]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/huge_memory.c
drm/shmem-helper: Remove errant put in error path
[mirror_ubuntu-jammy-kernel.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41
42 /*
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
49 */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60
61 static struct shrinker deferred_split_shrinker;
62
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 unsigned long huge_zero_pfn __read_mostly = ~0UL;
66
67 static inline bool file_thp_enabled(struct vm_area_struct *vma)
68 {
69 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
70 !inode_is_open_for_write(vma->vm_file->f_inode) &&
71 (vma->vm_flags & VM_EXEC);
72 }
73
74 bool transparent_hugepage_active(struct vm_area_struct *vma)
75 {
76 /* The addr is used to check if the vma size fits */
77 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
78
79 if (!transhuge_vma_suitable(vma, addr))
80 return false;
81 if (vma_is_anonymous(vma))
82 return __transparent_hugepage_enabled(vma);
83 if (vma_is_shmem(vma))
84 return shmem_huge_enabled(vma);
85 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
86 return file_thp_enabled(vma);
87
88 return false;
89 }
90
91 static bool get_huge_zero_page(void)
92 {
93 struct page *zero_page;
94 retry:
95 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
96 return true;
97
98 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
99 HPAGE_PMD_ORDER);
100 if (!zero_page) {
101 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
102 return false;
103 }
104 count_vm_event(THP_ZERO_PAGE_ALLOC);
105 preempt_disable();
106 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
107 preempt_enable();
108 __free_pages(zero_page, compound_order(zero_page));
109 goto retry;
110 }
111 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
112
113 /* We take additional reference here. It will be put back by shrinker */
114 atomic_set(&huge_zero_refcount, 2);
115 preempt_enable();
116 return true;
117 }
118
119 static void put_huge_zero_page(void)
120 {
121 /*
122 * Counter should never go to zero here. Only shrinker can put
123 * last reference.
124 */
125 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
126 }
127
128 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
129 {
130 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
131 return READ_ONCE(huge_zero_page);
132
133 if (!get_huge_zero_page())
134 return NULL;
135
136 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
137 put_huge_zero_page();
138
139 return READ_ONCE(huge_zero_page);
140 }
141
142 void mm_put_huge_zero_page(struct mm_struct *mm)
143 {
144 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
145 put_huge_zero_page();
146 }
147
148 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
149 struct shrink_control *sc)
150 {
151 /* we can free zero page only if last reference remains */
152 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
153 }
154
155 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
156 struct shrink_control *sc)
157 {
158 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
159 struct page *zero_page = xchg(&huge_zero_page, NULL);
160 BUG_ON(zero_page == NULL);
161 WRITE_ONCE(huge_zero_pfn, ~0UL);
162 __free_pages(zero_page, compound_order(zero_page));
163 return HPAGE_PMD_NR;
164 }
165
166 return 0;
167 }
168
169 static struct shrinker huge_zero_page_shrinker = {
170 .count_objects = shrink_huge_zero_page_count,
171 .scan_objects = shrink_huge_zero_page_scan,
172 .seeks = DEFAULT_SEEKS,
173 };
174
175 #ifdef CONFIG_SYSFS
176 static ssize_t enabled_show(struct kobject *kobj,
177 struct kobj_attribute *attr, char *buf)
178 {
179 const char *output;
180
181 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
182 output = "[always] madvise never";
183 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
184 &transparent_hugepage_flags))
185 output = "always [madvise] never";
186 else
187 output = "always madvise [never]";
188
189 return sysfs_emit(buf, "%s\n", output);
190 }
191
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195 {
196 ssize_t ret = count;
197
198 if (sysfs_streq(buf, "always")) {
199 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
200 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
201 } else if (sysfs_streq(buf, "madvise")) {
202 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
203 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
204 } else if (sysfs_streq(buf, "never")) {
205 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
206 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
207 } else
208 ret = -EINVAL;
209
210 if (ret > 0) {
211 int err = start_stop_khugepaged();
212 if (err)
213 ret = err;
214 }
215 return ret;
216 }
217 static struct kobj_attribute enabled_attr =
218 __ATTR(enabled, 0644, enabled_show, enabled_store);
219
220 ssize_t single_hugepage_flag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf,
222 enum transparent_hugepage_flag flag)
223 {
224 return sysfs_emit(buf, "%d\n",
225 !!test_bit(flag, &transparent_hugepage_flags));
226 }
227
228 ssize_t single_hugepage_flag_store(struct kobject *kobj,
229 struct kobj_attribute *attr,
230 const char *buf, size_t count,
231 enum transparent_hugepage_flag flag)
232 {
233 unsigned long value;
234 int ret;
235
236 ret = kstrtoul(buf, 10, &value);
237 if (ret < 0)
238 return ret;
239 if (value > 1)
240 return -EINVAL;
241
242 if (value)
243 set_bit(flag, &transparent_hugepage_flags);
244 else
245 clear_bit(flag, &transparent_hugepage_flags);
246
247 return count;
248 }
249
250 static ssize_t defrag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf)
252 {
253 const char *output;
254
255 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
256 &transparent_hugepage_flags))
257 output = "[always] defer defer+madvise madvise never";
258 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
259 &transparent_hugepage_flags))
260 output = "always [defer] defer+madvise madvise never";
261 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
262 &transparent_hugepage_flags))
263 output = "always defer [defer+madvise] madvise never";
264 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
265 &transparent_hugepage_flags))
266 output = "always defer defer+madvise [madvise] never";
267 else
268 output = "always defer defer+madvise madvise [never]";
269
270 return sysfs_emit(buf, "%s\n", output);
271 }
272
273 static ssize_t defrag_store(struct kobject *kobj,
274 struct kobj_attribute *attr,
275 const char *buf, size_t count)
276 {
277 if (sysfs_streq(buf, "always")) {
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
281 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282 } else if (sysfs_streq(buf, "defer+madvise")) {
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
286 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287 } else if (sysfs_streq(buf, "defer")) {
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
291 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
292 } else if (sysfs_streq(buf, "madvise")) {
293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
295 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
296 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
297 } else if (sysfs_streq(buf, "never")) {
298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
301 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
302 } else
303 return -EINVAL;
304
305 return count;
306 }
307 static struct kobj_attribute defrag_attr =
308 __ATTR(defrag, 0644, defrag_show, defrag_store);
309
310 static ssize_t use_zero_page_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 return single_hugepage_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
315 }
316 static ssize_t use_zero_page_store(struct kobject *kobj,
317 struct kobj_attribute *attr, const char *buf, size_t count)
318 {
319 return single_hugepage_flag_store(kobj, attr, buf, count,
320 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
321 }
322 static struct kobj_attribute use_zero_page_attr =
323 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
324
325 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
326 struct kobj_attribute *attr, char *buf)
327 {
328 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
329 }
330 static struct kobj_attribute hpage_pmd_size_attr =
331 __ATTR_RO(hpage_pmd_size);
332
333 static struct attribute *hugepage_attr[] = {
334 &enabled_attr.attr,
335 &defrag_attr.attr,
336 &use_zero_page_attr.attr,
337 &hpage_pmd_size_attr.attr,
338 #ifdef CONFIG_SHMEM
339 &shmem_enabled_attr.attr,
340 #endif
341 NULL,
342 };
343
344 static const struct attribute_group hugepage_attr_group = {
345 .attrs = hugepage_attr,
346 };
347
348 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
349 {
350 int err;
351
352 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
353 if (unlikely(!*hugepage_kobj)) {
354 pr_err("failed to create transparent hugepage kobject\n");
355 return -ENOMEM;
356 }
357
358 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
359 if (err) {
360 pr_err("failed to register transparent hugepage group\n");
361 goto delete_obj;
362 }
363
364 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
365 if (err) {
366 pr_err("failed to register transparent hugepage group\n");
367 goto remove_hp_group;
368 }
369
370 return 0;
371
372 remove_hp_group:
373 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
374 delete_obj:
375 kobject_put(*hugepage_kobj);
376 return err;
377 }
378
379 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380 {
381 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
382 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
383 kobject_put(hugepage_kobj);
384 }
385 #else
386 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
387 {
388 return 0;
389 }
390
391 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
392 {
393 }
394 #endif /* CONFIG_SYSFS */
395
396 static int __init hugepage_init(void)
397 {
398 int err;
399 struct kobject *hugepage_kobj;
400
401 if (!has_transparent_hugepage()) {
402 /*
403 * Hardware doesn't support hugepages, hence disable
404 * DAX PMD support.
405 */
406 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
407 return -EINVAL;
408 }
409
410 /*
411 * hugepages can't be allocated by the buddy allocator
412 */
413 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
414 /*
415 * we use page->mapping and page->index in second tail page
416 * as list_head: assuming THP order >= 2
417 */
418 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
419
420 err = hugepage_init_sysfs(&hugepage_kobj);
421 if (err)
422 goto err_sysfs;
423
424 err = khugepaged_init();
425 if (err)
426 goto err_slab;
427
428 err = register_shrinker(&huge_zero_page_shrinker);
429 if (err)
430 goto err_hzp_shrinker;
431 err = register_shrinker(&deferred_split_shrinker);
432 if (err)
433 goto err_split_shrinker;
434
435 /*
436 * By default disable transparent hugepages on smaller systems,
437 * where the extra memory used could hurt more than TLB overhead
438 * is likely to save. The admin can still enable it through /sys.
439 */
440 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
441 transparent_hugepage_flags = 0;
442 return 0;
443 }
444
445 err = start_stop_khugepaged();
446 if (err)
447 goto err_khugepaged;
448
449 return 0;
450 err_khugepaged:
451 unregister_shrinker(&deferred_split_shrinker);
452 err_split_shrinker:
453 unregister_shrinker(&huge_zero_page_shrinker);
454 err_hzp_shrinker:
455 khugepaged_destroy();
456 err_slab:
457 hugepage_exit_sysfs(hugepage_kobj);
458 err_sysfs:
459 return err;
460 }
461 subsys_initcall(hugepage_init);
462
463 static int __init setup_transparent_hugepage(char *str)
464 {
465 int ret = 0;
466 if (!str)
467 goto out;
468 if (!strcmp(str, "always")) {
469 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "madvise")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 } else if (!strcmp(str, "never")) {
481 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
482 &transparent_hugepage_flags);
483 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
484 &transparent_hugepage_flags);
485 ret = 1;
486 }
487 out:
488 if (!ret)
489 pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 return ret;
491 }
492 __setup("transparent_hugepage=", setup_transparent_hugepage);
493
494 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
495 {
496 if (likely(vma->vm_flags & VM_WRITE))
497 pmd = pmd_mkwrite(pmd);
498 return pmd;
499 }
500
501 #ifdef CONFIG_MEMCG
502 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
503 {
504 struct mem_cgroup *memcg = page_memcg(compound_head(page));
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 if (memcg)
508 return &memcg->deferred_split_queue;
509 else
510 return &pgdat->deferred_split_queue;
511 }
512 #else
513 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
514 {
515 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
516
517 return &pgdat->deferred_split_queue;
518 }
519 #endif
520
521 void prep_transhuge_page(struct page *page)
522 {
523 /*
524 * we use page->mapping and page->indexlru in second tail page
525 * as list_head: assuming THP order >= 2
526 */
527
528 INIT_LIST_HEAD(page_deferred_list(page));
529 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530 }
531
532 bool is_transparent_hugepage(struct page *page)
533 {
534 if (!PageCompound(page))
535 return false;
536
537 page = compound_head(page);
538 return is_huge_zero_page(page) ||
539 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
540 }
541 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
542
543 static unsigned long __thp_get_unmapped_area(struct file *filp,
544 unsigned long addr, unsigned long len,
545 loff_t off, unsigned long flags, unsigned long size)
546 {
547 loff_t off_end = off + len;
548 loff_t off_align = round_up(off, size);
549 unsigned long len_pad, ret;
550
551 if (off_end <= off_align || (off_end - off_align) < size)
552 return 0;
553
554 len_pad = len + size;
555 if (len_pad < len || (off + len_pad) < off)
556 return 0;
557
558 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
559 off >> PAGE_SHIFT, flags);
560
561 /*
562 * The failure might be due to length padding. The caller will retry
563 * without the padding.
564 */
565 if (IS_ERR_VALUE(ret))
566 return 0;
567
568 /*
569 * Do not try to align to THP boundary if allocation at the address
570 * hint succeeds.
571 */
572 if (ret == addr)
573 return addr;
574
575 ret += (off - ret) & (size - 1);
576 return ret;
577 }
578
579 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
580 unsigned long len, unsigned long pgoff, unsigned long flags)
581 {
582 unsigned long ret;
583 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
584
585 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
586 goto out;
587
588 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589 if (ret)
590 return ret;
591 out:
592 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593 }
594 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595
596 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597 struct page *page, gfp_t gfp)
598 {
599 struct vm_area_struct *vma = vmf->vma;
600 pgtable_t pgtable;
601 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602 vm_fault_t ret = 0;
603
604 VM_BUG_ON_PAGE(!PageCompound(page), page);
605
606 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
607 put_page(page);
608 count_vm_event(THP_FAULT_FALLBACK);
609 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 return VM_FAULT_FALLBACK;
611 }
612 cgroup_throttle_swaprate(page, gfp);
613
614 pgtable = pte_alloc_one(vma->vm_mm);
615 if (unlikely(!pgtable)) {
616 ret = VM_FAULT_OOM;
617 goto release;
618 }
619
620 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 /*
622 * The memory barrier inside __SetPageUptodate makes sure that
623 * clear_huge_page writes become visible before the set_pmd_at()
624 * write.
625 */
626 __SetPageUptodate(page);
627
628 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629 if (unlikely(!pmd_none(*vmf->pmd))) {
630 goto unlock_release;
631 } else {
632 pmd_t entry;
633
634 ret = check_stable_address_space(vma->vm_mm);
635 if (ret)
636 goto unlock_release;
637
638 /* Deliver the page fault to userland */
639 if (userfaultfd_missing(vma)) {
640 spin_unlock(vmf->ptl);
641 put_page(page);
642 pte_free(vma->vm_mm, pgtable);
643 ret = handle_userfault(vmf, VM_UFFD_MISSING);
644 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645 return ret;
646 }
647
648 entry = mk_huge_pmd(page, vma->vm_page_prot);
649 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650 page_add_new_anon_rmap(page, vma, haddr, true);
651 lru_cache_add_inactive_or_unevictable(page, vma);
652 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
655 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656 mm_inc_nr_ptes(vma->vm_mm);
657 spin_unlock(vmf->ptl);
658 count_vm_event(THP_FAULT_ALLOC);
659 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 }
661
662 return 0;
663 unlock_release:
664 spin_unlock(vmf->ptl);
665 release:
666 if (pgtable)
667 pte_free(vma->vm_mm, pgtable);
668 put_page(page);
669 return ret;
670
671 }
672
673 /*
674 * always: directly stall for all thp allocations
675 * defer: wake kswapd and fail if not immediately available
676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677 * fail if not immediately available
678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679 * available
680 * never: never stall for any thp allocation
681 */
682 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683 {
684 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685
686 /* Always do synchronous compaction */
687 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689
690 /* Kick kcompactd and fail quickly */
691 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693
694 /* Synchronous compaction if madvised, otherwise kick kcompactd */
695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM :
698 __GFP_KSWAPD_RECLAIM);
699
700 /* Only do synchronous compaction if madvised */
701 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 return GFP_TRANSHUGE_LIGHT |
703 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704
705 return GFP_TRANSHUGE_LIGHT;
706 }
707
708 /* Caller must hold page table lock. */
709 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711 struct page *zero_page)
712 {
713 pmd_t entry;
714 if (!pmd_none(*pmd))
715 return;
716 entry = mk_pmd(zero_page, vma->vm_page_prot);
717 entry = pmd_mkhuge(entry);
718 if (pgtable)
719 pgtable_trans_huge_deposit(mm, pmd, pgtable);
720 set_pmd_at(mm, haddr, pmd, entry);
721 mm_inc_nr_ptes(mm);
722 }
723
724 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725 {
726 struct vm_area_struct *vma = vmf->vma;
727 gfp_t gfp;
728 struct page *page;
729 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730
731 if (!transhuge_vma_suitable(vma, haddr))
732 return VM_FAULT_FALLBACK;
733 if (unlikely(anon_vma_prepare(vma)))
734 return VM_FAULT_OOM;
735 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736 return VM_FAULT_OOM;
737 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
738 !mm_forbids_zeropage(vma->vm_mm) &&
739 transparent_hugepage_use_zero_page()) {
740 pgtable_t pgtable;
741 struct page *zero_page;
742 vm_fault_t ret;
743 pgtable = pte_alloc_one(vma->vm_mm);
744 if (unlikely(!pgtable))
745 return VM_FAULT_OOM;
746 zero_page = mm_get_huge_zero_page(vma->vm_mm);
747 if (unlikely(!zero_page)) {
748 pte_free(vma->vm_mm, pgtable);
749 count_vm_event(THP_FAULT_FALLBACK);
750 return VM_FAULT_FALLBACK;
751 }
752 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753 ret = 0;
754 if (pmd_none(*vmf->pmd)) {
755 ret = check_stable_address_space(vma->vm_mm);
756 if (ret) {
757 spin_unlock(vmf->ptl);
758 pte_free(vma->vm_mm, pgtable);
759 } else if (userfaultfd_missing(vma)) {
760 spin_unlock(vmf->ptl);
761 pte_free(vma->vm_mm, pgtable);
762 ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764 } else {
765 set_huge_zero_page(pgtable, vma->vm_mm, vma,
766 haddr, vmf->pmd, zero_page);
767 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
768 spin_unlock(vmf->ptl);
769 }
770 } else {
771 spin_unlock(vmf->ptl);
772 pte_free(vma->vm_mm, pgtable);
773 }
774 return ret;
775 }
776 gfp = vma_thp_gfp_mask(vma);
777 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 if (unlikely(!page)) {
779 count_vm_event(THP_FAULT_FALLBACK);
780 return VM_FAULT_FALLBACK;
781 }
782 prep_transhuge_page(page);
783 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 }
785
786 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788 pgtable_t pgtable)
789 {
790 struct mm_struct *mm = vma->vm_mm;
791 pmd_t entry;
792 spinlock_t *ptl;
793
794 ptl = pmd_lock(mm, pmd);
795 if (!pmd_none(*pmd)) {
796 if (write) {
797 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799 goto out_unlock;
800 }
801 entry = pmd_mkyoung(*pmd);
802 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804 update_mmu_cache_pmd(vma, addr, pmd);
805 }
806
807 goto out_unlock;
808 }
809
810 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811 if (pfn_t_devmap(pfn))
812 entry = pmd_mkdevmap(entry);
813 if (write) {
814 entry = pmd_mkyoung(pmd_mkdirty(entry));
815 entry = maybe_pmd_mkwrite(entry, vma);
816 }
817
818 if (pgtable) {
819 pgtable_trans_huge_deposit(mm, pmd, pgtable);
820 mm_inc_nr_ptes(mm);
821 pgtable = NULL;
822 }
823
824 set_pmd_at(mm, addr, pmd, entry);
825 update_mmu_cache_pmd(vma, addr, pmd);
826
827 out_unlock:
828 spin_unlock(ptl);
829 if (pgtable)
830 pte_free(mm, pgtable);
831 }
832
833 /**
834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835 * @vmf: Structure describing the fault
836 * @pfn: pfn to insert
837 * @pgprot: page protection to use
838 * @write: whether it's a write fault
839 *
840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841 * also consult the vmf_insert_mixed_prot() documentation when
842 * @pgprot != @vmf->vma->vm_page_prot.
843 *
844 * Return: vm_fault_t value.
845 */
846 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847 pgprot_t pgprot, bool write)
848 {
849 unsigned long addr = vmf->address & PMD_MASK;
850 struct vm_area_struct *vma = vmf->vma;
851 pgtable_t pgtable = NULL;
852
853 /*
854 * If we had pmd_special, we could avoid all these restrictions,
855 * but we need to be consistent with PTEs and architectures that
856 * can't support a 'special' bit.
857 */
858 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859 !pfn_t_devmap(pfn));
860 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861 (VM_PFNMAP|VM_MIXEDMAP));
862 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
863
864 if (addr < vma->vm_start || addr >= vma->vm_end)
865 return VM_FAULT_SIGBUS;
866
867 if (arch_needs_pgtable_deposit()) {
868 pgtable = pte_alloc_one(vma->vm_mm);
869 if (!pgtable)
870 return VM_FAULT_OOM;
871 }
872
873 track_pfn_insert(vma, &pgprot, pfn);
874
875 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876 return VM_FAULT_NOPAGE;
877 }
878 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
879
880 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882 {
883 if (likely(vma->vm_flags & VM_WRITE))
884 pud = pud_mkwrite(pud);
885 return pud;
886 }
887
888 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890 {
891 struct mm_struct *mm = vma->vm_mm;
892 pud_t entry;
893 spinlock_t *ptl;
894
895 ptl = pud_lock(mm, pud);
896 if (!pud_none(*pud)) {
897 if (write) {
898 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900 goto out_unlock;
901 }
902 entry = pud_mkyoung(*pud);
903 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905 update_mmu_cache_pud(vma, addr, pud);
906 }
907 goto out_unlock;
908 }
909
910 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911 if (pfn_t_devmap(pfn))
912 entry = pud_mkdevmap(entry);
913 if (write) {
914 entry = pud_mkyoung(pud_mkdirty(entry));
915 entry = maybe_pud_mkwrite(entry, vma);
916 }
917 set_pud_at(mm, addr, pud, entry);
918 update_mmu_cache_pud(vma, addr, pud);
919
920 out_unlock:
921 spin_unlock(ptl);
922 }
923
924 /**
925 * vmf_insert_pfn_pud_prot - insert a pud size pfn
926 * @vmf: Structure describing the fault
927 * @pfn: pfn to insert
928 * @pgprot: page protection to use
929 * @write: whether it's a write fault
930 *
931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932 * also consult the vmf_insert_mixed_prot() documentation when
933 * @pgprot != @vmf->vma->vm_page_prot.
934 *
935 * Return: vm_fault_t value.
936 */
937 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938 pgprot_t pgprot, bool write)
939 {
940 unsigned long addr = vmf->address & PUD_MASK;
941 struct vm_area_struct *vma = vmf->vma;
942
943 /*
944 * If we had pud_special, we could avoid all these restrictions,
945 * but we need to be consistent with PTEs and architectures that
946 * can't support a 'special' bit.
947 */
948 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949 !pfn_t_devmap(pfn));
950 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951 (VM_PFNMAP|VM_MIXEDMAP));
952 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
953
954 if (addr < vma->vm_start || addr >= vma->vm_end)
955 return VM_FAULT_SIGBUS;
956
957 track_pfn_insert(vma, &pgprot, pfn);
958
959 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 return VM_FAULT_NOPAGE;
961 }
962 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964
965 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966 pmd_t *pmd, int flags)
967 {
968 pmd_t _pmd;
969
970 _pmd = pmd_mkyoung(*pmd);
971 if (flags & FOLL_WRITE)
972 _pmd = pmd_mkdirty(_pmd);
973 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974 pmd, _pmd, flags & FOLL_WRITE))
975 update_mmu_cache_pmd(vma, addr, pmd);
976 }
977
978 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 {
981 unsigned long pfn = pmd_pfn(*pmd);
982 struct mm_struct *mm = vma->vm_mm;
983 struct page *page;
984
985 assert_spin_locked(pmd_lockptr(mm, pmd));
986
987 /*
988 * When we COW a devmap PMD entry, we split it into PTEs, so we should
989 * not be in this function with `flags & FOLL_COW` set.
990 */
991 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992
993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
994 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995 (FOLL_PIN | FOLL_GET)))
996 return NULL;
997
998 if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 return NULL;
1000
1001 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002 /* pass */;
1003 else
1004 return NULL;
1005
1006 if (flags & FOLL_TOUCH)
1007 touch_pmd(vma, addr, pmd, flags);
1008
1009 /*
1010 * device mapped pages can only be returned if the
1011 * caller will manage the page reference count.
1012 */
1013 if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 return ERR_PTR(-EEXIST);
1015
1016 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 *pgmap = get_dev_pagemap(pfn, *pgmap);
1018 if (!*pgmap)
1019 return ERR_PTR(-EFAULT);
1020 page = pfn_to_page(pfn);
1021 if (!try_grab_page(page, flags))
1022 page = ERR_PTR(-ENOMEM);
1023
1024 return page;
1025 }
1026
1027 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030 {
1031 spinlock_t *dst_ptl, *src_ptl;
1032 struct page *src_page;
1033 pmd_t pmd;
1034 pgtable_t pgtable = NULL;
1035 int ret = -ENOMEM;
1036
1037 /* Skip if can be re-fill on fault */
1038 if (!vma_is_anonymous(dst_vma))
1039 return 0;
1040
1041 pgtable = pte_alloc_one(dst_mm);
1042 if (unlikely(!pgtable))
1043 goto out;
1044
1045 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046 src_ptl = pmd_lockptr(src_mm, src_pmd);
1047 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048
1049 ret = -EAGAIN;
1050 pmd = *src_pmd;
1051
1052 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 if (unlikely(is_swap_pmd(pmd))) {
1054 swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 if (is_writable_migration_entry(entry)) {
1058 entry = make_readable_migration_entry(
1059 swp_offset(entry));
1060 pmd = swp_entry_to_pmd(entry);
1061 if (pmd_swp_soft_dirty(*src_pmd))
1062 pmd = pmd_swp_mksoft_dirty(pmd);
1063 if (pmd_swp_uffd_wp(*src_pmd))
1064 pmd = pmd_swp_mkuffd_wp(pmd);
1065 set_pmd_at(src_mm, addr, src_pmd, pmd);
1066 }
1067 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068 mm_inc_nr_ptes(dst_mm);
1069 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 if (!userfaultfd_wp(dst_vma))
1071 pmd = pmd_swp_clear_uffd_wp(pmd);
1072 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1073 ret = 0;
1074 goto out_unlock;
1075 }
1076 #endif
1077
1078 if (unlikely(!pmd_trans_huge(pmd))) {
1079 pte_free(dst_mm, pgtable);
1080 goto out_unlock;
1081 }
1082 /*
1083 * When page table lock is held, the huge zero pmd should not be
1084 * under splitting since we don't split the page itself, only pmd to
1085 * a page table.
1086 */
1087 if (is_huge_zero_pmd(pmd)) {
1088 /*
1089 * get_huge_zero_page() will never allocate a new page here,
1090 * since we already have a zero page to copy. It just takes a
1091 * reference.
1092 */
1093 mm_get_huge_zero_page(dst_mm);
1094 goto out_zero_page;
1095 }
1096
1097 src_page = pmd_page(pmd);
1098 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099
1100 /*
1101 * If this page is a potentially pinned page, split and retry the fault
1102 * with smaller page size. Normally this should not happen because the
1103 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1104 * best effort that the pinned pages won't be replaced by another
1105 * random page during the coming copy-on-write.
1106 */
1107 if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108 pte_free(dst_mm, pgtable);
1109 spin_unlock(src_ptl);
1110 spin_unlock(dst_ptl);
1111 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112 return -EAGAIN;
1113 }
1114
1115 get_page(src_page);
1116 page_dup_rmap(src_page, true);
1117 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118 out_zero_page:
1119 mm_inc_nr_ptes(dst_mm);
1120 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 if (!userfaultfd_wp(dst_vma))
1123 pmd = pmd_clear_uffd_wp(pmd);
1124 pmd = pmd_mkold(pmd_wrprotect(pmd));
1125 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1126
1127 ret = 0;
1128 out_unlock:
1129 spin_unlock(src_ptl);
1130 spin_unlock(dst_ptl);
1131 out:
1132 return ret;
1133 }
1134
1135 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1136 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137 pud_t *pud, int flags)
1138 {
1139 pud_t _pud;
1140
1141 _pud = pud_mkyoung(*pud);
1142 if (flags & FOLL_WRITE)
1143 _pud = pud_mkdirty(_pud);
1144 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145 pud, _pud, flags & FOLL_WRITE))
1146 update_mmu_cache_pud(vma, addr, pud);
1147 }
1148
1149 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151 {
1152 unsigned long pfn = pud_pfn(*pud);
1153 struct mm_struct *mm = vma->vm_mm;
1154 struct page *page;
1155
1156 assert_spin_locked(pud_lockptr(mm, pud));
1157
1158 if (flags & FOLL_WRITE && !pud_write(*pud))
1159 return NULL;
1160
1161 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1162 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1163 (FOLL_PIN | FOLL_GET)))
1164 return NULL;
1165
1166 if (pud_present(*pud) && pud_devmap(*pud))
1167 /* pass */;
1168 else
1169 return NULL;
1170
1171 if (flags & FOLL_TOUCH)
1172 touch_pud(vma, addr, pud, flags);
1173
1174 /*
1175 * device mapped pages can only be returned if the
1176 * caller will manage the page reference count.
1177 *
1178 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179 */
1180 if (!(flags & (FOLL_GET | FOLL_PIN)))
1181 return ERR_PTR(-EEXIST);
1182
1183 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184 *pgmap = get_dev_pagemap(pfn, *pgmap);
1185 if (!*pgmap)
1186 return ERR_PTR(-EFAULT);
1187 page = pfn_to_page(pfn);
1188 if (!try_grab_page(page, flags))
1189 page = ERR_PTR(-ENOMEM);
1190
1191 return page;
1192 }
1193
1194 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1196 struct vm_area_struct *vma)
1197 {
1198 spinlock_t *dst_ptl, *src_ptl;
1199 pud_t pud;
1200 int ret;
1201
1202 dst_ptl = pud_lock(dst_mm, dst_pud);
1203 src_ptl = pud_lockptr(src_mm, src_pud);
1204 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1205
1206 ret = -EAGAIN;
1207 pud = *src_pud;
1208 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1209 goto out_unlock;
1210
1211 /*
1212 * When page table lock is held, the huge zero pud should not be
1213 * under splitting since we don't split the page itself, only pud to
1214 * a page table.
1215 */
1216 if (is_huge_zero_pud(pud)) {
1217 /* No huge zero pud yet */
1218 }
1219
1220 /* Please refer to comments in copy_huge_pmd() */
1221 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222 spin_unlock(src_ptl);
1223 spin_unlock(dst_ptl);
1224 __split_huge_pud(vma, src_pud, addr);
1225 return -EAGAIN;
1226 }
1227
1228 pudp_set_wrprotect(src_mm, addr, src_pud);
1229 pud = pud_mkold(pud_wrprotect(pud));
1230 set_pud_at(dst_mm, addr, dst_pud, pud);
1231
1232 ret = 0;
1233 out_unlock:
1234 spin_unlock(src_ptl);
1235 spin_unlock(dst_ptl);
1236 return ret;
1237 }
1238
1239 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1240 {
1241 pud_t entry;
1242 unsigned long haddr;
1243 bool write = vmf->flags & FAULT_FLAG_WRITE;
1244
1245 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1246 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1247 goto unlock;
1248
1249 entry = pud_mkyoung(orig_pud);
1250 if (write)
1251 entry = pud_mkdirty(entry);
1252 haddr = vmf->address & HPAGE_PUD_MASK;
1253 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1254 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1255
1256 unlock:
1257 spin_unlock(vmf->ptl);
1258 }
1259 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1260
1261 void huge_pmd_set_accessed(struct vm_fault *vmf)
1262 {
1263 pmd_t entry;
1264 unsigned long haddr;
1265 bool write = vmf->flags & FAULT_FLAG_WRITE;
1266 pmd_t orig_pmd = vmf->orig_pmd;
1267
1268 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1269 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270 goto unlock;
1271
1272 entry = pmd_mkyoung(orig_pmd);
1273 if (write)
1274 entry = pmd_mkdirty(entry);
1275 haddr = vmf->address & HPAGE_PMD_MASK;
1276 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1277 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278
1279 unlock:
1280 spin_unlock(vmf->ptl);
1281 }
1282
1283 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284 {
1285 struct vm_area_struct *vma = vmf->vma;
1286 struct page *page;
1287 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288 pmd_t orig_pmd = vmf->orig_pmd;
1289
1290 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292
1293 if (is_huge_zero_pmd(orig_pmd))
1294 goto fallback;
1295
1296 spin_lock(vmf->ptl);
1297
1298 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1299 spin_unlock(vmf->ptl);
1300 return 0;
1301 }
1302
1303 page = pmd_page(orig_pmd);
1304 VM_BUG_ON_PAGE(!PageHead(page), page);
1305
1306 /* Lock page for reuse_swap_page() */
1307 if (!trylock_page(page)) {
1308 get_page(page);
1309 spin_unlock(vmf->ptl);
1310 lock_page(page);
1311 spin_lock(vmf->ptl);
1312 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1313 spin_unlock(vmf->ptl);
1314 unlock_page(page);
1315 put_page(page);
1316 return 0;
1317 }
1318 put_page(page);
1319 }
1320
1321 /*
1322 * We can only reuse the page if nobody else maps the huge page or it's
1323 * part.
1324 */
1325 if (reuse_swap_page(page, NULL)) {
1326 pmd_t entry;
1327 entry = pmd_mkyoung(orig_pmd);
1328 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1329 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1330 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1331 unlock_page(page);
1332 spin_unlock(vmf->ptl);
1333 return VM_FAULT_WRITE;
1334 }
1335
1336 unlock_page(page);
1337 spin_unlock(vmf->ptl);
1338 fallback:
1339 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1340 return VM_FAULT_FALLBACK;
1341 }
1342
1343 /*
1344 * FOLL_FORCE can write to even unwritable pmd's, but only
1345 * after we've gone through a COW cycle and they are dirty.
1346 */
1347 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1348 {
1349 return pmd_write(pmd) ||
1350 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1351 }
1352
1353 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1354 unsigned long addr,
1355 pmd_t *pmd,
1356 unsigned int flags)
1357 {
1358 struct mm_struct *mm = vma->vm_mm;
1359 struct page *page = NULL;
1360
1361 assert_spin_locked(pmd_lockptr(mm, pmd));
1362
1363 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1364 goto out;
1365
1366 /* Avoid dumping huge zero page */
1367 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1368 return ERR_PTR(-EFAULT);
1369
1370 /* Full NUMA hinting faults to serialise migration in fault paths */
1371 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1372 goto out;
1373
1374 page = pmd_page(*pmd);
1375 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1376
1377 if (!try_grab_page(page, flags))
1378 return ERR_PTR(-ENOMEM);
1379
1380 if (flags & FOLL_TOUCH)
1381 touch_pmd(vma, addr, pmd, flags);
1382
1383 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1384 /*
1385 * We don't mlock() pte-mapped THPs. This way we can avoid
1386 * leaking mlocked pages into non-VM_LOCKED VMAs.
1387 *
1388 * For anon THP:
1389 *
1390 * In most cases the pmd is the only mapping of the page as we
1391 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1392 * writable private mappings in populate_vma_page_range().
1393 *
1394 * The only scenario when we have the page shared here is if we
1395 * mlocking read-only mapping shared over fork(). We skip
1396 * mlocking such pages.
1397 *
1398 * For file THP:
1399 *
1400 * We can expect PageDoubleMap() to be stable under page lock:
1401 * for file pages we set it in page_add_file_rmap(), which
1402 * requires page to be locked.
1403 */
1404
1405 if (PageAnon(page) && compound_mapcount(page) != 1)
1406 goto skip_mlock;
1407 if (PageDoubleMap(page) || !page->mapping)
1408 goto skip_mlock;
1409 if (!trylock_page(page))
1410 goto skip_mlock;
1411 if (page->mapping && !PageDoubleMap(page))
1412 mlock_vma_page(page);
1413 unlock_page(page);
1414 }
1415 skip_mlock:
1416 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1417 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1418
1419 out:
1420 return page;
1421 }
1422
1423 /* NUMA hinting page fault entry point for trans huge pmds */
1424 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1425 {
1426 struct vm_area_struct *vma = vmf->vma;
1427 pmd_t oldpmd = vmf->orig_pmd;
1428 pmd_t pmd;
1429 struct page *page;
1430 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1431 int page_nid = NUMA_NO_NODE;
1432 int target_nid, last_cpupid = -1;
1433 bool migrated = false;
1434 bool was_writable = pmd_savedwrite(oldpmd);
1435 int flags = 0;
1436
1437 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1438 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1439 spin_unlock(vmf->ptl);
1440 goto out;
1441 }
1442
1443 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1444 page = vm_normal_page_pmd(vma, haddr, pmd);
1445 if (!page)
1446 goto out_map;
1447
1448 /* See similar comment in do_numa_page for explanation */
1449 if (!was_writable)
1450 flags |= TNF_NO_GROUP;
1451
1452 page_nid = page_to_nid(page);
1453 last_cpupid = page_cpupid_last(page);
1454 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1455 &flags);
1456
1457 if (target_nid == NUMA_NO_NODE) {
1458 put_page(page);
1459 goto out_map;
1460 }
1461
1462 spin_unlock(vmf->ptl);
1463
1464 migrated = migrate_misplaced_page(page, vma, target_nid);
1465 if (migrated) {
1466 flags |= TNF_MIGRATED;
1467 page_nid = target_nid;
1468 } else {
1469 flags |= TNF_MIGRATE_FAIL;
1470 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1471 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1472 spin_unlock(vmf->ptl);
1473 goto out;
1474 }
1475 goto out_map;
1476 }
1477
1478 out:
1479 if (page_nid != NUMA_NO_NODE)
1480 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1481 flags);
1482
1483 return 0;
1484
1485 out_map:
1486 /* Restore the PMD */
1487 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1488 pmd = pmd_mkyoung(pmd);
1489 if (was_writable)
1490 pmd = pmd_mkwrite(pmd);
1491 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1492 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1493 spin_unlock(vmf->ptl);
1494 goto out;
1495 }
1496
1497 /*
1498 * Return true if we do MADV_FREE successfully on entire pmd page.
1499 * Otherwise, return false.
1500 */
1501 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1502 pmd_t *pmd, unsigned long addr, unsigned long next)
1503 {
1504 spinlock_t *ptl;
1505 pmd_t orig_pmd;
1506 struct page *page;
1507 struct mm_struct *mm = tlb->mm;
1508 bool ret = false;
1509
1510 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1511
1512 ptl = pmd_trans_huge_lock(pmd, vma);
1513 if (!ptl)
1514 goto out_unlocked;
1515
1516 orig_pmd = *pmd;
1517 if (is_huge_zero_pmd(orig_pmd))
1518 goto out;
1519
1520 if (unlikely(!pmd_present(orig_pmd))) {
1521 VM_BUG_ON(thp_migration_supported() &&
1522 !is_pmd_migration_entry(orig_pmd));
1523 goto out;
1524 }
1525
1526 page = pmd_page(orig_pmd);
1527 /*
1528 * If other processes are mapping this page, we couldn't discard
1529 * the page unless they all do MADV_FREE so let's skip the page.
1530 */
1531 if (total_mapcount(page) != 1)
1532 goto out;
1533
1534 if (!trylock_page(page))
1535 goto out;
1536
1537 /*
1538 * If user want to discard part-pages of THP, split it so MADV_FREE
1539 * will deactivate only them.
1540 */
1541 if (next - addr != HPAGE_PMD_SIZE) {
1542 get_page(page);
1543 spin_unlock(ptl);
1544 split_huge_page(page);
1545 unlock_page(page);
1546 put_page(page);
1547 goto out_unlocked;
1548 }
1549
1550 if (PageDirty(page))
1551 ClearPageDirty(page);
1552 unlock_page(page);
1553
1554 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1555 pmdp_invalidate(vma, addr, pmd);
1556 orig_pmd = pmd_mkold(orig_pmd);
1557 orig_pmd = pmd_mkclean(orig_pmd);
1558
1559 set_pmd_at(mm, addr, pmd, orig_pmd);
1560 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1561 }
1562
1563 mark_page_lazyfree(page);
1564 ret = true;
1565 out:
1566 spin_unlock(ptl);
1567 out_unlocked:
1568 return ret;
1569 }
1570
1571 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1572 {
1573 pgtable_t pgtable;
1574
1575 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1576 pte_free(mm, pgtable);
1577 mm_dec_nr_ptes(mm);
1578 }
1579
1580 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1581 pmd_t *pmd, unsigned long addr)
1582 {
1583 pmd_t orig_pmd;
1584 spinlock_t *ptl;
1585
1586 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1587
1588 ptl = __pmd_trans_huge_lock(pmd, vma);
1589 if (!ptl)
1590 return 0;
1591 /*
1592 * For architectures like ppc64 we look at deposited pgtable
1593 * when calling pmdp_huge_get_and_clear. So do the
1594 * pgtable_trans_huge_withdraw after finishing pmdp related
1595 * operations.
1596 */
1597 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1598 tlb->fullmm);
1599 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1600 if (vma_is_special_huge(vma)) {
1601 if (arch_needs_pgtable_deposit())
1602 zap_deposited_table(tlb->mm, pmd);
1603 spin_unlock(ptl);
1604 } else if (is_huge_zero_pmd(orig_pmd)) {
1605 zap_deposited_table(tlb->mm, pmd);
1606 spin_unlock(ptl);
1607 } else {
1608 struct page *page = NULL;
1609 int flush_needed = 1;
1610
1611 if (pmd_present(orig_pmd)) {
1612 page = pmd_page(orig_pmd);
1613 page_remove_rmap(page, true);
1614 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1615 VM_BUG_ON_PAGE(!PageHead(page), page);
1616 } else if (thp_migration_supported()) {
1617 swp_entry_t entry;
1618
1619 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1620 entry = pmd_to_swp_entry(orig_pmd);
1621 page = pfn_swap_entry_to_page(entry);
1622 flush_needed = 0;
1623 } else
1624 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1625
1626 if (PageAnon(page)) {
1627 zap_deposited_table(tlb->mm, pmd);
1628 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1629 } else {
1630 if (arch_needs_pgtable_deposit())
1631 zap_deposited_table(tlb->mm, pmd);
1632 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1633 }
1634
1635 spin_unlock(ptl);
1636 if (flush_needed)
1637 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1638 }
1639 return 1;
1640 }
1641
1642 #ifndef pmd_move_must_withdraw
1643 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1644 spinlock_t *old_pmd_ptl,
1645 struct vm_area_struct *vma)
1646 {
1647 /*
1648 * With split pmd lock we also need to move preallocated
1649 * PTE page table if new_pmd is on different PMD page table.
1650 *
1651 * We also don't deposit and withdraw tables for file pages.
1652 */
1653 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1654 }
1655 #endif
1656
1657 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1658 {
1659 #ifdef CONFIG_MEM_SOFT_DIRTY
1660 if (unlikely(is_pmd_migration_entry(pmd)))
1661 pmd = pmd_swp_mksoft_dirty(pmd);
1662 else if (pmd_present(pmd))
1663 pmd = pmd_mksoft_dirty(pmd);
1664 #endif
1665 return pmd;
1666 }
1667
1668 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1669 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1670 {
1671 spinlock_t *old_ptl, *new_ptl;
1672 pmd_t pmd;
1673 struct mm_struct *mm = vma->vm_mm;
1674 bool force_flush = false;
1675
1676 /*
1677 * The destination pmd shouldn't be established, free_pgtables()
1678 * should have release it.
1679 */
1680 if (WARN_ON(!pmd_none(*new_pmd))) {
1681 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1682 return false;
1683 }
1684
1685 /*
1686 * We don't have to worry about the ordering of src and dst
1687 * ptlocks because exclusive mmap_lock prevents deadlock.
1688 */
1689 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1690 if (old_ptl) {
1691 new_ptl = pmd_lockptr(mm, new_pmd);
1692 if (new_ptl != old_ptl)
1693 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1694 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1695 if (pmd_present(pmd))
1696 force_flush = true;
1697 VM_BUG_ON(!pmd_none(*new_pmd));
1698
1699 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1700 pgtable_t pgtable;
1701 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1702 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1703 }
1704 pmd = move_soft_dirty_pmd(pmd);
1705 set_pmd_at(mm, new_addr, new_pmd, pmd);
1706 if (force_flush)
1707 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1708 if (new_ptl != old_ptl)
1709 spin_unlock(new_ptl);
1710 spin_unlock(old_ptl);
1711 return true;
1712 }
1713 return false;
1714 }
1715
1716 /*
1717 * Returns
1718 * - 0 if PMD could not be locked
1719 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1720 * or if prot_numa but THP migration is not supported
1721 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1722 */
1723 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1724 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1725 {
1726 struct mm_struct *mm = vma->vm_mm;
1727 spinlock_t *ptl;
1728 pmd_t entry;
1729 bool preserve_write;
1730 int ret;
1731 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1732 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1733 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1734
1735 if (prot_numa && !thp_migration_supported())
1736 return 1;
1737
1738 ptl = __pmd_trans_huge_lock(pmd, vma);
1739 if (!ptl)
1740 return 0;
1741
1742 preserve_write = prot_numa && pmd_write(*pmd);
1743 ret = 1;
1744
1745 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1746 if (is_swap_pmd(*pmd)) {
1747 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1748
1749 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1750 if (is_writable_migration_entry(entry)) {
1751 pmd_t newpmd;
1752 /*
1753 * A protection check is difficult so
1754 * just be safe and disable write
1755 */
1756 entry = make_readable_migration_entry(
1757 swp_offset(entry));
1758 newpmd = swp_entry_to_pmd(entry);
1759 if (pmd_swp_soft_dirty(*pmd))
1760 newpmd = pmd_swp_mksoft_dirty(newpmd);
1761 if (pmd_swp_uffd_wp(*pmd))
1762 newpmd = pmd_swp_mkuffd_wp(newpmd);
1763 set_pmd_at(mm, addr, pmd, newpmd);
1764 }
1765 goto unlock;
1766 }
1767 #endif
1768
1769 /*
1770 * Avoid trapping faults against the zero page. The read-only
1771 * data is likely to be read-cached on the local CPU and
1772 * local/remote hits to the zero page are not interesting.
1773 */
1774 if (prot_numa && is_huge_zero_pmd(*pmd))
1775 goto unlock;
1776
1777 if (prot_numa && pmd_protnone(*pmd))
1778 goto unlock;
1779
1780 /*
1781 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1782 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1783 * which is also under mmap_read_lock(mm):
1784 *
1785 * CPU0: CPU1:
1786 * change_huge_pmd(prot_numa=1)
1787 * pmdp_huge_get_and_clear_notify()
1788 * madvise_dontneed()
1789 * zap_pmd_range()
1790 * pmd_trans_huge(*pmd) == 0 (without ptl)
1791 * // skip the pmd
1792 * set_pmd_at();
1793 * // pmd is re-established
1794 *
1795 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1796 * which may break userspace.
1797 *
1798 * pmdp_invalidate() is required to make sure we don't miss
1799 * dirty/young flags set by hardware.
1800 */
1801 entry = pmdp_invalidate(vma, addr, pmd);
1802
1803 entry = pmd_modify(entry, newprot);
1804 if (preserve_write)
1805 entry = pmd_mk_savedwrite(entry);
1806 if (uffd_wp) {
1807 entry = pmd_wrprotect(entry);
1808 entry = pmd_mkuffd_wp(entry);
1809 } else if (uffd_wp_resolve) {
1810 /*
1811 * Leave the write bit to be handled by PF interrupt
1812 * handler, then things like COW could be properly
1813 * handled.
1814 */
1815 entry = pmd_clear_uffd_wp(entry);
1816 }
1817 ret = HPAGE_PMD_NR;
1818 set_pmd_at(mm, addr, pmd, entry);
1819 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1820 unlock:
1821 spin_unlock(ptl);
1822 return ret;
1823 }
1824
1825 /*
1826 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1827 *
1828 * Note that if it returns page table lock pointer, this routine returns without
1829 * unlocking page table lock. So callers must unlock it.
1830 */
1831 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1832 {
1833 spinlock_t *ptl;
1834 ptl = pmd_lock(vma->vm_mm, pmd);
1835 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1836 pmd_devmap(*pmd)))
1837 return ptl;
1838 spin_unlock(ptl);
1839 return NULL;
1840 }
1841
1842 /*
1843 * Returns true if a given pud maps a thp, false otherwise.
1844 *
1845 * Note that if it returns true, this routine returns without unlocking page
1846 * table lock. So callers must unlock it.
1847 */
1848 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1849 {
1850 spinlock_t *ptl;
1851
1852 ptl = pud_lock(vma->vm_mm, pud);
1853 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1854 return ptl;
1855 spin_unlock(ptl);
1856 return NULL;
1857 }
1858
1859 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1860 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1861 pud_t *pud, unsigned long addr)
1862 {
1863 spinlock_t *ptl;
1864
1865 ptl = __pud_trans_huge_lock(pud, vma);
1866 if (!ptl)
1867 return 0;
1868 /*
1869 * For architectures like ppc64 we look at deposited pgtable
1870 * when calling pudp_huge_get_and_clear. So do the
1871 * pgtable_trans_huge_withdraw after finishing pudp related
1872 * operations.
1873 */
1874 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1875 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1876 if (vma_is_special_huge(vma)) {
1877 spin_unlock(ptl);
1878 /* No zero page support yet */
1879 } else {
1880 /* No support for anonymous PUD pages yet */
1881 BUG();
1882 }
1883 return 1;
1884 }
1885
1886 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1887 unsigned long haddr)
1888 {
1889 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1890 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1891 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1892 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1893
1894 count_vm_event(THP_SPLIT_PUD);
1895
1896 pudp_huge_clear_flush_notify(vma, haddr, pud);
1897 }
1898
1899 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1900 unsigned long address)
1901 {
1902 spinlock_t *ptl;
1903 struct mmu_notifier_range range;
1904
1905 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1906 address & HPAGE_PUD_MASK,
1907 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1908 mmu_notifier_invalidate_range_start(&range);
1909 ptl = pud_lock(vma->vm_mm, pud);
1910 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1911 goto out;
1912 __split_huge_pud_locked(vma, pud, range.start);
1913
1914 out:
1915 spin_unlock(ptl);
1916 /*
1917 * No need to double call mmu_notifier->invalidate_range() callback as
1918 * the above pudp_huge_clear_flush_notify() did already call it.
1919 */
1920 mmu_notifier_invalidate_range_only_end(&range);
1921 }
1922 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1923
1924 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1925 unsigned long haddr, pmd_t *pmd)
1926 {
1927 struct mm_struct *mm = vma->vm_mm;
1928 pgtable_t pgtable;
1929 pmd_t _pmd;
1930 int i;
1931
1932 /*
1933 * Leave pmd empty until pte is filled note that it is fine to delay
1934 * notification until mmu_notifier_invalidate_range_end() as we are
1935 * replacing a zero pmd write protected page with a zero pte write
1936 * protected page.
1937 *
1938 * See Documentation/vm/mmu_notifier.rst
1939 */
1940 pmdp_huge_clear_flush(vma, haddr, pmd);
1941
1942 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1943 pmd_populate(mm, &_pmd, pgtable);
1944
1945 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1946 pte_t *pte, entry;
1947 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1948 entry = pte_mkspecial(entry);
1949 pte = pte_offset_map(&_pmd, haddr);
1950 VM_BUG_ON(!pte_none(*pte));
1951 set_pte_at(mm, haddr, pte, entry);
1952 pte_unmap(pte);
1953 }
1954 smp_wmb(); /* make pte visible before pmd */
1955 pmd_populate(mm, pmd, pgtable);
1956 }
1957
1958 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1959 unsigned long haddr, bool freeze)
1960 {
1961 struct mm_struct *mm = vma->vm_mm;
1962 struct page *page;
1963 pgtable_t pgtable;
1964 pmd_t old_pmd, _pmd;
1965 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1966 unsigned long addr;
1967 int i;
1968
1969 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1970 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1971 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1972 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1973 && !pmd_devmap(*pmd));
1974
1975 count_vm_event(THP_SPLIT_PMD);
1976
1977 if (!vma_is_anonymous(vma)) {
1978 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1979 /*
1980 * We are going to unmap this huge page. So
1981 * just go ahead and zap it
1982 */
1983 if (arch_needs_pgtable_deposit())
1984 zap_deposited_table(mm, pmd);
1985 if (vma_is_special_huge(vma))
1986 return;
1987 if (unlikely(is_pmd_migration_entry(old_pmd))) {
1988 swp_entry_t entry;
1989
1990 entry = pmd_to_swp_entry(old_pmd);
1991 page = pfn_swap_entry_to_page(entry);
1992 } else {
1993 page = pmd_page(old_pmd);
1994 if (!PageDirty(page) && pmd_dirty(old_pmd))
1995 set_page_dirty(page);
1996 if (!PageReferenced(page) && pmd_young(old_pmd))
1997 SetPageReferenced(page);
1998 page_remove_rmap(page, true);
1999 put_page(page);
2000 }
2001 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2002 return;
2003 }
2004
2005 if (is_huge_zero_pmd(*pmd)) {
2006 /*
2007 * FIXME: Do we want to invalidate secondary mmu by calling
2008 * mmu_notifier_invalidate_range() see comments below inside
2009 * __split_huge_pmd() ?
2010 *
2011 * We are going from a zero huge page write protected to zero
2012 * small page also write protected so it does not seems useful
2013 * to invalidate secondary mmu at this time.
2014 */
2015 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2016 }
2017
2018 /*
2019 * Up to this point the pmd is present and huge and userland has the
2020 * whole access to the hugepage during the split (which happens in
2021 * place). If we overwrite the pmd with the not-huge version pointing
2022 * to the pte here (which of course we could if all CPUs were bug
2023 * free), userland could trigger a small page size TLB miss on the
2024 * small sized TLB while the hugepage TLB entry is still established in
2025 * the huge TLB. Some CPU doesn't like that.
2026 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2027 * 383 on page 105. Intel should be safe but is also warns that it's
2028 * only safe if the permission and cache attributes of the two entries
2029 * loaded in the two TLB is identical (which should be the case here).
2030 * But it is generally safer to never allow small and huge TLB entries
2031 * for the same virtual address to be loaded simultaneously. So instead
2032 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2033 * current pmd notpresent (atomically because here the pmd_trans_huge
2034 * must remain set at all times on the pmd until the split is complete
2035 * for this pmd), then we flush the SMP TLB and finally we write the
2036 * non-huge version of the pmd entry with pmd_populate.
2037 */
2038 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2039
2040 pmd_migration = is_pmd_migration_entry(old_pmd);
2041 if (unlikely(pmd_migration)) {
2042 swp_entry_t entry;
2043
2044 entry = pmd_to_swp_entry(old_pmd);
2045 page = pfn_swap_entry_to_page(entry);
2046 write = is_writable_migration_entry(entry);
2047 young = false;
2048 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2049 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2050 } else {
2051 page = pmd_page(old_pmd);
2052 if (pmd_dirty(old_pmd))
2053 SetPageDirty(page);
2054 write = pmd_write(old_pmd);
2055 young = pmd_young(old_pmd);
2056 soft_dirty = pmd_soft_dirty(old_pmd);
2057 uffd_wp = pmd_uffd_wp(old_pmd);
2058 }
2059 VM_BUG_ON_PAGE(!page_count(page), page);
2060 page_ref_add(page, HPAGE_PMD_NR - 1);
2061
2062 /*
2063 * Withdraw the table only after we mark the pmd entry invalid.
2064 * This's critical for some architectures (Power).
2065 */
2066 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2067 pmd_populate(mm, &_pmd, pgtable);
2068
2069 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2070 pte_t entry, *pte;
2071 /*
2072 * Note that NUMA hinting access restrictions are not
2073 * transferred to avoid any possibility of altering
2074 * permissions across VMAs.
2075 */
2076 if (freeze || pmd_migration) {
2077 swp_entry_t swp_entry;
2078 if (write)
2079 swp_entry = make_writable_migration_entry(
2080 page_to_pfn(page + i));
2081 else
2082 swp_entry = make_readable_migration_entry(
2083 page_to_pfn(page + i));
2084 entry = swp_entry_to_pte(swp_entry);
2085 if (soft_dirty)
2086 entry = pte_swp_mksoft_dirty(entry);
2087 if (uffd_wp)
2088 entry = pte_swp_mkuffd_wp(entry);
2089 } else {
2090 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2091 entry = maybe_mkwrite(entry, vma);
2092 if (!write)
2093 entry = pte_wrprotect(entry);
2094 if (!young)
2095 entry = pte_mkold(entry);
2096 if (soft_dirty)
2097 entry = pte_mksoft_dirty(entry);
2098 if (uffd_wp)
2099 entry = pte_mkuffd_wp(entry);
2100 }
2101 pte = pte_offset_map(&_pmd, addr);
2102 BUG_ON(!pte_none(*pte));
2103 set_pte_at(mm, addr, pte, entry);
2104 if (!pmd_migration)
2105 atomic_inc(&page[i]._mapcount);
2106 pte_unmap(pte);
2107 }
2108
2109 if (!pmd_migration) {
2110 /*
2111 * Set PG_double_map before dropping compound_mapcount to avoid
2112 * false-negative page_mapped().
2113 */
2114 if (compound_mapcount(page) > 1 &&
2115 !TestSetPageDoubleMap(page)) {
2116 for (i = 0; i < HPAGE_PMD_NR; i++)
2117 atomic_inc(&page[i]._mapcount);
2118 }
2119
2120 lock_page_memcg(page);
2121 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2122 /* Last compound_mapcount is gone. */
2123 __mod_lruvec_page_state(page, NR_ANON_THPS,
2124 -HPAGE_PMD_NR);
2125 if (TestClearPageDoubleMap(page)) {
2126 /* No need in mapcount reference anymore */
2127 for (i = 0; i < HPAGE_PMD_NR; i++)
2128 atomic_dec(&page[i]._mapcount);
2129 }
2130 }
2131 unlock_page_memcg(page);
2132 }
2133
2134 smp_wmb(); /* make pte visible before pmd */
2135 pmd_populate(mm, pmd, pgtable);
2136
2137 if (freeze) {
2138 for (i = 0; i < HPAGE_PMD_NR; i++) {
2139 page_remove_rmap(page + i, false);
2140 put_page(page + i);
2141 }
2142 }
2143 }
2144
2145 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2146 unsigned long address, bool freeze, struct page *page)
2147 {
2148 spinlock_t *ptl;
2149 struct mmu_notifier_range range;
2150 bool do_unlock_page = false;
2151 pmd_t _pmd;
2152
2153 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2154 address & HPAGE_PMD_MASK,
2155 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2156 mmu_notifier_invalidate_range_start(&range);
2157 ptl = pmd_lock(vma->vm_mm, pmd);
2158
2159 /*
2160 * If caller asks to setup a migration entries, we need a page to check
2161 * pmd against. Otherwise we can end up replacing wrong page.
2162 */
2163 VM_BUG_ON(freeze && !page);
2164 if (page) {
2165 VM_WARN_ON_ONCE(!PageLocked(page));
2166 if (page != pmd_page(*pmd))
2167 goto out;
2168 }
2169
2170 repeat:
2171 if (pmd_trans_huge(*pmd)) {
2172 if (!page) {
2173 page = pmd_page(*pmd);
2174 /*
2175 * An anonymous page must be locked, to ensure that a
2176 * concurrent reuse_swap_page() sees stable mapcount;
2177 * but reuse_swap_page() is not used on shmem or file,
2178 * and page lock must not be taken when zap_pmd_range()
2179 * calls __split_huge_pmd() while i_mmap_lock is held.
2180 */
2181 if (PageAnon(page)) {
2182 if (unlikely(!trylock_page(page))) {
2183 get_page(page);
2184 _pmd = *pmd;
2185 spin_unlock(ptl);
2186 lock_page(page);
2187 spin_lock(ptl);
2188 if (unlikely(!pmd_same(*pmd, _pmd))) {
2189 unlock_page(page);
2190 put_page(page);
2191 page = NULL;
2192 goto repeat;
2193 }
2194 put_page(page);
2195 }
2196 do_unlock_page = true;
2197 }
2198 }
2199 if (PageMlocked(page))
2200 clear_page_mlock(page);
2201 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2202 goto out;
2203 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2204 out:
2205 spin_unlock(ptl);
2206 if (do_unlock_page)
2207 unlock_page(page);
2208 /*
2209 * No need to double call mmu_notifier->invalidate_range() callback.
2210 * They are 3 cases to consider inside __split_huge_pmd_locked():
2211 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2212 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2213 * fault will trigger a flush_notify before pointing to a new page
2214 * (it is fine if the secondary mmu keeps pointing to the old zero
2215 * page in the meantime)
2216 * 3) Split a huge pmd into pte pointing to the same page. No need
2217 * to invalidate secondary tlb entry they are all still valid.
2218 * any further changes to individual pte will notify. So no need
2219 * to call mmu_notifier->invalidate_range()
2220 */
2221 mmu_notifier_invalidate_range_only_end(&range);
2222 }
2223
2224 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2225 bool freeze, struct page *page)
2226 {
2227 pgd_t *pgd;
2228 p4d_t *p4d;
2229 pud_t *pud;
2230 pmd_t *pmd;
2231
2232 pgd = pgd_offset(vma->vm_mm, address);
2233 if (!pgd_present(*pgd))
2234 return;
2235
2236 p4d = p4d_offset(pgd, address);
2237 if (!p4d_present(*p4d))
2238 return;
2239
2240 pud = pud_offset(p4d, address);
2241 if (!pud_present(*pud))
2242 return;
2243
2244 pmd = pmd_offset(pud, address);
2245
2246 __split_huge_pmd(vma, pmd, address, freeze, page);
2247 }
2248
2249 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2250 {
2251 /*
2252 * If the new address isn't hpage aligned and it could previously
2253 * contain an hugepage: check if we need to split an huge pmd.
2254 */
2255 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2256 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2257 ALIGN(address, HPAGE_PMD_SIZE)))
2258 split_huge_pmd_address(vma, address, false, NULL);
2259 }
2260
2261 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2262 unsigned long start,
2263 unsigned long end,
2264 long adjust_next)
2265 {
2266 /* Check if we need to split start first. */
2267 split_huge_pmd_if_needed(vma, start);
2268
2269 /* Check if we need to split end next. */
2270 split_huge_pmd_if_needed(vma, end);
2271
2272 /*
2273 * If we're also updating the vma->vm_next->vm_start,
2274 * check if we need to split it.
2275 */
2276 if (adjust_next > 0) {
2277 struct vm_area_struct *next = vma->vm_next;
2278 unsigned long nstart = next->vm_start;
2279 nstart += adjust_next;
2280 split_huge_pmd_if_needed(next, nstart);
2281 }
2282 }
2283
2284 static void unmap_page(struct page *page)
2285 {
2286 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2287 TTU_SYNC;
2288
2289 VM_BUG_ON_PAGE(!PageHead(page), page);
2290
2291 /*
2292 * Anon pages need migration entries to preserve them, but file
2293 * pages can simply be left unmapped, then faulted back on demand.
2294 * If that is ever changed (perhaps for mlock), update remap_page().
2295 */
2296 if (PageAnon(page))
2297 try_to_migrate(page, ttu_flags);
2298 else
2299 try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK);
2300
2301 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2302 }
2303
2304 static void remap_page(struct page *page, unsigned int nr)
2305 {
2306 int i;
2307
2308 /* If unmap_page() uses try_to_migrate() on file, remove this check */
2309 if (!PageAnon(page))
2310 return;
2311 if (PageTransHuge(page)) {
2312 remove_migration_ptes(page, page, true);
2313 } else {
2314 for (i = 0; i < nr; i++)
2315 remove_migration_ptes(page + i, page + i, true);
2316 }
2317 }
2318
2319 static void lru_add_page_tail(struct page *head, struct page *tail,
2320 struct lruvec *lruvec, struct list_head *list)
2321 {
2322 VM_BUG_ON_PAGE(!PageHead(head), head);
2323 VM_BUG_ON_PAGE(PageCompound(tail), head);
2324 VM_BUG_ON_PAGE(PageLRU(tail), head);
2325 lockdep_assert_held(&lruvec->lru_lock);
2326
2327 if (list) {
2328 /* page reclaim is reclaiming a huge page */
2329 VM_WARN_ON(PageLRU(head));
2330 get_page(tail);
2331 list_add_tail(&tail->lru, list);
2332 } else {
2333 /* head is still on lru (and we have it frozen) */
2334 VM_WARN_ON(!PageLRU(head));
2335 SetPageLRU(tail);
2336 list_add_tail(&tail->lru, &head->lru);
2337 }
2338 }
2339
2340 static void __split_huge_page_tail(struct page *head, int tail,
2341 struct lruvec *lruvec, struct list_head *list)
2342 {
2343 struct page *page_tail = head + tail;
2344
2345 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2346
2347 /*
2348 * Clone page flags before unfreezing refcount.
2349 *
2350 * After successful get_page_unless_zero() might follow flags change,
2351 * for example lock_page() which set PG_waiters.
2352 */
2353 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2354 page_tail->flags |= (head->flags &
2355 ((1L << PG_referenced) |
2356 (1L << PG_swapbacked) |
2357 (1L << PG_swapcache) |
2358 (1L << PG_mlocked) |
2359 (1L << PG_uptodate) |
2360 (1L << PG_active) |
2361 (1L << PG_workingset) |
2362 (1L << PG_locked) |
2363 (1L << PG_unevictable) |
2364 #ifdef CONFIG_64BIT
2365 (1L << PG_arch_2) |
2366 #endif
2367 (1L << PG_dirty)));
2368
2369 /* ->mapping in first tail page is compound_mapcount */
2370 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2371 page_tail);
2372 page_tail->mapping = head->mapping;
2373 page_tail->index = head->index + tail;
2374
2375 /* Page flags must be visible before we make the page non-compound. */
2376 smp_wmb();
2377
2378 /*
2379 * Clear PageTail before unfreezing page refcount.
2380 *
2381 * After successful get_page_unless_zero() might follow put_page()
2382 * which needs correct compound_head().
2383 */
2384 clear_compound_head(page_tail);
2385
2386 /* Finally unfreeze refcount. Additional reference from page cache. */
2387 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2388 PageSwapCache(head)));
2389
2390 if (page_is_young(head))
2391 set_page_young(page_tail);
2392 if (page_is_idle(head))
2393 set_page_idle(page_tail);
2394
2395 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2396
2397 /*
2398 * always add to the tail because some iterators expect new
2399 * pages to show after the currently processed elements - e.g.
2400 * migrate_pages
2401 */
2402 lru_add_page_tail(head, page_tail, lruvec, list);
2403 }
2404
2405 static void __split_huge_page(struct page *page, struct list_head *list,
2406 pgoff_t end)
2407 {
2408 struct page *head = compound_head(page);
2409 struct lruvec *lruvec;
2410 struct address_space *swap_cache = NULL;
2411 unsigned long offset = 0;
2412 unsigned int nr = thp_nr_pages(head);
2413 int i;
2414
2415 /* complete memcg works before add pages to LRU */
2416 split_page_memcg(head, nr);
2417
2418 if (PageAnon(head) && PageSwapCache(head)) {
2419 swp_entry_t entry = { .val = page_private(head) };
2420
2421 offset = swp_offset(entry);
2422 swap_cache = swap_address_space(entry);
2423 xa_lock(&swap_cache->i_pages);
2424 }
2425
2426 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2427 lruvec = lock_page_lruvec(head);
2428
2429 ClearPageHasHWPoisoned(head);
2430
2431 for (i = nr - 1; i >= 1; i--) {
2432 __split_huge_page_tail(head, i, lruvec, list);
2433 /* Some pages can be beyond EOF: drop them from page cache */
2434 if (head[i].index >= end) {
2435 ClearPageDirty(head + i);
2436 __delete_from_page_cache(head + i, NULL);
2437 if (shmem_mapping(head->mapping))
2438 shmem_uncharge(head->mapping->host, 1);
2439 put_page(head + i);
2440 } else if (!PageAnon(page)) {
2441 __xa_store(&head->mapping->i_pages, head[i].index,
2442 head + i, 0);
2443 } else if (swap_cache) {
2444 __xa_store(&swap_cache->i_pages, offset + i,
2445 head + i, 0);
2446 }
2447 }
2448
2449 ClearPageCompound(head);
2450 unlock_page_lruvec(lruvec);
2451 /* Caller disabled irqs, so they are still disabled here */
2452
2453 split_page_owner(head, nr);
2454
2455 /* See comment in __split_huge_page_tail() */
2456 if (PageAnon(head)) {
2457 /* Additional pin to swap cache */
2458 if (PageSwapCache(head)) {
2459 page_ref_add(head, 2);
2460 xa_unlock(&swap_cache->i_pages);
2461 } else {
2462 page_ref_inc(head);
2463 }
2464 } else {
2465 /* Additional pin to page cache */
2466 page_ref_add(head, 2);
2467 xa_unlock(&head->mapping->i_pages);
2468 }
2469 local_irq_enable();
2470
2471 remap_page(head, nr);
2472
2473 if (PageSwapCache(head)) {
2474 swp_entry_t entry = { .val = page_private(head) };
2475
2476 split_swap_cluster(entry);
2477 }
2478
2479 for (i = 0; i < nr; i++) {
2480 struct page *subpage = head + i;
2481 if (subpage == page)
2482 continue;
2483 unlock_page(subpage);
2484
2485 /*
2486 * Subpages may be freed if there wasn't any mapping
2487 * like if add_to_swap() is running on a lru page that
2488 * had its mapping zapped. And freeing these pages
2489 * requires taking the lru_lock so we do the put_page
2490 * of the tail pages after the split is complete.
2491 */
2492 put_page(subpage);
2493 }
2494 }
2495
2496 int total_mapcount(struct page *page)
2497 {
2498 int i, compound, nr, ret;
2499
2500 VM_BUG_ON_PAGE(PageTail(page), page);
2501
2502 if (likely(!PageCompound(page)))
2503 return atomic_read(&page->_mapcount) + 1;
2504
2505 compound = compound_mapcount(page);
2506 nr = compound_nr(page);
2507 if (PageHuge(page))
2508 return compound;
2509 ret = compound;
2510 for (i = 0; i < nr; i++)
2511 ret += atomic_read(&page[i]._mapcount) + 1;
2512 /* File pages has compound_mapcount included in _mapcount */
2513 if (!PageAnon(page))
2514 return ret - compound * nr;
2515 if (PageDoubleMap(page))
2516 ret -= nr;
2517 return ret;
2518 }
2519
2520 /*
2521 * This calculates accurately how many mappings a transparent hugepage
2522 * has (unlike page_mapcount() which isn't fully accurate). This full
2523 * accuracy is primarily needed to know if copy-on-write faults can
2524 * reuse the page and change the mapping to read-write instead of
2525 * copying them. At the same time this returns the total_mapcount too.
2526 *
2527 * The function returns the highest mapcount any one of the subpages
2528 * has. If the return value is one, even if different processes are
2529 * mapping different subpages of the transparent hugepage, they can
2530 * all reuse it, because each process is reusing a different subpage.
2531 *
2532 * The total_mapcount is instead counting all virtual mappings of the
2533 * subpages. If the total_mapcount is equal to "one", it tells the
2534 * caller all mappings belong to the same "mm" and in turn the
2535 * anon_vma of the transparent hugepage can become the vma->anon_vma
2536 * local one as no other process may be mapping any of the subpages.
2537 *
2538 * It would be more accurate to replace page_mapcount() with
2539 * page_trans_huge_mapcount(), however we only use
2540 * page_trans_huge_mapcount() in the copy-on-write faults where we
2541 * need full accuracy to avoid breaking page pinning, because
2542 * page_trans_huge_mapcount() is slower than page_mapcount().
2543 */
2544 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2545 {
2546 int i, ret, _total_mapcount, mapcount;
2547
2548 /* hugetlbfs shouldn't call it */
2549 VM_BUG_ON_PAGE(PageHuge(page), page);
2550
2551 if (likely(!PageTransCompound(page))) {
2552 mapcount = atomic_read(&page->_mapcount) + 1;
2553 if (total_mapcount)
2554 *total_mapcount = mapcount;
2555 return mapcount;
2556 }
2557
2558 page = compound_head(page);
2559
2560 _total_mapcount = ret = 0;
2561 for (i = 0; i < thp_nr_pages(page); i++) {
2562 mapcount = atomic_read(&page[i]._mapcount) + 1;
2563 ret = max(ret, mapcount);
2564 _total_mapcount += mapcount;
2565 }
2566 if (PageDoubleMap(page)) {
2567 ret -= 1;
2568 _total_mapcount -= thp_nr_pages(page);
2569 }
2570 mapcount = compound_mapcount(page);
2571 ret += mapcount;
2572 _total_mapcount += mapcount;
2573 if (total_mapcount)
2574 *total_mapcount = _total_mapcount;
2575 return ret;
2576 }
2577
2578 /* Racy check whether the huge page can be split */
2579 bool can_split_huge_page(struct page *page, int *pextra_pins)
2580 {
2581 int extra_pins;
2582
2583 /* Additional pins from page cache */
2584 if (PageAnon(page))
2585 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2586 else
2587 extra_pins = thp_nr_pages(page);
2588 if (pextra_pins)
2589 *pextra_pins = extra_pins;
2590 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2591 }
2592
2593 /*
2594 * This function splits huge page into normal pages. @page can point to any
2595 * subpage of huge page to split. Split doesn't change the position of @page.
2596 *
2597 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2598 * The huge page must be locked.
2599 *
2600 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2601 *
2602 * Both head page and tail pages will inherit mapping, flags, and so on from
2603 * the hugepage.
2604 *
2605 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2606 * they are not mapped.
2607 *
2608 * Returns 0 if the hugepage is split successfully.
2609 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2610 * us.
2611 */
2612 int split_huge_page_to_list(struct page *page, struct list_head *list)
2613 {
2614 struct page *head = compound_head(page);
2615 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2616 struct anon_vma *anon_vma = NULL;
2617 struct address_space *mapping = NULL;
2618 int extra_pins, ret;
2619 pgoff_t end;
2620 bool is_hzp;
2621
2622 VM_BUG_ON_PAGE(!PageLocked(head), head);
2623 VM_BUG_ON_PAGE(!PageCompound(head), head);
2624
2625 is_hzp = is_huge_zero_page(head);
2626 VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2627 if (is_hzp)
2628 return -EBUSY;
2629
2630 if (PageWriteback(head))
2631 return -EBUSY;
2632
2633 if (PageAnon(head)) {
2634 /*
2635 * The caller does not necessarily hold an mmap_lock that would
2636 * prevent the anon_vma disappearing so we first we take a
2637 * reference to it and then lock the anon_vma for write. This
2638 * is similar to page_lock_anon_vma_read except the write lock
2639 * is taken to serialise against parallel split or collapse
2640 * operations.
2641 */
2642 anon_vma = page_get_anon_vma(head);
2643 if (!anon_vma) {
2644 ret = -EBUSY;
2645 goto out;
2646 }
2647 end = -1;
2648 mapping = NULL;
2649 anon_vma_lock_write(anon_vma);
2650 } else {
2651 mapping = head->mapping;
2652
2653 /* Truncated ? */
2654 if (!mapping) {
2655 ret = -EBUSY;
2656 goto out;
2657 }
2658
2659 anon_vma = NULL;
2660 i_mmap_lock_read(mapping);
2661
2662 /*
2663 *__split_huge_page() may need to trim off pages beyond EOF:
2664 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2665 * which cannot be nested inside the page tree lock. So note
2666 * end now: i_size itself may be changed at any moment, but
2667 * head page lock is good enough to serialize the trimming.
2668 */
2669 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2670 if (shmem_mapping(mapping))
2671 end = shmem_fallocend(mapping->host, end);
2672 }
2673
2674 /*
2675 * Racy check if we can split the page, before unmap_page() will
2676 * split PMDs
2677 */
2678 if (!can_split_huge_page(head, &extra_pins)) {
2679 ret = -EBUSY;
2680 goto out_unlock;
2681 }
2682
2683 unmap_page(head);
2684
2685 /* block interrupt reentry in xa_lock and spinlock */
2686 local_irq_disable();
2687 if (mapping) {
2688 XA_STATE(xas, &mapping->i_pages, page_index(head));
2689
2690 /*
2691 * Check if the head page is present in page cache.
2692 * We assume all tail are present too, if head is there.
2693 */
2694 xa_lock(&mapping->i_pages);
2695 if (xas_load(&xas) != head)
2696 goto fail;
2697 }
2698
2699 /* Prevent deferred_split_scan() touching ->_refcount */
2700 spin_lock(&ds_queue->split_queue_lock);
2701 if (page_ref_freeze(head, 1 + extra_pins)) {
2702 if (!list_empty(page_deferred_list(head))) {
2703 ds_queue->split_queue_len--;
2704 list_del(page_deferred_list(head));
2705 }
2706 spin_unlock(&ds_queue->split_queue_lock);
2707 if (mapping) {
2708 int nr = thp_nr_pages(head);
2709
2710 if (PageSwapBacked(head)) {
2711 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2712 -nr);
2713 } else {
2714 __mod_lruvec_page_state(head, NR_FILE_THPS,
2715 -nr);
2716 filemap_nr_thps_dec(mapping);
2717 }
2718 }
2719
2720 __split_huge_page(page, list, end);
2721 ret = 0;
2722 } else {
2723 spin_unlock(&ds_queue->split_queue_lock);
2724 fail:
2725 if (mapping)
2726 xa_unlock(&mapping->i_pages);
2727 local_irq_enable();
2728 remap_page(head, thp_nr_pages(head));
2729 ret = -EBUSY;
2730 }
2731
2732 out_unlock:
2733 if (anon_vma) {
2734 anon_vma_unlock_write(anon_vma);
2735 put_anon_vma(anon_vma);
2736 }
2737 if (mapping)
2738 i_mmap_unlock_read(mapping);
2739 out:
2740 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2741 return ret;
2742 }
2743
2744 void free_transhuge_page(struct page *page)
2745 {
2746 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2747 unsigned long flags;
2748
2749 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2750 if (!list_empty(page_deferred_list(page))) {
2751 ds_queue->split_queue_len--;
2752 list_del(page_deferred_list(page));
2753 }
2754 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2755 free_compound_page(page);
2756 }
2757
2758 void deferred_split_huge_page(struct page *page)
2759 {
2760 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2761 #ifdef CONFIG_MEMCG
2762 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2763 #endif
2764 unsigned long flags;
2765
2766 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2767
2768 /*
2769 * The try_to_unmap() in page reclaim path might reach here too,
2770 * this may cause a race condition to corrupt deferred split queue.
2771 * And, if page reclaim is already handling the same page, it is
2772 * unnecessary to handle it again in shrinker.
2773 *
2774 * Check PageSwapCache to determine if the page is being
2775 * handled by page reclaim since THP swap would add the page into
2776 * swap cache before calling try_to_unmap().
2777 */
2778 if (PageSwapCache(page))
2779 return;
2780
2781 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2782 if (list_empty(page_deferred_list(page))) {
2783 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2784 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2785 ds_queue->split_queue_len++;
2786 #ifdef CONFIG_MEMCG
2787 if (memcg)
2788 set_shrinker_bit(memcg, page_to_nid(page),
2789 deferred_split_shrinker.id);
2790 #endif
2791 }
2792 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2793 }
2794
2795 static unsigned long deferred_split_count(struct shrinker *shrink,
2796 struct shrink_control *sc)
2797 {
2798 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2799 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2800
2801 #ifdef CONFIG_MEMCG
2802 if (sc->memcg)
2803 ds_queue = &sc->memcg->deferred_split_queue;
2804 #endif
2805 return READ_ONCE(ds_queue->split_queue_len);
2806 }
2807
2808 static unsigned long deferred_split_scan(struct shrinker *shrink,
2809 struct shrink_control *sc)
2810 {
2811 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2812 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2813 unsigned long flags;
2814 LIST_HEAD(list), *pos, *next;
2815 struct page *page;
2816 int split = 0;
2817
2818 #ifdef CONFIG_MEMCG
2819 if (sc->memcg)
2820 ds_queue = &sc->memcg->deferred_split_queue;
2821 #endif
2822
2823 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2824 /* Take pin on all head pages to avoid freeing them under us */
2825 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2826 page = list_entry((void *)pos, struct page, deferred_list);
2827 page = compound_head(page);
2828 if (get_page_unless_zero(page)) {
2829 list_move(page_deferred_list(page), &list);
2830 } else {
2831 /* We lost race with put_compound_page() */
2832 list_del_init(page_deferred_list(page));
2833 ds_queue->split_queue_len--;
2834 }
2835 if (!--sc->nr_to_scan)
2836 break;
2837 }
2838 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2839
2840 list_for_each_safe(pos, next, &list) {
2841 page = list_entry((void *)pos, struct page, deferred_list);
2842 if (!trylock_page(page))
2843 goto next;
2844 /* split_huge_page() removes page from list on success */
2845 if (!split_huge_page(page))
2846 split++;
2847 unlock_page(page);
2848 next:
2849 put_page(page);
2850 }
2851
2852 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2853 list_splice_tail(&list, &ds_queue->split_queue);
2854 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2855
2856 /*
2857 * Stop shrinker if we didn't split any page, but the queue is empty.
2858 * This can happen if pages were freed under us.
2859 */
2860 if (!split && list_empty(&ds_queue->split_queue))
2861 return SHRINK_STOP;
2862 return split;
2863 }
2864
2865 static struct shrinker deferred_split_shrinker = {
2866 .count_objects = deferred_split_count,
2867 .scan_objects = deferred_split_scan,
2868 .seeks = DEFAULT_SEEKS,
2869 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2870 SHRINKER_NONSLAB,
2871 };
2872
2873 #ifdef CONFIG_DEBUG_FS
2874 static void split_huge_pages_all(void)
2875 {
2876 struct zone *zone;
2877 struct page *page;
2878 unsigned long pfn, max_zone_pfn;
2879 unsigned long total = 0, split = 0;
2880
2881 pr_debug("Split all THPs\n");
2882 for_each_zone(zone) {
2883 if (!managed_zone(zone))
2884 continue;
2885 max_zone_pfn = zone_end_pfn(zone);
2886 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2887 int nr_pages;
2888
2889 page = pfn_to_online_page(pfn);
2890 if (!page || !get_page_unless_zero(page))
2891 continue;
2892
2893 if (zone != page_zone(page))
2894 goto next;
2895
2896 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2897 goto next;
2898
2899 total++;
2900 lock_page(page);
2901 nr_pages = thp_nr_pages(page);
2902 if (!split_huge_page(page))
2903 split++;
2904 pfn += nr_pages - 1;
2905 unlock_page(page);
2906 next:
2907 put_page(page);
2908 cond_resched();
2909 }
2910 }
2911
2912 pr_debug("%lu of %lu THP split\n", split, total);
2913 }
2914
2915 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2916 {
2917 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2918 is_vm_hugetlb_page(vma);
2919 }
2920
2921 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2922 unsigned long vaddr_end)
2923 {
2924 int ret = 0;
2925 struct task_struct *task;
2926 struct mm_struct *mm;
2927 unsigned long total = 0, split = 0;
2928 unsigned long addr;
2929
2930 vaddr_start &= PAGE_MASK;
2931 vaddr_end &= PAGE_MASK;
2932
2933 /* Find the task_struct from pid */
2934 rcu_read_lock();
2935 task = find_task_by_vpid(pid);
2936 if (!task) {
2937 rcu_read_unlock();
2938 ret = -ESRCH;
2939 goto out;
2940 }
2941 get_task_struct(task);
2942 rcu_read_unlock();
2943
2944 /* Find the mm_struct */
2945 mm = get_task_mm(task);
2946 put_task_struct(task);
2947
2948 if (!mm) {
2949 ret = -EINVAL;
2950 goto out;
2951 }
2952
2953 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2954 pid, vaddr_start, vaddr_end);
2955
2956 mmap_read_lock(mm);
2957 /*
2958 * always increase addr by PAGE_SIZE, since we could have a PTE page
2959 * table filled with PTE-mapped THPs, each of which is distinct.
2960 */
2961 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2962 struct vm_area_struct *vma = find_vma(mm, addr);
2963 unsigned int follflags;
2964 struct page *page;
2965
2966 if (!vma || addr < vma->vm_start)
2967 break;
2968
2969 /* skip special VMA and hugetlb VMA */
2970 if (vma_not_suitable_for_thp_split(vma)) {
2971 addr = vma->vm_end;
2972 continue;
2973 }
2974
2975 /* FOLL_DUMP to ignore special (like zero) pages */
2976 follflags = FOLL_GET | FOLL_DUMP;
2977 page = follow_page(vma, addr, follflags);
2978
2979 if (IS_ERR(page))
2980 continue;
2981 if (!page)
2982 continue;
2983
2984 if (!is_transparent_hugepage(page))
2985 goto next;
2986
2987 total++;
2988 if (!can_split_huge_page(compound_head(page), NULL))
2989 goto next;
2990
2991 if (!trylock_page(page))
2992 goto next;
2993
2994 if (!split_huge_page(page))
2995 split++;
2996
2997 unlock_page(page);
2998 next:
2999 put_page(page);
3000 cond_resched();
3001 }
3002 mmap_read_unlock(mm);
3003 mmput(mm);
3004
3005 pr_debug("%lu of %lu THP split\n", split, total);
3006
3007 out:
3008 return ret;
3009 }
3010
3011 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3012 pgoff_t off_end)
3013 {
3014 struct filename *file;
3015 struct file *candidate;
3016 struct address_space *mapping;
3017 int ret = -EINVAL;
3018 pgoff_t index;
3019 int nr_pages = 1;
3020 unsigned long total = 0, split = 0;
3021
3022 file = getname_kernel(file_path);
3023 if (IS_ERR(file))
3024 return ret;
3025
3026 candidate = file_open_name(file, O_RDONLY, 0);
3027 if (IS_ERR(candidate))
3028 goto out;
3029
3030 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3031 file_path, off_start, off_end);
3032
3033 mapping = candidate->f_mapping;
3034
3035 for (index = off_start; index < off_end; index += nr_pages) {
3036 struct page *fpage = pagecache_get_page(mapping, index,
3037 FGP_ENTRY | FGP_HEAD, 0);
3038
3039 nr_pages = 1;
3040 if (xa_is_value(fpage) || !fpage)
3041 continue;
3042
3043 if (!is_transparent_hugepage(fpage))
3044 goto next;
3045
3046 total++;
3047 nr_pages = thp_nr_pages(fpage);
3048
3049 if (!trylock_page(fpage))
3050 goto next;
3051
3052 if (!split_huge_page(fpage))
3053 split++;
3054
3055 unlock_page(fpage);
3056 next:
3057 put_page(fpage);
3058 cond_resched();
3059 }
3060
3061 filp_close(candidate, NULL);
3062 ret = 0;
3063
3064 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3065 out:
3066 putname(file);
3067 return ret;
3068 }
3069
3070 #define MAX_INPUT_BUF_SZ 255
3071
3072 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3073 size_t count, loff_t *ppops)
3074 {
3075 static DEFINE_MUTEX(split_debug_mutex);
3076 ssize_t ret;
3077 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3078 char input_buf[MAX_INPUT_BUF_SZ];
3079 int pid;
3080 unsigned long vaddr_start, vaddr_end;
3081
3082 ret = mutex_lock_interruptible(&split_debug_mutex);
3083 if (ret)
3084 return ret;
3085
3086 ret = -EFAULT;
3087
3088 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3089 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3090 goto out;
3091
3092 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3093
3094 if (input_buf[0] == '/') {
3095 char *tok;
3096 char *buf = input_buf;
3097 char file_path[MAX_INPUT_BUF_SZ];
3098 pgoff_t off_start = 0, off_end = 0;
3099 size_t input_len = strlen(input_buf);
3100
3101 tok = strsep(&buf, ",");
3102 if (tok) {
3103 strcpy(file_path, tok);
3104 } else {
3105 ret = -EINVAL;
3106 goto out;
3107 }
3108
3109 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3110 if (ret != 2) {
3111 ret = -EINVAL;
3112 goto out;
3113 }
3114 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3115 if (!ret)
3116 ret = input_len;
3117
3118 goto out;
3119 }
3120
3121 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3122 if (ret == 1 && pid == 1) {
3123 split_huge_pages_all();
3124 ret = strlen(input_buf);
3125 goto out;
3126 } else if (ret != 3) {
3127 ret = -EINVAL;
3128 goto out;
3129 }
3130
3131 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3132 if (!ret)
3133 ret = strlen(input_buf);
3134 out:
3135 mutex_unlock(&split_debug_mutex);
3136 return ret;
3137
3138 }
3139
3140 static const struct file_operations split_huge_pages_fops = {
3141 .owner = THIS_MODULE,
3142 .write = split_huge_pages_write,
3143 .llseek = no_llseek,
3144 };
3145
3146 static int __init split_huge_pages_debugfs(void)
3147 {
3148 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3149 &split_huge_pages_fops);
3150 return 0;
3151 }
3152 late_initcall(split_huge_pages_debugfs);
3153 #endif
3154
3155 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3156 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3157 struct page *page)
3158 {
3159 struct vm_area_struct *vma = pvmw->vma;
3160 struct mm_struct *mm = vma->vm_mm;
3161 unsigned long address = pvmw->address;
3162 pmd_t pmdval;
3163 swp_entry_t entry;
3164 pmd_t pmdswp;
3165
3166 if (!(pvmw->pmd && !pvmw->pte))
3167 return;
3168
3169 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3170 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3171 if (pmd_dirty(pmdval))
3172 set_page_dirty(page);
3173 if (pmd_write(pmdval))
3174 entry = make_writable_migration_entry(page_to_pfn(page));
3175 else
3176 entry = make_readable_migration_entry(page_to_pfn(page));
3177 pmdswp = swp_entry_to_pmd(entry);
3178 if (pmd_soft_dirty(pmdval))
3179 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3180 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3181 page_remove_rmap(page, true);
3182 put_page(page);
3183 }
3184
3185 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3186 {
3187 struct vm_area_struct *vma = pvmw->vma;
3188 struct mm_struct *mm = vma->vm_mm;
3189 unsigned long address = pvmw->address;
3190 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3191 pmd_t pmde;
3192 swp_entry_t entry;
3193
3194 if (!(pvmw->pmd && !pvmw->pte))
3195 return;
3196
3197 entry = pmd_to_swp_entry(*pvmw->pmd);
3198 get_page(new);
3199 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3200 if (pmd_swp_soft_dirty(*pvmw->pmd))
3201 pmde = pmd_mksoft_dirty(pmde);
3202 if (is_writable_migration_entry(entry))
3203 pmde = maybe_pmd_mkwrite(pmde, vma);
3204 if (pmd_swp_uffd_wp(*pvmw->pmd))
3205 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3206
3207 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3208 if (PageAnon(new))
3209 page_add_anon_rmap(new, vma, mmun_start, true);
3210 else
3211 page_add_file_rmap(new, true);
3212 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3213 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3214 mlock_vma_page(new);
3215 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3216 }
3217 #endif