]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/hmm.c
mm/hmm: use device_private_entry_to_pfn()
[mirror_ubuntu-hirsute-kernel.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2013 Red Hat Inc.
4 *
5 * Authors: Jérôme Glisse <jglisse@redhat.com>
6 */
7 /*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 struct hmm_vma_walk {
30 struct hmm_range *range;
31 unsigned long last;
32 };
33
34 enum {
35 HMM_NEED_FAULT = 1 << 0,
36 HMM_NEED_WRITE_FAULT = 1 << 1,
37 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39
40 /*
41 * hmm_device_entry_from_pfn() - create a valid device entry value from pfn
42 * @range: range use to encode HMM pfn value
43 * @pfn: pfn value for which to create the device entry
44 * Return: valid device entry for the pfn
45 */
46 static uint64_t hmm_device_entry_from_pfn(const struct hmm_range *range,
47 unsigned long pfn)
48 {
49 return (pfn << range->pfn_shift) | range->flags[HMM_PFN_VALID];
50 }
51
52 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
53 struct hmm_range *range, enum hmm_pfn_value_e value)
54 {
55 uint64_t *pfns = range->pfns;
56 unsigned long i;
57
58 i = (addr - range->start) >> PAGE_SHIFT;
59 for (; addr < end; addr += PAGE_SIZE, i++)
60 pfns[i] = range->values[value];
61
62 return 0;
63 }
64
65 /*
66 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
67 * @addr: range virtual start address (inclusive)
68 * @end: range virtual end address (exclusive)
69 * @required_fault: HMM_NEED_* flags
70 * @walk: mm_walk structure
71 * Return: -EBUSY after page fault, or page fault error
72 *
73 * This function will be called whenever pmd_none() or pte_none() returns true,
74 * or whenever there is no page directory covering the virtual address range.
75 */
76 static int hmm_vma_fault(unsigned long addr, unsigned long end,
77 unsigned int required_fault, struct mm_walk *walk)
78 {
79 struct hmm_vma_walk *hmm_vma_walk = walk->private;
80 struct hmm_range *range = hmm_vma_walk->range;
81 struct vm_area_struct *vma = walk->vma;
82 uint64_t *pfns = range->pfns;
83 unsigned long i = (addr - range->start) >> PAGE_SHIFT;
84 unsigned int fault_flags = FAULT_FLAG_REMOTE;
85
86 WARN_ON_ONCE(!required_fault);
87 hmm_vma_walk->last = addr;
88
89 if (!vma)
90 goto out_error;
91
92 if (required_fault & HMM_NEED_WRITE_FAULT) {
93 if (!(vma->vm_flags & VM_WRITE))
94 return -EPERM;
95 fault_flags |= FAULT_FLAG_WRITE;
96 }
97
98 for (; addr < end; addr += PAGE_SIZE, i++)
99 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
100 goto out_error;
101
102 return -EBUSY;
103
104 out_error:
105 pfns[i] = range->values[HMM_PFN_ERROR];
106 return -EFAULT;
107 }
108
109 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
110 uint64_t pfns, uint64_t cpu_flags)
111 {
112 struct hmm_range *range = hmm_vma_walk->range;
113
114 /*
115 * So we not only consider the individual per page request we also
116 * consider the default flags requested for the range. The API can
117 * be used 2 ways. The first one where the HMM user coalesces
118 * multiple page faults into one request and sets flags per pfn for
119 * those faults. The second one where the HMM user wants to pre-
120 * fault a range with specific flags. For the latter one it is a
121 * waste to have the user pre-fill the pfn arrays with a default
122 * flags value.
123 */
124 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
125
126 /* We aren't ask to do anything ... */
127 if (!(pfns & range->flags[HMM_PFN_VALID]))
128 return 0;
129
130 /* Need to write fault ? */
131 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
132 !(cpu_flags & range->flags[HMM_PFN_WRITE]))
133 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
134
135 /* If CPU page table is not valid then we need to fault */
136 if (!(cpu_flags & range->flags[HMM_PFN_VALID]))
137 return HMM_NEED_FAULT;
138 return 0;
139 }
140
141 static unsigned int
142 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
143 const uint64_t *pfns, unsigned long npages,
144 uint64_t cpu_flags)
145 {
146 struct hmm_range *range = hmm_vma_walk->range;
147 unsigned int required_fault = 0;
148 unsigned long i;
149
150 /*
151 * If the default flags do not request to fault pages, and the mask does
152 * not allow for individual pages to be faulted, then
153 * hmm_pte_need_fault() will always return 0.
154 */
155 if (!((range->default_flags | range->pfn_flags_mask) &
156 range->flags[HMM_PFN_VALID]))
157 return 0;
158
159 for (i = 0; i < npages; ++i) {
160 required_fault |=
161 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags);
162 if (required_fault == HMM_NEED_ALL_BITS)
163 return required_fault;
164 }
165 return required_fault;
166 }
167
168 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
169 __always_unused int depth, struct mm_walk *walk)
170 {
171 struct hmm_vma_walk *hmm_vma_walk = walk->private;
172 struct hmm_range *range = hmm_vma_walk->range;
173 unsigned int required_fault;
174 unsigned long i, npages;
175 uint64_t *pfns;
176
177 i = (addr - range->start) >> PAGE_SHIFT;
178 npages = (end - addr) >> PAGE_SHIFT;
179 pfns = &range->pfns[i];
180 required_fault = hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0);
181 if (required_fault)
182 return hmm_vma_fault(addr, end, required_fault, walk);
183 hmm_vma_walk->last = addr;
184 return hmm_pfns_fill(addr, end, range, HMM_PFN_NONE);
185 }
186
187 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
188 {
189 if (pmd_protnone(pmd))
190 return 0;
191 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
192 range->flags[HMM_PFN_WRITE] :
193 range->flags[HMM_PFN_VALID];
194 }
195
196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
197 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
198 unsigned long end, uint64_t *pfns, pmd_t pmd)
199 {
200 struct hmm_vma_walk *hmm_vma_walk = walk->private;
201 struct hmm_range *range = hmm_vma_walk->range;
202 unsigned long pfn, npages, i;
203 unsigned int required_fault;
204 uint64_t cpu_flags;
205
206 npages = (end - addr) >> PAGE_SHIFT;
207 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
208 required_fault =
209 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags);
210 if (required_fault)
211 return hmm_vma_fault(addr, end, required_fault, walk);
212
213 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
214 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
215 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
216 hmm_vma_walk->last = end;
217 return 0;
218 }
219 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
220 /* stub to allow the code below to compile */
221 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
222 unsigned long end, uint64_t *pfns, pmd_t pmd);
223 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
224
225 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
226 swp_entry_t entry)
227 {
228 return is_device_private_entry(entry) &&
229 device_private_entry_to_page(entry)->pgmap->owner ==
230 range->dev_private_owner;
231 }
232
233 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
234 {
235 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
236 return 0;
237 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
238 range->flags[HMM_PFN_WRITE] :
239 range->flags[HMM_PFN_VALID];
240 }
241
242 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
243 unsigned long end, pmd_t *pmdp, pte_t *ptep,
244 uint64_t *pfn)
245 {
246 struct hmm_vma_walk *hmm_vma_walk = walk->private;
247 struct hmm_range *range = hmm_vma_walk->range;
248 unsigned int required_fault;
249 uint64_t cpu_flags;
250 pte_t pte = *ptep;
251 uint64_t orig_pfn = *pfn;
252
253 *pfn = range->values[HMM_PFN_NONE];
254 if (pte_none(pte)) {
255 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0);
256 if (required_fault)
257 goto fault;
258 return 0;
259 }
260
261 if (!pte_present(pte)) {
262 swp_entry_t entry = pte_to_swp_entry(pte);
263
264 /*
265 * Never fault in device private pages pages, but just report
266 * the PFN even if not present.
267 */
268 if (hmm_is_device_private_entry(range, entry)) {
269 *pfn = hmm_device_entry_from_pfn(range,
270 device_private_entry_to_pfn(entry));
271 *pfn |= range->flags[HMM_PFN_VALID];
272 if (is_write_device_private_entry(entry))
273 *pfn |= range->flags[HMM_PFN_WRITE];
274 return 0;
275 }
276
277 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0);
278 if (!required_fault)
279 return 0;
280
281 if (!non_swap_entry(entry))
282 goto fault;
283
284 if (is_migration_entry(entry)) {
285 pte_unmap(ptep);
286 hmm_vma_walk->last = addr;
287 migration_entry_wait(walk->mm, pmdp, addr);
288 return -EBUSY;
289 }
290
291 /* Report error for everything else */
292 pte_unmap(ptep);
293 *pfn = range->values[HMM_PFN_ERROR];
294 return -EFAULT;
295 }
296
297 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
298 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags);
299 if (required_fault)
300 goto fault;
301
302 /*
303 * Since each architecture defines a struct page for the zero page, just
304 * fall through and treat it like a normal page.
305 */
306 if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
307 if (hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0)) {
308 pte_unmap(ptep);
309 return -EFAULT;
310 }
311 *pfn = range->values[HMM_PFN_SPECIAL];
312 return 0;
313 }
314
315 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
316 return 0;
317
318 fault:
319 pte_unmap(ptep);
320 /* Fault any virtual address we were asked to fault */
321 return hmm_vma_fault(addr, end, required_fault, walk);
322 }
323
324 static int hmm_vma_walk_pmd(pmd_t *pmdp,
325 unsigned long start,
326 unsigned long end,
327 struct mm_walk *walk)
328 {
329 struct hmm_vma_walk *hmm_vma_walk = walk->private;
330 struct hmm_range *range = hmm_vma_walk->range;
331 uint64_t *pfns = &range->pfns[(start - range->start) >> PAGE_SHIFT];
332 unsigned long npages = (end - start) >> PAGE_SHIFT;
333 unsigned long addr = start;
334 pte_t *ptep;
335 pmd_t pmd;
336
337 again:
338 pmd = READ_ONCE(*pmdp);
339 if (pmd_none(pmd))
340 return hmm_vma_walk_hole(start, end, -1, walk);
341
342 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
343 if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0)) {
344 hmm_vma_walk->last = addr;
345 pmd_migration_entry_wait(walk->mm, pmdp);
346 return -EBUSY;
347 }
348 return hmm_pfns_fill(start, end, range, HMM_PFN_NONE);
349 }
350
351 if (!pmd_present(pmd)) {
352 if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0))
353 return -EFAULT;
354 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
355 }
356
357 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
358 /*
359 * No need to take pmd_lock here, even if some other thread
360 * is splitting the huge pmd we will get that event through
361 * mmu_notifier callback.
362 *
363 * So just read pmd value and check again it's a transparent
364 * huge or device mapping one and compute corresponding pfn
365 * values.
366 */
367 pmd = pmd_read_atomic(pmdp);
368 barrier();
369 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
370 goto again;
371
372 return hmm_vma_handle_pmd(walk, addr, end, pfns, pmd);
373 }
374
375 /*
376 * We have handled all the valid cases above ie either none, migration,
377 * huge or transparent huge. At this point either it is a valid pmd
378 * entry pointing to pte directory or it is a bad pmd that will not
379 * recover.
380 */
381 if (pmd_bad(pmd)) {
382 if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0))
383 return -EFAULT;
384 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
385 }
386
387 ptep = pte_offset_map(pmdp, addr);
388 for (; addr < end; addr += PAGE_SIZE, ptep++, pfns++) {
389 int r;
390
391 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, pfns);
392 if (r) {
393 /* hmm_vma_handle_pte() did pte_unmap() */
394 hmm_vma_walk->last = addr;
395 return r;
396 }
397 }
398 pte_unmap(ptep - 1);
399
400 hmm_vma_walk->last = addr;
401 return 0;
402 }
403
404 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
405 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
406 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
407 {
408 if (!pud_present(pud))
409 return 0;
410 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
411 range->flags[HMM_PFN_WRITE] :
412 range->flags[HMM_PFN_VALID];
413 }
414
415 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
416 struct mm_walk *walk)
417 {
418 struct hmm_vma_walk *hmm_vma_walk = walk->private;
419 struct hmm_range *range = hmm_vma_walk->range;
420 unsigned long addr = start;
421 pud_t pud;
422 int ret = 0;
423 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
424
425 if (!ptl)
426 return 0;
427
428 /* Normally we don't want to split the huge page */
429 walk->action = ACTION_CONTINUE;
430
431 pud = READ_ONCE(*pudp);
432 if (pud_none(pud)) {
433 spin_unlock(ptl);
434 return hmm_vma_walk_hole(start, end, -1, walk);
435 }
436
437 if (pud_huge(pud) && pud_devmap(pud)) {
438 unsigned long i, npages, pfn;
439 unsigned int required_fault;
440 uint64_t *pfns, cpu_flags;
441
442 if (!pud_present(pud)) {
443 spin_unlock(ptl);
444 return hmm_vma_walk_hole(start, end, -1, walk);
445 }
446
447 i = (addr - range->start) >> PAGE_SHIFT;
448 npages = (end - addr) >> PAGE_SHIFT;
449 pfns = &range->pfns[i];
450
451 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
452 required_fault = hmm_range_need_fault(hmm_vma_walk, pfns,
453 npages, cpu_flags);
454 if (required_fault) {
455 spin_unlock(ptl);
456 return hmm_vma_fault(addr, end, required_fault, walk);
457 }
458
459 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
460 for (i = 0; i < npages; ++i, ++pfn)
461 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
462 cpu_flags;
463 hmm_vma_walk->last = end;
464 goto out_unlock;
465 }
466
467 /* Ask for the PUD to be split */
468 walk->action = ACTION_SUBTREE;
469
470 out_unlock:
471 spin_unlock(ptl);
472 return ret;
473 }
474 #else
475 #define hmm_vma_walk_pud NULL
476 #endif
477
478 #ifdef CONFIG_HUGETLB_PAGE
479 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
480 unsigned long start, unsigned long end,
481 struct mm_walk *walk)
482 {
483 unsigned long addr = start, i, pfn;
484 struct hmm_vma_walk *hmm_vma_walk = walk->private;
485 struct hmm_range *range = hmm_vma_walk->range;
486 struct vm_area_struct *vma = walk->vma;
487 uint64_t orig_pfn, cpu_flags;
488 unsigned int required_fault;
489 spinlock_t *ptl;
490 pte_t entry;
491
492 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
493 entry = huge_ptep_get(pte);
494
495 i = (start - range->start) >> PAGE_SHIFT;
496 orig_pfn = range->pfns[i];
497 range->pfns[i] = range->values[HMM_PFN_NONE];
498 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
499 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags);
500 if (required_fault) {
501 spin_unlock(ptl);
502 return hmm_vma_fault(addr, end, required_fault, walk);
503 }
504
505 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
506 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
507 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
508 cpu_flags;
509 hmm_vma_walk->last = end;
510 spin_unlock(ptl);
511 return 0;
512 }
513 #else
514 #define hmm_vma_walk_hugetlb_entry NULL
515 #endif /* CONFIG_HUGETLB_PAGE */
516
517 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
518 struct mm_walk *walk)
519 {
520 struct hmm_vma_walk *hmm_vma_walk = walk->private;
521 struct hmm_range *range = hmm_vma_walk->range;
522 struct vm_area_struct *vma = walk->vma;
523
524 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
525 vma->vm_flags & VM_READ)
526 return 0;
527
528 /*
529 * vma ranges that don't have struct page backing them or map I/O
530 * devices directly cannot be handled by hmm_range_fault().
531 *
532 * If the vma does not allow read access, then assume that it does not
533 * allow write access either. HMM does not support architectures that
534 * allow write without read.
535 *
536 * If a fault is requested for an unsupported range then it is a hard
537 * failure.
538 */
539 if (hmm_range_need_fault(hmm_vma_walk,
540 range->pfns +
541 ((start - range->start) >> PAGE_SHIFT),
542 (end - start) >> PAGE_SHIFT, 0))
543 return -EFAULT;
544
545 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
546 hmm_vma_walk->last = end;
547
548 /* Skip this vma and continue processing the next vma. */
549 return 1;
550 }
551
552 static const struct mm_walk_ops hmm_walk_ops = {
553 .pud_entry = hmm_vma_walk_pud,
554 .pmd_entry = hmm_vma_walk_pmd,
555 .pte_hole = hmm_vma_walk_hole,
556 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
557 .test_walk = hmm_vma_walk_test,
558 };
559
560 /**
561 * hmm_range_fault - try to fault some address in a virtual address range
562 * @range: argument structure
563 *
564 * Return: the number of valid pages in range->pfns[] (from range start
565 * address), which may be zero. On error one of the following status codes
566 * can be returned:
567 *
568 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
569 * (e.g., device file vma).
570 * -ENOMEM: Out of memory.
571 * -EPERM: Invalid permission (e.g., asking for write and range is read
572 * only).
573 * -EBUSY: The range has been invalidated and the caller needs to wait for
574 * the invalidation to finish.
575 * -EFAULT: A page was requested to be valid and could not be made valid
576 * ie it has no backing VMA or it is illegal to access
577 *
578 * This is similar to get_user_pages(), except that it can read the page tables
579 * without mutating them (ie causing faults).
580 *
581 * On error, for one virtual address in the range, the function will mark the
582 * corresponding HMM pfn entry with an error flag.
583 */
584 long hmm_range_fault(struct hmm_range *range)
585 {
586 struct hmm_vma_walk hmm_vma_walk = {
587 .range = range,
588 .last = range->start,
589 };
590 struct mm_struct *mm = range->notifier->mm;
591 int ret;
592
593 lockdep_assert_held(&mm->mmap_sem);
594
595 do {
596 /* If range is no longer valid force retry. */
597 if (mmu_interval_check_retry(range->notifier,
598 range->notifier_seq))
599 return -EBUSY;
600 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
601 &hmm_walk_ops, &hmm_vma_walk);
602 } while (ret == -EBUSY);
603
604 if (ret)
605 return ret;
606 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
607 }
608 EXPORT_SYMBOL(hmm_range_fault);