]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/highmem.c
drm/i915/display/psr: Disable DC3CO when the PSR2 is used
[mirror_ubuntu-hirsute-kernel.git] / mm / highmem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * High memory handling common code and variables.
4 *
5 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
6 * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
7 *
8 *
9 * Redesigned the x86 32-bit VM architecture to deal with
10 * 64-bit physical space. With current x86 CPUs this
11 * means up to 64 Gigabytes physical RAM.
12 *
13 * Rewrote high memory support to move the page cache into
14 * high memory. Implemented permanent (schedulable) kmaps
15 * based on Linus' idea.
16 *
17 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
18 */
19
20 #include <linux/mm.h>
21 #include <linux/export.h>
22 #include <linux/swap.h>
23 #include <linux/bio.h>
24 #include <linux/pagemap.h>
25 #include <linux/mempool.h>
26 #include <linux/blkdev.h>
27 #include <linux/init.h>
28 #include <linux/hash.h>
29 #include <linux/highmem.h>
30 #include <linux/kgdb.h>
31 #include <asm/tlbflush.h>
32 #include <linux/vmalloc.h>
33
34 /*
35 * Virtual_count is not a pure "count".
36 * 0 means that it is not mapped, and has not been mapped
37 * since a TLB flush - it is usable.
38 * 1 means that there are no users, but it has been mapped
39 * since the last TLB flush - so we can't use it.
40 * n means that there are (n-1) current users of it.
41 */
42 #ifdef CONFIG_HIGHMEM
43
44 /*
45 * Architecture with aliasing data cache may define the following family of
46 * helper functions in its asm/highmem.h to control cache color of virtual
47 * addresses where physical memory pages are mapped by kmap.
48 */
49 #ifndef get_pkmap_color
50
51 /*
52 * Determine color of virtual address where the page should be mapped.
53 */
54 static inline unsigned int get_pkmap_color(struct page *page)
55 {
56 return 0;
57 }
58 #define get_pkmap_color get_pkmap_color
59
60 /*
61 * Get next index for mapping inside PKMAP region for page with given color.
62 */
63 static inline unsigned int get_next_pkmap_nr(unsigned int color)
64 {
65 static unsigned int last_pkmap_nr;
66
67 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
68 return last_pkmap_nr;
69 }
70
71 /*
72 * Determine if page index inside PKMAP region (pkmap_nr) of given color
73 * has wrapped around PKMAP region end. When this happens an attempt to
74 * flush all unused PKMAP slots is made.
75 */
76 static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
77 {
78 return pkmap_nr == 0;
79 }
80
81 /*
82 * Get the number of PKMAP entries of the given color. If no free slot is
83 * found after checking that many entries, kmap will sleep waiting for
84 * someone to call kunmap and free PKMAP slot.
85 */
86 static inline int get_pkmap_entries_count(unsigned int color)
87 {
88 return LAST_PKMAP;
89 }
90
91 /*
92 * Get head of a wait queue for PKMAP entries of the given color.
93 * Wait queues for different mapping colors should be independent to avoid
94 * unnecessary wakeups caused by freeing of slots of other colors.
95 */
96 static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
97 {
98 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
99
100 return &pkmap_map_wait;
101 }
102 #endif
103
104 atomic_long_t _totalhigh_pages __read_mostly;
105 EXPORT_SYMBOL(_totalhigh_pages);
106
107 unsigned int __nr_free_highpages (void)
108 {
109 struct zone *zone;
110 unsigned int pages = 0;
111
112 for_each_populated_zone(zone) {
113 if (is_highmem(zone))
114 pages += zone_page_state(zone, NR_FREE_PAGES);
115 }
116
117 return pages;
118 }
119
120 static int pkmap_count[LAST_PKMAP];
121 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
122
123 pte_t * pkmap_page_table;
124
125 /*
126 * Most architectures have no use for kmap_high_get(), so let's abstract
127 * the disabling of IRQ out of the locking in that case to save on a
128 * potential useless overhead.
129 */
130 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
131 #define lock_kmap() spin_lock_irq(&kmap_lock)
132 #define unlock_kmap() spin_unlock_irq(&kmap_lock)
133 #define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags)
134 #define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags)
135 #else
136 #define lock_kmap() spin_lock(&kmap_lock)
137 #define unlock_kmap() spin_unlock(&kmap_lock)
138 #define lock_kmap_any(flags) \
139 do { spin_lock(&kmap_lock); (void)(flags); } while (0)
140 #define unlock_kmap_any(flags) \
141 do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
142 #endif
143
144 struct page *__kmap_to_page(void *vaddr)
145 {
146 unsigned long addr = (unsigned long)vaddr;
147
148 if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
149 int i = PKMAP_NR(addr);
150 return pte_page(pkmap_page_table[i]);
151 }
152
153 return virt_to_page(addr);
154 }
155 EXPORT_SYMBOL(__kmap_to_page);
156
157 static void flush_all_zero_pkmaps(void)
158 {
159 int i;
160 int need_flush = 0;
161
162 flush_cache_kmaps();
163
164 for (i = 0; i < LAST_PKMAP; i++) {
165 struct page *page;
166
167 /*
168 * zero means we don't have anything to do,
169 * >1 means that it is still in use. Only
170 * a count of 1 means that it is free but
171 * needs to be unmapped
172 */
173 if (pkmap_count[i] != 1)
174 continue;
175 pkmap_count[i] = 0;
176
177 /* sanity check */
178 BUG_ON(pte_none(pkmap_page_table[i]));
179
180 /*
181 * Don't need an atomic fetch-and-clear op here;
182 * no-one has the page mapped, and cannot get at
183 * its virtual address (and hence PTE) without first
184 * getting the kmap_lock (which is held here).
185 * So no dangers, even with speculative execution.
186 */
187 page = pte_page(pkmap_page_table[i]);
188 pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
189
190 set_page_address(page, NULL);
191 need_flush = 1;
192 }
193 if (need_flush)
194 flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
195 }
196
197 void __kmap_flush_unused(void)
198 {
199 lock_kmap();
200 flush_all_zero_pkmaps();
201 unlock_kmap();
202 }
203
204 static inline unsigned long map_new_virtual(struct page *page)
205 {
206 unsigned long vaddr;
207 int count;
208 unsigned int last_pkmap_nr;
209 unsigned int color = get_pkmap_color(page);
210
211 start:
212 count = get_pkmap_entries_count(color);
213 /* Find an empty entry */
214 for (;;) {
215 last_pkmap_nr = get_next_pkmap_nr(color);
216 if (no_more_pkmaps(last_pkmap_nr, color)) {
217 flush_all_zero_pkmaps();
218 count = get_pkmap_entries_count(color);
219 }
220 if (!pkmap_count[last_pkmap_nr])
221 break; /* Found a usable entry */
222 if (--count)
223 continue;
224
225 /*
226 * Sleep for somebody else to unmap their entries
227 */
228 {
229 DECLARE_WAITQUEUE(wait, current);
230 wait_queue_head_t *pkmap_map_wait =
231 get_pkmap_wait_queue_head(color);
232
233 __set_current_state(TASK_UNINTERRUPTIBLE);
234 add_wait_queue(pkmap_map_wait, &wait);
235 unlock_kmap();
236 schedule();
237 remove_wait_queue(pkmap_map_wait, &wait);
238 lock_kmap();
239
240 /* Somebody else might have mapped it while we slept */
241 if (page_address(page))
242 return (unsigned long)page_address(page);
243
244 /* Re-start */
245 goto start;
246 }
247 }
248 vaddr = PKMAP_ADDR(last_pkmap_nr);
249 set_pte_at(&init_mm, vaddr,
250 &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
251
252 pkmap_count[last_pkmap_nr] = 1;
253 set_page_address(page, (void *)vaddr);
254
255 return vaddr;
256 }
257
258 /**
259 * kmap_high - map a highmem page into memory
260 * @page: &struct page to map
261 *
262 * Returns the page's virtual memory address.
263 *
264 * We cannot call this from interrupts, as it may block.
265 */
266 void *kmap_high(struct page *page)
267 {
268 unsigned long vaddr;
269
270 /*
271 * For highmem pages, we can't trust "virtual" until
272 * after we have the lock.
273 */
274 lock_kmap();
275 vaddr = (unsigned long)page_address(page);
276 if (!vaddr)
277 vaddr = map_new_virtual(page);
278 pkmap_count[PKMAP_NR(vaddr)]++;
279 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
280 unlock_kmap();
281 return (void*) vaddr;
282 }
283
284 EXPORT_SYMBOL(kmap_high);
285
286 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
287 /**
288 * kmap_high_get - pin a highmem page into memory
289 * @page: &struct page to pin
290 *
291 * Returns the page's current virtual memory address, or NULL if no mapping
292 * exists. If and only if a non null address is returned then a
293 * matching call to kunmap_high() is necessary.
294 *
295 * This can be called from any context.
296 */
297 void *kmap_high_get(struct page *page)
298 {
299 unsigned long vaddr, flags;
300
301 lock_kmap_any(flags);
302 vaddr = (unsigned long)page_address(page);
303 if (vaddr) {
304 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
305 pkmap_count[PKMAP_NR(vaddr)]++;
306 }
307 unlock_kmap_any(flags);
308 return (void*) vaddr;
309 }
310 #endif
311
312 /**
313 * kunmap_high - unmap a highmem page into memory
314 * @page: &struct page to unmap
315 *
316 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
317 * only from user context.
318 */
319 void kunmap_high(struct page *page)
320 {
321 unsigned long vaddr;
322 unsigned long nr;
323 unsigned long flags;
324 int need_wakeup;
325 unsigned int color = get_pkmap_color(page);
326 wait_queue_head_t *pkmap_map_wait;
327
328 lock_kmap_any(flags);
329 vaddr = (unsigned long)page_address(page);
330 BUG_ON(!vaddr);
331 nr = PKMAP_NR(vaddr);
332
333 /*
334 * A count must never go down to zero
335 * without a TLB flush!
336 */
337 need_wakeup = 0;
338 switch (--pkmap_count[nr]) {
339 case 0:
340 BUG();
341 case 1:
342 /*
343 * Avoid an unnecessary wake_up() function call.
344 * The common case is pkmap_count[] == 1, but
345 * no waiters.
346 * The tasks queued in the wait-queue are guarded
347 * by both the lock in the wait-queue-head and by
348 * the kmap_lock. As the kmap_lock is held here,
349 * no need for the wait-queue-head's lock. Simply
350 * test if the queue is empty.
351 */
352 pkmap_map_wait = get_pkmap_wait_queue_head(color);
353 need_wakeup = waitqueue_active(pkmap_map_wait);
354 }
355 unlock_kmap_any(flags);
356
357 /* do wake-up, if needed, race-free outside of the spin lock */
358 if (need_wakeup)
359 wake_up(pkmap_map_wait);
360 }
361 EXPORT_SYMBOL(kunmap_high);
362
363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
364 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
365 unsigned start2, unsigned end2)
366 {
367 unsigned int i;
368
369 BUG_ON(end1 > page_size(page) || end2 > page_size(page));
370
371 if (start1 >= end1)
372 start1 = end1 = 0;
373 if (start2 >= end2)
374 start2 = end2 = 0;
375
376 for (i = 0; i < compound_nr(page); i++) {
377 void *kaddr = NULL;
378
379 if (start1 >= PAGE_SIZE) {
380 start1 -= PAGE_SIZE;
381 end1 -= PAGE_SIZE;
382 } else {
383 unsigned this_end = min_t(unsigned, end1, PAGE_SIZE);
384
385 if (end1 > start1) {
386 kaddr = kmap_atomic(page + i);
387 memset(kaddr + start1, 0, this_end - start1);
388 }
389 end1 -= this_end;
390 start1 = 0;
391 }
392
393 if (start2 >= PAGE_SIZE) {
394 start2 -= PAGE_SIZE;
395 end2 -= PAGE_SIZE;
396 } else {
397 unsigned this_end = min_t(unsigned, end2, PAGE_SIZE);
398
399 if (end2 > start2) {
400 if (!kaddr)
401 kaddr = kmap_atomic(page + i);
402 memset(kaddr + start2, 0, this_end - start2);
403 }
404 end2 -= this_end;
405 start2 = 0;
406 }
407
408 if (kaddr) {
409 kunmap_atomic(kaddr);
410 flush_dcache_page(page + i);
411 }
412
413 if (!end1 && !end2)
414 break;
415 }
416
417 BUG_ON((start1 | start2 | end1 | end2) != 0);
418 }
419 EXPORT_SYMBOL(zero_user_segments);
420 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
421 #endif /* CONFIG_HIGHMEM */
422
423 #ifdef CONFIG_KMAP_LOCAL
424
425 #include <asm/kmap_size.h>
426
427 /*
428 * With DEBUG_KMAP_LOCAL the stack depth is doubled and every second
429 * slot is unused which acts as a guard page
430 */
431 #ifdef CONFIG_DEBUG_KMAP_LOCAL
432 # define KM_INCR 2
433 #else
434 # define KM_INCR 1
435 #endif
436
437 static inline int kmap_local_idx_push(void)
438 {
439 WARN_ON_ONCE(in_irq() && !irqs_disabled());
440 current->kmap_ctrl.idx += KM_INCR;
441 BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX);
442 return current->kmap_ctrl.idx - 1;
443 }
444
445 static inline int kmap_local_idx(void)
446 {
447 return current->kmap_ctrl.idx - 1;
448 }
449
450 static inline void kmap_local_idx_pop(void)
451 {
452 current->kmap_ctrl.idx -= KM_INCR;
453 BUG_ON(current->kmap_ctrl.idx < 0);
454 }
455
456 #ifndef arch_kmap_local_post_map
457 # define arch_kmap_local_post_map(vaddr, pteval) do { } while (0)
458 #endif
459
460 #ifndef arch_kmap_local_pre_unmap
461 # define arch_kmap_local_pre_unmap(vaddr) do { } while (0)
462 #endif
463
464 #ifndef arch_kmap_local_post_unmap
465 # define arch_kmap_local_post_unmap(vaddr) do { } while (0)
466 #endif
467
468 #ifndef arch_kmap_local_map_idx
469 #define arch_kmap_local_map_idx(idx, pfn) kmap_local_calc_idx(idx)
470 #endif
471
472 #ifndef arch_kmap_local_unmap_idx
473 #define arch_kmap_local_unmap_idx(idx, vaddr) kmap_local_calc_idx(idx)
474 #endif
475
476 #ifndef arch_kmap_local_high_get
477 static inline void *arch_kmap_local_high_get(struct page *page)
478 {
479 return NULL;
480 }
481 #endif
482
483 #ifndef arch_kmap_local_set_pte
484 #define arch_kmap_local_set_pte(mm, vaddr, ptep, ptev) \
485 set_pte_at(mm, vaddr, ptep, ptev)
486 #endif
487
488 /* Unmap a local mapping which was obtained by kmap_high_get() */
489 static inline bool kmap_high_unmap_local(unsigned long vaddr)
490 {
491 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
492 if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
493 kunmap_high(pte_page(pkmap_page_table[PKMAP_NR(vaddr)]));
494 return true;
495 }
496 #endif
497 return false;
498 }
499
500 static inline int kmap_local_calc_idx(int idx)
501 {
502 return idx + KM_MAX_IDX * smp_processor_id();
503 }
504
505 static pte_t *__kmap_pte;
506
507 static pte_t *kmap_get_pte(void)
508 {
509 if (!__kmap_pte)
510 __kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
511 return __kmap_pte;
512 }
513
514 void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot)
515 {
516 pte_t pteval, *kmap_pte = kmap_get_pte();
517 unsigned long vaddr;
518 int idx;
519
520 /*
521 * Disable migration so resulting virtual address is stable
522 * accross preemption.
523 */
524 migrate_disable();
525 preempt_disable();
526 idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn);
527 vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
528 BUG_ON(!pte_none(*(kmap_pte - idx)));
529 pteval = pfn_pte(pfn, prot);
530 arch_kmap_local_set_pte(&init_mm, vaddr, kmap_pte - idx, pteval);
531 arch_kmap_local_post_map(vaddr, pteval);
532 current->kmap_ctrl.pteval[kmap_local_idx()] = pteval;
533 preempt_enable();
534
535 return (void *)vaddr;
536 }
537 EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot);
538
539 void *__kmap_local_page_prot(struct page *page, pgprot_t prot)
540 {
541 void *kmap;
542
543 /*
544 * To broaden the usage of the actual kmap_local() machinery always map
545 * pages when debugging is enabled and the architecture has no problems
546 * with alias mappings.
547 */
548 if (!IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) && !PageHighMem(page))
549 return page_address(page);
550
551 /* Try kmap_high_get() if architecture has it enabled */
552 kmap = arch_kmap_local_high_get(page);
553 if (kmap)
554 return kmap;
555
556 return __kmap_local_pfn_prot(page_to_pfn(page), prot);
557 }
558 EXPORT_SYMBOL(__kmap_local_page_prot);
559
560 void kunmap_local_indexed(void *vaddr)
561 {
562 unsigned long addr = (unsigned long) vaddr & PAGE_MASK;
563 pte_t *kmap_pte = kmap_get_pte();
564 int idx;
565
566 if (addr < __fix_to_virt(FIX_KMAP_END) ||
567 addr > __fix_to_virt(FIX_KMAP_BEGIN)) {
568 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP)) {
569 /* This _should_ never happen! See above. */
570 WARN_ON_ONCE(1);
571 return;
572 }
573 /*
574 * Handle mappings which were obtained by kmap_high_get()
575 * first as the virtual address of such mappings is below
576 * PAGE_OFFSET. Warn for all other addresses which are in
577 * the user space part of the virtual address space.
578 */
579 if (!kmap_high_unmap_local(addr))
580 WARN_ON_ONCE(addr < PAGE_OFFSET);
581 return;
582 }
583
584 preempt_disable();
585 idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr);
586 WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
587
588 arch_kmap_local_pre_unmap(addr);
589 pte_clear(&init_mm, addr, kmap_pte - idx);
590 arch_kmap_local_post_unmap(addr);
591 current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0);
592 kmap_local_idx_pop();
593 preempt_enable();
594 migrate_enable();
595 }
596 EXPORT_SYMBOL(kunmap_local_indexed);
597
598 /*
599 * Invoked before switch_to(). This is safe even when during or after
600 * clearing the maps an interrupt which needs a kmap_local happens because
601 * the task::kmap_ctrl.idx is not modified by the unmapping code so a
602 * nested kmap_local will use the next unused index and restore the index
603 * on unmap. The already cleared kmaps of the outgoing task are irrelevant
604 * because the interrupt context does not know about them. The same applies
605 * when scheduling back in for an interrupt which happens before the
606 * restore is complete.
607 */
608 void __kmap_local_sched_out(void)
609 {
610 struct task_struct *tsk = current;
611 pte_t *kmap_pte = kmap_get_pte();
612 int i;
613
614 /* Clear kmaps */
615 for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
616 pte_t pteval = tsk->kmap_ctrl.pteval[i];
617 unsigned long addr;
618 int idx;
619
620 /* With debug all even slots are unmapped and act as guard */
621 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
622 WARN_ON_ONCE(!pte_none(pteval));
623 continue;
624 }
625 if (WARN_ON_ONCE(pte_none(pteval)))
626 continue;
627
628 /*
629 * This is a horrible hack for XTENSA to calculate the
630 * coloured PTE index. Uses the PFN encoded into the pteval
631 * and the map index calculation because the actual mapped
632 * virtual address is not stored in task::kmap_ctrl.
633 * For any sane architecture this is optimized out.
634 */
635 idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
636
637 addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
638 arch_kmap_local_pre_unmap(addr);
639 pte_clear(&init_mm, addr, kmap_pte - idx);
640 arch_kmap_local_post_unmap(addr);
641 }
642 }
643
644 void __kmap_local_sched_in(void)
645 {
646 struct task_struct *tsk = current;
647 pte_t *kmap_pte = kmap_get_pte();
648 int i;
649
650 /* Restore kmaps */
651 for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
652 pte_t pteval = tsk->kmap_ctrl.pteval[i];
653 unsigned long addr;
654 int idx;
655
656 /* With debug all even slots are unmapped and act as guard */
657 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
658 WARN_ON_ONCE(!pte_none(pteval));
659 continue;
660 }
661 if (WARN_ON_ONCE(pte_none(pteval)))
662 continue;
663
664 /* See comment in __kmap_local_sched_out() */
665 idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
666 addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
667 set_pte_at(&init_mm, addr, kmap_pte - idx, pteval);
668 arch_kmap_local_post_map(addr, pteval);
669 }
670 }
671
672 void kmap_local_fork(struct task_struct *tsk)
673 {
674 if (WARN_ON_ONCE(tsk->kmap_ctrl.idx))
675 memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl));
676 }
677
678 #endif
679
680 #if defined(HASHED_PAGE_VIRTUAL)
681
682 #define PA_HASH_ORDER 7
683
684 /*
685 * Describes one page->virtual association
686 */
687 struct page_address_map {
688 struct page *page;
689 void *virtual;
690 struct list_head list;
691 };
692
693 static struct page_address_map page_address_maps[LAST_PKMAP];
694
695 /*
696 * Hash table bucket
697 */
698 static struct page_address_slot {
699 struct list_head lh; /* List of page_address_maps */
700 spinlock_t lock; /* Protect this bucket's list */
701 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
702
703 static struct page_address_slot *page_slot(const struct page *page)
704 {
705 return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
706 }
707
708 /**
709 * page_address - get the mapped virtual address of a page
710 * @page: &struct page to get the virtual address of
711 *
712 * Returns the page's virtual address.
713 */
714 void *page_address(const struct page *page)
715 {
716 unsigned long flags;
717 void *ret;
718 struct page_address_slot *pas;
719
720 if (!PageHighMem(page))
721 return lowmem_page_address(page);
722
723 pas = page_slot(page);
724 ret = NULL;
725 spin_lock_irqsave(&pas->lock, flags);
726 if (!list_empty(&pas->lh)) {
727 struct page_address_map *pam;
728
729 list_for_each_entry(pam, &pas->lh, list) {
730 if (pam->page == page) {
731 ret = pam->virtual;
732 goto done;
733 }
734 }
735 }
736 done:
737 spin_unlock_irqrestore(&pas->lock, flags);
738 return ret;
739 }
740
741 EXPORT_SYMBOL(page_address);
742
743 /**
744 * set_page_address - set a page's virtual address
745 * @page: &struct page to set
746 * @virtual: virtual address to use
747 */
748 void set_page_address(struct page *page, void *virtual)
749 {
750 unsigned long flags;
751 struct page_address_slot *pas;
752 struct page_address_map *pam;
753
754 BUG_ON(!PageHighMem(page));
755
756 pas = page_slot(page);
757 if (virtual) { /* Add */
758 pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
759 pam->page = page;
760 pam->virtual = virtual;
761
762 spin_lock_irqsave(&pas->lock, flags);
763 list_add_tail(&pam->list, &pas->lh);
764 spin_unlock_irqrestore(&pas->lock, flags);
765 } else { /* Remove */
766 spin_lock_irqsave(&pas->lock, flags);
767 list_for_each_entry(pam, &pas->lh, list) {
768 if (pam->page == page) {
769 list_del(&pam->list);
770 spin_unlock_irqrestore(&pas->lock, flags);
771 goto done;
772 }
773 }
774 spin_unlock_irqrestore(&pas->lock, flags);
775 }
776 done:
777 return;
778 }
779
780 void __init page_address_init(void)
781 {
782 int i;
783
784 for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
785 INIT_LIST_HEAD(&page_address_htable[i].lh);
786 spin_lock_init(&page_address_htable[i].lock);
787 }
788 }
789
790 #endif /* defined(HASHED_PAGE_VIRTUAL) */