers that have a non-compound @page to get.
75 *
76 * @page: pointer to page to be gotten
77 * @refs: the value to add to the page's refcount
78 *
79 * Return: head page (with refcount appropriately incremented) for success, or
80 * NULL upon failure.
81 */
82 struct page *try_get_compound_head(struct page *page, int refs)
83 {
84 struct page *head = compound_head(page);
85
86 if (WARN_ON_ONCE(page_ref_count(head) < 0))
87 return NULL;
88 if (unlikely(!page_cache_add_speculative(head, refs)))
89 return NULL;
90
91 /*
92 * At this point we have a stable reference to the head page; but it
93 * could be that between the compound_head() lookup and the refcount
94 * increment, the compound page was split, in which case we'd end up
95 * holding a reference on a page that has nothing to do with the page
96 * we were given anymore.
97 * So now that the head page is stable, recheck that the pages still
98 * belong together.
99 */
100 if (unlikely(compound_head(page) != head)) {
101 put_page_refs(head, refs);
102 return NULL;
103 }
104
105 return head;
106 }
107
108 /**
109 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
110 * flags-dependent amount.
111 *
112 * Even though the name includes "compound_head", this function is still
113 * appropriate for callers that have a non-compound @page to get.
114 *
115 * @page: pointer to page to be grabbed
116 * @refs: the value to (effectively) add to the page's refcount
117 * @flags: gup flags: these are the FOLL_* flag values.
118 *
119 * "grab" names in this file mean, "look at flags to decide whether to use
120 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
121 *
122 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
123 * same time. (That's true throughout the get_user_pages*() and
124 * pin_user_pages*() APIs.) Cases:
125 *
126 * FOLL_GET: page's refcount will be incremented by @refs.
127 *
128 * FOLL_PIN on compound pages that are > two pages long: page's refcount will
129 * be incremented by @refs, and page[2].hpage_pinned_refcount will be
130 * incremented by @refs * GUP_PIN_COUNTING_BIAS.
131 *
132 * FOLL_PIN on normal pages, or compound pages that are two pages long:
133 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
134 *
135 * Return: head page (with refcount appropriately incremented) for success, or
136 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
137 * considered failure, and furthermore, a likely bug in the caller, so a warning
138 * is also emitted.
139 */
140 struct page *try_grab_compound_head(struct page *page,
141 int refs, unsigned int flags)
142 {
143 if (flags & FOLL_GET)
144 return try_get_compound_head(page, refs);
145 else if (flags & FOLL_PIN) {
146 /*
147 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
148 * right zone, so fail and let the caller fall back to the slow
149 * path.
150 */
151 if (unlikely((flags & FOLL_LONGTERM) &&
152 !is_pinnable_page(page)))
153 return NULL;
154
155 /*
156 * CAUTION: Don't use compound_head() on the page before this
157 * point, the result won't be stable.
158 */
159 page = try_get_compound_head(page, refs);
160 if (!page)
161 return NULL;
162
163 /*
164 * When pinning a compound page of order > 1 (which is what
165 * hpage_pincount_available() checks for), use an exact count to
166 * track it, via hpage_pincount_add/_sub().
167 *
168 * However, be sure to *also* increment the normal page refcount
169 * field at least once, so that the page really is pinned.
170 * That's why the refcount from the earlier
171 * try_get_compound_head() is left intact.
172 */
173 if (hpage_pincount_available(page))
174 hpage_pincount_add(page, refs);
175 else
176 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
177
178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
179 refs);
180
181 return page;
182 }
183
184 WARN_ON_ONCE(1);
185 return NULL;
186 }
187
188 static void put_compound_head(struct page *page, int refs, unsigned int flags)
189 {
190 if (flags & FOLL_PIN) {
191 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
192 refs);
193
194 if (hpage_pincount_available(page))
195 hpage_pincount_sub(page, refs);
196 else
197 refs *= GUP_PIN_COUNTING_BIAS;
198 }
199
200 put_page_refs(page, refs);
201 }
202
203 /**
204 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
205 *
206 * This might not do anything at all, depending on the flags argument.
207 *
208 * "grab" names in this file mean, "look at flags to decide whether to use
209 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
210 *
211 * @page: pointer to page to be grabbed
212 * @flags: gup flags: these are the FOLL_* flag values.
213 *
214 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
215 * time. Cases: please see the try_grab_compound_head() documentation, with
216 * "refs=1".
217 *
218 * Return: true for success, or if no action was required (if neither FOLL_PIN
219 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
220 * FOLL_PIN was set, but the page could not be grabbed.
221 */
222 bool __must_check try_grab_page(struct page *page, unsigned int flags)
223 {
224 if (!(flags & (FOLL_GET | FOLL_PIN)))
225 return true;
226
227 return try_grab_compound_head(page, 1, flags);
228 }
229
230 /**
231 * unpin_user_page() - release a dma-pinned page
232 * @page: pointer to page to be released
233 *
234 * Pages that were pinned via pin_user_pages*() must be released via either
235 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
236 * that such pages can be separately tracked and uniquely handled. In
237 * particular, interactions with RDMA and filesystems need special handling.
238 */
239 void unpin_user_page(struct page *page)
240 {
241 put_compound_head(compound_head(page), 1, FOLL_PIN);
242 }
243 EXPORT_SYMBOL(unpin_user_page);
244
245 static inline void compound_range_next(unsigned long i, unsigned long npages,
246 struct page **list, struct page **head,
247 unsigned int *ntails)
248 {
249 struct page *next, *page;
250 unsigned int nr = 1;
251
252 if (i >= npages)
253 return;
254
255 next = *list + i;
256 page = compound_head(next);
257 if (PageCompound(page) && compound_order(page) >= 1)
258 nr = min_t(unsigned int,
259 page + compound_nr(page) - next, npages - i);
260
261 *head = page;
262 *ntails = nr;
263 }
264
265 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
266 for (__i = 0, \
267 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
268 __i < __npages; __i += __ntails, \
269 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
270
271 static inline void compound_next(unsigned long i, unsigned long npages,
272 struct page **list, struct page **head,
273 unsigned int *ntails)
274 {
275 struct page *page;
276 unsigned int nr;
277
278 if (i >= npages)
279 return;
280
281 page = compound_head(list[i]);
282 for (nr = i + 1; nr < npages; nr++) {
283 if (compound_head(list[nr]) != page)
284 break;
285 }
286
287 *head = page;
288 *ntails = nr - i;
289 }
290
291 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
292 for (__i = 0, \
293 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
294 __i < __npages; __i += __ntails, \
295 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
296
297 /**
298 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
299 * @pages: array of pages to be maybe marked dirty, and definitely released.
300 * @npages: number of pages in the @pages array.
301 * @make_dirty: whether to mark the pages dirty
302 *
303 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
304 * variants called on that page.
305 *
306 * For each page in the @pages array, make that page (or its head page, if a
307 * compound page) dirty, if @make_dirty is true, and if the page was previously
308 * listed as clean. In any case, releases all pages using unpin_user_page(),
309 * possibly via unpin_user_pages(), for the non-dirty case.
310 *
311 * Please see the unpin_user_page() documentation for details.
312 *
313 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
314 * required, then the caller should a) verify that this is really correct,
315 * because _lock() is usually required, and b) hand code it:
316 * set_page_dirty_lock(), unpin_user_page().
317 *
318 */
319 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
320 bool make_dirty)
321 {
322 unsigned long index;
323 struct page *head;
324 unsigned int ntails;
325
326 if (!make_dirty) {
327 unpin_user_pages(pages, npages);
328 return;
329 }
330
331 for_each_compound_head(index, pages, npages, head, ntails) {
332 /*
333 * Checking PageDirty at this point may race with
334 * clear_page_dirty_for_io(), but that's OK. Two key
335 * cases:
336 *
337 * 1) This code sees the page as already dirty, so it
338 * skips the call to set_page_dirty(). That could happen
339 * because clear_page_dirty_for_io() called
340 * page_mkclean(), followed by set_page_dirty().
341 * However, now the page is going to get written back,
342 * which meets the original intention of setting it
343 * dirty, so all is well: clear_page_dirty_for_io() goes
344 * on to call TestClearPageDirty(), and write the page
345 * back.
346 *
347 * 2) This code sees the page as clean, so it calls
348 * set_page_dirty(). The page stays dirty, despite being
349 * written back, so it gets written back again in the
350 * next writeback cycle. This is harmless.
351 */
352 if (!PageDirty(head))
353 set_page_dirty_lock(head);
354 put_compound_head(head, ntails, FOLL_PIN);
355 }
356 }
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
358
359 /**
360 * unpin_user_page_range_dirty_lock() - release and optionally dirty
361 * gup-pinned page range
362 *
363 * @page: the starting page of a range maybe marked dirty, and definitely released.
364 * @npages: number of consecutive pages to release.
365 * @make_dirty: whether to mark the pages dirty
366 *
367 * "gup-pinned page range" refers to a range of pages that has had one of the
368 * pin_user_pages() variants called on that page.
369 *
370 * For the page ranges defined by [page .. page+npages], make that range (or
371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372 * page range was previously listed as clean.
373 *
374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375 * required, then the caller should a) verify that this is really correct,
376 * because _lock() is usually required, and b) hand code it:
377 * set_page_dirty_lock(), unpin_user_page().
378 *
379 */
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
381 bool make_dirty)
382 {
383 unsigned long index;
384 struct page *head;
385 unsigned int ntails;
386
387 for_each_compound_range(index, &page, npages, head, ntails) {
388 if (make_dirty && !PageDirty(head))
389 set_page_dirty_lock(head);
390 put_compound_head(head, ntails, FOLL_PIN);
391 }
392 }
393 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
394
395 /**
396 * unpin_user_pages() - release an array of gup-pinned pages.
397 * @pages: array of pages to be marked dirty and released.
398 * @npages: number of pages in the @pages array.
399 *
400 * For each page in the @pages array, release the page using unpin_user_page().
401 *
402 * Please see the unpin_user_page() documentation for details.
403 */
404 void unpin_user_pages(struct page **pages, unsigned long npages)
405 {
406 unsigned long index;
407 struct page *head;
408 unsigned int ntails;
409
410 /*
411 * If this WARN_ON() fires, then the system *might* be leaking pages (by
412 * leaving them pinned), but probably not. More likely, gup/pup returned
413 * a hard -ERRNO error to the caller, who erroneously passed it here.
414 */
415 if (WARN_ON(IS_ERR_VALUE(npages)))
416 return;
417
418 for_each_compound_head(index, pages, npages, head, ntails)
419 put_compound_head(head, ntails, FOLL_PIN);
420 }
421 EXPORT_SYMBOL(unpin_user_pages);
422
423 /*
424 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
425 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
426 * cache bouncing on large SMP machines for concurrent pinned gups.
427 */
428 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
429 {
430 if (!test_bit(MMF_HAS_PINNED, mm_flags))
431 set_bit(MMF_HAS_PINNED, mm_flags);
432 }
433
434 #ifdef CONFIG_MMU
435 static struct page *no_page_table(struct vm_area_struct *vma,
436 unsigned int flags)
437 {
438 /*
439 * When core dumping an enormous anonymous area that nobody
440 * has touched so far, we don't want to allocate unnecessary pages or
441 * page tables. Return error instead of NULL to skip handle_mm_fault,
442 * then get_dump_page() will return NULL to leave a hole in the dump.
443 * But we can only make this optimization where a hole would surely
444 * be zero-filled if handle_mm_fault() actually did handle it.
445 */
446 if ((flags & FOLL_DUMP) &&
447 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
448 return ERR_PTR(-EFAULT);
449 return NULL;
450 }
451
452 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
453 pte_t *pte, unsigned int flags)
454 {
455 /* No page to get reference */
456 if (flags & FOLL_GET)
457 return -EFAULT;
458
459 if (flags & FOLL_TOUCH) {
460 pte_t entry = *pte;
461
462 if (flags & FOLL_WRITE)
463 entry = pte_mkdirty(entry);
464 entry = pte_mkyoung(entry);
465
466 if (!pte_same(*pte, entry)) {
467 set_pte_at(vma->vm_mm, address, pte, entry);
468 update_mmu_cache(vma, address, pte);
469 }
470 }
471
472 /* Proper page table entry exists, but no corresponding struct page */
473 return -EEXIST;
474 }
475
476 /*
477 * FOLL_FORCE can write to even unwritable pte's, but only
478 * after we've gone through a COW cycle and they are dirty.
479 */
480 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
481 {
482 return pte_write(pte) ||
483 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
484 }
485
486 static struct page *follow_page_pte(struct vm_area_struct *vma,
487 unsigned long address, pmd_t *pmd, unsigned int flags,
488 struct dev_pagemap **pgmap)
489 {
490 struct mm_struct *mm = vma->vm_mm;
491 struct page *page;
492 spinlock_t *ptl;
493 pte_t *ptep, pte;
494 int ret;
495
496 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
497 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
498 (FOLL_PIN | FOLL_GET)))
499 return ERR_PTR(-EINVAL);
500 retry:
501 if (unlikely(pmd_bad(*pmd)))
502 return no_page_table(vma, flags);
503
504 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
505 pte = *ptep;
506 if (!pte_present(pte)) {
507 swp_entry_t entry;
508 /*
509 * KSM's break_ksm() relies upon recognizing a ksm page
510 * even while it is being migrated, so for that case we
511 * need migration_entry_wait().
512 */
513 if (likely(!(flags & FOLL_MIGRATION)))
514 goto no_page;
515 if (pte_none(pte))
516 goto no_page;
517 entry = pte_to_swp_entry(pte);
518 if (!is_migration_entry(entry))
519 goto no_page;
520 pte_unmap_unlock(ptep, ptl);
521 migration_entry_wait(mm, pmd, address);
522 goto retry;
523 }
524 if ((flags & FOLL_NUMA) && pte_protnone(pte))
525 goto no_page;
526 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
527 pte_unmap_unlock(ptep, ptl);
528 return NULL;
529 }
530
531 page = vm_normal_page(vma, address, pte);
532 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
533 /*
534 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
535 * case since they are only valid while holding the pgmap
536 * reference.
537 */
538 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
539 if (*pgmap)
540 page = pte_page(pte);
541 else
542 goto no_page;
543 } else if (unlikely(!page)) {
544 if (flags & FOLL_DUMP) {
545 /* Avoid special (like zero) pages in core dumps */
546 page = ERR_PTR(-EFAULT);
547 goto out;
548 }
549
550 if (is_zero_pfn(pte_pfn(pte))) {
551 page = pte_page(pte);
552 } else {
553 ret = follow_pfn_pte(vma, address, ptep, flags);
554 page = ERR_PTR(ret);
555 goto out;
556 }
557 }
558
559 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
560 if (unlikely(!try_grab_page(page, flags))) {
561 page = ERR_PTR(-ENOMEM);
562 goto out;
563 }
564 /*
565 * We need to make the page accessible if and only if we are going
566 * to access its content (the FOLL_PIN case). Please see
567 * Documentation/core-api/pin_user_pages.rst for details.
568 */
569 if (flags & FOLL_PIN) {
570 ret = arch_make_page_accessible(page);
571 if (ret) {
572 unpin_user_page(page);
573 page = ERR_PTR(ret);
574 goto out;
575 }
576 }
577 if (flags & FOLL_TOUCH) {
578 if ((flags & FOLL_WRITE) &&
579 !pte_dirty(pte) && !PageDirty(page))
580 set_page_dirty(page);
581 /*
582 * pte_mkyoung() would be more correct here, but atomic care
583 * is needed to avoid losing the dirty bit: it is easier to use
584 * mark_page_accessed().
585 */
586 mark_page_accessed(page);
587 }
588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
589 /* Do not mlock pte-mapped THP */
590 if (PageTransCompound(page))
591 goto out;
592
593 /*
594 * The preliminary mapping check is mainly to avoid the
595 * pointless overhead of lock_page on the ZERO_PAGE
596 * which might bounce very badly if there is contention.
597 *
598 * If the page is already locked, we don't need to
599 * handle it now - vmscan will handle it later if and
600 * when it attempts to reclaim the page.
601 */
602 if (page->mapping && trylock_page(page)) {
603 lru_add_drain(); /* push cached pages to LRU */
604 /*
605 * Because we lock page here, and migration is
606 * blocked by the pte's page reference, and we
607 * know the page is still mapped, we don't even
608 * need to check for file-cache page truncation.
609 */
610 mlock_vma_page(page);
611 unlock_page(page);
612 }
613 }
614 out:
615 pte_unmap_unlock(ptep, ptl);
616 return page;
617 no_page:
618 pte_unmap_unlock(ptep, ptl);
619 if (!pte_none(pte))
620 return NULL;
621 return no_page_table(vma, flags);
622 }
623
624 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
625 unsigned long address, pud_t *pudp,
626 unsigned int flags,
627 struct follow_page_context *ctx)
628 {
629 pmd_t *pmd, pmdval;
630 spinlock_t *ptl;
631 struct page *page;
632 struct mm_struct *mm = vma->vm_mm;
633
634 pmd = pmd_offset(pudp, address);
635 /*
636 * The READ_ONCE() will stabilize the pmdval in a register or
637 * on the stack so that it will stop changing under the code.
638 */
639 pmdval = READ_ONCE(*pmd);
640 if (pmd_none(pmdval))
641 return no_page_table(vma, flags);
642 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
643 page = follow_huge_pmd(mm, address, pmd, flags);
644 if (page)
645 return page;
646 return no_page_table(vma, flags);
647 }
648 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
649 page = follow_huge_pd(vma, address,
650 __hugepd(pmd_val(pmdval)), flags,
651 PMD_SHIFT);
652 if (page)
653 return page;
654 return no_page_table(vma, flags);
655 }
656 retry:
657 if (!pmd_present(pmdval)) {
658 if (likely(!(flags & FOLL_MIGRATION)))
659 return no_page_table(vma, flags);
660 VM_BUG_ON(thp_migration_supported() &&
661 !is_pmd_migration_entry(pmdval));
662 if (is_pmd_migration_entry(pmdval))
663 pmd_migration_entry_wait(mm, pmd);
664 pmdval = READ_ONCE(*pmd);
665 /*
666 * MADV_DONTNEED may convert the pmd to null because
667 * mmap_lock is held in read mode
668 */
669 if (pmd_none(pmdval))
670 return no_page_table(vma, flags);
671 goto retry;
672 }
673 if (pmd_devmap(pmdval)) {
674 ptl = pmd_lock(mm, pmd);
675 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
676 spin_unlock(ptl);
677 if (page)
678 return page;
679 }
680 if (likely(!pmd_trans_huge(pmdval)))
681 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
682
683 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
684 return no_page_table(vma, flags);
685
686 retry_locked:
687 ptl = pmd_lock(mm, pmd);
688 if (unlikely(pmd_none(*pmd))) {
689 spin_unlock(ptl);
690 return no_page_table(vma, flags);
691 }
692 if (unlikely(!pmd_present(*pmd))) {
693 spin_unlock(ptl);
694 if (likely(!(flags & FOLL_MIGRATION)))
695 return no_page_table(vma, flags);
696 pmd_migration_entry_wait(mm, pmd);
697 goto retry_locked;
698 }
699 if (unlikely(!pmd_trans_huge(*pmd))) {
700 spin_unlock(ptl);
701 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
702 }
703 if (flags & FOLL_SPLIT_PMD) {
704 int ret;
705 page = pmd_page(*pmd);
706 if (is_huge_zero_page(page)) {
707 spin_unlock(ptl);
708 ret = 0;
709 split_huge_pmd(vma, pmd, address);
710 if (pmd_trans_unstable(pmd))
711 ret = -EBUSY;
712 } else {
713 spin_unlock(ptl);
714 split_huge_pmd(vma, pmd, address);
715 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
716 }
717
718 return ret ? ERR_PTR(ret) :
719 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
720 }
721 page = follow_trans_huge_pmd(vma, address, pmd, flags);
722 spin_unlock(ptl);
723 ctx->page_mask = HPAGE_PMD_NR - 1;
724 return page;
725 }
726
727 static struct page *follow_pud_mask(struct vm_area_struct *vma,
728 unsigned long address, p4d_t *p4dp,
729 unsigned int flags,
730 struct follow_page_context *ctx)
731 {
732 pud_t *pud;
733 spinlock_t *ptl;
734 struct page *page;
735 struct mm_struct *mm = vma->vm_mm;
736
737 pud = pud_offset(p4dp, address);
738 if (pud_none(*pud))
739 return no_page_table(vma, flags);
740 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
741 page = follow_huge_pud(mm, address, pud, flags);
742 if (page)
743 return page;
744 return no_page_table(vma, flags);
745 }
746 if (is_hugepd(__hugepd(pud_val(*pud)))) {
747 page = follow_huge_pd(vma, address,
748 __hugepd(pud_val(*pud)), flags,
749 PUD_SHIFT);
750 if (page)
751 return page;
752 return no_page_table(vma, flags);
753 }
754 if (pud_devmap(*pud)) {
755 ptl = pud_lock(mm, pud);
756 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
757 spin_unlock(ptl);
758 if (page)
759 return page;
760 }
761 if (unlikely(pud_bad(*pud)))
762 return no_page_table(vma, flags);
763
764 return follow_pmd_mask(vma, address, pud, flags, ctx);
765 }
766
767 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
768 unsigned long address, pgd_t *pgdp,
769 unsigned int flags,
770 struct follow_page_context *ctx)
771 {
772 p4d_t *p4d;
773 struct page *page;
774
775 p4d = p4d_offset(pgdp, address);
776 if (p4d_none(*p4d))
777 return no_page_table(vma, flags);
778 BUILD_BUG_ON(p4d_huge(*p4d));
779 if (unlikely(p4d_bad(*p4d)))
780 return no_page_table(vma, flags);
781
782 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
783 page = follow_huge_pd(vma, address,
784 __hugepd(p4d_val(*p4d)), flags,
785 P4D_SHIFT);
786 if (page)
787 return page;
788 return no_page_table(vma, flags);
789 }
790 return follow_pud_mask(vma, address, p4d, flags, ctx);
791 }
792
793 /**
794 * follow_page_mask - look up a page descriptor from a user-virtual address
795 * @vma: vm_area_struct mapping @address
796 * @address: virtual address to look up
797 * @flags: flags modifying lookup behaviour
798 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
799 * pointer to output page_mask
800 *
801 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
802 *
803 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
804 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
805 *
806 * On output, the @ctx->page_mask is set according to the size of the page.
807 *
808 * Return: the mapped (struct page *), %NULL if no mapping exists, or
809 * an error pointer if there is a mapping to something not represented
810 * by a page descriptor (see also vm_normal_page()).
811 */
812 static struct page *follow_page_mask(struct vm_area_struct *vma,
813 unsigned long address, unsigned int flags,
814 struct follow_page_context *ctx)
815 {
816 pgd_t *pgd;
817 struct page *page;
818 struct mm_struct *mm = vma->vm_mm;
819
820 ctx->page_mask = 0;
821
822 /* make this handle hugepd */
823 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
824 if (!IS_ERR(page)) {
825 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
826 return page;
827 }
828
829 pgd = pgd_offset(mm, address);
830
831 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
832 return no_page_table(vma, flags);
833
834 if (pgd_huge(*pgd)) {
835 page = follow_huge_pgd(mm, address, pgd, flags);
836 if (page)
837 return page;
838 return no_page_table(vma, flags);
839 }
840 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
841 page = follow_huge_pd(vma, address,
842 __hugepd(pgd_val(*pgd)), flags,
843 PGDIR_SHIFT);
844 if (page)
845 return page;
846 return no_page_table(vma, flags);
847 }
848
849 return follow_p4d_mask(vma, address, pgd, flags, ctx);
850 }
851
852 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
853 unsigned int foll_flags)
854 {
855 struct follow_page_context ctx = { NULL };
856 struct page *page;
857
858 if (vma_is_secretmem(vma))
859 return NULL;
860
861 page = follow_page_mask(vma, address, foll_flags, &ctx);
862 if (ctx.pgmap)
863 put_dev_pagemap(ctx.pgmap);
864 return page;
865 }
866
867 static int get_gate_page(struct mm_struct *mm, unsigned long address,
868 unsigned int gup_flags, struct vm_area_struct **vma,
869 struct page **page)
870 {
871 pgd_t *pgd;
872 p4d_t *p4d;
873 pud_t *pud;
874 pmd_t *pmd;
875 pte_t *pte;
876 int ret = -EFAULT;
877
878 /* user gate pages are read-only */
879 if (gup_flags & FOLL_WRITE)
880 return -EFAULT;
881 if (address > TASK_SIZE)
882 pgd = pgd_offset_k(address);
883 else
884 pgd = pgd_offset_gate(mm, address);
885 if (pgd_none(*pgd))
886 return -EFAULT;
887 p4d = p4d_offset(pgd, address);
888 if (p4d_none(*p4d))
889 return -EFAULT;
890 pud = pud_offset(p4d, address);
891 if (pud_none(*pud))
892 return -EFAULT;
893 pmd = pmd_offset(pud, address);
894 if (!pmd_present(*pmd))
895 return -EFAULT;
896 VM_BUG_ON(pmd_trans_huge(*pmd));
897 pte = pte_offset_map(pmd, address);
898 if (pte_none(*pte))
899 goto unmap;
900 *vma = get_gate_vma(mm);
901 if (!page)
902 goto out;
903 *page = vm_normal_page(*vma, address, *pte);
904 if (!*page) {
905 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
906 goto unmap;
907 *page = pte_page(*pte);
908 }
909 if (unlikely(!try_grab_page(*page, gup_flags))) {
910 ret = -ENOMEM;
911 goto unmap;
912 }
913 out:
914 ret = 0;
915 unmap:
916 pte_unmap(pte);
917 return ret;
918 }
919
920 /*
921 * mmap_lock must be held on entry. If @locked != NULL and *@flags
922 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
923 * is, *@locked will be set to 0 and -EBUSY returned.
924 */
925 static int faultin_page(struct vm_area_struct *vma,
926 unsigned long address, unsigned int *flags, int *locked)
927 {
928 unsigned int fault_flags = 0;
929 vm_fault_t ret;
930
931 /* mlock all present pages, but do not fault in new pages */
932 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
933 return -ENOENT;
934 if (*flags & FOLL_WRITE)
935 fault_flags |= FAULT_FLAG_WRITE;
936 if (*flags & FOLL_REMOTE)
937 fault_flags |= FAULT_FLAG_REMOTE;
938 if (locked)
939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
940 if (*flags & FOLL_NOWAIT)
941 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
942 if (*flags & FOLL_TRIED) {
943 /*
944 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 * can co-exist
946 */
947 fault_flags |= FAULT_FLAG_TRIED;
948 }
949
950 ret = handle_mm_fault(vma, address, fault_flags, NULL);
951 if (ret & VM_FAULT_ERROR) {
952 int err = vm_fault_to_errno(ret, *flags);
953
954 if (err)
955 return err;
956 BUG();
957 }
958
959 if (ret & VM_FAULT_RETRY) {
960 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
961 *locked = 0;
962 return -EBUSY;
963 }
964
965 /*
966 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
967 * necessary, even if maybe_mkwrite decided not to set pte_write. We
968 * can thus safely do subsequent page lookups as if they were reads.
969 * But only do so when looping for pte_write is futile: in some cases
970 * userspace may also be wanting to write to the gotten user page,
971 * which a read fault here might prevent (a readonly page might get
972 * reCOWed by userspace write).
973 */
974 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
975 *flags |= FOLL_COW;
976 return 0;
977 }
978
979 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
980 {
981 vm_flags_t vm_flags = vma->vm_flags;
982 int write = (gup_flags & FOLL_WRITE);
983 int foreign = (gup_flags & FOLL_REMOTE);
984
985 if (vm_flags & (VM_IO | VM_PFNMAP))
986 return -EFAULT;
987
988 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
989 return -EFAULT;
990
991 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
992 return -EOPNOTSUPP;
993
994 if (vma_is_secretmem(vma))
995 return -EFAULT;
996
997 if (write) {
998 if (!(vm_flags & VM_WRITE)) {
999 if (!(gup_flags & FOLL_FORCE))
1000 return -EFAULT;
1001 /*
1002 * We used to let the write,force case do COW in a
1003 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1004 * set a breakpoint in a read-only mapping of an
1005 * executable, without corrupting the file (yet only
1006 * when that file had been opened for writing!).
1007 * Anon pages in shared mappings are surprising: now
1008 * just reject it.
1009 */
1010 if (!is_cow_mapping(vm_flags))
1011 return -EFAULT;
1012 }
1013 } else if (!(vm_flags & VM_READ)) {
1014 if (!(gup_flags & FOLL_FORCE))
1015 return -EFAULT;
1016 /*
1017 * Is there actually any vma we can reach here which does not
1018 * have VM_MAYREAD set?
1019 */
1020 if (!(vm_flags & VM_MAYREAD))
1021 return -EFAULT;
1022 }
1023 /*
1024 * gups are always data accesses, not instruction
1025 * fetches, so execute=false here
1026 */
1027 if (!arch_vma_access_permitted(vma, write, false, foreign))
1028 return -EFAULT;
1029 return 0;
1030 }
1031
1032 /**
1033 * __get_user_pages() - pin user pages in memory
1034 * @mm: mm_struct of target mm
1035 * @start: starting user address
1036 * @nr_pages: number of pages from start to pin
1037 * @gup_flags: flags modifying pin behaviour
1038 * @pages: array that receives pointers to the pages pinned.
1039 * Should be at least nr_pages long. Or NULL, if caller
1040 * only intends to ensure the pages are faulted in.
1041 * @vmas: array of pointers to vmas corresponding to each page.
1042 * Or NULL if the caller does not require them.
1043 * @locked: whether we're still with the mmap_lock held
1044 *
1045 * Returns either number of pages pinned (which may be less than the
1046 * number requested), or an error. Details about the return value:
1047 *
1048 * -- If nr_pages is 0, returns 0.
1049 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1050 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1051 * pages pinned. Again, this may be less than nr_pages.
1052 * -- 0 return value is possible when the fault would need to be retried.
1053 *
1054 * The caller is responsible for releasing returned @pages, via put_page().
1055 *
1056 * @vmas are valid only as long as mmap_lock is held.
1057 *
1058 * Must be called with mmap_lock held. It may be released. See below.
1059 *
1060 * __get_user_pages walks a process's page tables and takes a reference to
1061 * each struct page that each user address corresponds to at a given
1062 * instant. That is, it takes the page that would be accessed if a user
1063 * thread accesses the given user virtual address at that instant.
1064 *
1065 * This does not guarantee that the page exists in the user mappings when
1066 * __get_user_pages returns, and there may even be a completely different
1067 * page there in some cases (eg. if mmapped pagecache has been invalidated
1068 * and subsequently re faulted). However it does guarantee that the page
1069 * won't be freed completely. And mostly callers simply care that the page
1070 * contains data that was valid *at some point in time*. Typically, an IO
1071 * or similar operation cannot guarantee anything stronger anyway because
1072 * locks can't be held over the syscall boundary.
1073 *
1074 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1075 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1076 * appropriate) must be called after the page is finished with, and
1077 * before put_page is called.
1078 *
1079 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1080 * released by an up_read(). That can happen if @gup_flags does not
1081 * have FOLL_NOWAIT.
1082 *
1083 * A caller using such a combination of @locked and @gup_flags
1084 * must therefore hold the mmap_lock for reading only, and recognize
1085 * when it's been released. Otherwise, it must be held for either
1086 * reading or writing and will not be released.
1087 *
1088 * In most cases, get_user_pages or get_user_pages_fast should be used
1089 * instead of __get_user_pages. __get_user_pages should be used only if
1090 * you need some special @gup_flags.
1091 */
1092 static long __get_user_pages(struct mm_struct *mm,
1093 unsigned long start, unsigned long nr_pages,
1094 unsigned int gup_flags, struct page **pages,
1095 struct vm_area_struct **vmas, int *locked)
1096 {
1097 long ret = 0, i = 0;
1098 struct vm_area_struct *vma = NULL;
1099 struct follow_page_context ctx = { NULL };
1100
1101 if (!nr_pages)
1102 return 0;
1103
1104 start = untagged_addr(start);
1105
1106 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1107
1108 /*
1109 * If FOLL_FORCE is set then do not force a full fault as the hinting
1110 * fault information is unrelated to the reference behaviour of a task
1111 * using the address space
1112 */
1113 if (!(gup_flags & FOLL_FORCE))
1114 gup_flags |= FOLL_NUMA;
1115
1116 do {
1117 struct page *page;
1118 unsigned int foll_flags = gup_flags;
1119 unsigned int page_increm;
1120
1121 /* first iteration or cross vma bound */
1122 if (!vma || start >= vma->vm_end) {
1123 vma = find_extend_vma(mm, start);
1124 if (!vma && in_gate_area(mm, start)) {
1125 ret = get_gate_page(mm, start & PAGE_MASK,
1126 gup_flags, &vma,
1127 pages ? &pages[i] : NULL);
1128 if (ret)
1129 goto out;
1130 ctx.page_mask = 0;
1131 goto next_page;
1132 }
1133
1134 if (!vma) {
1135 ret = -EFAULT;
1136 goto out;
1137 }
1138 ret = check_vma_flags(vma, gup_flags);
1139 if (ret)
1140 goto out;
1141
1142 if (is_vm_hugetlb_page(vma)) {
1143 i = follow_hugetlb_page(mm, vma, pages, vmas,
1144 &start, &nr_pages, i,
1145 gup_flags, locked);
1146 if (locked && *locked == 0) {
1147 /*
1148 * We've got a VM_FAULT_RETRY
1149 * and we've lost mmap_lock.
1150 * We must stop here.
1151 */
1152 BUG_ON(gup_flags & FOLL_NOWAIT);
1153 goto out;
1154 }
1155 continue;
1156 }
1157 }
1158 retry:
1159 /*
1160 * If we have a pending SIGKILL, don't keep faulting pages and
1161 * potentially allocating memory.
1162 */
1163 if (fatal_signal_pending(current)) {
1164 ret = -EINTR;
1165 goto out;
1166 }
1167 cond_resched();
1168
1169 page = follow_page_mask(vma, start, foll_flags, &ctx);
1170 if (!page) {
1171 ret = faultin_page(vma, start, &foll_flags, locked);
1172 switch (ret) {
1173 case 0:
1174 goto retry;
1175 case -EBUSY:
1176 ret = 0;
1177 fallthrough;
1178 case -EFAULT:
1179 case -ENOMEM:
1180 case -EHWPOISON:
1181 goto out;
1182 case -ENOENT:
1183 goto next_page;
1184 }
1185 BUG();
1186 } else if (PTR_ERR(page) == -EEXIST) {
1187 /*
1188 * Proper page table entry exists, but no corresponding
1189 * struct page.
1190 */
1191 goto next_page;
1192 } else if (IS_ERR(page)) {
1193 ret = PTR_ERR(page);
1194 goto out;
1195 }
1196 if (pages) {
1197 pages[i] = page;
1198 flush_anon_page(vma, page, start);
1199 flush_dcache_page(page);
1200 ctx.page_mask = 0;
1201 }
1202 next_page:
1203 if (vmas) {
1204 vmas[i] = vma;
1205 ctx.page_mask = 0;
1206 }
1207 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1208 if (page_increm > nr_pages)
1209 page_increm = nr_pages;
1210 i += page_increm;
1211 start += page_increm * PAGE_SIZE;
1212 nr_pages -= page_increm;
1213 } while (nr_pages);
1214 out:
1215 if (ctx.pgmap)
1216 put_dev_pagemap(ctx.pgmap);
1217 return i ? i : ret;
1218 }
1219
1220 static bool vma_permits_fault(struct vm_area_struct *vma,
1221 unsigned int fault_flags)
1222 {
1223 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1224 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1225 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1226
1227 if (!(vm_flags & vma->vm_flags))
1228 return false;
1229
1230 /*
1231 * The architecture might have a hardware protection
1232 * mechanism other than read/write that can deny access.
1233 *
1234 * gup always represents data access, not instruction
1235 * fetches, so execute=false here:
1236 */
1237 if (!arch_vma_access_permitted(vma, write, false, foreign))
1238 return false;
1239
1240 return true;
1241 }
1242
1243 /**
1244 * fixup_user_fault() - manually resolve a user page fault
1245 * @mm: mm_struct of target mm
1246 * @address: user address
1247 * @fault_flags:flags to pass down to handle_mm_fault()
1248 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1249 * does not allow retry. If NULL, the caller must guarantee
1250 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1251 *
1252 * This is meant to be called in the specific scenario where for locking reasons
1253 * we try to access user memory in atomic context (within a pagefault_disable()
1254 * section), this returns -EFAULT, and we want to resolve the user fault before
1255 * trying again.
1256 *
1257 * Typically this is meant to be used by the futex code.
1258 *
1259 * The main difference with get_user_pages() is that this function will
1260 * unconditionally call handle_mm_fault() which will in turn perform all the
1261 * necessary SW fixup of the dirty and young bits in the PTE, while
1262 * get_user_pages() only guarantees to update these in the struct page.
1263 *
1264 * This is important for some architectures where those bits also gate the
1265 * access permission to the page because they are maintained in software. On
1266 * such architectures, gup() will not be enough to make a subsequent access
1267 * succeed.
1268 *
1269 * This function will not return with an unlocked mmap_lock. So it has not the
1270 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1271 */
1272 int fixup_user_fault(struct mm_struct *mm,
1273 unsigned long address, unsigned int fault_flags,
1274 bool *unlocked)
1275 {
1276 struct vm_area_struct *vma;
1277 vm_fault_t ret;
1278
1279 address = untagged_addr(address);
1280
1281 if (unlocked)
1282 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1283
1284 retry:
1285 vma = find_extend_vma(mm, address);
1286 if (!vma || address < vma->vm_start)
1287 return -EFAULT;
1288
1289 if (!vma_permits_fault(vma, fault_flags))
1290 return -EFAULT;
1291
1292 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1293 fatal_signal_pending(current))
1294 return -EINTR;
1295
1296 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1297 if (ret & VM_FAULT_ERROR) {
1298 int err = vm_fault_to_errno(ret, 0);
1299
1300 if (err)
1301 return err;
1302 BUG();
1303 }
1304
1305 if (ret & VM_FAULT_RETRY) {
1306 mmap_read_lock(mm);
1307 *unlocked = true;
1308 fault_flags |= FAULT_FLAG_TRIED;
1309 goto retry;
1310 }
1311
1312 return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(fixup_user_fault);
1315
1316 /*
1317 * Please note that this function, unlike __get_user_pages will not
1318 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1319 */
1320 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1321 unsigned long start,
1322 unsigned long nr_pages,
1323 struct page **pages,
1324 struct vm_area_struct **vmas,
1325 int *locked,
1326 unsigned int flags)
1327 {
1328 long ret, pages_done;
1329 bool lock_dropped;
1330
1331 if (locked) {
1332 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1333 BUG_ON(vmas);
1334 /* check caller initialized locked */
1335 BUG_ON(*locked != 1);
1336 }
1337
1338 if (flags & FOLL_PIN)
1339 mm_set_has_pinned_flag(&mm->flags);
1340
1341 /*
1342 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1343 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1344 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1345 * for FOLL_GET, not for the newer FOLL_PIN.
1346 *
1347 * FOLL_PIN always expects pages to be non-null, but no need to assert
1348 * that here, as any failures will be obvious enough.
1349 */
1350 if (pages && !(flags & FOLL_PIN))
1351 flags |= FOLL_GET;
1352
1353 pages_done = 0;
1354 lock_dropped = false;
1355 for (;;) {
1356 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1357 vmas, locked);
1358 if (!locked)
1359 /* VM_FAULT_RETRY couldn't trigger, bypass */
1360 return ret;
1361
1362 /* VM_FAULT_RETRY cannot return errors */
1363 if (!*locked) {
1364 BUG_ON(ret < 0);
1365 BUG_ON(ret >= nr_pages);
1366 }
1367
1368 if (ret > 0) {
1369 nr_pages -= ret;
1370 pages_done += ret;
1371 if (!nr_pages)
1372 break;
1373 }
1374 if (*locked) {
1375 /*
1376 * VM_FAULT_RETRY didn't trigger or it was a
1377 * FOLL_NOWAIT.
1378 */
1379 if (!pages_done)
1380 pages_done = ret;
1381 break;
1382 }
1383 /*
1384 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1385 * For the prefault case (!pages) we only update counts.
1386 */
1387 if (likely(pages))
1388 pages += ret;
1389 start += ret << PAGE_SHIFT;
1390 lock_dropped = true;
1391
1392 retry:
1393 /*
1394 * Repeat on the address that fired VM_FAULT_RETRY
1395 * with both FAULT_FLAG_ALLOW_RETRY and
1396 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1397 * by fatal signals, so we need to check it before we
1398 * start trying again otherwise it can loop forever.
1399 */
1400
1401 if (fatal_signal_pending(current)) {
1402 if (!pages_done)
1403 pages_done = -EINTR;
1404 break;
1405 }
1406
1407 ret = mmap_read_lock_killable(mm);
1408 if (ret) {
1409 BUG_ON(ret > 0);
1410 if (!pages_done)
1411 pages_done = ret;
1412 break;
1413 }
1414
1415 *locked = 1;
1416 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1417 pages, NULL, locked);
1418 if (!*locked) {
1419 /* Continue to retry until we succeeded */
1420 BUG_ON(ret != 0);
1421 goto retry;
1422 }
1423 if (ret != 1) {
1424 BUG_ON(ret > 1);
1425 if (!pages_done)
1426 pages_done = ret;
1427 break;
1428 }
1429 nr_pages--;
1430 pages_done++;
1431 if (!nr_pages)
1432 break;
1433 if (likely(pages))
1434 pages++;
1435 start += PAGE_SIZE;
1436 }
1437 if (lock_dropped && *locked) {
1438 /*
1439 * We must let the caller know we temporarily dropped the lock
1440 * and so the critical section protected by it was lost.
1441 */
1442 mmap_read_unlock(mm);
1443 *locked = 0;
1444 }
1445 return pages_done;
1446 }
1447
1448 /**
1449 * populate_vma_page_range() - populate a range of pages in the vma.
1450 * @vma: target vma
1451 * @start: start address
1452 * @end: end address
1453 * @locked: whether the mmap_lock is still held
1454 *
1455 * This takes care of mlocking the pages too if VM_LOCKED is set.
1456 *
1457 * Return either number of pages pinned in the vma, or a negative error
1458 * code on error.
1459 *
1460 * vma->vm_mm->mmap_lock must be held.
1461 *
1462 * If @locked is NULL, it may be held for read or write and will
1463 * be unperturbed.
1464 *
1465 * If @locked is non-NULL, it must held for read only and may be
1466 * released. If it's released, *@locked will be set to 0.
1467 */
1468 long populate_vma_page_range(struct vm_area_struct *vma,
1469 unsigned long start, unsigned long end, int *locked)
1470 {
1471 struct mm_struct *mm = vma->vm_mm;
1472 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1473 int gup_flags;
1474
1475 VM_BUG_ON(!PAGE_ALIGNED(start));
1476 VM_BUG_ON(!PAGE_ALIGNED(end));
1477 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1478 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1479 mmap_assert_locked(mm);
1480
1481 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1482 if (vma->vm_flags & VM_LOCKONFAULT)
1483 gup_flags &= ~FOLL_POPULATE;
1484 /*
1485 * We want to touch writable mappings with a write fault in order
1486 * to break COW, except for shared mappings because these don't COW
1487 * and we would not want to dirty them for nothing.
1488 */
1489 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1490 gup_flags |= FOLL_WRITE;
1491
1492 /*
1493 * We want mlock to succeed for regions that have any permissions
1494 * other than PROT_NONE.
1495 */
1496 if (vma_is_accessible(vma))
1497 gup_flags |= FOLL_FORCE;
1498
1499 /*
1500 * We made sure addr is within a VMA, so the following will
1501 * not result in a stack expansion that recurses back here.
1502 */
1503 return __get_user_pages(mm, start, nr_pages, gup_flags,
1504 NULL, NULL, locked);
1505 }
1506
1507 /*
1508 * faultin_vma_page_range() - populate (prefault) page tables inside the
1509 * given VMA range readable/writable
1510 *
1511 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1512 *
1513 * @vma: target vma
1514 * @start: start address
1515 * @end: end address
1516 * @write: whether to prefault readable or writable
1517 * @locked: whether the mmap_lock is still held
1518 *
1519 * Returns either number of processed pages in the vma, or a negative error
1520 * code on error (see __get_user_pages()).
1521 *
1522 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1523 * covered by the VMA.
1524 *
1525 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1526 *
1527 * If @locked is non-NULL, it must held for read only and may be released. If
1528 * it's released, *@locked will be set to 0.
1529 */
1530 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1531 unsigned long end, bool write, int *locked)
1532 {
1533 struct mm_struct *mm = vma->vm_mm;
1534 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1535 int gup_flags;
1536
1537 VM_BUG_ON(!PAGE_ALIGNED(start));
1538 VM_BUG_ON(!PAGE_ALIGNED(end));
1539 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1540 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1541 mmap_assert_locked(mm);
1542
1543 /*
1544 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1545 * the page dirty with FOLL_WRITE -- which doesn't make a
1546 * difference with !FOLL_FORCE, because the page is writable
1547 * in the page table.
1548 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1549 * a poisoned page.
1550 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1551 * !FOLL_FORCE: Require proper access permissions.
1552 */
1553 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1554 if (write)
1555 gup_flags |= FOLL_WRITE;
1556
1557 /*
1558 * We want to report -EINVAL instead of -EFAULT for any permission
1559 * problems or incompatible mappings.
1560 */
1561 if (check_vma_flags(vma, gup_flags))
1562 return -EINVAL;
1563
1564 return __get_user_pages(mm, start, nr_pages, gup_flags,
1565 NULL, NULL, locked);
1566 }
1567
1568 /*
1569 * __mm_populate - populate and/or mlock pages within a range of address space.
1570 *
1571 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1572 * flags. VMAs must be already marked with the desired vm_flags, and
1573 * mmap_lock must not be held.
1574 */
1575 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1576 {
1577 struct mm_struct *mm = current->mm;
1578 unsigned long end, nstart, nend;
1579 struct vm_area_struct *vma = NULL;
1580 int locked = 0;
1581 long ret = 0;
1582
1583 end = start + len;
1584
1585 for (nstart = start; nstart < end; nstart = nend) {
1586 /*
1587 * We want to fault in pages for [nstart; end) address range.
1588 * Find first corresponding VMA.
1589 */
1590 if (!locked) {
1591 locked = 1;
1592 mmap_read_lock(mm);
1593 vma = find_vma(mm, nstart);
1594 } else if (nstart >= vma->vm_end)
1595 vma = vma->vm_next;
1596 if (!vma || vma->vm_start >= end)
1597 break;
1598 /*
1599 * Set [nstart; nend) to intersection of desired address
1600 * range with the first VMA. Also, skip undesirable VMA types.
1601 */
1602 nend = min(end, vma->vm_end);
1603 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1604 continue;
1605 if (nstart < vma->vm_start)
1606 nstart = vma->vm_start;
1607 /*
1608 * Now fault in a range of pages. populate_vma_page_range()
1609 * double checks the vma flags, so that it won't mlock pages
1610 * if the vma was already munlocked.
1611 */
1612 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1613 if (ret < 0) {
1614 if (ignore_errors) {
1615 ret = 0;
1616 continue; /* continue at next VMA */
1617 }
1618 break;
1619 }
1620 nend = nstart + ret * PAGE_SIZE;
1621 ret = 0;
1622 }
1623 if (locked)
1624 mmap_read_unlock(mm);
1625 return ret; /* 0 or negative error code */
1626 }
1627 #else /* CONFIG_MMU */
1628 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1629 unsigned long nr_pages, struct page **pages,
1630 struct vm_area_struct **vmas, int *locked,
1631 unsigned int foll_flags)
1632 {
1633 struct vm_area_struct *vma;
1634 unsigned long vm_flags;
1635 long i;
1636
1637 /* calculate required read or write permissions.
1638 * If FOLL_FORCE is set, we only require the "MAY" flags.
1639 */
1640 vm_flags = (foll_flags & FOLL_WRITE) ?
1641 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1642 vm_flags &= (foll_flags & FOLL_FORCE) ?
1643 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1644
1645 for (i = 0; i < nr_pages; i++) {
1646 vma = find_vma(mm, start);
1647 if (!vma)
1648 goto finish_or_fault;
1649
1650 /* protect what we can, including chardevs */
1651 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1652 !(vm_flags & vma->vm_flags))
1653 goto finish_or_fault;
1654
1655 if (pages) {
1656 pages[i] = virt_to_page(start);
1657 if (pages[i])
1658 get_page(pages[i]);
1659 }
1660 if (vmas)
1661 vmas[i] = vma;
1662 start = (start + PAGE_SIZE) & PAGE_MASK;
1663 }
1664
1665 return i;
1666
1667 finish_or_fault:
1668 return i ? : -EFAULT;
1669 }
1670 #endif /* !CONFIG_MMU */
1671
1672 /**
1673 * get_dump_page() - pin user page in memory while writing it to core dump
1674 * @addr: user address
1675 *
1676 * Returns struct page pointer of user page pinned for dump,
1677 * to be freed afterwards by put_page().
1678 *
1679 * Returns NULL on any kind of failure - a hole must then be inserted into
1680 * the corefile, to preserve alignment with its headers; and also returns
1681 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1682 * allowing a hole to be left in the corefile to save disk space.
1683 *
1684 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1685 */
1686 #ifdef CONFIG_ELF_CORE
1687 struct page *get_dump_page(unsigned long addr)
1688 {
1689 struct mm_struct *mm = current->mm;
1690 struct page *page;
1691 int locked = 1;
1692 int ret;
1693
1694 if (mmap_read_lock_killable(mm))
1695 return NULL;
1696 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1697 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1698 if (locked)
1699 mmap_read_unlock(mm);
1700 return (ret == 1) ? page : NULL;
1701 }
1702 #endif /* CONFIG_ELF_CORE */
1703
1704 #ifdef CONFIG_MIGRATION
1705 /*
1706 * Check whether all pages are pinnable, if so return number of pages. If some
1707 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1708 * pages were migrated, or if some pages were not successfully isolated.
1709 * Return negative error if migration fails.
1710 */
1711 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1712 struct page **pages,
1713 unsigned int gup_flags)
1714 {
1715 unsigned long i;
1716 unsigned long isolation_error_count = 0;
1717 bool drain_allow = true;
1718 LIST_HEAD(movable_page_list);
1719 long ret = 0;
1720 struct page *prev_head = NULL;
1721 struct page *head;
1722 struct migration_target_control mtc = {
1723 .nid = NUMA_NO_NODE,
1724 .gfp_mask = GFP_USER | __GFP_NOWARN,
1725 };
1726
1727 for (i = 0; i < nr_pages; i++) {
1728 head = compound_head(pages[i]);
1729 if (head == prev_head)
1730 continue;
1731 prev_head = head;
1732 /*
1733 * If we get a movable page, since we are going to be pinning
1734 * these entries, try to move them out if possible.
1735 */
1736 if (!is_pinnable_page(head)) {
1737 if (PageHuge(head)) {
1738 if (!isolate_huge_page(head, &movable_page_list))
1739 isolation_error_count++;
1740 } else {
1741 if (!PageLRU(head) && drain_allow) {
1742 lru_add_drain_all();
1743 drain_allow = false;
1744 }
1745
1746 if (isolate_lru_page(head)) {
1747 isolation_error_count++;
1748 continue;
1749 }
1750 list_add_tail(&head->lru, &movable_page_list);
1751 mod_node_page_state(page_pgdat(head),
1752 NR_ISOLATED_ANON +
1753 page_is_file_lru(head),
1754 thp_nr_pages(head));
1755 }
1756 }
1757 }
1758
1759 /*
1760 * If list is empty, and no isolation errors, means that all pages are
1761 * in the correct zone.
1762 */
1763 if (list_empty(&movable_page_list) && !isolation_error_count)
1764 return nr_pages;
1765
1766 if (gup_flags & FOLL_PIN) {
1767 unpin_user_pages(pages, nr_pages);
1768 } else {
1769 for (i = 0; i < nr_pages; i++)
1770 put_page(pages[i]);
1771 }
1772 if (!list_empty(&movable_page_list)) {
1773 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1774 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1775 MR_LONGTERM_PIN, NULL);
1776 if (ret && !list_empty(&movable_page_list))
1777 putback_movable_pages(&movable_page_list);
1778 }
1779
1780 return ret > 0 ? -ENOMEM : ret;
1781 }
1782 #else
1783 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1784 struct page **pages,
1785 unsigned int gup_flags)
1786 {
1787 return nr_pages;
1788 }
1789 #endif /* CONFIG_MIGRATION */
1790
1791 /*
1792 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1793 * allows us to process the FOLL_LONGTERM flag.
1794 */
1795 static long __gup_longterm_locked(struct mm_struct *mm,
1796 unsigned long start,
1797 unsigned long nr_pages,
1798 struct page **pages,
1799 struct vm_area_struct **vmas,
1800 unsigned int gup_flags)
1801 {
1802 unsigned int flags;
1803 long rc;
1804
1805 if (!(gup_flags & FOLL_LONGTERM))
1806 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1807 NULL, gup_flags);
1808 flags = memalloc_pin_save();
1809 do {
1810 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1811 NULL, gup_flags);
1812 if (rc <= 0)
1813 break;
1814 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1815 } while (!rc);
1816 memalloc_pin_restore(flags);
1817
1818 return rc;
1819 }
1820
1821 static bool is_valid_gup_flags(unsigned int gup_flags)
1822 {
1823 /*
1824 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1825 * never directly by the caller, so enforce that with an assertion:
1826 */
1827 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1828 return false;
1829 /*
1830 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1831 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1832 * FOLL_PIN.
1833 */
1834 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1835 return false;
1836
1837 return true;
1838 }
1839
1840 #ifdef CONFIG_MMU
1841 static long __get_user_pages_remote(struct mm_struct *mm,
1842 unsigned long start, unsigned long nr_pages,
1843 unsigned int gup_flags, struct page **pages,
1844 struct vm_area_struct **vmas, int *locked)
1845 {
1846 /*
1847 * Parts of FOLL_LONGTERM behavior are incompatible with
1848 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1849 * vmas. However, this only comes up if locked is set, and there are
1850 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1851 * allow what we can.
1852 */
1853 if (gup_flags & FOLL_LONGTERM) {
1854 if (WARN_ON_ONCE(locked))
1855 return -EINVAL;
1856 /*
1857 * This will check the vmas (even if our vmas arg is NULL)
1858 * and return -ENOTSUPP if DAX isn't allowed in this case:
1859 */
1860 return __gup_longterm_locked(mm, start, nr_pages, pages,
1861 vmas, gup_flags | FOLL_TOUCH |
1862 FOLL_REMOTE);
1863 }
1864
1865 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1866 locked,
1867 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1868 }
1869
1870 /**
1871 * get_user_pages_remote() - pin user pages in memory
1872 * @mm: mm_struct of target mm
1873 * @start: starting user address
1874 * @nr_pages: number of pages from start to pin
1875 * @gup_flags: flags modifying lookup behaviour
1876 * @pages: array that receives pointers to the pages pinned.
1877 * Should be at least nr_pages long. Or NULL, if caller
1878 * only intends to ensure the pages are faulted in.
1879 * @vmas: array of pointers to vmas corresponding to each page.
1880 * Or NULL if the caller does not require them.
1881 * @locked: pointer to lock flag indicating whether lock is held and
1882 * subsequently whether VM_FAULT_RETRY functionality can be
1883 * utilised. Lock must initially be held.
1884 *
1885 * Returns either number of pages pinned (which may be less than the
1886 * number requested), or an error. Details about the return value:
1887 *
1888 * -- If nr_pages is 0, returns 0.
1889 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1890 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1891 * pages pinned. Again, this may be less than nr_pages.
1892 *
1893 * The caller is responsible for releasing returned @pages, via put_page().
1894 *
1895 * @vmas are valid only as long as mmap_lock is held.
1896 *
1897 * Must be called with mmap_lock held for read or write.
1898 *
1899 * get_user_pages_remote walks a process's page tables and takes a reference
1900 * to each struct page that each user address corresponds to at a given
1901 * instant. That is, it takes the page that would be accessed if a user
1902 * thread accesses the given user virtual address at that instant.
1903 *
1904 * This does not guarantee that the page exists in the user mappings when
1905 * get_user_pages_remote returns, and there may even be a completely different
1906 * page there in some cases (eg. if mmapped pagecache has been invalidated
1907 * and subsequently re faulted). However it does guarantee that the page
1908 * won't be freed completely. And mostly callers simply care that the page
1909 * contains data that was valid *at some point in time*. Typically, an IO
1910 * or similar operation cannot guarantee anything stronger anyway because
1911 * locks can't be held over the syscall boundary.
1912 *
1913 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1914 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1915 * be called after the page is finished with, and before put_page is called.
1916 *
1917 * get_user_pages_remote is typically used for fewer-copy IO operations,
1918 * to get a handle on the memory by some means other than accesses
1919 * via the user virtual addresses. The pages may be submitted for
1920 * DMA to devices or accessed via their kernel linear mapping (via the
1921 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1922 *
1923 * See also get_user_pages_fast, for performance critical applications.
1924 *
1925 * get_user_pages_remote should be phased out in favor of
1926 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1927 * should use get_user_pages_remote because it cannot pass
1928 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1929 */
1930 long get_user_pages_remote(struct mm_struct *mm,
1931 unsigned long start, unsigned long nr_pages,
1932 unsigned int gup_flags, struct page **pages,
1933 struct vm_area_struct **vmas, int *locked)
1934 {
1935 if (!is_valid_gup_flags(gup_flags))
1936 return -EINVAL;
1937
1938 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1939 pages, vmas, locked);
1940 }
1941 EXPORT_SYMBOL(get_user_pages_remote);
1942
1943 #else /* CONFIG_MMU */
1944 long get_user_pages_remote(struct mm_struct *mm,
1945 unsigned long start, unsigned long nr_pages,
1946 unsigned int gup_flags, struct page **pages,
1947 struct vm_area_struct **vmas, int *locked)
1948 {
1949 return 0;
1950 }
1951
1952 static long __get_user_pages_remote(struct mm_struct *mm,
1953 unsigned long start, unsigned long nr_pages,
1954 unsigned int gup_flags, struct page **pages,
1955 struct vm_area_struct **vmas, int *locked)
1956 {
1957 return 0;
1958 }
1959 #endif /* !CONFIG_MMU */
1960
1961 /**
1962 * get_user_pages() - pin user pages in memory
1963 * @start: starting user address
1964 * @nr_pages: number of pages from start to pin
1965 * @gup_flags: flags modifying lookup behaviour
1966 * @pages: array that receives pointers to the pages pinned.
1967 * Should be at least nr_pages long. Or NULL, if caller
1968 * only intends to ensure the pages are faulted in.
1969 * @vmas: array of pointers to vmas corresponding to each page.
1970 * Or NULL if the caller does not require them.
1971 *
1972 * This is the same as get_user_pages_remote(), just with a less-flexible
1973 * calling convention where we assume that the mm being operated on belongs to
1974 * the current task, and doesn't allow passing of a locked parameter. We also
1975 * obviously don't pass FOLL_REMOTE in here.
1976 */
1977 long get_user_pages(unsigned long start, unsigned long nr_pages,
1978 unsigned int gup_flags, struct page **pages,
1979 struct vm_area_struct **vmas)
1980 {
1981 if (!is_valid_gup_flags(gup_flags))
1982 return -EINVAL;
1983
1984 return __gup_longterm_locked(current->mm, start, nr_pages,
1985 pages, vmas, gup_flags | FOLL_TOUCH);
1986 }
1987 EXPORT_SYMBOL(get_user_pages);
1988
1989 /**
1990 * get_user_pages_locked() - variant of get_user_pages()
1991 *
1992 * @start: starting user address
1993 * @nr_pages: number of pages from start to pin
1994 * @gup_flags: flags modifying lookup behaviour
1995 * @pages: array that receives pointers to the pages pinned.
1996 * Should be at least nr_pages long. Or NULL, if caller
1997 * only intends to ensure the pages are faulted in.
1998 * @locked: pointer to lock flag indicating whether lock is held and
1999 * subsequently whether VM_FAULT_RETRY functionality can be
2000 * utilised. Lock must initially be held.
2001 *
2002 * It is suitable to replace the form:
2003 *
2004 * mmap_read_lock(mm);
2005 * do_something()
2006 * get_user_pages(mm, ..., pages, NULL);
2007 * mmap_read_unlock(mm);
2008 *
2009 * to:
2010 *
2011 * int locked = 1;
2012 * mmap_read_lock(mm);
2013 * do_something()
2014 * get_user_pages_locked(mm, ..., pages, &locked);
2015 * if (locked)
2016 * mmap_read_unlock(mm);
2017 *
2018 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2019 * paths better by using either get_user_pages_locked() or
2020 * get_user_pages_unlocked().
2021 *
2022 */
2023 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2024 unsigned int gup_flags, struct page **pages,
2025 int *locked)
2026 {
2027 /*
2028 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2029 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2030 * vmas. As there are no users of this flag in this call we simply
2031 * disallow this option for now.
2032 */
2033 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2034 return -EINVAL;
2035 /*
2036 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2037 * never directly by the caller, so enforce that:
2038 */
2039 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2040 return -EINVAL;
2041
2042 return __get_user_pages_locked(current->mm, start, nr_pages,
2043 pages, NULL, locked,
2044 gup_flags | FOLL_TOUCH);
2045 }
2046 EXPORT_SYMBOL(get_user_pages_locked);
2047
2048 /*
2049 * get_user_pages_unlocked() is suitable to replace the form:
2050 *
2051 * mmap_read_lock(mm);
2052 * get_user_pages(mm, ..., pages, NULL);
2053 * mmap_read_unlock(mm);
2054 *
2055 * with:
2056 *
2057 * get_user_pages_unlocked(mm, ..., pages);
2058 *
2059 * It is functionally equivalent to get_user_pages_fast so
2060 * get_user_pages_fast should be used instead if specific gup_flags
2061 * (e.g. FOLL_FORCE) are not required.
2062 */
2063 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2064 struct page **pages, unsigned int gup_flags)
2065 {
2066 struct mm_struct *mm = current->mm;
2067 int locked = 1;
2068 long ret;
2069
2070 /*
2071 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2072 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2073 * vmas. As there are no users of this flag in this call we simply
2074 * disallow this option for now.
2075 */
2076 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2077 return -EINVAL;
2078
2079 mmap_read_lock(mm);
2080 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2081 &locked, gup_flags | FOLL_TOUCH);
2082 if (locked)
2083 mmap_read_unlock(mm);
2084 return ret;
2085 }
2086 EXPORT_SYMBOL(get_user_pages_unlocked);
2087
2088 /*
2089 * Fast GUP
2090 *
2091 * get_user_pages_fast attempts to pin user pages by walking the page
2092 * tables directly and avoids taking locks. Thus the walker needs to be
2093 * protected from page table pages being freed from under it, and should
2094 * block any THP splits.
2095 *
2096 * One way to achieve this is to have the walker disable interrupts, and
2097 * rely on IPIs from the TLB flushing code blocking before the page table
2098 * pages are freed. This is unsuitable for architectures that do not need
2099 * to broadcast an IPI when invalidating TLBs.
2100 *
2101 * Another way to achieve this is to batch up page table containing pages
2102 * belonging to more than one mm_user, then rcu_sched a callback to free those
2103 * pages. Disabling interrupts will allow the fast_gup walker to both block
2104 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2105 * (which is a relatively rare event). The code below adopts this strategy.
2106 *
2107 * Before activating this code, please be aware that the following assumptions
2108 * are currently made:
2109 *
2110 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2111 * free pages containing page tables or TLB flushing requires IPI broadcast.
2112 *
2113 * *) ptes can be read atomically by the architecture.
2114 *
2115 * *) access_ok is sufficient to validate userspace address ranges.
2116 *
2117 * The last two assumptions can be relaxed by the addition of helper functions.
2118 *
2119 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2120 */
2121 #ifdef CONFIG_HAVE_FAST_GUP
2122
2123 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2124 unsigned int flags,
2125 struct page **pages)
2126 {
2127 while ((*nr) - nr_start) {
2128 struct page *page = pages[--(*nr)];
2129
2130 ClearPageReferenced(page);
2131 if (flags & FOLL_PIN)
2132 unpin_user_page(page);
2133 else
2134 put_page(page);
2135 }
2136 }
2137
2138 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2139 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2140 unsigned int flags, struct page **pages, int *nr)
2141 {
2142 struct dev_pagemap *pgmap = NULL;
2143 int nr_start = *nr, ret = 0;
2144 pte_t *ptep, *ptem;
2145
2146 ptem = ptep = pte_offset_map(&pmd, addr);
2147 do {
2148 pte_t pte = ptep_get_lockless(ptep);
2149 struct page *head, *page;
2150
2151 /*
2152 * Similar to the PMD case below, NUMA hinting must take slow
2153 * path using the pte_protnone check.
2154 */
2155 if (pte_protnone(pte))
2156 goto pte_unmap;
2157
2158 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2159 goto pte_unmap;
2160
2161 if (pte_devmap(pte)) {
2162 if (unlikely(flags & FOLL_LONGTERM))
2163 goto pte_unmap;
2164
2165 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2166 if (unlikely(!pgmap)) {
2167 undo_dev_pagemap(nr, nr_start, flags, pages);
2168 goto pte_unmap;
2169 }
2170 } else if (pte_special(pte))
2171 goto pte_unmap;
2172
2173 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2174 page = pte_page(pte);
2175
2176 head = try_grab_compound_head(page, 1, flags);
2177 if (!head)
2178 goto pte_unmap;
2179
2180 if (unlikely(page_is_secretmem(page))) {
2181 put_compound_head(head, 1, flags);
2182 goto pte_unmap;
2183 }
2184
2185 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2186 put_compound_head(head, 1, flags);
2187 goto pte_unmap;
2188 }
2189
2190 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2191
2192 /*
2193 * We need to make the page accessible if and only if we are
2194 * going to access its content (the FOLL_PIN case). Please
2195 * see Documentation/core-api/pin_user_pages.rst for
2196 * details.
2197 */
2198 if (flags & FOLL_PIN) {
2199 ret = arch_make_page_accessible(page);
2200 if (ret) {
2201 unpin_user_page(page);
2202 goto pte_unmap;
2203 }
2204 }
2205 SetPageReferenced(page);
2206 pages[*nr] = page;
2207 (*nr)++;
2208
2209 } while (ptep++, addr += PAGE_SIZE, addr != end);
2210
2211 ret = 1;
2212
2213 pte_unmap:
2214 if (pgmap)
2215 put_dev_pagemap(pgmap);
2216 pte_unmap(ptem);
2217 return ret;
2218 }
2219 #else
2220
2221 /*
2222 * If we can't determine whether or not a pte is special, then fail immediately
2223 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2224 * to be special.
2225 *
2226 * For a futex to be placed on a THP tail page, get_futex_key requires a
2227 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2228 * useful to have gup_huge_pmd even if we can't operate on ptes.
2229 */
2230 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2231 unsigned int flags, struct page **pages, int *nr)
2232 {
2233 return 0;
2234 }
2235 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2236
2237 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2238 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2239 unsigned long end, unsigned int flags,
2240 struct page **pages, int *nr)
2241 {
2242 int nr_start = *nr;
2243 struct dev_pagemap *pgmap = NULL;
2244 int ret = 1;
2245
2246 do {
2247 struct page *page = pfn_to_page(pfn);
2248
2249 pgmap = get_dev_pagemap(pfn, pgmap);
2250 if (unlikely(!pgmap)) {
2251 undo_dev_pagemap(nr, nr_start, flags, pages);
2252 ret = 0;
2253 break;
2254 }
2255 SetPageReferenced(page);
2256 pages[*nr] = page;
2257 if (unlikely(!try_grab_page(page, flags))) {
2258 undo_dev_pagemap(nr, nr_start, flags, pages);
2259 ret = 0;
2260 break;
2261 }
2262 (*nr)++;
2263 pfn++;
2264 } while (addr += PAGE_SIZE, addr != end);
2265
2266 put_dev_pagemap(pgmap);
2267 return ret;
2268 }
2269
2270 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2271 unsigned long end, unsigned int flags,
2272 struct page **pages, int *nr)
2273 {
2274 unsigned long fault_pfn;
2275 int nr_start = *nr;
2276
2277 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2278 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2279 return 0;
2280
2281 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2282 undo_dev_pagemap(nr, nr_start, flags, pages);
2283 return 0;
2284 }
2285 return 1;
2286 }
2287
2288 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2289 unsigned long end, unsigned int flags,
2290 struct page **pages, int *nr)
2291 {
2292 unsigned long fault_pfn;
2293 int nr_start = *nr;
2294
2295 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2296 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2297 return 0;
2298
2299 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2300 undo_dev_pagemap(nr, nr_start, flags, pages);
2301 return 0;
2302 }
2303 return 1;
2304 }
2305 #else
2306 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2307 unsigned long end, unsigned int flags,
2308 struct page **pages, int *nr)
2309 {
2310 BUILD_BUG();
2311 return 0;
2312 }
2313
2314 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2315 unsigned long end, unsigned int flags,
2316 struct page **pages, int *nr)
2317 {
2318 BUILD_BUG();
2319 return 0;
2320 }
2321 #endif
2322
2323 static int record_subpages(struct page *page, unsigned long addr,
2324 unsigned long end, struct page **pages)
2325 {
2326 int nr;
2327
2328 for (nr = 0; addr != end; addr += PAGE_SIZE)
2329 pages[nr++] = page++;
2330
2331 return nr;
2332 }
2333
2334 #ifdef CONFIG_ARCH_HAS_HUGEPD
2335 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2336 unsigned long sz)
2337 {
2338 unsigned long __boundary = (addr + sz) & ~(sz-1);
2339 return (__boundary - 1 < end - 1) ? __boundary : end;
2340 }
2341
2342 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2343 unsigned long end, unsigned int flags,
2344 struct page **pages, int *nr)
2345 {
2346 unsigned long pte_end;
2347 struct page *head, *page;
2348 pte_t pte;
2349 int refs;
2350
2351 pte_end = (addr + sz) & ~(sz-1);
2352 if (pte_end < end)
2353 end = pte_end;
2354
2355 pte = huge_ptep_get(ptep);
2356
2357 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2358 return 0;
2359
2360 /* hugepages are never "special" */
2361 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2362
2363 head = pte_page(pte);
2364 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2365 refs = record_subpages(page, addr, end, pages + *nr);
2366
2367 head = try_grab_compound_head(head, refs, flags);
2368 if (!head)
2369 return 0;
2370
2371 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2372 put_compound_head(head, refs, flags);
2373 return 0;
2374 }
2375
2376 *nr += refs;
2377 SetPageReferenced(head);
2378 return 1;
2379 }
2380
2381 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2382 unsigned int pdshift, unsigned long end, unsigned int flags,
2383 struct page **pages, int *nr)
2384 {
2385 pte_t *ptep;
2386 unsigned long sz = 1UL << hugepd_shift(hugepd);
2387 unsigned long next;
2388
2389 ptep = hugepte_offset(hugepd, addr, pdshift);
2390 do {
2391 next = hugepte_addr_end(addr, end, sz);
2392 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2393 return 0;
2394 } while (ptep++, addr = next, addr != end);
2395
2396 return 1;
2397 }
2398 #else
2399 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2400 unsigned int pdshift, unsigned long end, unsigned int flags,
2401 struct page **pages, int *nr)
2402 {
2403 return 0;
2404 }
2405 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2406
2407 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2408 unsigned long end, unsigned int flags,
2409 struct page **pages, int *nr)
2410 {
2411 struct page *head, *page;
2412 int refs;
2413
2414 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2415 return 0;
2416
2417 if (pmd_devmap(orig)) {
2418 if (unlikely(flags & FOLL_LONGTERM))
2419 return 0;
2420 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2421 pages, nr);
2422 }
2423
2424 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2425 refs = record_subpages(page, addr, end, pages + *nr);
2426
2427 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2428 if (!head)
2429 return 0;
2430
2431 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2432 put_compound_head(head, refs, flags);
2433 return 0;
2434 }
2435
2436 *nr += refs;
2437 SetPageReferenced(head);
2438 return 1;
2439 }
2440
2441 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2442 unsigned long end, unsigned int flags,
2443 struct page **pages, int *nr)
2444 {
2445 struct page *head, *page;
2446 int refs;
2447
2448 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2449 return 0;
2450
2451 if (pud_devmap(orig)) {
2452 if (unlikely(flags & FOLL_LONGTERM))
2453 return 0;
2454 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2455 pages, nr);
2456 }
2457
2458 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2459 refs = record_subpages(page, addr, end, pages + *nr);
2460
2461 head = try_grab_compound_head(pud_page(orig), refs, flags);
2462 if (!head)
2463 return 0;
2464
2465 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2466 put_compound_head(head, refs, flags);
2467 return 0;
2468 }
2469
2470 *nr += refs;
2471 SetPageReferenced(head);
2472 return 1;
2473 }
2474
2475 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2476 unsigned long end, unsigned int flags,
2477 struct page **pages, int *nr)
2478 {
2479 int refs;
2480 struct page *head, *page;
2481
2482 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2483 return 0;
2484
2485 BUILD_BUG_ON(pgd_devmap(orig));
2486
2487 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2488 refs = record_subpages(page, addr, end, pages + *nr);
2489
2490 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2491 if (!head)
2492 return 0;
2493
2494 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2495 put_compound_head(head, refs, flags);
2496 return 0;
2497 }
2498
2499 *nr += refs;
2500 SetPageReferenced(head);
2501 return 1;
2502 }
2503
2504 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2505 unsigned int flags, struct page **pages, int *nr)
2506 {
2507 unsigned long next;
2508 pmd_t *pmdp;
2509
2510 pmdp = pmd_offset_lockless(pudp, pud, addr);
2511 do {
2512 pmd_t pmd = READ_ONCE(*pmdp);
2513
2514 next = pmd_addr_end(addr, end);
2515 if (!pmd_present(pmd))
2516 return 0;
2517
2518 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2519 pmd_devmap(pmd))) {
2520 /*
2521 * NUMA hinting faults need to be handled in the GUP
2522 * slowpath for accounting purposes and so that they
2523 * can be serialised against THP migration.
2524 */
2525 if (pmd_protnone(pmd))
2526 return 0;
2527
2528 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2529 pages, nr))
2530 return 0;
2531
2532 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2533 /*
2534 * architecture have different format for hugetlbfs
2535 * pmd format and THP pmd format
2536 */
2537 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2538 PMD_SHIFT, next, flags, pages, nr))
2539 return 0;
2540 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2541 return 0;
2542 } while (pmdp++, addr = next, addr != end);
2543
2544 return 1;
2545 }
2546
2547 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2548 unsigned int flags, struct page **pages, int *nr)
2549 {
2550 unsigned long next;
2551 pud_t *pudp;
2552
2553 pudp = pud_offset_lockless(p4dp, p4d, addr);
2554 do {
2555 pud_t pud = READ_ONCE(*pudp);
2556
2557 next = pud_addr_end(addr, end);
2558 if (unlikely(!pud_present(pud)))
2559 return 0;
2560 if (unlikely(pud_huge(pud))) {
2561 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2562 pages, nr))
2563 return 0;
2564 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2565 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2566 PUD_SHIFT, next, flags, pages, nr))
2567 return 0;
2568 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2569 return 0;
2570 } while (pudp++, addr = next, addr != end);
2571
2572 return 1;
2573 }
2574
2575 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2576 unsigned int flags, struct page **pages, int *nr)
2577 {
2578 unsigned long next;
2579 p4d_t *p4dp;
2580
2581 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2582 do {
2583 p4d_t p4d = READ_ONCE(*p4dp);
2584
2585 next = p4d_addr_end(addr, end);
2586 if (p4d_none(p4d))
2587 return 0;
2588 BUILD_BUG_ON(p4d_huge(p4d));
2589 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2590 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2591 P4D_SHIFT, next, flags, pages, nr))
2592 return 0;
2593 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2594 return 0;
2595 } while (p4dp++, addr = next, addr != end);
2596
2597 return 1;
2598 }
2599
2600 static void gup_pgd_range(unsigned long addr, unsigned long end,
2601 unsigned int flags, struct page **pages, int *nr)
2602 {
2603 unsigned long next;
2604 pgd_t *pgdp;
2605
2606 pgdp = pgd_offset(current->mm, addr);
2607 do {
2608 pgd_t pgd = READ_ONCE(*pgdp);
2609
2610 next = pgd_addr_end(addr, end);
2611 if (pgd_none(pgd))
2612 return;
2613 if (unlikely(pgd_huge(pgd))) {
2614 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2615 pages, nr))
2616 return;
2617 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2618 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2619 PGDIR_SHIFT, next, flags, pages, nr))
2620 return;
2621 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2622 return;
2623 } while (pgdp++, addr = next, addr != end);
2624 }
2625 #else
2626 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2627 unsigned int flags, struct page **pages, int *nr)
2628 {
2629 }
2630 #endif /* CONFIG_HAVE_FAST_GUP */
2631
2632 #ifndef gup_fast_permitted
2633 /*
2634 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2635 * we need to fall back to the slow version:
2636 */
2637 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2638 {
2639 return true;
2640 }
2641 #endif
2642
2643 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2644 unsigned int gup_flags, struct page **pages)
2645 {
2646 int ret;
2647
2648 /*
2649 * FIXME: FOLL_LONGTERM does not work with
2650 * get_user_pages_unlocked() (see comments in that function)
2651 */
2652 if (gup_flags & FOLL_LONGTERM) {
2653 mmap_read_lock(current->mm);
2654 ret = __gup_longterm_locked(current->mm,
2655 start, nr_pages,
2656 pages, NULL, gup_flags);
2657 mmap_read_unlock(current->mm);
2658 } else {
2659 ret = get_user_pages_unlocked(start, nr_pages,
2660 pages, gup_flags);
2661 }
2662
2663 return ret;
2664 }
2665
2666 static unsigned long lockless_pages_from_mm(unsigned long start,
2667 unsigned long end,
2668 unsigned int gup_flags,
2669 struct page **pages)
2670 {
2671 unsigned long flags;
2672 int nr_pinned = 0;
2673 unsigned seq;
2674
2675 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2676 !gup_fast_permitted(start, end))
2677 return 0;
2678
2679 if (gup_flags & FOLL_PIN) {
2680 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2681 if (seq & 1)
2682 return 0;
2683 }
2684
2685 /*
2686 * Disable interrupts. The nested form is used, in order to allow full,
2687 * general purpose use of this routine.
2688 *
2689 * With interrupts disabled, we block page table pages from being freed
2690 * from under us. See struct mmu_table_batch comments in
2691 * include/asm-generic/tlb.h for more details.
2692 *
2693 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2694 * that come from THPs splitting.
2695 */
2696 local_irq_save(flags);
2697 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2698 local_irq_restore(flags);
2699
2700 /*
2701 * When pinning pages for DMA there could be a concurrent write protect
2702 * from fork() via copy_page_range(), in this case always fail fast GUP.
2703 */
2704 if (gup_flags & FOLL_PIN) {
2705 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2706 unpin_user_pages(pages, nr_pinned);
2707 return 0;
2708 }
2709 }
2710 return nr_pinned;
2711 }
2712
2713 static int internal_get_user_pages_fast(unsigned long start,
2714 unsigned long nr_pages,
2715 unsigned int gup_flags,
2716 struct page **pages)
2717 {
2718 unsigned long len, end;
2719 unsigned long nr_pinned;
2720 int ret;
2721
2722 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2723 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2724 FOLL_FAST_ONLY)))
2725 return -EINVAL;
2726
2727 if (gup_flags & FOLL_PIN)
2728 mm_set_has_pinned_flag(&current->mm->flags);
2729
2730 if (!(gup_flags & FOLL_FAST_ONLY))
2731 might_lock_read(&current->mm->mmap_lock);
2732
2733 start = untagged_addr(start) & PAGE_MASK;
2734 len = nr_pages << PAGE_SHIFT;
2735 if (check_add_overflow(start, len, &end))
2736 return 0;
2737 if (unlikely(!access_ok((void __user *)start, len)))
2738 return -EFAULT;
2739
2740 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2741 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2742 return nr_pinned;
2743
2744 /* Slow path: try to get the remaining pages with get_user_pages */
2745 start += nr_pinned << PAGE_SHIFT;
2746 pages += nr_pinned;
2747 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2748 pages);
2749 if (ret < 0) {
2750 /*
2751 * The caller has to unpin the pages we already pinned so
2752 * returning -errno is not an option
2753 */
2754 if (nr_pinned)
2755 return nr_pinned;
2756 return ret;
2757 }
2758 return ret + nr_pinned;
2759 }
2760
2761 /**
2762 * get_user_pages_fast_only() - pin user pages in memory
2763 * @start: starting user address
2764 * @nr_pages: number of pages from start to pin
2765 * @gup_flags: flags modifying pin behaviour
2766 * @pages: array that receives pointers to the pages pinned.
2767 * Should be at least nr_pages long.
2768 *
2769 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2770 * the regular GUP.
2771 * Note a difference with get_user_pages_fast: this always returns the
2772 * number of pages pinned, 0 if no pages were pinned.
2773 *
2774 * If the architecture does not support this function, simply return with no
2775 * pages pinned.
2776 *
2777 * Careful, careful! COW breaking can go either way, so a non-write
2778 * access can get ambiguous page results. If you call this function without
2779 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2780 */
2781 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2782 unsigned int gup_flags, struct page **pages)
2783 {
2784 int nr_pinned;
2785 /*
2786 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2787 * because gup fast is always a "pin with a +1 page refcount" request.
2788 *
2789 * FOLL_FAST_ONLY is required in order to match the API description of
2790 * this routine: no fall back to regular ("slow") GUP.
2791 */
2792 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2793
2794 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2795 pages);
2796
2797 /*
2798 * As specified in the API description above, this routine is not
2799 * allowed to return negative values. However, the common core
2800 * routine internal_get_user_pages_fast() *can* return -errno.
2801 * Therefore, correct for that here:
2802 */
2803 if (nr_pinned < 0)
2804 nr_pinned = 0;
2805
2806 return nr_pinned;
2807 }
2808 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2809
2810 /**
2811 * get_user_pages_fast() - pin user pages in memory
2812 * @start: starting user address
2813 * @nr_pages: number of pages from start to pin
2814 * @gup_flags: flags modifying pin behaviour
2815 * @pages: array that receives pointers to the pages pinned.
2816 * Should be at least nr_pages long.
2817 *
2818 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2819 * If not successful, it will fall back to taking the lock and
2820 * calling get_user_pages().
2821 *
2822 * Returns number of pages pinned. This may be fewer than the number requested.
2823 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2824 * -errno.
2825 */
2826 int get_user_pages_fast(unsigned long start, int nr_pages,
2827 unsigned int gup_flags, struct page **pages)
2828 {
2829 if (!is_valid_gup_flags(gup_flags))
2830 return -EINVAL;
2831
2832 /*
2833 * The caller may or may not have explicitly set FOLL_GET; either way is
2834 * OK. However, internally (within mm/gup.c), gup fast variants must set
2835 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2836 * request.
2837 */
2838 gup_flags |= FOLL_GET;
2839 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2840 }
2841 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2842
2843 /**
2844 * pin_user_pages_fast() - pin user pages in memory without taking locks
2845 *
2846 * @start: starting user address
2847 * @nr_pages: number of pages from start to pin
2848 * @gup_flags: flags modifying pin behaviour
2849 * @pages: array that receives pointers to the pages pinned.
2850 * Should be at least nr_pages long.
2851 *
2852 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2853 * get_user_pages_fast() for documentation on the function arguments, because
2854 * the arguments here are identical.
2855 *
2856 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2857 * see Documentation/core-api/pin_user_pages.rst for further details.
2858 */
2859 int pin_user_pages_fast(unsigned long start, int nr_pages,
2860 unsigned int gup_flags, struct page **pages)
2861 {
2862 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2863 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2864 return -EINVAL;
2865
2866 gup_flags |= FOLL_PIN;
2867 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2868 }
2869 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2870
2871 /*
2872 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2873 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2874 *
2875 * The API rules are the same, too: no negative values may be returned.
2876 */
2877 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2878 unsigned int gup_flags, struct page **pages)
2879 {
2880 int nr_pinned;
2881
2882 /*
2883 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2884 * rules require returning 0, rather than -errno:
2885 */
2886 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2887 return 0;
2888 /*
2889 * FOLL_FAST_ONLY is required in order to match the API description of
2890 * this routine: no fall back to regular ("slow") GUP.
2891 */
2892 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2893 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2894 pages);
2895 /*
2896 * This routine is not allowed to return negative values. However,
2897 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2898 * correct for that here:
2899 */
2900 if (nr_pinned < 0)
2901 nr_pinned = 0;
2902
2903 return nr_pinned;
2904 }
2905 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2906
2907 /**
2908 * pin_user_pages_remote() - pin pages of a remote process
2909 *
2910 * @mm: mm_struct of target mm
2911 * @start: starting user address
2912 * @nr_pages: number of pages from start to pin
2913 * @gup_flags: flags modifying lookup behaviour
2914 * @pages: array that receives pointers to the pages pinned.
2915 * Should be at least nr_pages long. Or NULL, if caller
2916 * only intends to ensure the pages are faulted in.
2917 * @vmas: array of pointers to vmas corresponding to each page.
2918 * Or NULL if the caller does not require them.
2919 * @locked: pointer to lock flag indicating whether lock is held and
2920 * subsequently whether VM_FAULT_RETRY functionality can be
2921 * utilised. Lock must initially be held.
2922 *
2923 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2924 * get_user_pages_remote() for documentation on the function arguments, because
2925 * the arguments here are identical.
2926 *
2927 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2928 * see Documentation/core-api/pin_user_pages.rst for details.
2929 */
2930 long pin_user_pages_remote(struct mm_struct *mm,
2931 unsigned long start, unsigned long nr_pages,
2932 unsigned int gup_flags, struct page **pages,
2933 struct vm_area_struct **vmas, int *locked)
2934 {
2935 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2936 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2937 return -EINVAL;
2938
2939 gup_flags |= FOLL_PIN;
2940 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2941 pages, vmas, locked);
2942 }
2943 EXPORT_SYMBOL(pin_user_pages_remote);
2944
2945 /**
2946 * pin_user_pages() - pin user pages in memory for use by other devices
2947 *
2948 * @start: starting user address
2949 * @nr_pages: number of pages from start to pin
2950 * @gup_flags: flags modifying lookup behaviour
2951 * @pages: array that receives pointers to the pages pinned.
2952 * Should be at least nr_pages long. Or NULL, if caller
2953 * only intends to ensure the pages are faulted in.
2954 * @vmas: array of pointers to vmas corresponding to each page.
2955 * Or NULL if the caller does not require them.
2956 *
2957 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2958 * FOLL_PIN is set.
2959 *
2960 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2961 * see Documentation/core-api/pin_user_pages.rst for details.
2962 */
2963 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2964 unsigned int gup_flags, struct page **pages,
2965 struct vm_area_struct **vmas)
2966 {
2967 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2968 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2969 return -EINVAL;
2970
2971 gup_flags |= FOLL_PIN;
2972 return __gup_longterm_locked(current->mm, start, nr_pages,
2973 pages, vmas, gup_flags);
2974 }
2975 EXPORT_SYMBOL(pin_user_pages);
2976
2977 /*
2978 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2979 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2980 * FOLL_PIN and rejects FOLL_GET.
2981 */
2982 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2983 struct page **pages, unsigned int gup_flags)
2984 {
2985 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2986 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2987 return -EINVAL;
2988
2989 gup_flags |= FOLL_PIN;
2990 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2991 }
2992 EXPORT_SYMBOL(pin_user_pages_unlocked);
2993
2994 /*
2995 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2996 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2997 * FOLL_GET.
2998 */
2999 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3000 unsigned int gup_flags, struct page **pages,
3001 int *locked)
3002 {
3003 /*
3004 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3005 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3006 * vmas. As there are no users of this flag in this call we simply
3007 * disallow this option for now.
3008 */
3009 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3010 return -EINVAL;
3011
3012 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3013 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3014 return -EINVAL;
3015
3016 gup_flags |= FOLL_PIN;
3017 return __get_user_pages_locked(current->mm, start, nr_pages,
3018 pages, NULL, locked,
3019 gup_flags | FOLL_TOUCH);
3020 }
3021 EXPORT_SYMBOL(pin_user_pages_locked);