]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/hmm.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / mm / hmm.c
1 /*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * Authors: Jérôme Glisse <jglisse@redhat.com>
15 */
16 /*
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
19 */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/memory_hotplug.h>
36
37 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
38
39 #if IS_ENABLED(CONFIG_HMM_MIRROR)
40 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
41
42 static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
43 {
44 struct hmm *hmm = READ_ONCE(mm->hmm);
45
46 if (hmm && kref_get_unless_zero(&hmm->kref))
47 return hmm;
48
49 return NULL;
50 }
51
52 /**
53 * hmm_get_or_create - register HMM against an mm (HMM internal)
54 *
55 * @mm: mm struct to attach to
56 * Returns: returns an HMM object, either by referencing the existing
57 * (per-process) object, or by creating a new one.
58 *
59 * This is not intended to be used directly by device drivers. If mm already
60 * has an HMM struct then it get a reference on it and returns it. Otherwise
61 * it allocates an HMM struct, initializes it, associate it with the mm and
62 * returns it.
63 */
64 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
65 {
66 struct hmm *hmm = mm_get_hmm(mm);
67 bool cleanup = false;
68
69 if (hmm)
70 return hmm;
71
72 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
73 if (!hmm)
74 return NULL;
75 init_waitqueue_head(&hmm->wq);
76 INIT_LIST_HEAD(&hmm->mirrors);
77 init_rwsem(&hmm->mirrors_sem);
78 hmm->mmu_notifier.ops = NULL;
79 INIT_LIST_HEAD(&hmm->ranges);
80 mutex_init(&hmm->lock);
81 kref_init(&hmm->kref);
82 hmm->notifiers = 0;
83 hmm->dead = false;
84 hmm->mm = mm;
85
86 spin_lock(&mm->page_table_lock);
87 if (!mm->hmm)
88 mm->hmm = hmm;
89 else
90 cleanup = true;
91 spin_unlock(&mm->page_table_lock);
92
93 if (cleanup)
94 goto error;
95
96 /*
97 * We should only get here if hold the mmap_sem in write mode ie on
98 * registration of first mirror through hmm_mirror_register()
99 */
100 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
101 if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
102 goto error_mm;
103
104 return hmm;
105
106 error_mm:
107 spin_lock(&mm->page_table_lock);
108 if (mm->hmm == hmm)
109 mm->hmm = NULL;
110 spin_unlock(&mm->page_table_lock);
111 error:
112 kfree(hmm);
113 return NULL;
114 }
115
116 static void hmm_free(struct kref *kref)
117 {
118 struct hmm *hmm = container_of(kref, struct hmm, kref);
119 struct mm_struct *mm = hmm->mm;
120
121 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
122
123 spin_lock(&mm->page_table_lock);
124 if (mm->hmm == hmm)
125 mm->hmm = NULL;
126 spin_unlock(&mm->page_table_lock);
127
128 kfree(hmm);
129 }
130
131 static inline void hmm_put(struct hmm *hmm)
132 {
133 kref_put(&hmm->kref, hmm_free);
134 }
135
136 void hmm_mm_destroy(struct mm_struct *mm)
137 {
138 struct hmm *hmm;
139
140 spin_lock(&mm->page_table_lock);
141 hmm = mm_get_hmm(mm);
142 mm->hmm = NULL;
143 if (hmm) {
144 hmm->mm = NULL;
145 hmm->dead = true;
146 spin_unlock(&mm->page_table_lock);
147 hmm_put(hmm);
148 return;
149 }
150
151 spin_unlock(&mm->page_table_lock);
152 }
153
154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
155 {
156 struct hmm *hmm = mm_get_hmm(mm);
157 struct hmm_mirror *mirror;
158 struct hmm_range *range;
159
160 /* Report this HMM as dying. */
161 hmm->dead = true;
162
163 /* Wake-up everyone waiting on any range. */
164 mutex_lock(&hmm->lock);
165 list_for_each_entry(range, &hmm->ranges, list) {
166 range->valid = false;
167 }
168 wake_up_all(&hmm->wq);
169 mutex_unlock(&hmm->lock);
170
171 down_write(&hmm->mirrors_sem);
172 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
173 list);
174 while (mirror) {
175 list_del_init(&mirror->list);
176 if (mirror->ops->release) {
177 /*
178 * Drop mirrors_sem so callback can wait on any pending
179 * work that might itself trigger mmu_notifier callback
180 * and thus would deadlock with us.
181 */
182 up_write(&hmm->mirrors_sem);
183 mirror->ops->release(mirror);
184 down_write(&hmm->mirrors_sem);
185 }
186 mirror = list_first_entry_or_null(&hmm->mirrors,
187 struct hmm_mirror, list);
188 }
189 up_write(&hmm->mirrors_sem);
190
191 hmm_put(hmm);
192 }
193
194 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
195 const struct mmu_notifier_range *nrange)
196 {
197 struct hmm *hmm = mm_get_hmm(nrange->mm);
198 struct hmm_mirror *mirror;
199 struct hmm_update update;
200 struct hmm_range *range;
201 int ret = 0;
202
203 VM_BUG_ON(!hmm);
204
205 update.start = nrange->start;
206 update.end = nrange->end;
207 update.event = HMM_UPDATE_INVALIDATE;
208 update.blockable = mmu_notifier_range_blockable(nrange);
209
210 if (mmu_notifier_range_blockable(nrange))
211 mutex_lock(&hmm->lock);
212 else if (!mutex_trylock(&hmm->lock)) {
213 ret = -EAGAIN;
214 goto out;
215 }
216 hmm->notifiers++;
217 list_for_each_entry(range, &hmm->ranges, list) {
218 if (update.end < range->start || update.start >= range->end)
219 continue;
220
221 range->valid = false;
222 }
223 mutex_unlock(&hmm->lock);
224
225 if (mmu_notifier_range_blockable(nrange))
226 down_read(&hmm->mirrors_sem);
227 else if (!down_read_trylock(&hmm->mirrors_sem)) {
228 ret = -EAGAIN;
229 goto out;
230 }
231 list_for_each_entry(mirror, &hmm->mirrors, list) {
232 int ret;
233
234 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
235 if (!update.blockable && ret == -EAGAIN) {
236 up_read(&hmm->mirrors_sem);
237 ret = -EAGAIN;
238 goto out;
239 }
240 }
241 up_read(&hmm->mirrors_sem);
242
243 out:
244 hmm_put(hmm);
245 return ret;
246 }
247
248 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
249 const struct mmu_notifier_range *nrange)
250 {
251 struct hmm *hmm = mm_get_hmm(nrange->mm);
252
253 VM_BUG_ON(!hmm);
254
255 mutex_lock(&hmm->lock);
256 hmm->notifiers--;
257 if (!hmm->notifiers) {
258 struct hmm_range *range;
259
260 list_for_each_entry(range, &hmm->ranges, list) {
261 if (range->valid)
262 continue;
263 range->valid = true;
264 }
265 wake_up_all(&hmm->wq);
266 }
267 mutex_unlock(&hmm->lock);
268
269 hmm_put(hmm);
270 }
271
272 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
273 .release = hmm_release,
274 .invalidate_range_start = hmm_invalidate_range_start,
275 .invalidate_range_end = hmm_invalidate_range_end,
276 };
277
278 /*
279 * hmm_mirror_register() - register a mirror against an mm
280 *
281 * @mirror: new mirror struct to register
282 * @mm: mm to register against
283 *
284 * To start mirroring a process address space, the device driver must register
285 * an HMM mirror struct.
286 *
287 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
288 */
289 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
290 {
291 /* Sanity check */
292 if (!mm || !mirror || !mirror->ops)
293 return -EINVAL;
294
295 mirror->hmm = hmm_get_or_create(mm);
296 if (!mirror->hmm)
297 return -ENOMEM;
298
299 down_write(&mirror->hmm->mirrors_sem);
300 list_add(&mirror->list, &mirror->hmm->mirrors);
301 up_write(&mirror->hmm->mirrors_sem);
302
303 return 0;
304 }
305 EXPORT_SYMBOL(hmm_mirror_register);
306
307 /*
308 * hmm_mirror_unregister() - unregister a mirror
309 *
310 * @mirror: new mirror struct to register
311 *
312 * Stop mirroring a process address space, and cleanup.
313 */
314 void hmm_mirror_unregister(struct hmm_mirror *mirror)
315 {
316 struct hmm *hmm = READ_ONCE(mirror->hmm);
317
318 if (hmm == NULL)
319 return;
320
321 down_write(&hmm->mirrors_sem);
322 list_del_init(&mirror->list);
323 /* To protect us against double unregister ... */
324 mirror->hmm = NULL;
325 up_write(&hmm->mirrors_sem);
326
327 hmm_put(hmm);
328 }
329 EXPORT_SYMBOL(hmm_mirror_unregister);
330
331 struct hmm_vma_walk {
332 struct hmm_range *range;
333 struct dev_pagemap *pgmap;
334 unsigned long last;
335 bool fault;
336 bool block;
337 };
338
339 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
340 bool write_fault, uint64_t *pfn)
341 {
342 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
343 struct hmm_vma_walk *hmm_vma_walk = walk->private;
344 struct hmm_range *range = hmm_vma_walk->range;
345 struct vm_area_struct *vma = walk->vma;
346 vm_fault_t ret;
347
348 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
349 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
350 ret = handle_mm_fault(vma, addr, flags);
351 if (ret & VM_FAULT_RETRY)
352 return -EAGAIN;
353 if (ret & VM_FAULT_ERROR) {
354 *pfn = range->values[HMM_PFN_ERROR];
355 return -EFAULT;
356 }
357
358 return -EBUSY;
359 }
360
361 static int hmm_pfns_bad(unsigned long addr,
362 unsigned long end,
363 struct mm_walk *walk)
364 {
365 struct hmm_vma_walk *hmm_vma_walk = walk->private;
366 struct hmm_range *range = hmm_vma_walk->range;
367 uint64_t *pfns = range->pfns;
368 unsigned long i;
369
370 i = (addr - range->start) >> PAGE_SHIFT;
371 for (; addr < end; addr += PAGE_SIZE, i++)
372 pfns[i] = range->values[HMM_PFN_ERROR];
373
374 return 0;
375 }
376
377 /*
378 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
379 * @start: range virtual start address (inclusive)
380 * @end: range virtual end address (exclusive)
381 * @fault: should we fault or not ?
382 * @write_fault: write fault ?
383 * @walk: mm_walk structure
384 * Returns: 0 on success, -EBUSY after page fault, or page fault error
385 *
386 * This function will be called whenever pmd_none() or pte_none() returns true,
387 * or whenever there is no page directory covering the virtual address range.
388 */
389 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
390 bool fault, bool write_fault,
391 struct mm_walk *walk)
392 {
393 struct hmm_vma_walk *hmm_vma_walk = walk->private;
394 struct hmm_range *range = hmm_vma_walk->range;
395 uint64_t *pfns = range->pfns;
396 unsigned long i, page_size;
397
398 hmm_vma_walk->last = addr;
399 page_size = hmm_range_page_size(range);
400 i = (addr - range->start) >> range->page_shift;
401
402 for (; addr < end; addr += page_size, i++) {
403 pfns[i] = range->values[HMM_PFN_NONE];
404 if (fault || write_fault) {
405 int ret;
406
407 ret = hmm_vma_do_fault(walk, addr, write_fault,
408 &pfns[i]);
409 if (ret != -EBUSY)
410 return ret;
411 }
412 }
413
414 return (fault || write_fault) ? -EBUSY : 0;
415 }
416
417 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
418 uint64_t pfns, uint64_t cpu_flags,
419 bool *fault, bool *write_fault)
420 {
421 struct hmm_range *range = hmm_vma_walk->range;
422
423 if (!hmm_vma_walk->fault)
424 return;
425
426 /*
427 * So we not only consider the individual per page request we also
428 * consider the default flags requested for the range. The API can
429 * be use in 2 fashions. The first one where the HMM user coalesce
430 * multiple page fault into one request and set flags per pfns for
431 * of those faults. The second one where the HMM user want to pre-
432 * fault a range with specific flags. For the latter one it is a
433 * waste to have the user pre-fill the pfn arrays with a default
434 * flags value.
435 */
436 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
437
438 /* We aren't ask to do anything ... */
439 if (!(pfns & range->flags[HMM_PFN_VALID]))
440 return;
441 /* If this is device memory than only fault if explicitly requested */
442 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
443 /* Do we fault on device memory ? */
444 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
445 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
446 *fault = true;
447 }
448 return;
449 }
450
451 /* If CPU page table is not valid then we need to fault */
452 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
453 /* Need to write fault ? */
454 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
455 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
456 *write_fault = true;
457 *fault = true;
458 }
459 }
460
461 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
462 const uint64_t *pfns, unsigned long npages,
463 uint64_t cpu_flags, bool *fault,
464 bool *write_fault)
465 {
466 unsigned long i;
467
468 if (!hmm_vma_walk->fault) {
469 *fault = *write_fault = false;
470 return;
471 }
472
473 *fault = *write_fault = false;
474 for (i = 0; i < npages; ++i) {
475 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
476 fault, write_fault);
477 if ((*write_fault))
478 return;
479 }
480 }
481
482 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
483 struct mm_walk *walk)
484 {
485 struct hmm_vma_walk *hmm_vma_walk = walk->private;
486 struct hmm_range *range = hmm_vma_walk->range;
487 bool fault, write_fault;
488 unsigned long i, npages;
489 uint64_t *pfns;
490
491 i = (addr - range->start) >> PAGE_SHIFT;
492 npages = (end - addr) >> PAGE_SHIFT;
493 pfns = &range->pfns[i];
494 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
495 0, &fault, &write_fault);
496 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
497 }
498
499 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
500 {
501 if (pmd_protnone(pmd))
502 return 0;
503 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
504 range->flags[HMM_PFN_WRITE] :
505 range->flags[HMM_PFN_VALID];
506 }
507
508 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
509 {
510 if (!pud_present(pud))
511 return 0;
512 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
513 range->flags[HMM_PFN_WRITE] :
514 range->flags[HMM_PFN_VALID];
515 }
516
517 static int hmm_vma_handle_pmd(struct mm_walk *walk,
518 unsigned long addr,
519 unsigned long end,
520 uint64_t *pfns,
521 pmd_t pmd)
522 {
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 struct hmm_vma_walk *hmm_vma_walk = walk->private;
525 struct hmm_range *range = hmm_vma_walk->range;
526 unsigned long pfn, npages, i;
527 bool fault, write_fault;
528 uint64_t cpu_flags;
529
530 npages = (end - addr) >> PAGE_SHIFT;
531 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
532 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
533 &fault, &write_fault);
534
535 if (pmd_protnone(pmd) || fault || write_fault)
536 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
537
538 pfn = pmd_pfn(pmd) + pte_index(addr);
539 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
540 if (pmd_devmap(pmd)) {
541 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
542 hmm_vma_walk->pgmap);
543 if (unlikely(!hmm_vma_walk->pgmap))
544 return -EBUSY;
545 }
546 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
547 }
548 if (hmm_vma_walk->pgmap) {
549 put_dev_pagemap(hmm_vma_walk->pgmap);
550 hmm_vma_walk->pgmap = NULL;
551 }
552 hmm_vma_walk->last = end;
553 return 0;
554 #else
555 /* If THP is not enabled then we should never reach that code ! */
556 return -EINVAL;
557 #endif
558 }
559
560 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
561 {
562 if (pte_none(pte) || !pte_present(pte))
563 return 0;
564 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
565 range->flags[HMM_PFN_WRITE] :
566 range->flags[HMM_PFN_VALID];
567 }
568
569 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
570 unsigned long end, pmd_t *pmdp, pte_t *ptep,
571 uint64_t *pfn)
572 {
573 struct hmm_vma_walk *hmm_vma_walk = walk->private;
574 struct hmm_range *range = hmm_vma_walk->range;
575 struct vm_area_struct *vma = walk->vma;
576 bool fault, write_fault;
577 uint64_t cpu_flags;
578 pte_t pte = *ptep;
579 uint64_t orig_pfn = *pfn;
580
581 *pfn = range->values[HMM_PFN_NONE];
582 fault = write_fault = false;
583
584 if (pte_none(pte)) {
585 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
586 &fault, &write_fault);
587 if (fault || write_fault)
588 goto fault;
589 return 0;
590 }
591
592 if (!pte_present(pte)) {
593 swp_entry_t entry = pte_to_swp_entry(pte);
594
595 if (!non_swap_entry(entry)) {
596 if (fault || write_fault)
597 goto fault;
598 return 0;
599 }
600
601 /*
602 * This is a special swap entry, ignore migration, use
603 * device and report anything else as error.
604 */
605 if (is_device_private_entry(entry)) {
606 cpu_flags = range->flags[HMM_PFN_VALID] |
607 range->flags[HMM_PFN_DEVICE_PRIVATE];
608 cpu_flags |= is_write_device_private_entry(entry) ?
609 range->flags[HMM_PFN_WRITE] : 0;
610 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
611 &fault, &write_fault);
612 if (fault || write_fault)
613 goto fault;
614 *pfn = hmm_device_entry_from_pfn(range,
615 swp_offset(entry));
616 *pfn |= cpu_flags;
617 return 0;
618 }
619
620 if (is_migration_entry(entry)) {
621 if (fault || write_fault) {
622 pte_unmap(ptep);
623 hmm_vma_walk->last = addr;
624 migration_entry_wait(vma->vm_mm,
625 pmdp, addr);
626 return -EBUSY;
627 }
628 return 0;
629 }
630
631 /* Report error for everything else */
632 *pfn = range->values[HMM_PFN_ERROR];
633 return -EFAULT;
634 } else {
635 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
636 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
637 &fault, &write_fault);
638 }
639
640 if (fault || write_fault)
641 goto fault;
642
643 if (pte_devmap(pte)) {
644 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
645 hmm_vma_walk->pgmap);
646 if (unlikely(!hmm_vma_walk->pgmap))
647 return -EBUSY;
648 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
649 *pfn = range->values[HMM_PFN_SPECIAL];
650 return -EFAULT;
651 }
652
653 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
654 return 0;
655
656 fault:
657 if (hmm_vma_walk->pgmap) {
658 put_dev_pagemap(hmm_vma_walk->pgmap);
659 hmm_vma_walk->pgmap = NULL;
660 }
661 pte_unmap(ptep);
662 /* Fault any virtual address we were asked to fault */
663 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
664 }
665
666 static int hmm_vma_walk_pmd(pmd_t *pmdp,
667 unsigned long start,
668 unsigned long end,
669 struct mm_walk *walk)
670 {
671 struct hmm_vma_walk *hmm_vma_walk = walk->private;
672 struct hmm_range *range = hmm_vma_walk->range;
673 struct vm_area_struct *vma = walk->vma;
674 uint64_t *pfns = range->pfns;
675 unsigned long addr = start, i;
676 pte_t *ptep;
677 pmd_t pmd;
678
679
680 again:
681 pmd = READ_ONCE(*pmdp);
682 if (pmd_none(pmd))
683 return hmm_vma_walk_hole(start, end, walk);
684
685 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
686 return hmm_pfns_bad(start, end, walk);
687
688 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
689 bool fault, write_fault;
690 unsigned long npages;
691 uint64_t *pfns;
692
693 i = (addr - range->start) >> PAGE_SHIFT;
694 npages = (end - addr) >> PAGE_SHIFT;
695 pfns = &range->pfns[i];
696
697 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
698 0, &fault, &write_fault);
699 if (fault || write_fault) {
700 hmm_vma_walk->last = addr;
701 pmd_migration_entry_wait(vma->vm_mm, pmdp);
702 return -EBUSY;
703 }
704 return 0;
705 } else if (!pmd_present(pmd))
706 return hmm_pfns_bad(start, end, walk);
707
708 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
709 /*
710 * No need to take pmd_lock here, even if some other threads
711 * is splitting the huge pmd we will get that event through
712 * mmu_notifier callback.
713 *
714 * So just read pmd value and check again its a transparent
715 * huge or device mapping one and compute corresponding pfn
716 * values.
717 */
718 pmd = pmd_read_atomic(pmdp);
719 barrier();
720 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
721 goto again;
722
723 i = (addr - range->start) >> PAGE_SHIFT;
724 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
725 }
726
727 /*
728 * We have handled all the valid case above ie either none, migration,
729 * huge or transparent huge. At this point either it is a valid pmd
730 * entry pointing to pte directory or it is a bad pmd that will not
731 * recover.
732 */
733 if (pmd_bad(pmd))
734 return hmm_pfns_bad(start, end, walk);
735
736 ptep = pte_offset_map(pmdp, addr);
737 i = (addr - range->start) >> PAGE_SHIFT;
738 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
739 int r;
740
741 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
742 if (r) {
743 /* hmm_vma_handle_pte() did unmap pte directory */
744 hmm_vma_walk->last = addr;
745 return r;
746 }
747 }
748 if (hmm_vma_walk->pgmap) {
749 /*
750 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
751 * so that we can leverage get_dev_pagemap() optimization which
752 * will not re-take a reference on a pgmap if we already have
753 * one.
754 */
755 put_dev_pagemap(hmm_vma_walk->pgmap);
756 hmm_vma_walk->pgmap = NULL;
757 }
758 pte_unmap(ptep - 1);
759
760 hmm_vma_walk->last = addr;
761 return 0;
762 }
763
764 static int hmm_vma_walk_pud(pud_t *pudp,
765 unsigned long start,
766 unsigned long end,
767 struct mm_walk *walk)
768 {
769 struct hmm_vma_walk *hmm_vma_walk = walk->private;
770 struct hmm_range *range = hmm_vma_walk->range;
771 unsigned long addr = start, next;
772 pmd_t *pmdp;
773 pud_t pud;
774 int ret;
775
776 again:
777 pud = READ_ONCE(*pudp);
778 if (pud_none(pud))
779 return hmm_vma_walk_hole(start, end, walk);
780
781 if (pud_huge(pud) && pud_devmap(pud)) {
782 unsigned long i, npages, pfn;
783 uint64_t *pfns, cpu_flags;
784 bool fault, write_fault;
785
786 if (!pud_present(pud))
787 return hmm_vma_walk_hole(start, end, walk);
788
789 i = (addr - range->start) >> PAGE_SHIFT;
790 npages = (end - addr) >> PAGE_SHIFT;
791 pfns = &range->pfns[i];
792
793 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
794 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
795 cpu_flags, &fault, &write_fault);
796 if (fault || write_fault)
797 return hmm_vma_walk_hole_(addr, end, fault,
798 write_fault, walk);
799
800 #ifdef CONFIG_HUGETLB_PAGE
801 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
802 for (i = 0; i < npages; ++i, ++pfn) {
803 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
804 hmm_vma_walk->pgmap);
805 if (unlikely(!hmm_vma_walk->pgmap))
806 return -EBUSY;
807 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
808 cpu_flags;
809 }
810 if (hmm_vma_walk->pgmap) {
811 put_dev_pagemap(hmm_vma_walk->pgmap);
812 hmm_vma_walk->pgmap = NULL;
813 }
814 hmm_vma_walk->last = end;
815 return 0;
816 #else
817 return -EINVAL;
818 #endif
819 }
820
821 split_huge_pud(walk->vma, pudp, addr);
822 if (pud_none(*pudp))
823 goto again;
824
825 pmdp = pmd_offset(pudp, addr);
826 do {
827 next = pmd_addr_end(addr, end);
828 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
829 if (ret)
830 return ret;
831 } while (pmdp++, addr = next, addr != end);
832
833 return 0;
834 }
835
836 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
837 unsigned long start, unsigned long end,
838 struct mm_walk *walk)
839 {
840 #ifdef CONFIG_HUGETLB_PAGE
841 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
842 struct hmm_vma_walk *hmm_vma_walk = walk->private;
843 struct hmm_range *range = hmm_vma_walk->range;
844 struct vm_area_struct *vma = walk->vma;
845 struct hstate *h = hstate_vma(vma);
846 uint64_t orig_pfn, cpu_flags;
847 bool fault, write_fault;
848 spinlock_t *ptl;
849 pte_t entry;
850 int ret = 0;
851
852 size = 1UL << huge_page_shift(h);
853 mask = size - 1;
854 if (range->page_shift != PAGE_SHIFT) {
855 /* Make sure we are looking at full page. */
856 if (start & mask)
857 return -EINVAL;
858 if (end < (start + size))
859 return -EINVAL;
860 pfn_inc = size >> PAGE_SHIFT;
861 } else {
862 pfn_inc = 1;
863 size = PAGE_SIZE;
864 }
865
866
867 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
868 entry = huge_ptep_get(pte);
869
870 i = (start - range->start) >> range->page_shift;
871 orig_pfn = range->pfns[i];
872 range->pfns[i] = range->values[HMM_PFN_NONE];
873 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
874 fault = write_fault = false;
875 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
876 &fault, &write_fault);
877 if (fault || write_fault) {
878 ret = -ENOENT;
879 goto unlock;
880 }
881
882 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
883 for (; addr < end; addr += size, i++, pfn += pfn_inc)
884 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
885 cpu_flags;
886 hmm_vma_walk->last = end;
887
888 unlock:
889 spin_unlock(ptl);
890
891 if (ret == -ENOENT)
892 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
893
894 return ret;
895 #else /* CONFIG_HUGETLB_PAGE */
896 return -EINVAL;
897 #endif
898 }
899
900 static void hmm_pfns_clear(struct hmm_range *range,
901 uint64_t *pfns,
902 unsigned long addr,
903 unsigned long end)
904 {
905 for (; addr < end; addr += PAGE_SIZE, pfns++)
906 *pfns = range->values[HMM_PFN_NONE];
907 }
908
909 /*
910 * hmm_range_register() - start tracking change to CPU page table over a range
911 * @range: range
912 * @mm: the mm struct for the range of virtual address
913 * @start: start virtual address (inclusive)
914 * @end: end virtual address (exclusive)
915 * @page_shift: expect page shift for the range
916 * Returns 0 on success, -EFAULT if the address space is no longer valid
917 *
918 * Track updates to the CPU page table see include/linux/hmm.h
919 */
920 int hmm_range_register(struct hmm_range *range,
921 struct mm_struct *mm,
922 unsigned long start,
923 unsigned long end,
924 unsigned page_shift)
925 {
926 unsigned long mask = ((1UL << page_shift) - 1UL);
927
928 range->valid = false;
929 range->hmm = NULL;
930
931 if ((start & mask) || (end & mask))
932 return -EINVAL;
933 if (start >= end)
934 return -EINVAL;
935
936 range->page_shift = page_shift;
937 range->start = start;
938 range->end = end;
939
940 range->hmm = hmm_get_or_create(mm);
941 if (!range->hmm)
942 return -EFAULT;
943
944 /* Check if hmm_mm_destroy() was call. */
945 if (range->hmm->mm == NULL || range->hmm->dead) {
946 hmm_put(range->hmm);
947 return -EFAULT;
948 }
949
950 /* Initialize range to track CPU page table update */
951 mutex_lock(&range->hmm->lock);
952
953 list_add_rcu(&range->list, &range->hmm->ranges);
954
955 /*
956 * If there are any concurrent notifiers we have to wait for them for
957 * the range to be valid (see hmm_range_wait_until_valid()).
958 */
959 if (!range->hmm->notifiers)
960 range->valid = true;
961 mutex_unlock(&range->hmm->lock);
962
963 return 0;
964 }
965 EXPORT_SYMBOL(hmm_range_register);
966
967 /*
968 * hmm_range_unregister() - stop tracking change to CPU page table over a range
969 * @range: range
970 *
971 * Range struct is used to track updates to the CPU page table after a call to
972 * hmm_range_register(). See include/linux/hmm.h for how to use it.
973 */
974 void hmm_range_unregister(struct hmm_range *range)
975 {
976 /* Sanity check this really should not happen. */
977 if (range->hmm == NULL || range->end <= range->start)
978 return;
979
980 mutex_lock(&range->hmm->lock);
981 list_del_rcu(&range->list);
982 mutex_unlock(&range->hmm->lock);
983
984 /* Drop reference taken by hmm_range_register() */
985 range->valid = false;
986 hmm_put(range->hmm);
987 range->hmm = NULL;
988 }
989 EXPORT_SYMBOL(hmm_range_unregister);
990
991 /*
992 * hmm_range_snapshot() - snapshot CPU page table for a range
993 * @range: range
994 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
995 * permission (for instance asking for write and range is read only),
996 * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
997 * vma or it is illegal to access that range), number of valid pages
998 * in range->pfns[] (from range start address).
999 *
1000 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
1001 * validity is tracked by range struct. See in include/linux/hmm.h for example
1002 * on how to use.
1003 */
1004 long hmm_range_snapshot(struct hmm_range *range)
1005 {
1006 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1007 unsigned long start = range->start, end;
1008 struct hmm_vma_walk hmm_vma_walk;
1009 struct hmm *hmm = range->hmm;
1010 struct vm_area_struct *vma;
1011 struct mm_walk mm_walk;
1012
1013 /* Check if hmm_mm_destroy() was call. */
1014 if (hmm->mm == NULL || hmm->dead)
1015 return -EFAULT;
1016
1017 do {
1018 /* If range is no longer valid force retry. */
1019 if (!range->valid)
1020 return -EAGAIN;
1021
1022 vma = find_vma(hmm->mm, start);
1023 if (vma == NULL || (vma->vm_flags & device_vma))
1024 return -EFAULT;
1025
1026 if (is_vm_hugetlb_page(vma)) {
1027 struct hstate *h = hstate_vma(vma);
1028
1029 if (huge_page_shift(h) != range->page_shift &&
1030 range->page_shift != PAGE_SHIFT)
1031 return -EINVAL;
1032 } else {
1033 if (range->page_shift != PAGE_SHIFT)
1034 return -EINVAL;
1035 }
1036
1037 if (!(vma->vm_flags & VM_READ)) {
1038 /*
1039 * If vma do not allow read access, then assume that it
1040 * does not allow write access, either. HMM does not
1041 * support architecture that allow write without read.
1042 */
1043 hmm_pfns_clear(range, range->pfns,
1044 range->start, range->end);
1045 return -EPERM;
1046 }
1047
1048 range->vma = vma;
1049 hmm_vma_walk.pgmap = NULL;
1050 hmm_vma_walk.last = start;
1051 hmm_vma_walk.fault = false;
1052 hmm_vma_walk.range = range;
1053 mm_walk.private = &hmm_vma_walk;
1054 end = min(range->end, vma->vm_end);
1055
1056 mm_walk.vma = vma;
1057 mm_walk.mm = vma->vm_mm;
1058 mm_walk.pte_entry = NULL;
1059 mm_walk.test_walk = NULL;
1060 mm_walk.hugetlb_entry = NULL;
1061 mm_walk.pud_entry = hmm_vma_walk_pud;
1062 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1063 mm_walk.pte_hole = hmm_vma_walk_hole;
1064 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1065
1066 walk_page_range(start, end, &mm_walk);
1067 start = end;
1068 } while (start < range->end);
1069
1070 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1071 }
1072 EXPORT_SYMBOL(hmm_range_snapshot);
1073
1074 /*
1075 * hmm_range_fault() - try to fault some address in a virtual address range
1076 * @range: range being faulted
1077 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1078 * Returns: number of valid pages in range->pfns[] (from range start
1079 * address). This may be zero. If the return value is negative,
1080 * then one of the following values may be returned:
1081 *
1082 * -EINVAL invalid arguments or mm or virtual address are in an
1083 * invalid vma (for instance device file vma).
1084 * -ENOMEM: Out of memory.
1085 * -EPERM: Invalid permission (for instance asking for write and
1086 * range is read only).
1087 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1088 * happens if block argument is false.
1089 * -EBUSY: If the the range is being invalidated and you should wait
1090 * for invalidation to finish.
1091 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1092 * that range), number of valid pages in range->pfns[] (from
1093 * range start address).
1094 *
1095 * This is similar to a regular CPU page fault except that it will not trigger
1096 * any memory migration if the memory being faulted is not accessible by CPUs
1097 * and caller does not ask for migration.
1098 *
1099 * On error, for one virtual address in the range, the function will mark the
1100 * corresponding HMM pfn entry with an error flag.
1101 */
1102 long hmm_range_fault(struct hmm_range *range, bool block)
1103 {
1104 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1105 unsigned long start = range->start, end;
1106 struct hmm_vma_walk hmm_vma_walk;
1107 struct hmm *hmm = range->hmm;
1108 struct vm_area_struct *vma;
1109 struct mm_walk mm_walk;
1110 int ret;
1111
1112 /* Check if hmm_mm_destroy() was call. */
1113 if (hmm->mm == NULL || hmm->dead)
1114 return -EFAULT;
1115
1116 do {
1117 /* If range is no longer valid force retry. */
1118 if (!range->valid) {
1119 up_read(&hmm->mm->mmap_sem);
1120 return -EAGAIN;
1121 }
1122
1123 vma = find_vma(hmm->mm, start);
1124 if (vma == NULL || (vma->vm_flags & device_vma))
1125 return -EFAULT;
1126
1127 if (is_vm_hugetlb_page(vma)) {
1128 if (huge_page_shift(hstate_vma(vma)) !=
1129 range->page_shift &&
1130 range->page_shift != PAGE_SHIFT)
1131 return -EINVAL;
1132 } else {
1133 if (range->page_shift != PAGE_SHIFT)
1134 return -EINVAL;
1135 }
1136
1137 if (!(vma->vm_flags & VM_READ)) {
1138 /*
1139 * If vma do not allow read access, then assume that it
1140 * does not allow write access, either. HMM does not
1141 * support architecture that allow write without read.
1142 */
1143 hmm_pfns_clear(range, range->pfns,
1144 range->start, range->end);
1145 return -EPERM;
1146 }
1147
1148 range->vma = vma;
1149 hmm_vma_walk.pgmap = NULL;
1150 hmm_vma_walk.last = start;
1151 hmm_vma_walk.fault = true;
1152 hmm_vma_walk.block = block;
1153 hmm_vma_walk.range = range;
1154 mm_walk.private = &hmm_vma_walk;
1155 end = min(range->end, vma->vm_end);
1156
1157 mm_walk.vma = vma;
1158 mm_walk.mm = vma->vm_mm;
1159 mm_walk.pte_entry = NULL;
1160 mm_walk.test_walk = NULL;
1161 mm_walk.hugetlb_entry = NULL;
1162 mm_walk.pud_entry = hmm_vma_walk_pud;
1163 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1164 mm_walk.pte_hole = hmm_vma_walk_hole;
1165 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1166
1167 do {
1168 ret = walk_page_range(start, end, &mm_walk);
1169 start = hmm_vma_walk.last;
1170
1171 /* Keep trying while the range is valid. */
1172 } while (ret == -EBUSY && range->valid);
1173
1174 if (ret) {
1175 unsigned long i;
1176
1177 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1178 hmm_pfns_clear(range, &range->pfns[i],
1179 hmm_vma_walk.last, range->end);
1180 return ret;
1181 }
1182 start = end;
1183
1184 } while (start < range->end);
1185
1186 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1187 }
1188 EXPORT_SYMBOL(hmm_range_fault);
1189
1190 /**
1191 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1192 * @range: range being faulted
1193 * @device: device against to dma map page to
1194 * @daddrs: dma address of mapped pages
1195 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1196 * Returns: number of pages mapped on success, -EAGAIN if mmap_sem have been
1197 * drop and you need to try again, some other error value otherwise
1198 *
1199 * Note same usage pattern as hmm_range_fault().
1200 */
1201 long hmm_range_dma_map(struct hmm_range *range,
1202 struct device *device,
1203 dma_addr_t *daddrs,
1204 bool block)
1205 {
1206 unsigned long i, npages, mapped;
1207 long ret;
1208
1209 ret = hmm_range_fault(range, block);
1210 if (ret <= 0)
1211 return ret ? ret : -EBUSY;
1212
1213 npages = (range->end - range->start) >> PAGE_SHIFT;
1214 for (i = 0, mapped = 0; i < npages; ++i) {
1215 enum dma_data_direction dir = DMA_TO_DEVICE;
1216 struct page *page;
1217
1218 /*
1219 * FIXME need to update DMA API to provide invalid DMA address
1220 * value instead of a function to test dma address value. This
1221 * would remove lot of dumb code duplicated accross many arch.
1222 *
1223 * For now setting it to 0 here is good enough as the pfns[]
1224 * value is what is use to check what is valid and what isn't.
1225 */
1226 daddrs[i] = 0;
1227
1228 page = hmm_device_entry_to_page(range, range->pfns[i]);
1229 if (page == NULL)
1230 continue;
1231
1232 /* Check if range is being invalidated */
1233 if (!range->valid) {
1234 ret = -EBUSY;
1235 goto unmap;
1236 }
1237
1238 /* If it is read and write than map bi-directional. */
1239 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1240 dir = DMA_BIDIRECTIONAL;
1241
1242 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1243 if (dma_mapping_error(device, daddrs[i])) {
1244 ret = -EFAULT;
1245 goto unmap;
1246 }
1247
1248 mapped++;
1249 }
1250
1251 return mapped;
1252
1253 unmap:
1254 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1255 enum dma_data_direction dir = DMA_TO_DEVICE;
1256 struct page *page;
1257
1258 page = hmm_device_entry_to_page(range, range->pfns[i]);
1259 if (page == NULL)
1260 continue;
1261
1262 if (dma_mapping_error(device, daddrs[i]))
1263 continue;
1264
1265 /* If it is read and write than map bi-directional. */
1266 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1267 dir = DMA_BIDIRECTIONAL;
1268
1269 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1270 mapped--;
1271 }
1272
1273 return ret;
1274 }
1275 EXPORT_SYMBOL(hmm_range_dma_map);
1276
1277 /**
1278 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1279 * @range: range being unmapped
1280 * @vma: the vma against which the range (optional)
1281 * @device: device against which dma map was done
1282 * @daddrs: dma address of mapped pages
1283 * @dirty: dirty page if it had the write flag set
1284 * Returns: number of page unmapped on success, -EINVAL otherwise
1285 *
1286 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1287 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1288 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1289 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1290 */
1291 long hmm_range_dma_unmap(struct hmm_range *range,
1292 struct vm_area_struct *vma,
1293 struct device *device,
1294 dma_addr_t *daddrs,
1295 bool dirty)
1296 {
1297 unsigned long i, npages;
1298 long cpages = 0;
1299
1300 /* Sanity check. */
1301 if (range->end <= range->start)
1302 return -EINVAL;
1303 if (!daddrs)
1304 return -EINVAL;
1305 if (!range->pfns)
1306 return -EINVAL;
1307
1308 npages = (range->end - range->start) >> PAGE_SHIFT;
1309 for (i = 0; i < npages; ++i) {
1310 enum dma_data_direction dir = DMA_TO_DEVICE;
1311 struct page *page;
1312
1313 page = hmm_device_entry_to_page(range, range->pfns[i]);
1314 if (page == NULL)
1315 continue;
1316
1317 /* If it is read and write than map bi-directional. */
1318 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1319 dir = DMA_BIDIRECTIONAL;
1320
1321 /*
1322 * See comments in function description on why it is
1323 * safe here to call set_page_dirty()
1324 */
1325 if (dirty)
1326 set_page_dirty(page);
1327 }
1328
1329 /* Unmap and clear pfns/dma address */
1330 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1331 range->pfns[i] = range->values[HMM_PFN_NONE];
1332 /* FIXME see comments in hmm_vma_dma_map() */
1333 daddrs[i] = 0;
1334 cpages++;
1335 }
1336
1337 return cpages;
1338 }
1339 EXPORT_SYMBOL(hmm_range_dma_unmap);
1340 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
1341
1342
1343 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
1344 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1345 unsigned long addr)
1346 {
1347 struct page *page;
1348
1349 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1350 if (!page)
1351 return NULL;
1352 lock_page(page);
1353 return page;
1354 }
1355 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1356
1357
1358 static void hmm_devmem_ref_release(struct percpu_ref *ref)
1359 {
1360 struct hmm_devmem *devmem;
1361
1362 devmem = container_of(ref, struct hmm_devmem, ref);
1363 complete(&devmem->completion);
1364 }
1365
1366 static void hmm_devmem_ref_exit(void *data)
1367 {
1368 struct percpu_ref *ref = data;
1369 struct hmm_devmem *devmem;
1370
1371 devmem = container_of(ref, struct hmm_devmem, ref);
1372 wait_for_completion(&devmem->completion);
1373 percpu_ref_exit(ref);
1374 }
1375
1376 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
1377 {
1378 percpu_ref_kill(ref);
1379 }
1380
1381 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
1382 unsigned long addr,
1383 const struct page *page,
1384 unsigned int flags,
1385 pmd_t *pmdp)
1386 {
1387 struct hmm_devmem *devmem = page->pgmap->data;
1388
1389 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1390 }
1391
1392 static void hmm_devmem_free(struct page *page, void *data)
1393 {
1394 struct hmm_devmem *devmem = data;
1395
1396 page->mapping = NULL;
1397
1398 devmem->ops->free(devmem, page);
1399 }
1400
1401 /*
1402 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1403 *
1404 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1405 * @device: device struct to bind the resource too
1406 * @size: size in bytes of the device memory to add
1407 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1408 *
1409 * This function first finds an empty range of physical address big enough to
1410 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1411 * in turn allocates struct pages. It does not do anything beyond that; all
1412 * events affecting the memory will go through the various callbacks provided
1413 * by hmm_devmem_ops struct.
1414 *
1415 * Device driver should call this function during device initialization and
1416 * is then responsible of memory management. HMM only provides helpers.
1417 */
1418 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1419 struct device *device,
1420 unsigned long size)
1421 {
1422 struct hmm_devmem *devmem;
1423 resource_size_t addr;
1424 void *result;
1425 int ret;
1426
1427 dev_pagemap_get_ops();
1428
1429 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1430 if (!devmem)
1431 return ERR_PTR(-ENOMEM);
1432
1433 init_completion(&devmem->completion);
1434 devmem->pfn_first = -1UL;
1435 devmem->pfn_last = -1UL;
1436 devmem->resource = NULL;
1437 devmem->device = device;
1438 devmem->ops = ops;
1439
1440 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1441 0, GFP_KERNEL);
1442 if (ret)
1443 return ERR_PTR(ret);
1444
1445 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1446 if (ret)
1447 return ERR_PTR(ret);
1448
1449 size = ALIGN(size, PA_SECTION_SIZE);
1450 addr = min((unsigned long)iomem_resource.end,
1451 (1UL << MAX_PHYSMEM_BITS) - 1);
1452 addr = addr - size + 1UL;
1453
1454 /*
1455 * FIXME add a new helper to quickly walk resource tree and find free
1456 * range
1457 *
1458 * FIXME what about ioport_resource resource ?
1459 */
1460 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1461 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1462 if (ret != REGION_DISJOINT)
1463 continue;
1464
1465 devmem->resource = devm_request_mem_region(device, addr, size,
1466 dev_name(device));
1467 if (!devmem->resource)
1468 return ERR_PTR(-ENOMEM);
1469 break;
1470 }
1471 if (!devmem->resource)
1472 return ERR_PTR(-ERANGE);
1473
1474 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1475 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1476 devmem->pfn_last = devmem->pfn_first +
1477 (resource_size(devmem->resource) >> PAGE_SHIFT);
1478 devmem->page_fault = hmm_devmem_fault;
1479
1480 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1481 devmem->pagemap.res = *devmem->resource;
1482 devmem->pagemap.page_free = hmm_devmem_free;
1483 devmem->pagemap.altmap_valid = false;
1484 devmem->pagemap.ref = &devmem->ref;
1485 devmem->pagemap.data = devmem;
1486 devmem->pagemap.kill = hmm_devmem_ref_kill;
1487
1488 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1489 if (IS_ERR(result))
1490 return result;
1491 return devmem;
1492 }
1493 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1494
1495 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1496 struct device *device,
1497 struct resource *res)
1498 {
1499 struct hmm_devmem *devmem;
1500 void *result;
1501 int ret;
1502
1503 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1504 return ERR_PTR(-EINVAL);
1505
1506 dev_pagemap_get_ops();
1507
1508 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1509 if (!devmem)
1510 return ERR_PTR(-ENOMEM);
1511
1512 init_completion(&devmem->completion);
1513 devmem->pfn_first = -1UL;
1514 devmem->pfn_last = -1UL;
1515 devmem->resource = res;
1516 devmem->device = device;
1517 devmem->ops = ops;
1518
1519 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1520 0, GFP_KERNEL);
1521 if (ret)
1522 return ERR_PTR(ret);
1523
1524 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1525 &devmem->ref);
1526 if (ret)
1527 return ERR_PTR(ret);
1528
1529 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1530 devmem->pfn_last = devmem->pfn_first +
1531 (resource_size(devmem->resource) >> PAGE_SHIFT);
1532 devmem->page_fault = hmm_devmem_fault;
1533
1534 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1535 devmem->pagemap.res = *devmem->resource;
1536 devmem->pagemap.page_free = hmm_devmem_free;
1537 devmem->pagemap.altmap_valid = false;
1538 devmem->pagemap.ref = &devmem->ref;
1539 devmem->pagemap.data = devmem;
1540 devmem->pagemap.kill = hmm_devmem_ref_kill;
1541
1542 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1543 if (IS_ERR(result))
1544 return result;
1545 return devmem;
1546 }
1547 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1548
1549 /*
1550 * A device driver that wants to handle multiple devices memory through a
1551 * single fake device can use hmm_device to do so. This is purely a helper
1552 * and it is not needed to make use of any HMM functionality.
1553 */
1554 #define HMM_DEVICE_MAX 256
1555
1556 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1557 static DEFINE_SPINLOCK(hmm_device_lock);
1558 static struct class *hmm_device_class;
1559 static dev_t hmm_device_devt;
1560
1561 static void hmm_device_release(struct device *device)
1562 {
1563 struct hmm_device *hmm_device;
1564
1565 hmm_device = container_of(device, struct hmm_device, device);
1566 spin_lock(&hmm_device_lock);
1567 clear_bit(hmm_device->minor, hmm_device_mask);
1568 spin_unlock(&hmm_device_lock);
1569
1570 kfree(hmm_device);
1571 }
1572
1573 struct hmm_device *hmm_device_new(void *drvdata)
1574 {
1575 struct hmm_device *hmm_device;
1576
1577 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1578 if (!hmm_device)
1579 return ERR_PTR(-ENOMEM);
1580
1581 spin_lock(&hmm_device_lock);
1582 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1583 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1584 spin_unlock(&hmm_device_lock);
1585 kfree(hmm_device);
1586 return ERR_PTR(-EBUSY);
1587 }
1588 set_bit(hmm_device->minor, hmm_device_mask);
1589 spin_unlock(&hmm_device_lock);
1590
1591 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1592 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1593 hmm_device->minor);
1594 hmm_device->device.release = hmm_device_release;
1595 dev_set_drvdata(&hmm_device->device, drvdata);
1596 hmm_device->device.class = hmm_device_class;
1597 device_initialize(&hmm_device->device);
1598
1599 return hmm_device;
1600 }
1601 EXPORT_SYMBOL(hmm_device_new);
1602
1603 void hmm_device_put(struct hmm_device *hmm_device)
1604 {
1605 put_device(&hmm_device->device);
1606 }
1607 EXPORT_SYMBOL(hmm_device_put);
1608
1609 static int __init hmm_init(void)
1610 {
1611 int ret;
1612
1613 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1614 HMM_DEVICE_MAX,
1615 "hmm_device");
1616 if (ret)
1617 return ret;
1618
1619 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1620 if (IS_ERR(hmm_device_class)) {
1621 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1622 return PTR_ERR(hmm_device_class);
1623 }
1624 return 0;
1625 }
1626
1627 device_initcall(hmm_init);
1628 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */