]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/hmm.c
Merge tag 'f2fs-for-5.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[mirror_ubuntu-eoan-kernel.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2013 Red Hat Inc.
4 *
5 * Authors: Jérôme Glisse <jglisse@redhat.com>
6 */
7 /*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11 #include <linux/mm.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
30
31 /**
32 * hmm_get_or_create - register HMM against an mm (HMM internal)
33 *
34 * @mm: mm struct to attach to
35 * Returns: returns an HMM object, either by referencing the existing
36 * (per-process) object, or by creating a new one.
37 *
38 * This is not intended to be used directly by device drivers. If mm already
39 * has an HMM struct then it get a reference on it and returns it. Otherwise
40 * it allocates an HMM struct, initializes it, associate it with the mm and
41 * returns it.
42 */
43 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
44 {
45 struct hmm *hmm;
46
47 lockdep_assert_held_write(&mm->mmap_sem);
48
49 /* Abuse the page_table_lock to also protect mm->hmm. */
50 spin_lock(&mm->page_table_lock);
51 hmm = mm->hmm;
52 if (mm->hmm && kref_get_unless_zero(&mm->hmm->kref))
53 goto out_unlock;
54 spin_unlock(&mm->page_table_lock);
55
56 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
57 if (!hmm)
58 return NULL;
59 init_waitqueue_head(&hmm->wq);
60 INIT_LIST_HEAD(&hmm->mirrors);
61 init_rwsem(&hmm->mirrors_sem);
62 hmm->mmu_notifier.ops = NULL;
63 INIT_LIST_HEAD(&hmm->ranges);
64 spin_lock_init(&hmm->ranges_lock);
65 kref_init(&hmm->kref);
66 hmm->notifiers = 0;
67 hmm->mm = mm;
68
69 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
70 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
71 kfree(hmm);
72 return NULL;
73 }
74
75 mmgrab(hmm->mm);
76
77 /*
78 * We hold the exclusive mmap_sem here so we know that mm->hmm is
79 * still NULL or 0 kref, and is safe to update.
80 */
81 spin_lock(&mm->page_table_lock);
82 mm->hmm = hmm;
83
84 out_unlock:
85 spin_unlock(&mm->page_table_lock);
86 return hmm;
87 }
88
89 static void hmm_free_rcu(struct rcu_head *rcu)
90 {
91 struct hmm *hmm = container_of(rcu, struct hmm, rcu);
92
93 mmdrop(hmm->mm);
94 kfree(hmm);
95 }
96
97 static void hmm_free(struct kref *kref)
98 {
99 struct hmm *hmm = container_of(kref, struct hmm, kref);
100
101 spin_lock(&hmm->mm->page_table_lock);
102 if (hmm->mm->hmm == hmm)
103 hmm->mm->hmm = NULL;
104 spin_unlock(&hmm->mm->page_table_lock);
105
106 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, hmm->mm);
107 mmu_notifier_call_srcu(&hmm->rcu, hmm_free_rcu);
108 }
109
110 static inline void hmm_put(struct hmm *hmm)
111 {
112 kref_put(&hmm->kref, hmm_free);
113 }
114
115 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
116 {
117 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
118 struct hmm_mirror *mirror;
119
120 /* Bail out if hmm is in the process of being freed */
121 if (!kref_get_unless_zero(&hmm->kref))
122 return;
123
124 /*
125 * Since hmm_range_register() holds the mmget() lock hmm_release() is
126 * prevented as long as a range exists.
127 */
128 WARN_ON(!list_empty_careful(&hmm->ranges));
129
130 down_read(&hmm->mirrors_sem);
131 list_for_each_entry(mirror, &hmm->mirrors, list) {
132 /*
133 * Note: The driver is not allowed to trigger
134 * hmm_mirror_unregister() from this thread.
135 */
136 if (mirror->ops->release)
137 mirror->ops->release(mirror);
138 }
139 up_read(&hmm->mirrors_sem);
140
141 hmm_put(hmm);
142 }
143
144 static void notifiers_decrement(struct hmm *hmm)
145 {
146 unsigned long flags;
147
148 spin_lock_irqsave(&hmm->ranges_lock, flags);
149 hmm->notifiers--;
150 if (!hmm->notifiers) {
151 struct hmm_range *range;
152
153 list_for_each_entry(range, &hmm->ranges, list) {
154 if (range->valid)
155 continue;
156 range->valid = true;
157 }
158 wake_up_all(&hmm->wq);
159 }
160 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
161 }
162
163 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
164 const struct mmu_notifier_range *nrange)
165 {
166 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
167 struct hmm_mirror *mirror;
168 struct hmm_update update;
169 struct hmm_range *range;
170 unsigned long flags;
171 int ret = 0;
172
173 if (!kref_get_unless_zero(&hmm->kref))
174 return 0;
175
176 update.start = nrange->start;
177 update.end = nrange->end;
178 update.event = HMM_UPDATE_INVALIDATE;
179 update.blockable = mmu_notifier_range_blockable(nrange);
180
181 spin_lock_irqsave(&hmm->ranges_lock, flags);
182 hmm->notifiers++;
183 list_for_each_entry(range, &hmm->ranges, list) {
184 if (update.end < range->start || update.start >= range->end)
185 continue;
186
187 range->valid = false;
188 }
189 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
190
191 if (mmu_notifier_range_blockable(nrange))
192 down_read(&hmm->mirrors_sem);
193 else if (!down_read_trylock(&hmm->mirrors_sem)) {
194 ret = -EAGAIN;
195 goto out;
196 }
197
198 list_for_each_entry(mirror, &hmm->mirrors, list) {
199 int rc;
200
201 rc = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
202 if (rc) {
203 if (WARN_ON(update.blockable || rc != -EAGAIN))
204 continue;
205 ret = -EAGAIN;
206 break;
207 }
208 }
209 up_read(&hmm->mirrors_sem);
210
211 out:
212 if (ret)
213 notifiers_decrement(hmm);
214 hmm_put(hmm);
215 return ret;
216 }
217
218 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
219 const struct mmu_notifier_range *nrange)
220 {
221 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
222
223 if (!kref_get_unless_zero(&hmm->kref))
224 return;
225
226 notifiers_decrement(hmm);
227 hmm_put(hmm);
228 }
229
230 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
231 .release = hmm_release,
232 .invalidate_range_start = hmm_invalidate_range_start,
233 .invalidate_range_end = hmm_invalidate_range_end,
234 };
235
236 /*
237 * hmm_mirror_register() - register a mirror against an mm
238 *
239 * @mirror: new mirror struct to register
240 * @mm: mm to register against
241 * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
242 *
243 * To start mirroring a process address space, the device driver must register
244 * an HMM mirror struct.
245 */
246 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
247 {
248 lockdep_assert_held_write(&mm->mmap_sem);
249
250 /* Sanity check */
251 if (!mm || !mirror || !mirror->ops)
252 return -EINVAL;
253
254 mirror->hmm = hmm_get_or_create(mm);
255 if (!mirror->hmm)
256 return -ENOMEM;
257
258 down_write(&mirror->hmm->mirrors_sem);
259 list_add(&mirror->list, &mirror->hmm->mirrors);
260 up_write(&mirror->hmm->mirrors_sem);
261
262 return 0;
263 }
264 EXPORT_SYMBOL(hmm_mirror_register);
265
266 /*
267 * hmm_mirror_unregister() - unregister a mirror
268 *
269 * @mirror: mirror struct to unregister
270 *
271 * Stop mirroring a process address space, and cleanup.
272 */
273 void hmm_mirror_unregister(struct hmm_mirror *mirror)
274 {
275 struct hmm *hmm = mirror->hmm;
276
277 down_write(&hmm->mirrors_sem);
278 list_del(&mirror->list);
279 up_write(&hmm->mirrors_sem);
280 hmm_put(hmm);
281 }
282 EXPORT_SYMBOL(hmm_mirror_unregister);
283
284 struct hmm_vma_walk {
285 struct hmm_range *range;
286 struct dev_pagemap *pgmap;
287 unsigned long last;
288 bool fault;
289 bool block;
290 };
291
292 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
293 bool write_fault, uint64_t *pfn)
294 {
295 unsigned int flags = FAULT_FLAG_REMOTE;
296 struct hmm_vma_walk *hmm_vma_walk = walk->private;
297 struct hmm_range *range = hmm_vma_walk->range;
298 struct vm_area_struct *vma = walk->vma;
299 vm_fault_t ret;
300
301 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
302 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
303 ret = handle_mm_fault(vma, addr, flags);
304 if (ret & VM_FAULT_RETRY)
305 return -EAGAIN;
306 if (ret & VM_FAULT_ERROR) {
307 *pfn = range->values[HMM_PFN_ERROR];
308 return -EFAULT;
309 }
310
311 return -EBUSY;
312 }
313
314 static int hmm_pfns_bad(unsigned long addr,
315 unsigned long end,
316 struct mm_walk *walk)
317 {
318 struct hmm_vma_walk *hmm_vma_walk = walk->private;
319 struct hmm_range *range = hmm_vma_walk->range;
320 uint64_t *pfns = range->pfns;
321 unsigned long i;
322
323 i = (addr - range->start) >> PAGE_SHIFT;
324 for (; addr < end; addr += PAGE_SIZE, i++)
325 pfns[i] = range->values[HMM_PFN_ERROR];
326
327 return 0;
328 }
329
330 /*
331 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
332 * @start: range virtual start address (inclusive)
333 * @end: range virtual end address (exclusive)
334 * @fault: should we fault or not ?
335 * @write_fault: write fault ?
336 * @walk: mm_walk structure
337 * Return: 0 on success, -EBUSY after page fault, or page fault error
338 *
339 * This function will be called whenever pmd_none() or pte_none() returns true,
340 * or whenever there is no page directory covering the virtual address range.
341 */
342 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
343 bool fault, bool write_fault,
344 struct mm_walk *walk)
345 {
346 struct hmm_vma_walk *hmm_vma_walk = walk->private;
347 struct hmm_range *range = hmm_vma_walk->range;
348 uint64_t *pfns = range->pfns;
349 unsigned long i, page_size;
350
351 hmm_vma_walk->last = addr;
352 page_size = hmm_range_page_size(range);
353 i = (addr - range->start) >> range->page_shift;
354
355 for (; addr < end; addr += page_size, i++) {
356 pfns[i] = range->values[HMM_PFN_NONE];
357 if (fault || write_fault) {
358 int ret;
359
360 ret = hmm_vma_do_fault(walk, addr, write_fault,
361 &pfns[i]);
362 if (ret != -EBUSY)
363 return ret;
364 }
365 }
366
367 return (fault || write_fault) ? -EBUSY : 0;
368 }
369
370 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
371 uint64_t pfns, uint64_t cpu_flags,
372 bool *fault, bool *write_fault)
373 {
374 struct hmm_range *range = hmm_vma_walk->range;
375
376 if (!hmm_vma_walk->fault)
377 return;
378
379 /*
380 * So we not only consider the individual per page request we also
381 * consider the default flags requested for the range. The API can
382 * be use in 2 fashions. The first one where the HMM user coalesce
383 * multiple page fault into one request and set flags per pfns for
384 * of those faults. The second one where the HMM user want to pre-
385 * fault a range with specific flags. For the latter one it is a
386 * waste to have the user pre-fill the pfn arrays with a default
387 * flags value.
388 */
389 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
390
391 /* We aren't ask to do anything ... */
392 if (!(pfns & range->flags[HMM_PFN_VALID]))
393 return;
394 /* If this is device memory than only fault if explicitly requested */
395 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
396 /* Do we fault on device memory ? */
397 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
398 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
399 *fault = true;
400 }
401 return;
402 }
403
404 /* If CPU page table is not valid then we need to fault */
405 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
406 /* Need to write fault ? */
407 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
408 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
409 *write_fault = true;
410 *fault = true;
411 }
412 }
413
414 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
415 const uint64_t *pfns, unsigned long npages,
416 uint64_t cpu_flags, bool *fault,
417 bool *write_fault)
418 {
419 unsigned long i;
420
421 if (!hmm_vma_walk->fault) {
422 *fault = *write_fault = false;
423 return;
424 }
425
426 *fault = *write_fault = false;
427 for (i = 0; i < npages; ++i) {
428 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
429 fault, write_fault);
430 if ((*write_fault))
431 return;
432 }
433 }
434
435 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
436 struct mm_walk *walk)
437 {
438 struct hmm_vma_walk *hmm_vma_walk = walk->private;
439 struct hmm_range *range = hmm_vma_walk->range;
440 bool fault, write_fault;
441 unsigned long i, npages;
442 uint64_t *pfns;
443
444 i = (addr - range->start) >> PAGE_SHIFT;
445 npages = (end - addr) >> PAGE_SHIFT;
446 pfns = &range->pfns[i];
447 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
448 0, &fault, &write_fault);
449 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
450 }
451
452 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
453 {
454 if (pmd_protnone(pmd))
455 return 0;
456 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
457 range->flags[HMM_PFN_WRITE] :
458 range->flags[HMM_PFN_VALID];
459 }
460
461 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
462 {
463 if (!pud_present(pud))
464 return 0;
465 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
466 range->flags[HMM_PFN_WRITE] :
467 range->flags[HMM_PFN_VALID];
468 }
469
470 static int hmm_vma_handle_pmd(struct mm_walk *walk,
471 unsigned long addr,
472 unsigned long end,
473 uint64_t *pfns,
474 pmd_t pmd)
475 {
476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
477 struct hmm_vma_walk *hmm_vma_walk = walk->private;
478 struct hmm_range *range = hmm_vma_walk->range;
479 unsigned long pfn, npages, i;
480 bool fault, write_fault;
481 uint64_t cpu_flags;
482
483 npages = (end - addr) >> PAGE_SHIFT;
484 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
485 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
486 &fault, &write_fault);
487
488 if (pmd_protnone(pmd) || fault || write_fault)
489 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
490
491 pfn = pmd_pfn(pmd) + pte_index(addr);
492 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
493 if (pmd_devmap(pmd)) {
494 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
495 hmm_vma_walk->pgmap);
496 if (unlikely(!hmm_vma_walk->pgmap))
497 return -EBUSY;
498 }
499 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
500 }
501 if (hmm_vma_walk->pgmap) {
502 put_dev_pagemap(hmm_vma_walk->pgmap);
503 hmm_vma_walk->pgmap = NULL;
504 }
505 hmm_vma_walk->last = end;
506 return 0;
507 #else
508 /* If THP is not enabled then we should never reach that code ! */
509 return -EINVAL;
510 #endif
511 }
512
513 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
514 {
515 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
516 return 0;
517 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
518 range->flags[HMM_PFN_WRITE] :
519 range->flags[HMM_PFN_VALID];
520 }
521
522 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
523 unsigned long end, pmd_t *pmdp, pte_t *ptep,
524 uint64_t *pfn)
525 {
526 struct hmm_vma_walk *hmm_vma_walk = walk->private;
527 struct hmm_range *range = hmm_vma_walk->range;
528 struct vm_area_struct *vma = walk->vma;
529 bool fault, write_fault;
530 uint64_t cpu_flags;
531 pte_t pte = *ptep;
532 uint64_t orig_pfn = *pfn;
533
534 *pfn = range->values[HMM_PFN_NONE];
535 fault = write_fault = false;
536
537 if (pte_none(pte)) {
538 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
539 &fault, &write_fault);
540 if (fault || write_fault)
541 goto fault;
542 return 0;
543 }
544
545 if (!pte_present(pte)) {
546 swp_entry_t entry = pte_to_swp_entry(pte);
547
548 if (!non_swap_entry(entry)) {
549 if (fault || write_fault)
550 goto fault;
551 return 0;
552 }
553
554 /*
555 * This is a special swap entry, ignore migration, use
556 * device and report anything else as error.
557 */
558 if (is_device_private_entry(entry)) {
559 cpu_flags = range->flags[HMM_PFN_VALID] |
560 range->flags[HMM_PFN_DEVICE_PRIVATE];
561 cpu_flags |= is_write_device_private_entry(entry) ?
562 range->flags[HMM_PFN_WRITE] : 0;
563 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
564 &fault, &write_fault);
565 if (fault || write_fault)
566 goto fault;
567 *pfn = hmm_device_entry_from_pfn(range,
568 swp_offset(entry));
569 *pfn |= cpu_flags;
570 return 0;
571 }
572
573 if (is_migration_entry(entry)) {
574 if (fault || write_fault) {
575 pte_unmap(ptep);
576 hmm_vma_walk->last = addr;
577 migration_entry_wait(vma->vm_mm,
578 pmdp, addr);
579 return -EBUSY;
580 }
581 return 0;
582 }
583
584 /* Report error for everything else */
585 *pfn = range->values[HMM_PFN_ERROR];
586 return -EFAULT;
587 } else {
588 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
589 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
590 &fault, &write_fault);
591 }
592
593 if (fault || write_fault)
594 goto fault;
595
596 if (pte_devmap(pte)) {
597 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
598 hmm_vma_walk->pgmap);
599 if (unlikely(!hmm_vma_walk->pgmap))
600 return -EBUSY;
601 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
602 *pfn = range->values[HMM_PFN_SPECIAL];
603 return -EFAULT;
604 }
605
606 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
607 return 0;
608
609 fault:
610 if (hmm_vma_walk->pgmap) {
611 put_dev_pagemap(hmm_vma_walk->pgmap);
612 hmm_vma_walk->pgmap = NULL;
613 }
614 pte_unmap(ptep);
615 /* Fault any virtual address we were asked to fault */
616 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
617 }
618
619 static int hmm_vma_walk_pmd(pmd_t *pmdp,
620 unsigned long start,
621 unsigned long end,
622 struct mm_walk *walk)
623 {
624 struct hmm_vma_walk *hmm_vma_walk = walk->private;
625 struct hmm_range *range = hmm_vma_walk->range;
626 struct vm_area_struct *vma = walk->vma;
627 uint64_t *pfns = range->pfns;
628 unsigned long addr = start, i;
629 pte_t *ptep;
630 pmd_t pmd;
631
632
633 again:
634 pmd = READ_ONCE(*pmdp);
635 if (pmd_none(pmd))
636 return hmm_vma_walk_hole(start, end, walk);
637
638 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
639 return hmm_pfns_bad(start, end, walk);
640
641 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
642 bool fault, write_fault;
643 unsigned long npages;
644 uint64_t *pfns;
645
646 i = (addr - range->start) >> PAGE_SHIFT;
647 npages = (end - addr) >> PAGE_SHIFT;
648 pfns = &range->pfns[i];
649
650 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
651 0, &fault, &write_fault);
652 if (fault || write_fault) {
653 hmm_vma_walk->last = addr;
654 pmd_migration_entry_wait(vma->vm_mm, pmdp);
655 return -EBUSY;
656 }
657 return 0;
658 } else if (!pmd_present(pmd))
659 return hmm_pfns_bad(start, end, walk);
660
661 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
662 /*
663 * No need to take pmd_lock here, even if some other threads
664 * is splitting the huge pmd we will get that event through
665 * mmu_notifier callback.
666 *
667 * So just read pmd value and check again its a transparent
668 * huge or device mapping one and compute corresponding pfn
669 * values.
670 */
671 pmd = pmd_read_atomic(pmdp);
672 barrier();
673 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
674 goto again;
675
676 i = (addr - range->start) >> PAGE_SHIFT;
677 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
678 }
679
680 /*
681 * We have handled all the valid case above ie either none, migration,
682 * huge or transparent huge. At this point either it is a valid pmd
683 * entry pointing to pte directory or it is a bad pmd that will not
684 * recover.
685 */
686 if (pmd_bad(pmd))
687 return hmm_pfns_bad(start, end, walk);
688
689 ptep = pte_offset_map(pmdp, addr);
690 i = (addr - range->start) >> PAGE_SHIFT;
691 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
692 int r;
693
694 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
695 if (r) {
696 /* hmm_vma_handle_pte() did unmap pte directory */
697 hmm_vma_walk->last = addr;
698 return r;
699 }
700 }
701 if (hmm_vma_walk->pgmap) {
702 /*
703 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
704 * so that we can leverage get_dev_pagemap() optimization which
705 * will not re-take a reference on a pgmap if we already have
706 * one.
707 */
708 put_dev_pagemap(hmm_vma_walk->pgmap);
709 hmm_vma_walk->pgmap = NULL;
710 }
711 pte_unmap(ptep - 1);
712
713 hmm_vma_walk->last = addr;
714 return 0;
715 }
716
717 static int hmm_vma_walk_pud(pud_t *pudp,
718 unsigned long start,
719 unsigned long end,
720 struct mm_walk *walk)
721 {
722 struct hmm_vma_walk *hmm_vma_walk = walk->private;
723 struct hmm_range *range = hmm_vma_walk->range;
724 unsigned long addr = start, next;
725 pmd_t *pmdp;
726 pud_t pud;
727 int ret;
728
729 again:
730 pud = READ_ONCE(*pudp);
731 if (pud_none(pud))
732 return hmm_vma_walk_hole(start, end, walk);
733
734 if (pud_huge(pud) && pud_devmap(pud)) {
735 unsigned long i, npages, pfn;
736 uint64_t *pfns, cpu_flags;
737 bool fault, write_fault;
738
739 if (!pud_present(pud))
740 return hmm_vma_walk_hole(start, end, walk);
741
742 i = (addr - range->start) >> PAGE_SHIFT;
743 npages = (end - addr) >> PAGE_SHIFT;
744 pfns = &range->pfns[i];
745
746 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
747 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
748 cpu_flags, &fault, &write_fault);
749 if (fault || write_fault)
750 return hmm_vma_walk_hole_(addr, end, fault,
751 write_fault, walk);
752
753 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
754 for (i = 0; i < npages; ++i, ++pfn) {
755 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
756 hmm_vma_walk->pgmap);
757 if (unlikely(!hmm_vma_walk->pgmap))
758 return -EBUSY;
759 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
760 cpu_flags;
761 }
762 if (hmm_vma_walk->pgmap) {
763 put_dev_pagemap(hmm_vma_walk->pgmap);
764 hmm_vma_walk->pgmap = NULL;
765 }
766 hmm_vma_walk->last = end;
767 return 0;
768 }
769
770 split_huge_pud(walk->vma, pudp, addr);
771 if (pud_none(*pudp))
772 goto again;
773
774 pmdp = pmd_offset(pudp, addr);
775 do {
776 next = pmd_addr_end(addr, end);
777 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
778 if (ret)
779 return ret;
780 } while (pmdp++, addr = next, addr != end);
781
782 return 0;
783 }
784
785 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
786 unsigned long start, unsigned long end,
787 struct mm_walk *walk)
788 {
789 #ifdef CONFIG_HUGETLB_PAGE
790 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
791 struct hmm_vma_walk *hmm_vma_walk = walk->private;
792 struct hmm_range *range = hmm_vma_walk->range;
793 struct vm_area_struct *vma = walk->vma;
794 struct hstate *h = hstate_vma(vma);
795 uint64_t orig_pfn, cpu_flags;
796 bool fault, write_fault;
797 spinlock_t *ptl;
798 pte_t entry;
799 int ret = 0;
800
801 size = 1UL << huge_page_shift(h);
802 mask = size - 1;
803 if (range->page_shift != PAGE_SHIFT) {
804 /* Make sure we are looking at full page. */
805 if (start & mask)
806 return -EINVAL;
807 if (end < (start + size))
808 return -EINVAL;
809 pfn_inc = size >> PAGE_SHIFT;
810 } else {
811 pfn_inc = 1;
812 size = PAGE_SIZE;
813 }
814
815
816 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
817 entry = huge_ptep_get(pte);
818
819 i = (start - range->start) >> range->page_shift;
820 orig_pfn = range->pfns[i];
821 range->pfns[i] = range->values[HMM_PFN_NONE];
822 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
823 fault = write_fault = false;
824 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
825 &fault, &write_fault);
826 if (fault || write_fault) {
827 ret = -ENOENT;
828 goto unlock;
829 }
830
831 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
832 for (; addr < end; addr += size, i++, pfn += pfn_inc)
833 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
834 cpu_flags;
835 hmm_vma_walk->last = end;
836
837 unlock:
838 spin_unlock(ptl);
839
840 if (ret == -ENOENT)
841 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
842
843 return ret;
844 #else /* CONFIG_HUGETLB_PAGE */
845 return -EINVAL;
846 #endif
847 }
848
849 static void hmm_pfns_clear(struct hmm_range *range,
850 uint64_t *pfns,
851 unsigned long addr,
852 unsigned long end)
853 {
854 for (; addr < end; addr += PAGE_SIZE, pfns++)
855 *pfns = range->values[HMM_PFN_NONE];
856 }
857
858 /*
859 * hmm_range_register() - start tracking change to CPU page table over a range
860 * @range: range
861 * @mm: the mm struct for the range of virtual address
862 * @start: start virtual address (inclusive)
863 * @end: end virtual address (exclusive)
864 * @page_shift: expect page shift for the range
865 * Returns 0 on success, -EFAULT if the address space is no longer valid
866 *
867 * Track updates to the CPU page table see include/linux/hmm.h
868 */
869 int hmm_range_register(struct hmm_range *range,
870 struct hmm_mirror *mirror,
871 unsigned long start,
872 unsigned long end,
873 unsigned page_shift)
874 {
875 unsigned long mask = ((1UL << page_shift) - 1UL);
876 struct hmm *hmm = mirror->hmm;
877 unsigned long flags;
878
879 range->valid = false;
880 range->hmm = NULL;
881
882 if ((start & mask) || (end & mask))
883 return -EINVAL;
884 if (start >= end)
885 return -EINVAL;
886
887 range->page_shift = page_shift;
888 range->start = start;
889 range->end = end;
890
891 /* Prevent hmm_release() from running while the range is valid */
892 if (!mmget_not_zero(hmm->mm))
893 return -EFAULT;
894
895 /* Initialize range to track CPU page table updates. */
896 spin_lock_irqsave(&hmm->ranges_lock, flags);
897
898 range->hmm = hmm;
899 kref_get(&hmm->kref);
900 list_add(&range->list, &hmm->ranges);
901
902 /*
903 * If there are any concurrent notifiers we have to wait for them for
904 * the range to be valid (see hmm_range_wait_until_valid()).
905 */
906 if (!hmm->notifiers)
907 range->valid = true;
908 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
909
910 return 0;
911 }
912 EXPORT_SYMBOL(hmm_range_register);
913
914 /*
915 * hmm_range_unregister() - stop tracking change to CPU page table over a range
916 * @range: range
917 *
918 * Range struct is used to track updates to the CPU page table after a call to
919 * hmm_range_register(). See include/linux/hmm.h for how to use it.
920 */
921 void hmm_range_unregister(struct hmm_range *range)
922 {
923 struct hmm *hmm = range->hmm;
924 unsigned long flags;
925
926 spin_lock_irqsave(&hmm->ranges_lock, flags);
927 list_del_init(&range->list);
928 spin_unlock_irqrestore(&hmm->ranges_lock, flags);
929
930 /* Drop reference taken by hmm_range_register() */
931 mmput(hmm->mm);
932 hmm_put(hmm);
933
934 /*
935 * The range is now invalid and the ref on the hmm is dropped, so
936 * poison the pointer. Leave other fields in place, for the caller's
937 * use.
938 */
939 range->valid = false;
940 memset(&range->hmm, POISON_INUSE, sizeof(range->hmm));
941 }
942 EXPORT_SYMBOL(hmm_range_unregister);
943
944 /*
945 * hmm_range_snapshot() - snapshot CPU page table for a range
946 * @range: range
947 * Return: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
948 * permission (for instance asking for write and range is read only),
949 * -EBUSY if you need to retry, -EFAULT invalid (ie either no valid
950 * vma or it is illegal to access that range), number of valid pages
951 * in range->pfns[] (from range start address).
952 *
953 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
954 * validity is tracked by range struct. See in include/linux/hmm.h for example
955 * on how to use.
956 */
957 long hmm_range_snapshot(struct hmm_range *range)
958 {
959 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
960 unsigned long start = range->start, end;
961 struct hmm_vma_walk hmm_vma_walk;
962 struct hmm *hmm = range->hmm;
963 struct vm_area_struct *vma;
964 struct mm_walk mm_walk;
965
966 lockdep_assert_held(&hmm->mm->mmap_sem);
967 do {
968 /* If range is no longer valid force retry. */
969 if (!range->valid)
970 return -EBUSY;
971
972 vma = find_vma(hmm->mm, start);
973 if (vma == NULL || (vma->vm_flags & device_vma))
974 return -EFAULT;
975
976 if (is_vm_hugetlb_page(vma)) {
977 if (huge_page_shift(hstate_vma(vma)) !=
978 range->page_shift &&
979 range->page_shift != PAGE_SHIFT)
980 return -EINVAL;
981 } else {
982 if (range->page_shift != PAGE_SHIFT)
983 return -EINVAL;
984 }
985
986 if (!(vma->vm_flags & VM_READ)) {
987 /*
988 * If vma do not allow read access, then assume that it
989 * does not allow write access, either. HMM does not
990 * support architecture that allow write without read.
991 */
992 hmm_pfns_clear(range, range->pfns,
993 range->start, range->end);
994 return -EPERM;
995 }
996
997 range->vma = vma;
998 hmm_vma_walk.pgmap = NULL;
999 hmm_vma_walk.last = start;
1000 hmm_vma_walk.fault = false;
1001 hmm_vma_walk.range = range;
1002 mm_walk.private = &hmm_vma_walk;
1003 end = min(range->end, vma->vm_end);
1004
1005 mm_walk.vma = vma;
1006 mm_walk.mm = vma->vm_mm;
1007 mm_walk.pte_entry = NULL;
1008 mm_walk.test_walk = NULL;
1009 mm_walk.hugetlb_entry = NULL;
1010 mm_walk.pud_entry = hmm_vma_walk_pud;
1011 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1012 mm_walk.pte_hole = hmm_vma_walk_hole;
1013 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1014
1015 walk_page_range(start, end, &mm_walk);
1016 start = end;
1017 } while (start < range->end);
1018
1019 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1020 }
1021 EXPORT_SYMBOL(hmm_range_snapshot);
1022
1023 /*
1024 * hmm_range_fault() - try to fault some address in a virtual address range
1025 * @range: range being faulted
1026 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1027 * Return: number of valid pages in range->pfns[] (from range start
1028 * address). This may be zero. If the return value is negative,
1029 * then one of the following values may be returned:
1030 *
1031 * -EINVAL invalid arguments or mm or virtual address are in an
1032 * invalid vma (for instance device file vma).
1033 * -ENOMEM: Out of memory.
1034 * -EPERM: Invalid permission (for instance asking for write and
1035 * range is read only).
1036 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1037 * happens if block argument is false.
1038 * -EBUSY: If the the range is being invalidated and you should wait
1039 * for invalidation to finish.
1040 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1041 * that range), number of valid pages in range->pfns[] (from
1042 * range start address).
1043 *
1044 * This is similar to a regular CPU page fault except that it will not trigger
1045 * any memory migration if the memory being faulted is not accessible by CPUs
1046 * and caller does not ask for migration.
1047 *
1048 * On error, for one virtual address in the range, the function will mark the
1049 * corresponding HMM pfn entry with an error flag.
1050 */
1051 long hmm_range_fault(struct hmm_range *range, bool block)
1052 {
1053 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1054 unsigned long start = range->start, end;
1055 struct hmm_vma_walk hmm_vma_walk;
1056 struct hmm *hmm = range->hmm;
1057 struct vm_area_struct *vma;
1058 struct mm_walk mm_walk;
1059 int ret;
1060
1061 lockdep_assert_held(&hmm->mm->mmap_sem);
1062
1063 do {
1064 /* If range is no longer valid force retry. */
1065 if (!range->valid)
1066 return -EBUSY;
1067
1068 vma = find_vma(hmm->mm, start);
1069 if (vma == NULL || (vma->vm_flags & device_vma))
1070 return -EFAULT;
1071
1072 if (is_vm_hugetlb_page(vma)) {
1073 if (huge_page_shift(hstate_vma(vma)) !=
1074 range->page_shift &&
1075 range->page_shift != PAGE_SHIFT)
1076 return -EINVAL;
1077 } else {
1078 if (range->page_shift != PAGE_SHIFT)
1079 return -EINVAL;
1080 }
1081
1082 if (!(vma->vm_flags & VM_READ)) {
1083 /*
1084 * If vma do not allow read access, then assume that it
1085 * does not allow write access, either. HMM does not
1086 * support architecture that allow write without read.
1087 */
1088 hmm_pfns_clear(range, range->pfns,
1089 range->start, range->end);
1090 return -EPERM;
1091 }
1092
1093 range->vma = vma;
1094 hmm_vma_walk.pgmap = NULL;
1095 hmm_vma_walk.last = start;
1096 hmm_vma_walk.fault = true;
1097 hmm_vma_walk.block = block;
1098 hmm_vma_walk.range = range;
1099 mm_walk.private = &hmm_vma_walk;
1100 end = min(range->end, vma->vm_end);
1101
1102 mm_walk.vma = vma;
1103 mm_walk.mm = vma->vm_mm;
1104 mm_walk.pte_entry = NULL;
1105 mm_walk.test_walk = NULL;
1106 mm_walk.hugetlb_entry = NULL;
1107 mm_walk.pud_entry = hmm_vma_walk_pud;
1108 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1109 mm_walk.pte_hole = hmm_vma_walk_hole;
1110 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1111
1112 do {
1113 ret = walk_page_range(start, end, &mm_walk);
1114 start = hmm_vma_walk.last;
1115
1116 /* Keep trying while the range is valid. */
1117 } while (ret == -EBUSY && range->valid);
1118
1119 if (ret) {
1120 unsigned long i;
1121
1122 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1123 hmm_pfns_clear(range, &range->pfns[i],
1124 hmm_vma_walk.last, range->end);
1125 return ret;
1126 }
1127 start = end;
1128
1129 } while (start < range->end);
1130
1131 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1132 }
1133 EXPORT_SYMBOL(hmm_range_fault);
1134
1135 /**
1136 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1137 * @range: range being faulted
1138 * @device: device against to dma map page to
1139 * @daddrs: dma address of mapped pages
1140 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1141 * Return: number of pages mapped on success, -EAGAIN if mmap_sem have been
1142 * drop and you need to try again, some other error value otherwise
1143 *
1144 * Note same usage pattern as hmm_range_fault().
1145 */
1146 long hmm_range_dma_map(struct hmm_range *range,
1147 struct device *device,
1148 dma_addr_t *daddrs,
1149 bool block)
1150 {
1151 unsigned long i, npages, mapped;
1152 long ret;
1153
1154 ret = hmm_range_fault(range, block);
1155 if (ret <= 0)
1156 return ret ? ret : -EBUSY;
1157
1158 npages = (range->end - range->start) >> PAGE_SHIFT;
1159 for (i = 0, mapped = 0; i < npages; ++i) {
1160 enum dma_data_direction dir = DMA_TO_DEVICE;
1161 struct page *page;
1162
1163 /*
1164 * FIXME need to update DMA API to provide invalid DMA address
1165 * value instead of a function to test dma address value. This
1166 * would remove lot of dumb code duplicated accross many arch.
1167 *
1168 * For now setting it to 0 here is good enough as the pfns[]
1169 * value is what is use to check what is valid and what isn't.
1170 */
1171 daddrs[i] = 0;
1172
1173 page = hmm_device_entry_to_page(range, range->pfns[i]);
1174 if (page == NULL)
1175 continue;
1176
1177 /* Check if range is being invalidated */
1178 if (!range->valid) {
1179 ret = -EBUSY;
1180 goto unmap;
1181 }
1182
1183 /* If it is read and write than map bi-directional. */
1184 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1185 dir = DMA_BIDIRECTIONAL;
1186
1187 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1188 if (dma_mapping_error(device, daddrs[i])) {
1189 ret = -EFAULT;
1190 goto unmap;
1191 }
1192
1193 mapped++;
1194 }
1195
1196 return mapped;
1197
1198 unmap:
1199 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1200 enum dma_data_direction dir = DMA_TO_DEVICE;
1201 struct page *page;
1202
1203 page = hmm_device_entry_to_page(range, range->pfns[i]);
1204 if (page == NULL)
1205 continue;
1206
1207 if (dma_mapping_error(device, daddrs[i]))
1208 continue;
1209
1210 /* If it is read and write than map bi-directional. */
1211 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1212 dir = DMA_BIDIRECTIONAL;
1213
1214 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1215 mapped--;
1216 }
1217
1218 return ret;
1219 }
1220 EXPORT_SYMBOL(hmm_range_dma_map);
1221
1222 /**
1223 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1224 * @range: range being unmapped
1225 * @vma: the vma against which the range (optional)
1226 * @device: device against which dma map was done
1227 * @daddrs: dma address of mapped pages
1228 * @dirty: dirty page if it had the write flag set
1229 * Return: number of page unmapped on success, -EINVAL otherwise
1230 *
1231 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1232 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1233 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1234 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1235 */
1236 long hmm_range_dma_unmap(struct hmm_range *range,
1237 struct vm_area_struct *vma,
1238 struct device *device,
1239 dma_addr_t *daddrs,
1240 bool dirty)
1241 {
1242 unsigned long i, npages;
1243 long cpages = 0;
1244
1245 /* Sanity check. */
1246 if (range->end <= range->start)
1247 return -EINVAL;
1248 if (!daddrs)
1249 return -EINVAL;
1250 if (!range->pfns)
1251 return -EINVAL;
1252
1253 npages = (range->end - range->start) >> PAGE_SHIFT;
1254 for (i = 0; i < npages; ++i) {
1255 enum dma_data_direction dir = DMA_TO_DEVICE;
1256 struct page *page;
1257
1258 page = hmm_device_entry_to_page(range, range->pfns[i]);
1259 if (page == NULL)
1260 continue;
1261
1262 /* If it is read and write than map bi-directional. */
1263 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1264 dir = DMA_BIDIRECTIONAL;
1265
1266 /*
1267 * See comments in function description on why it is
1268 * safe here to call set_page_dirty()
1269 */
1270 if (dirty)
1271 set_page_dirty(page);
1272 }
1273
1274 /* Unmap and clear pfns/dma address */
1275 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1276 range->pfns[i] = range->values[HMM_PFN_NONE];
1277 /* FIXME see comments in hmm_vma_dma_map() */
1278 daddrs[i] = 0;
1279 cpages++;
1280 }
1281
1282 return cpages;
1283 }
1284 EXPORT_SYMBOL(hmm_range_dma_unmap);