]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/hmm.c
drm/ingenic: Validate mode in a .mode_valid callback
[mirror_ubuntu-jammy-kernel.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2013 Red Hat Inc.
4 *
5 * Authors: Jérôme Glisse <jglisse@redhat.com>
6 */
7 /*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 struct hmm_vma_walk {
30 struct hmm_range *range;
31 unsigned long last;
32 };
33
34 enum {
35 HMM_NEED_FAULT = 1 << 0,
36 HMM_NEED_WRITE_FAULT = 1 << 1,
37 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39
40 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
41 struct hmm_range *range, unsigned long cpu_flags)
42 {
43 unsigned long i = (addr - range->start) >> PAGE_SHIFT;
44
45 for (; addr < end; addr += PAGE_SIZE, i++)
46 range->hmm_pfns[i] = cpu_flags;
47 return 0;
48 }
49
50 /*
51 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
52 * @addr: range virtual start address (inclusive)
53 * @end: range virtual end address (exclusive)
54 * @required_fault: HMM_NEED_* flags
55 * @walk: mm_walk structure
56 * Return: -EBUSY after page fault, or page fault error
57 *
58 * This function will be called whenever pmd_none() or pte_none() returns true,
59 * or whenever there is no page directory covering the virtual address range.
60 */
61 static int hmm_vma_fault(unsigned long addr, unsigned long end,
62 unsigned int required_fault, struct mm_walk *walk)
63 {
64 struct hmm_vma_walk *hmm_vma_walk = walk->private;
65 struct vm_area_struct *vma = walk->vma;
66 unsigned int fault_flags = FAULT_FLAG_REMOTE;
67
68 WARN_ON_ONCE(!required_fault);
69 hmm_vma_walk->last = addr;
70
71 if (required_fault & HMM_NEED_WRITE_FAULT) {
72 if (!(vma->vm_flags & VM_WRITE))
73 return -EPERM;
74 fault_flags |= FAULT_FLAG_WRITE;
75 }
76
77 for (; addr < end; addr += PAGE_SIZE)
78 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
79 return -EFAULT;
80 return -EBUSY;
81 }
82
83 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
84 unsigned long pfn_req_flags,
85 unsigned long cpu_flags)
86 {
87 struct hmm_range *range = hmm_vma_walk->range;
88
89 /*
90 * So we not only consider the individual per page request we also
91 * consider the default flags requested for the range. The API can
92 * be used 2 ways. The first one where the HMM user coalesces
93 * multiple page faults into one request and sets flags per pfn for
94 * those faults. The second one where the HMM user wants to pre-
95 * fault a range with specific flags. For the latter one it is a
96 * waste to have the user pre-fill the pfn arrays with a default
97 * flags value.
98 */
99 pfn_req_flags &= range->pfn_flags_mask;
100 pfn_req_flags |= range->default_flags;
101
102 /* We aren't ask to do anything ... */
103 if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
104 return 0;
105
106 /* Need to write fault ? */
107 if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
108 !(cpu_flags & HMM_PFN_WRITE))
109 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
110
111 /* If CPU page table is not valid then we need to fault */
112 if (!(cpu_flags & HMM_PFN_VALID))
113 return HMM_NEED_FAULT;
114 return 0;
115 }
116
117 static unsigned int
118 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
119 const unsigned long hmm_pfns[], unsigned long npages,
120 unsigned long cpu_flags)
121 {
122 struct hmm_range *range = hmm_vma_walk->range;
123 unsigned int required_fault = 0;
124 unsigned long i;
125
126 /*
127 * If the default flags do not request to fault pages, and the mask does
128 * not allow for individual pages to be faulted, then
129 * hmm_pte_need_fault() will always return 0.
130 */
131 if (!((range->default_flags | range->pfn_flags_mask) &
132 HMM_PFN_REQ_FAULT))
133 return 0;
134
135 for (i = 0; i < npages; ++i) {
136 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
137 cpu_flags);
138 if (required_fault == HMM_NEED_ALL_BITS)
139 return required_fault;
140 }
141 return required_fault;
142 }
143
144 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
145 __always_unused int depth, struct mm_walk *walk)
146 {
147 struct hmm_vma_walk *hmm_vma_walk = walk->private;
148 struct hmm_range *range = hmm_vma_walk->range;
149 unsigned int required_fault;
150 unsigned long i, npages;
151 unsigned long *hmm_pfns;
152
153 i = (addr - range->start) >> PAGE_SHIFT;
154 npages = (end - addr) >> PAGE_SHIFT;
155 hmm_pfns = &range->hmm_pfns[i];
156 required_fault =
157 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
158 if (!walk->vma) {
159 if (required_fault)
160 return -EFAULT;
161 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
162 }
163 if (required_fault)
164 return hmm_vma_fault(addr, end, required_fault, walk);
165 return hmm_pfns_fill(addr, end, range, 0);
166 }
167
168 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
169 pmd_t pmd)
170 {
171 if (pmd_protnone(pmd))
172 return 0;
173 return pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
174 }
175
176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
177 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
178 unsigned long end, unsigned long hmm_pfns[],
179 pmd_t pmd)
180 {
181 struct hmm_vma_walk *hmm_vma_walk = walk->private;
182 struct hmm_range *range = hmm_vma_walk->range;
183 unsigned long pfn, npages, i;
184 unsigned int required_fault;
185 unsigned long cpu_flags;
186
187 npages = (end - addr) >> PAGE_SHIFT;
188 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
189 required_fault =
190 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
191 if (required_fault)
192 return hmm_vma_fault(addr, end, required_fault, walk);
193
194 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
195 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
196 hmm_pfns[i] = pfn | cpu_flags;
197 return 0;
198 }
199 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
200 /* stub to allow the code below to compile */
201 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
202 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
203 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
204
205 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
206 swp_entry_t entry)
207 {
208 return is_device_private_entry(entry) &&
209 device_private_entry_to_page(entry)->pgmap->owner ==
210 range->dev_private_owner;
211 }
212
213 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
214 pte_t pte)
215 {
216 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
217 return 0;
218 return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
219 }
220
221 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
222 unsigned long end, pmd_t *pmdp, pte_t *ptep,
223 unsigned long *hmm_pfn)
224 {
225 struct hmm_vma_walk *hmm_vma_walk = walk->private;
226 struct hmm_range *range = hmm_vma_walk->range;
227 unsigned int required_fault;
228 unsigned long cpu_flags;
229 pte_t pte = *ptep;
230 uint64_t pfn_req_flags = *hmm_pfn;
231
232 if (pte_none(pte)) {
233 required_fault =
234 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
235 if (required_fault)
236 goto fault;
237 *hmm_pfn = 0;
238 return 0;
239 }
240
241 if (!pte_present(pte)) {
242 swp_entry_t entry = pte_to_swp_entry(pte);
243
244 /*
245 * Never fault in device private pages pages, but just report
246 * the PFN even if not present.
247 */
248 if (hmm_is_device_private_entry(range, entry)) {
249 cpu_flags = HMM_PFN_VALID;
250 if (is_write_device_private_entry(entry))
251 cpu_flags |= HMM_PFN_WRITE;
252 *hmm_pfn = device_private_entry_to_pfn(entry) |
253 cpu_flags;
254 return 0;
255 }
256
257 required_fault =
258 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
259 if (!required_fault) {
260 *hmm_pfn = 0;
261 return 0;
262 }
263
264 if (!non_swap_entry(entry))
265 goto fault;
266
267 if (is_migration_entry(entry)) {
268 pte_unmap(ptep);
269 hmm_vma_walk->last = addr;
270 migration_entry_wait(walk->mm, pmdp, addr);
271 return -EBUSY;
272 }
273
274 /* Report error for everything else */
275 pte_unmap(ptep);
276 return -EFAULT;
277 }
278
279 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
280 required_fault =
281 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
282 if (required_fault)
283 goto fault;
284
285 /*
286 * Since each architecture defines a struct page for the zero page, just
287 * fall through and treat it like a normal page.
288 */
289 if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
290 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
291 pte_unmap(ptep);
292 return -EFAULT;
293 }
294 *hmm_pfn = HMM_PFN_ERROR;
295 return 0;
296 }
297
298 *hmm_pfn = pte_pfn(pte) | cpu_flags;
299 return 0;
300
301 fault:
302 pte_unmap(ptep);
303 /* Fault any virtual address we were asked to fault */
304 return hmm_vma_fault(addr, end, required_fault, walk);
305 }
306
307 static int hmm_vma_walk_pmd(pmd_t *pmdp,
308 unsigned long start,
309 unsigned long end,
310 struct mm_walk *walk)
311 {
312 struct hmm_vma_walk *hmm_vma_walk = walk->private;
313 struct hmm_range *range = hmm_vma_walk->range;
314 unsigned long *hmm_pfns =
315 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
316 unsigned long npages = (end - start) >> PAGE_SHIFT;
317 unsigned long addr = start;
318 pte_t *ptep;
319 pmd_t pmd;
320
321 again:
322 pmd = READ_ONCE(*pmdp);
323 if (pmd_none(pmd))
324 return hmm_vma_walk_hole(start, end, -1, walk);
325
326 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
327 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
328 hmm_vma_walk->last = addr;
329 pmd_migration_entry_wait(walk->mm, pmdp);
330 return -EBUSY;
331 }
332 return hmm_pfns_fill(start, end, range, 0);
333 }
334
335 if (!pmd_present(pmd)) {
336 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
337 return -EFAULT;
338 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
339 }
340
341 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
342 /*
343 * No need to take pmd_lock here, even if some other thread
344 * is splitting the huge pmd we will get that event through
345 * mmu_notifier callback.
346 *
347 * So just read pmd value and check again it's a transparent
348 * huge or device mapping one and compute corresponding pfn
349 * values.
350 */
351 pmd = pmd_read_atomic(pmdp);
352 barrier();
353 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
354 goto again;
355
356 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
357 }
358
359 /*
360 * We have handled all the valid cases above ie either none, migration,
361 * huge or transparent huge. At this point either it is a valid pmd
362 * entry pointing to pte directory or it is a bad pmd that will not
363 * recover.
364 */
365 if (pmd_bad(pmd)) {
366 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
367 return -EFAULT;
368 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
369 }
370
371 ptep = pte_offset_map(pmdp, addr);
372 for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
373 int r;
374
375 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
376 if (r) {
377 /* hmm_vma_handle_pte() did pte_unmap() */
378 return r;
379 }
380 }
381 pte_unmap(ptep - 1);
382 return 0;
383 }
384
385 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
386 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
387 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
388 pud_t pud)
389 {
390 if (!pud_present(pud))
391 return 0;
392 return pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
393 }
394
395 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
396 struct mm_walk *walk)
397 {
398 struct hmm_vma_walk *hmm_vma_walk = walk->private;
399 struct hmm_range *range = hmm_vma_walk->range;
400 unsigned long addr = start;
401 pud_t pud;
402 int ret = 0;
403 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
404
405 if (!ptl)
406 return 0;
407
408 /* Normally we don't want to split the huge page */
409 walk->action = ACTION_CONTINUE;
410
411 pud = READ_ONCE(*pudp);
412 if (pud_none(pud)) {
413 spin_unlock(ptl);
414 return hmm_vma_walk_hole(start, end, -1, walk);
415 }
416
417 if (pud_huge(pud) && pud_devmap(pud)) {
418 unsigned long i, npages, pfn;
419 unsigned int required_fault;
420 unsigned long *hmm_pfns;
421 unsigned long cpu_flags;
422
423 if (!pud_present(pud)) {
424 spin_unlock(ptl);
425 return hmm_vma_walk_hole(start, end, -1, walk);
426 }
427
428 i = (addr - range->start) >> PAGE_SHIFT;
429 npages = (end - addr) >> PAGE_SHIFT;
430 hmm_pfns = &range->hmm_pfns[i];
431
432 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
433 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
434 npages, cpu_flags);
435 if (required_fault) {
436 spin_unlock(ptl);
437 return hmm_vma_fault(addr, end, required_fault, walk);
438 }
439
440 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
441 for (i = 0; i < npages; ++i, ++pfn)
442 hmm_pfns[i] = pfn | cpu_flags;
443 goto out_unlock;
444 }
445
446 /* Ask for the PUD to be split */
447 walk->action = ACTION_SUBTREE;
448
449 out_unlock:
450 spin_unlock(ptl);
451 return ret;
452 }
453 #else
454 #define hmm_vma_walk_pud NULL
455 #endif
456
457 #ifdef CONFIG_HUGETLB_PAGE
458 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
459 unsigned long start, unsigned long end,
460 struct mm_walk *walk)
461 {
462 unsigned long addr = start, i, pfn;
463 struct hmm_vma_walk *hmm_vma_walk = walk->private;
464 struct hmm_range *range = hmm_vma_walk->range;
465 struct vm_area_struct *vma = walk->vma;
466 unsigned int required_fault;
467 unsigned long pfn_req_flags;
468 unsigned long cpu_flags;
469 spinlock_t *ptl;
470 pte_t entry;
471
472 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
473 entry = huge_ptep_get(pte);
474
475 i = (start - range->start) >> PAGE_SHIFT;
476 pfn_req_flags = range->hmm_pfns[i];
477 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
478 required_fault =
479 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
480 if (required_fault) {
481 spin_unlock(ptl);
482 return hmm_vma_fault(addr, end, required_fault, walk);
483 }
484
485 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
486 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
487 range->hmm_pfns[i] = pfn | cpu_flags;
488
489 spin_unlock(ptl);
490 return 0;
491 }
492 #else
493 #define hmm_vma_walk_hugetlb_entry NULL
494 #endif /* CONFIG_HUGETLB_PAGE */
495
496 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
497 struct mm_walk *walk)
498 {
499 struct hmm_vma_walk *hmm_vma_walk = walk->private;
500 struct hmm_range *range = hmm_vma_walk->range;
501 struct vm_area_struct *vma = walk->vma;
502
503 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
504 vma->vm_flags & VM_READ)
505 return 0;
506
507 /*
508 * vma ranges that don't have struct page backing them or map I/O
509 * devices directly cannot be handled by hmm_range_fault().
510 *
511 * If the vma does not allow read access, then assume that it does not
512 * allow write access either. HMM does not support architectures that
513 * allow write without read.
514 *
515 * If a fault is requested for an unsupported range then it is a hard
516 * failure.
517 */
518 if (hmm_range_need_fault(hmm_vma_walk,
519 range->hmm_pfns +
520 ((start - range->start) >> PAGE_SHIFT),
521 (end - start) >> PAGE_SHIFT, 0))
522 return -EFAULT;
523
524 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
525
526 /* Skip this vma and continue processing the next vma. */
527 return 1;
528 }
529
530 static const struct mm_walk_ops hmm_walk_ops = {
531 .pud_entry = hmm_vma_walk_pud,
532 .pmd_entry = hmm_vma_walk_pmd,
533 .pte_hole = hmm_vma_walk_hole,
534 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
535 .test_walk = hmm_vma_walk_test,
536 };
537
538 /**
539 * hmm_range_fault - try to fault some address in a virtual address range
540 * @range: argument structure
541 *
542 * Returns 0 on success or one of the following error codes:
543 *
544 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
545 * (e.g., device file vma).
546 * -ENOMEM: Out of memory.
547 * -EPERM: Invalid permission (e.g., asking for write and range is read
548 * only).
549 * -EBUSY: The range has been invalidated and the caller needs to wait for
550 * the invalidation to finish.
551 * -EFAULT: A page was requested to be valid and could not be made valid
552 * ie it has no backing VMA or it is illegal to access
553 *
554 * This is similar to get_user_pages(), except that it can read the page tables
555 * without mutating them (ie causing faults).
556 */
557 int hmm_range_fault(struct hmm_range *range)
558 {
559 struct hmm_vma_walk hmm_vma_walk = {
560 .range = range,
561 .last = range->start,
562 };
563 struct mm_struct *mm = range->notifier->mm;
564 int ret;
565
566 mmap_assert_locked(mm);
567
568 do {
569 /* If range is no longer valid force retry. */
570 if (mmu_interval_check_retry(range->notifier,
571 range->notifier_seq))
572 return -EBUSY;
573 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
574 &hmm_walk_ops, &hmm_vma_walk);
575 /*
576 * When -EBUSY is returned the loop restarts with
577 * hmm_vma_walk.last set to an address that has not been stored
578 * in pfns. All entries < last in the pfn array are set to their
579 * output, and all >= are still at their input values.
580 */
581 } while (ret == -EBUSY);
582 return ret;
583 }
584 EXPORT_SYMBOL(hmm_range_fault);