]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
mm: workingset: move shadow entry tracking to radix tree exceptional tracking
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 /*
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
45 */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57 static struct shrinker deferred_split_shrinker;
58
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61
62 static struct page *get_huge_zero_page(void)
63 {
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
87 }
88
89 static void put_huge_zero_page(void)
90 {
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110 }
111
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116 }
117
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127 {
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
133 }
134
135 return 0;
136 }
137
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
142 };
143
144 #ifdef CONFIG_SYSFS
145
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
150 enum transparent_hugepage_flag deferred,
151 enum transparent_hugepage_flag req_madv)
152 {
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
161 min(sizeof("always")-1, count))) {
162 clear_bit(deferred, &transparent_hugepage_flags);
163 clear_bit(req_madv, &transparent_hugepage_flags);
164 set_bit(enabled, &transparent_hugepage_flags);
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
168 clear_bit(deferred, &transparent_hugepage_flags);
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
174 clear_bit(deferred, &transparent_hugepage_flags);
175 } else
176 return -EINVAL;
177
178 return count;
179 }
180
181 static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183 {
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
190 }
191
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195 {
196 ssize_t ret;
197
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
204 int err = start_stop_khugepaged();
205 if (err)
206 ret = err;
207 }
208
209 return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217 {
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
220 }
221
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226 {
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
240
241 return count;
242 }
243
244 /*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249 static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251 {
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
261 }
262 static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265 {
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270 }
271 static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276 {
277 return single_hugepage_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279 }
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282 {
283 return single_hugepage_flag_store(kobj, attr, buf, count,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285 }
286 static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 #ifdef CONFIG_DEBUG_VM
289 static ssize_t debug_cow_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291 {
292 return single_hugepage_flag_show(kobj, attr, buf,
293 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294 }
295 static ssize_t debug_cow_store(struct kobject *kobj,
296 struct kobj_attribute *attr,
297 const char *buf, size_t count)
298 {
299 return single_hugepage_flag_store(kobj, attr, buf, count,
300 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301 }
302 static struct kobj_attribute debug_cow_attr =
303 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304 #endif /* CONFIG_DEBUG_VM */
305
306 static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309 &use_zero_page_attr.attr,
310 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 &shmem_enabled_attr.attr,
312 #endif
313 #ifdef CONFIG_DEBUG_VM
314 &debug_cow_attr.attr,
315 #endif
316 NULL,
317 };
318
319 static struct attribute_group hugepage_attr_group = {
320 .attrs = hugepage_attr,
321 };
322
323 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
324 {
325 int err;
326
327 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
328 if (unlikely(!*hugepage_kobj)) {
329 pr_err("failed to create transparent hugepage kobject\n");
330 return -ENOMEM;
331 }
332
333 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
334 if (err) {
335 pr_err("failed to register transparent hugepage group\n");
336 goto delete_obj;
337 }
338
339 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
340 if (err) {
341 pr_err("failed to register transparent hugepage group\n");
342 goto remove_hp_group;
343 }
344
345 return 0;
346
347 remove_hp_group:
348 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
349 delete_obj:
350 kobject_put(*hugepage_kobj);
351 return err;
352 }
353
354 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
355 {
356 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
357 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
358 kobject_put(hugepage_kobj);
359 }
360 #else
361 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
362 {
363 return 0;
364 }
365
366 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 }
369 #endif /* CONFIG_SYSFS */
370
371 static int __init hugepage_init(void)
372 {
373 int err;
374 struct kobject *hugepage_kobj;
375
376 if (!has_transparent_hugepage()) {
377 transparent_hugepage_flags = 0;
378 return -EINVAL;
379 }
380
381 /*
382 * hugepages can't be allocated by the buddy allocator
383 */
384 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
385 /*
386 * we use page->mapping and page->index in second tail page
387 * as list_head: assuming THP order >= 2
388 */
389 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
390
391 err = hugepage_init_sysfs(&hugepage_kobj);
392 if (err)
393 goto err_sysfs;
394
395 err = khugepaged_init();
396 if (err)
397 goto err_slab;
398
399 err = register_shrinker(&huge_zero_page_shrinker);
400 if (err)
401 goto err_hzp_shrinker;
402 err = register_shrinker(&deferred_split_shrinker);
403 if (err)
404 goto err_split_shrinker;
405
406 /*
407 * By default disable transparent hugepages on smaller systems,
408 * where the extra memory used could hurt more than TLB overhead
409 * is likely to save. The admin can still enable it through /sys.
410 */
411 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
412 transparent_hugepage_flags = 0;
413 return 0;
414 }
415
416 err = start_stop_khugepaged();
417 if (err)
418 goto err_khugepaged;
419
420 return 0;
421 err_khugepaged:
422 unregister_shrinker(&deferred_split_shrinker);
423 err_split_shrinker:
424 unregister_shrinker(&huge_zero_page_shrinker);
425 err_hzp_shrinker:
426 khugepaged_destroy();
427 err_slab:
428 hugepage_exit_sysfs(hugepage_kobj);
429 err_sysfs:
430 return err;
431 }
432 subsys_initcall(hugepage_init);
433
434 static int __init setup_transparent_hugepage(char *str)
435 {
436 int ret = 0;
437 if (!str)
438 goto out;
439 if (!strcmp(str, "always")) {
440 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
441 &transparent_hugepage_flags);
442 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
443 &transparent_hugepage_flags);
444 ret = 1;
445 } else if (!strcmp(str, "madvise")) {
446 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
447 &transparent_hugepage_flags);
448 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
449 &transparent_hugepage_flags);
450 ret = 1;
451 } else if (!strcmp(str, "never")) {
452 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 }
458 out:
459 if (!ret)
460 pr_warn("transparent_hugepage= cannot parse, ignored\n");
461 return ret;
462 }
463 __setup("transparent_hugepage=", setup_transparent_hugepage);
464
465 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
466 {
467 if (likely(vma->vm_flags & VM_WRITE))
468 pmd = pmd_mkwrite(pmd);
469 return pmd;
470 }
471
472 static inline struct list_head *page_deferred_list(struct page *page)
473 {
474 /*
475 * ->lru in the tail pages is occupied by compound_head.
476 * Let's use ->mapping + ->index in the second tail page as list_head.
477 */
478 return (struct list_head *)&page[2].mapping;
479 }
480
481 void prep_transhuge_page(struct page *page)
482 {
483 /*
484 * we use page->mapping and page->indexlru in second tail page
485 * as list_head: assuming THP order >= 2
486 */
487
488 INIT_LIST_HEAD(page_deferred_list(page));
489 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
490 }
491
492 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
493 loff_t off, unsigned long flags, unsigned long size)
494 {
495 unsigned long addr;
496 loff_t off_end = off + len;
497 loff_t off_align = round_up(off, size);
498 unsigned long len_pad;
499
500 if (off_end <= off_align || (off_end - off_align) < size)
501 return 0;
502
503 len_pad = len + size;
504 if (len_pad < len || (off + len_pad) < off)
505 return 0;
506
507 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
508 off >> PAGE_SHIFT, flags);
509 if (IS_ERR_VALUE(addr))
510 return 0;
511
512 addr += (off - addr) & (size - 1);
513 return addr;
514 }
515
516 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
517 unsigned long len, unsigned long pgoff, unsigned long flags)
518 {
519 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
520
521 if (addr)
522 goto out;
523 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
524 goto out;
525
526 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
527 if (addr)
528 return addr;
529
530 out:
531 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
532 }
533 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
534
535 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
536 gfp_t gfp)
537 {
538 struct vm_area_struct *vma = fe->vma;
539 struct mem_cgroup *memcg;
540 pgtable_t pgtable;
541 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
542
543 VM_BUG_ON_PAGE(!PageCompound(page), page);
544
545 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
546 put_page(page);
547 count_vm_event(THP_FAULT_FALLBACK);
548 return VM_FAULT_FALLBACK;
549 }
550
551 pgtable = pte_alloc_one(vma->vm_mm, haddr);
552 if (unlikely(!pgtable)) {
553 mem_cgroup_cancel_charge(page, memcg, true);
554 put_page(page);
555 return VM_FAULT_OOM;
556 }
557
558 clear_huge_page(page, haddr, HPAGE_PMD_NR);
559 /*
560 * The memory barrier inside __SetPageUptodate makes sure that
561 * clear_huge_page writes become visible before the set_pmd_at()
562 * write.
563 */
564 __SetPageUptodate(page);
565
566 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
567 if (unlikely(!pmd_none(*fe->pmd))) {
568 spin_unlock(fe->ptl);
569 mem_cgroup_cancel_charge(page, memcg, true);
570 put_page(page);
571 pte_free(vma->vm_mm, pgtable);
572 } else {
573 pmd_t entry;
574
575 /* Deliver the page fault to userland */
576 if (userfaultfd_missing(vma)) {
577 int ret;
578
579 spin_unlock(fe->ptl);
580 mem_cgroup_cancel_charge(page, memcg, true);
581 put_page(page);
582 pte_free(vma->vm_mm, pgtable);
583 ret = handle_userfault(fe, VM_UFFD_MISSING);
584 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
585 return ret;
586 }
587
588 entry = mk_huge_pmd(page, vma->vm_page_prot);
589 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
590 page_add_new_anon_rmap(page, vma, haddr, true);
591 mem_cgroup_commit_charge(page, memcg, false, true);
592 lru_cache_add_active_or_unevictable(page, vma);
593 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
594 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
595 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
596 atomic_long_inc(&vma->vm_mm->nr_ptes);
597 spin_unlock(fe->ptl);
598 count_vm_event(THP_FAULT_ALLOC);
599 }
600
601 return 0;
602 }
603
604 /*
605 * If THP defrag is set to always then directly reclaim/compact as necessary
606 * If set to defer then do only background reclaim/compact and defer to khugepaged
607 * If set to madvise and the VMA is flagged then directly reclaim/compact
608 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
609 */
610 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
611 {
612 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
613
614 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
615 &transparent_hugepage_flags) && vma_madvised)
616 return GFP_TRANSHUGE;
617 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
618 &transparent_hugepage_flags))
619 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
620 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
621 &transparent_hugepage_flags))
622 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
623
624 return GFP_TRANSHUGE_LIGHT;
625 }
626
627 /* Caller must hold page table lock. */
628 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
629 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
630 struct page *zero_page)
631 {
632 pmd_t entry;
633 if (!pmd_none(*pmd))
634 return false;
635 entry = mk_pmd(zero_page, vma->vm_page_prot);
636 entry = pmd_mkhuge(entry);
637 if (pgtable)
638 pgtable_trans_huge_deposit(mm, pmd, pgtable);
639 set_pmd_at(mm, haddr, pmd, entry);
640 atomic_long_inc(&mm->nr_ptes);
641 return true;
642 }
643
644 int do_huge_pmd_anonymous_page(struct fault_env *fe)
645 {
646 struct vm_area_struct *vma = fe->vma;
647 gfp_t gfp;
648 struct page *page;
649 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
650
651 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
652 return VM_FAULT_FALLBACK;
653 if (unlikely(anon_vma_prepare(vma)))
654 return VM_FAULT_OOM;
655 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
656 return VM_FAULT_OOM;
657 if (!(fe->flags & FAULT_FLAG_WRITE) &&
658 !mm_forbids_zeropage(vma->vm_mm) &&
659 transparent_hugepage_use_zero_page()) {
660 pgtable_t pgtable;
661 struct page *zero_page;
662 bool set;
663 int ret;
664 pgtable = pte_alloc_one(vma->vm_mm, haddr);
665 if (unlikely(!pgtable))
666 return VM_FAULT_OOM;
667 zero_page = mm_get_huge_zero_page(vma->vm_mm);
668 if (unlikely(!zero_page)) {
669 pte_free(vma->vm_mm, pgtable);
670 count_vm_event(THP_FAULT_FALLBACK);
671 return VM_FAULT_FALLBACK;
672 }
673 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
674 ret = 0;
675 set = false;
676 if (pmd_none(*fe->pmd)) {
677 if (userfaultfd_missing(vma)) {
678 spin_unlock(fe->ptl);
679 ret = handle_userfault(fe, VM_UFFD_MISSING);
680 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
681 } else {
682 set_huge_zero_page(pgtable, vma->vm_mm, vma,
683 haddr, fe->pmd, zero_page);
684 spin_unlock(fe->ptl);
685 set = true;
686 }
687 } else
688 spin_unlock(fe->ptl);
689 if (!set)
690 pte_free(vma->vm_mm, pgtable);
691 return ret;
692 }
693 gfp = alloc_hugepage_direct_gfpmask(vma);
694 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
695 if (unlikely(!page)) {
696 count_vm_event(THP_FAULT_FALLBACK);
697 return VM_FAULT_FALLBACK;
698 }
699 prep_transhuge_page(page);
700 return __do_huge_pmd_anonymous_page(fe, page, gfp);
701 }
702
703 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
704 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
705 {
706 struct mm_struct *mm = vma->vm_mm;
707 pmd_t entry;
708 spinlock_t *ptl;
709
710 ptl = pmd_lock(mm, pmd);
711 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
712 if (pfn_t_devmap(pfn))
713 entry = pmd_mkdevmap(entry);
714 if (write) {
715 entry = pmd_mkyoung(pmd_mkdirty(entry));
716 entry = maybe_pmd_mkwrite(entry, vma);
717 }
718 set_pmd_at(mm, addr, pmd, entry);
719 update_mmu_cache_pmd(vma, addr, pmd);
720 spin_unlock(ptl);
721 }
722
723 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
724 pmd_t *pmd, pfn_t pfn, bool write)
725 {
726 pgprot_t pgprot = vma->vm_page_prot;
727 /*
728 * If we had pmd_special, we could avoid all these restrictions,
729 * but we need to be consistent with PTEs and architectures that
730 * can't support a 'special' bit.
731 */
732 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
733 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
734 (VM_PFNMAP|VM_MIXEDMAP));
735 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
736 BUG_ON(!pfn_t_devmap(pfn));
737
738 if (addr < vma->vm_start || addr >= vma->vm_end)
739 return VM_FAULT_SIGBUS;
740
741 track_pfn_insert(vma, &pgprot, pfn);
742
743 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
744 return VM_FAULT_NOPAGE;
745 }
746 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
747
748 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
749 pmd_t *pmd)
750 {
751 pmd_t _pmd;
752
753 /*
754 * We should set the dirty bit only for FOLL_WRITE but for now
755 * the dirty bit in the pmd is meaningless. And if the dirty
756 * bit will become meaningful and we'll only set it with
757 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
758 * set the young bit, instead of the current set_pmd_at.
759 */
760 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
761 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
762 pmd, _pmd, 1))
763 update_mmu_cache_pmd(vma, addr, pmd);
764 }
765
766 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
767 pmd_t *pmd, int flags)
768 {
769 unsigned long pfn = pmd_pfn(*pmd);
770 struct mm_struct *mm = vma->vm_mm;
771 struct dev_pagemap *pgmap;
772 struct page *page;
773
774 assert_spin_locked(pmd_lockptr(mm, pmd));
775
776 if (flags & FOLL_WRITE && !pmd_write(*pmd))
777 return NULL;
778
779 if (pmd_present(*pmd) && pmd_devmap(*pmd))
780 /* pass */;
781 else
782 return NULL;
783
784 if (flags & FOLL_TOUCH)
785 touch_pmd(vma, addr, pmd);
786
787 /*
788 * device mapped pages can only be returned if the
789 * caller will manage the page reference count.
790 */
791 if (!(flags & FOLL_GET))
792 return ERR_PTR(-EEXIST);
793
794 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
795 pgmap = get_dev_pagemap(pfn, NULL);
796 if (!pgmap)
797 return ERR_PTR(-EFAULT);
798 page = pfn_to_page(pfn);
799 get_page(page);
800 put_dev_pagemap(pgmap);
801
802 return page;
803 }
804
805 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
806 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
807 struct vm_area_struct *vma)
808 {
809 spinlock_t *dst_ptl, *src_ptl;
810 struct page *src_page;
811 pmd_t pmd;
812 pgtable_t pgtable = NULL;
813 int ret = -ENOMEM;
814
815 /* Skip if can be re-fill on fault */
816 if (!vma_is_anonymous(vma))
817 return 0;
818
819 pgtable = pte_alloc_one(dst_mm, addr);
820 if (unlikely(!pgtable))
821 goto out;
822
823 dst_ptl = pmd_lock(dst_mm, dst_pmd);
824 src_ptl = pmd_lockptr(src_mm, src_pmd);
825 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
826
827 ret = -EAGAIN;
828 pmd = *src_pmd;
829 if (unlikely(!pmd_trans_huge(pmd))) {
830 pte_free(dst_mm, pgtable);
831 goto out_unlock;
832 }
833 /*
834 * When page table lock is held, the huge zero pmd should not be
835 * under splitting since we don't split the page itself, only pmd to
836 * a page table.
837 */
838 if (is_huge_zero_pmd(pmd)) {
839 struct page *zero_page;
840 /*
841 * get_huge_zero_page() will never allocate a new page here,
842 * since we already have a zero page to copy. It just takes a
843 * reference.
844 */
845 zero_page = mm_get_huge_zero_page(dst_mm);
846 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
847 zero_page);
848 ret = 0;
849 goto out_unlock;
850 }
851
852 src_page = pmd_page(pmd);
853 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
854 get_page(src_page);
855 page_dup_rmap(src_page, true);
856 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
857 atomic_long_inc(&dst_mm->nr_ptes);
858 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
859
860 pmdp_set_wrprotect(src_mm, addr, src_pmd);
861 pmd = pmd_mkold(pmd_wrprotect(pmd));
862 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
863
864 ret = 0;
865 out_unlock:
866 spin_unlock(src_ptl);
867 spin_unlock(dst_ptl);
868 out:
869 return ret;
870 }
871
872 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
873 {
874 pmd_t entry;
875 unsigned long haddr;
876
877 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
878 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
879 goto unlock;
880
881 entry = pmd_mkyoung(orig_pmd);
882 haddr = fe->address & HPAGE_PMD_MASK;
883 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
884 fe->flags & FAULT_FLAG_WRITE))
885 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
886
887 unlock:
888 spin_unlock(fe->ptl);
889 }
890
891 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
892 struct page *page)
893 {
894 struct vm_area_struct *vma = fe->vma;
895 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
896 struct mem_cgroup *memcg;
897 pgtable_t pgtable;
898 pmd_t _pmd;
899 int ret = 0, i;
900 struct page **pages;
901 unsigned long mmun_start; /* For mmu_notifiers */
902 unsigned long mmun_end; /* For mmu_notifiers */
903
904 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
905 GFP_KERNEL);
906 if (unlikely(!pages)) {
907 ret |= VM_FAULT_OOM;
908 goto out;
909 }
910
911 for (i = 0; i < HPAGE_PMD_NR; i++) {
912 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
913 __GFP_OTHER_NODE, vma,
914 fe->address, page_to_nid(page));
915 if (unlikely(!pages[i] ||
916 mem_cgroup_try_charge(pages[i], vma->vm_mm,
917 GFP_KERNEL, &memcg, false))) {
918 if (pages[i])
919 put_page(pages[i]);
920 while (--i >= 0) {
921 memcg = (void *)page_private(pages[i]);
922 set_page_private(pages[i], 0);
923 mem_cgroup_cancel_charge(pages[i], memcg,
924 false);
925 put_page(pages[i]);
926 }
927 kfree(pages);
928 ret |= VM_FAULT_OOM;
929 goto out;
930 }
931 set_page_private(pages[i], (unsigned long)memcg);
932 }
933
934 for (i = 0; i < HPAGE_PMD_NR; i++) {
935 copy_user_highpage(pages[i], page + i,
936 haddr + PAGE_SIZE * i, vma);
937 __SetPageUptodate(pages[i]);
938 cond_resched();
939 }
940
941 mmun_start = haddr;
942 mmun_end = haddr + HPAGE_PMD_SIZE;
943 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
944
945 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
946 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
947 goto out_free_pages;
948 VM_BUG_ON_PAGE(!PageHead(page), page);
949
950 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
951 /* leave pmd empty until pte is filled */
952
953 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
954 pmd_populate(vma->vm_mm, &_pmd, pgtable);
955
956 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
957 pte_t entry;
958 entry = mk_pte(pages[i], vma->vm_page_prot);
959 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
960 memcg = (void *)page_private(pages[i]);
961 set_page_private(pages[i], 0);
962 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
963 mem_cgroup_commit_charge(pages[i], memcg, false, false);
964 lru_cache_add_active_or_unevictable(pages[i], vma);
965 fe->pte = pte_offset_map(&_pmd, haddr);
966 VM_BUG_ON(!pte_none(*fe->pte));
967 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
968 pte_unmap(fe->pte);
969 }
970 kfree(pages);
971
972 smp_wmb(); /* make pte visible before pmd */
973 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
974 page_remove_rmap(page, true);
975 spin_unlock(fe->ptl);
976
977 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
978
979 ret |= VM_FAULT_WRITE;
980 put_page(page);
981
982 out:
983 return ret;
984
985 out_free_pages:
986 spin_unlock(fe->ptl);
987 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
988 for (i = 0; i < HPAGE_PMD_NR; i++) {
989 memcg = (void *)page_private(pages[i]);
990 set_page_private(pages[i], 0);
991 mem_cgroup_cancel_charge(pages[i], memcg, false);
992 put_page(pages[i]);
993 }
994 kfree(pages);
995 goto out;
996 }
997
998 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
999 {
1000 struct vm_area_struct *vma = fe->vma;
1001 struct page *page = NULL, *new_page;
1002 struct mem_cgroup *memcg;
1003 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1004 unsigned long mmun_start; /* For mmu_notifiers */
1005 unsigned long mmun_end; /* For mmu_notifiers */
1006 gfp_t huge_gfp; /* for allocation and charge */
1007 int ret = 0;
1008
1009 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1010 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1011 if (is_huge_zero_pmd(orig_pmd))
1012 goto alloc;
1013 spin_lock(fe->ptl);
1014 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1015 goto out_unlock;
1016
1017 page = pmd_page(orig_pmd);
1018 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1019 /*
1020 * We can only reuse the page if nobody else maps the huge page or it's
1021 * part.
1022 */
1023 if (page_trans_huge_mapcount(page, NULL) == 1) {
1024 pmd_t entry;
1025 entry = pmd_mkyoung(orig_pmd);
1026 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1027 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1028 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1029 ret |= VM_FAULT_WRITE;
1030 goto out_unlock;
1031 }
1032 get_page(page);
1033 spin_unlock(fe->ptl);
1034 alloc:
1035 if (transparent_hugepage_enabled(vma) &&
1036 !transparent_hugepage_debug_cow()) {
1037 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1038 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1039 } else
1040 new_page = NULL;
1041
1042 if (likely(new_page)) {
1043 prep_transhuge_page(new_page);
1044 } else {
1045 if (!page) {
1046 split_huge_pmd(vma, fe->pmd, fe->address);
1047 ret |= VM_FAULT_FALLBACK;
1048 } else {
1049 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1050 if (ret & VM_FAULT_OOM) {
1051 split_huge_pmd(vma, fe->pmd, fe->address);
1052 ret |= VM_FAULT_FALLBACK;
1053 }
1054 put_page(page);
1055 }
1056 count_vm_event(THP_FAULT_FALLBACK);
1057 goto out;
1058 }
1059
1060 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1061 huge_gfp, &memcg, true))) {
1062 put_page(new_page);
1063 split_huge_pmd(vma, fe->pmd, fe->address);
1064 if (page)
1065 put_page(page);
1066 ret |= VM_FAULT_FALLBACK;
1067 count_vm_event(THP_FAULT_FALLBACK);
1068 goto out;
1069 }
1070
1071 count_vm_event(THP_FAULT_ALLOC);
1072
1073 if (!page)
1074 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1075 else
1076 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1077 __SetPageUptodate(new_page);
1078
1079 mmun_start = haddr;
1080 mmun_end = haddr + HPAGE_PMD_SIZE;
1081 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1082
1083 spin_lock(fe->ptl);
1084 if (page)
1085 put_page(page);
1086 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1087 spin_unlock(fe->ptl);
1088 mem_cgroup_cancel_charge(new_page, memcg, true);
1089 put_page(new_page);
1090 goto out_mn;
1091 } else {
1092 pmd_t entry;
1093 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1094 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1095 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1096 page_add_new_anon_rmap(new_page, vma, haddr, true);
1097 mem_cgroup_commit_charge(new_page, memcg, false, true);
1098 lru_cache_add_active_or_unevictable(new_page, vma);
1099 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1100 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1101 if (!page) {
1102 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1103 } else {
1104 VM_BUG_ON_PAGE(!PageHead(page), page);
1105 page_remove_rmap(page, true);
1106 put_page(page);
1107 }
1108 ret |= VM_FAULT_WRITE;
1109 }
1110 spin_unlock(fe->ptl);
1111 out_mn:
1112 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1113 out:
1114 return ret;
1115 out_unlock:
1116 spin_unlock(fe->ptl);
1117 return ret;
1118 }
1119
1120 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1121 unsigned long addr,
1122 pmd_t *pmd,
1123 unsigned int flags)
1124 {
1125 struct mm_struct *mm = vma->vm_mm;
1126 struct page *page = NULL;
1127
1128 assert_spin_locked(pmd_lockptr(mm, pmd));
1129
1130 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1131 goto out;
1132
1133 /* Avoid dumping huge zero page */
1134 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1135 return ERR_PTR(-EFAULT);
1136
1137 /* Full NUMA hinting faults to serialise migration in fault paths */
1138 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1139 goto out;
1140
1141 page = pmd_page(*pmd);
1142 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1143 if (flags & FOLL_TOUCH)
1144 touch_pmd(vma, addr, pmd);
1145 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1146 /*
1147 * We don't mlock() pte-mapped THPs. This way we can avoid
1148 * leaking mlocked pages into non-VM_LOCKED VMAs.
1149 *
1150 * For anon THP:
1151 *
1152 * In most cases the pmd is the only mapping of the page as we
1153 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1154 * writable private mappings in populate_vma_page_range().
1155 *
1156 * The only scenario when we have the page shared here is if we
1157 * mlocking read-only mapping shared over fork(). We skip
1158 * mlocking such pages.
1159 *
1160 * For file THP:
1161 *
1162 * We can expect PageDoubleMap() to be stable under page lock:
1163 * for file pages we set it in page_add_file_rmap(), which
1164 * requires page to be locked.
1165 */
1166
1167 if (PageAnon(page) && compound_mapcount(page) != 1)
1168 goto skip_mlock;
1169 if (PageDoubleMap(page) || !page->mapping)
1170 goto skip_mlock;
1171 if (!trylock_page(page))
1172 goto skip_mlock;
1173 lru_add_drain();
1174 if (page->mapping && !PageDoubleMap(page))
1175 mlock_vma_page(page);
1176 unlock_page(page);
1177 }
1178 skip_mlock:
1179 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1180 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1181 if (flags & FOLL_GET)
1182 get_page(page);
1183
1184 out:
1185 return page;
1186 }
1187
1188 /* NUMA hinting page fault entry point for trans huge pmds */
1189 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1190 {
1191 struct vm_area_struct *vma = fe->vma;
1192 struct anon_vma *anon_vma = NULL;
1193 struct page *page;
1194 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1195 int page_nid = -1, this_nid = numa_node_id();
1196 int target_nid, last_cpupid = -1;
1197 bool page_locked;
1198 bool migrated = false;
1199 bool was_writable;
1200 int flags = 0;
1201
1202 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1203 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1204 goto out_unlock;
1205
1206 /*
1207 * If there are potential migrations, wait for completion and retry
1208 * without disrupting NUMA hinting information. Do not relock and
1209 * check_same as the page may no longer be mapped.
1210 */
1211 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1212 page = pmd_page(*fe->pmd);
1213 spin_unlock(fe->ptl);
1214 wait_on_page_locked(page);
1215 goto out;
1216 }
1217
1218 page = pmd_page(pmd);
1219 BUG_ON(is_huge_zero_page(page));
1220 page_nid = page_to_nid(page);
1221 last_cpupid = page_cpupid_last(page);
1222 count_vm_numa_event(NUMA_HINT_FAULTS);
1223 if (page_nid == this_nid) {
1224 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1225 flags |= TNF_FAULT_LOCAL;
1226 }
1227
1228 /* See similar comment in do_numa_page for explanation */
1229 if (!pmd_write(pmd))
1230 flags |= TNF_NO_GROUP;
1231
1232 /*
1233 * Acquire the page lock to serialise THP migrations but avoid dropping
1234 * page_table_lock if at all possible
1235 */
1236 page_locked = trylock_page(page);
1237 target_nid = mpol_misplaced(page, vma, haddr);
1238 if (target_nid == -1) {
1239 /* If the page was locked, there are no parallel migrations */
1240 if (page_locked)
1241 goto clear_pmdnuma;
1242 }
1243
1244 /* Migration could have started since the pmd_trans_migrating check */
1245 if (!page_locked) {
1246 spin_unlock(fe->ptl);
1247 wait_on_page_locked(page);
1248 page_nid = -1;
1249 goto out;
1250 }
1251
1252 /*
1253 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1254 * to serialises splits
1255 */
1256 get_page(page);
1257 spin_unlock(fe->ptl);
1258 anon_vma = page_lock_anon_vma_read(page);
1259
1260 /* Confirm the PMD did not change while page_table_lock was released */
1261 spin_lock(fe->ptl);
1262 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1263 unlock_page(page);
1264 put_page(page);
1265 page_nid = -1;
1266 goto out_unlock;
1267 }
1268
1269 /* Bail if we fail to protect against THP splits for any reason */
1270 if (unlikely(!anon_vma)) {
1271 put_page(page);
1272 page_nid = -1;
1273 goto clear_pmdnuma;
1274 }
1275
1276 /*
1277 * Migrate the THP to the requested node, returns with page unlocked
1278 * and access rights restored.
1279 */
1280 spin_unlock(fe->ptl);
1281 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1282 fe->pmd, pmd, fe->address, page, target_nid);
1283 if (migrated) {
1284 flags |= TNF_MIGRATED;
1285 page_nid = target_nid;
1286 } else
1287 flags |= TNF_MIGRATE_FAIL;
1288
1289 goto out;
1290 clear_pmdnuma:
1291 BUG_ON(!PageLocked(page));
1292 was_writable = pmd_write(pmd);
1293 pmd = pmd_modify(pmd, vma->vm_page_prot);
1294 pmd = pmd_mkyoung(pmd);
1295 if (was_writable)
1296 pmd = pmd_mkwrite(pmd);
1297 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1298 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1299 unlock_page(page);
1300 out_unlock:
1301 spin_unlock(fe->ptl);
1302
1303 out:
1304 if (anon_vma)
1305 page_unlock_anon_vma_read(anon_vma);
1306
1307 if (page_nid != -1)
1308 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1309
1310 return 0;
1311 }
1312
1313 /*
1314 * Return true if we do MADV_FREE successfully on entire pmd page.
1315 * Otherwise, return false.
1316 */
1317 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1318 pmd_t *pmd, unsigned long addr, unsigned long next)
1319 {
1320 spinlock_t *ptl;
1321 pmd_t orig_pmd;
1322 struct page *page;
1323 struct mm_struct *mm = tlb->mm;
1324 bool ret = false;
1325
1326 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1327
1328 ptl = pmd_trans_huge_lock(pmd, vma);
1329 if (!ptl)
1330 goto out_unlocked;
1331
1332 orig_pmd = *pmd;
1333 if (is_huge_zero_pmd(orig_pmd))
1334 goto out;
1335
1336 page = pmd_page(orig_pmd);
1337 /*
1338 * If other processes are mapping this page, we couldn't discard
1339 * the page unless they all do MADV_FREE so let's skip the page.
1340 */
1341 if (page_mapcount(page) != 1)
1342 goto out;
1343
1344 if (!trylock_page(page))
1345 goto out;
1346
1347 /*
1348 * If user want to discard part-pages of THP, split it so MADV_FREE
1349 * will deactivate only them.
1350 */
1351 if (next - addr != HPAGE_PMD_SIZE) {
1352 get_page(page);
1353 spin_unlock(ptl);
1354 split_huge_page(page);
1355 put_page(page);
1356 unlock_page(page);
1357 goto out_unlocked;
1358 }
1359
1360 if (PageDirty(page))
1361 ClearPageDirty(page);
1362 unlock_page(page);
1363
1364 if (PageActive(page))
1365 deactivate_page(page);
1366
1367 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1368 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1369 tlb->fullmm);
1370 orig_pmd = pmd_mkold(orig_pmd);
1371 orig_pmd = pmd_mkclean(orig_pmd);
1372
1373 set_pmd_at(mm, addr, pmd, orig_pmd);
1374 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1375 }
1376 ret = true;
1377 out:
1378 spin_unlock(ptl);
1379 out_unlocked:
1380 return ret;
1381 }
1382
1383 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1384 pmd_t *pmd, unsigned long addr)
1385 {
1386 pmd_t orig_pmd;
1387 spinlock_t *ptl;
1388
1389 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1390
1391 ptl = __pmd_trans_huge_lock(pmd, vma);
1392 if (!ptl)
1393 return 0;
1394 /*
1395 * For architectures like ppc64 we look at deposited pgtable
1396 * when calling pmdp_huge_get_and_clear. So do the
1397 * pgtable_trans_huge_withdraw after finishing pmdp related
1398 * operations.
1399 */
1400 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1401 tlb->fullmm);
1402 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1403 if (vma_is_dax(vma)) {
1404 spin_unlock(ptl);
1405 if (is_huge_zero_pmd(orig_pmd))
1406 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1407 } else if (is_huge_zero_pmd(orig_pmd)) {
1408 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1409 atomic_long_dec(&tlb->mm->nr_ptes);
1410 spin_unlock(ptl);
1411 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1412 } else {
1413 struct page *page = pmd_page(orig_pmd);
1414 page_remove_rmap(page, true);
1415 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1416 VM_BUG_ON_PAGE(!PageHead(page), page);
1417 if (PageAnon(page)) {
1418 pgtable_t pgtable;
1419 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1420 pte_free(tlb->mm, pgtable);
1421 atomic_long_dec(&tlb->mm->nr_ptes);
1422 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1423 } else {
1424 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1425 }
1426 spin_unlock(ptl);
1427 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1428 }
1429 return 1;
1430 }
1431
1432 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1433 unsigned long new_addr, unsigned long old_end,
1434 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1435 {
1436 spinlock_t *old_ptl, *new_ptl;
1437 pmd_t pmd;
1438 struct mm_struct *mm = vma->vm_mm;
1439 bool force_flush = false;
1440
1441 if ((old_addr & ~HPAGE_PMD_MASK) ||
1442 (new_addr & ~HPAGE_PMD_MASK) ||
1443 old_end - old_addr < HPAGE_PMD_SIZE)
1444 return false;
1445
1446 /*
1447 * The destination pmd shouldn't be established, free_pgtables()
1448 * should have release it.
1449 */
1450 if (WARN_ON(!pmd_none(*new_pmd))) {
1451 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1452 return false;
1453 }
1454
1455 /*
1456 * We don't have to worry about the ordering of src and dst
1457 * ptlocks because exclusive mmap_sem prevents deadlock.
1458 */
1459 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1460 if (old_ptl) {
1461 new_ptl = pmd_lockptr(mm, new_pmd);
1462 if (new_ptl != old_ptl)
1463 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1464 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1465 if (pmd_present(pmd) && pmd_dirty(pmd))
1466 force_flush = true;
1467 VM_BUG_ON(!pmd_none(*new_pmd));
1468
1469 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1470 vma_is_anonymous(vma)) {
1471 pgtable_t pgtable;
1472 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1473 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1474 }
1475 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1476 if (new_ptl != old_ptl)
1477 spin_unlock(new_ptl);
1478 if (force_flush)
1479 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1480 else
1481 *need_flush = true;
1482 spin_unlock(old_ptl);
1483 return true;
1484 }
1485 return false;
1486 }
1487
1488 /*
1489 * Returns
1490 * - 0 if PMD could not be locked
1491 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1492 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1493 */
1494 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1495 unsigned long addr, pgprot_t newprot, int prot_numa)
1496 {
1497 struct mm_struct *mm = vma->vm_mm;
1498 spinlock_t *ptl;
1499 int ret = 0;
1500
1501 ptl = __pmd_trans_huge_lock(pmd, vma);
1502 if (ptl) {
1503 pmd_t entry;
1504 bool preserve_write = prot_numa && pmd_write(*pmd);
1505 ret = 1;
1506
1507 /*
1508 * Avoid trapping faults against the zero page. The read-only
1509 * data is likely to be read-cached on the local CPU and
1510 * local/remote hits to the zero page are not interesting.
1511 */
1512 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1513 spin_unlock(ptl);
1514 return ret;
1515 }
1516
1517 if (!prot_numa || !pmd_protnone(*pmd)) {
1518 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1519 entry = pmd_modify(entry, newprot);
1520 if (preserve_write)
1521 entry = pmd_mkwrite(entry);
1522 ret = HPAGE_PMD_NR;
1523 set_pmd_at(mm, addr, pmd, entry);
1524 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1525 pmd_write(entry));
1526 }
1527 spin_unlock(ptl);
1528 }
1529
1530 return ret;
1531 }
1532
1533 /*
1534 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1535 *
1536 * Note that if it returns page table lock pointer, this routine returns without
1537 * unlocking page table lock. So callers must unlock it.
1538 */
1539 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1540 {
1541 spinlock_t *ptl;
1542 ptl = pmd_lock(vma->vm_mm, pmd);
1543 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1544 return ptl;
1545 spin_unlock(ptl);
1546 return NULL;
1547 }
1548
1549 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1550 unsigned long haddr, pmd_t *pmd)
1551 {
1552 struct mm_struct *mm = vma->vm_mm;
1553 pgtable_t pgtable;
1554 pmd_t _pmd;
1555 int i;
1556
1557 /* leave pmd empty until pte is filled */
1558 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1559
1560 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1561 pmd_populate(mm, &_pmd, pgtable);
1562
1563 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1564 pte_t *pte, entry;
1565 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1566 entry = pte_mkspecial(entry);
1567 pte = pte_offset_map(&_pmd, haddr);
1568 VM_BUG_ON(!pte_none(*pte));
1569 set_pte_at(mm, haddr, pte, entry);
1570 pte_unmap(pte);
1571 }
1572 smp_wmb(); /* make pte visible before pmd */
1573 pmd_populate(mm, pmd, pgtable);
1574 }
1575
1576 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1577 unsigned long haddr, bool freeze)
1578 {
1579 struct mm_struct *mm = vma->vm_mm;
1580 struct page *page;
1581 pgtable_t pgtable;
1582 pmd_t _pmd;
1583 bool young, write, dirty, soft_dirty;
1584 unsigned long addr;
1585 int i;
1586
1587 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1588 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1589 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1590 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1591
1592 count_vm_event(THP_SPLIT_PMD);
1593
1594 if (!vma_is_anonymous(vma)) {
1595 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1596 if (vma_is_dax(vma))
1597 return;
1598 page = pmd_page(_pmd);
1599 if (!PageReferenced(page) && pmd_young(_pmd))
1600 SetPageReferenced(page);
1601 page_remove_rmap(page, true);
1602 put_page(page);
1603 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1604 return;
1605 } else if (is_huge_zero_pmd(*pmd)) {
1606 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1607 }
1608
1609 page = pmd_page(*pmd);
1610 VM_BUG_ON_PAGE(!page_count(page), page);
1611 page_ref_add(page, HPAGE_PMD_NR - 1);
1612 write = pmd_write(*pmd);
1613 young = pmd_young(*pmd);
1614 dirty = pmd_dirty(*pmd);
1615 soft_dirty = pmd_soft_dirty(*pmd);
1616
1617 pmdp_huge_split_prepare(vma, haddr, pmd);
1618 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1619 pmd_populate(mm, &_pmd, pgtable);
1620
1621 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1622 pte_t entry, *pte;
1623 /*
1624 * Note that NUMA hinting access restrictions are not
1625 * transferred to avoid any possibility of altering
1626 * permissions across VMAs.
1627 */
1628 if (freeze) {
1629 swp_entry_t swp_entry;
1630 swp_entry = make_migration_entry(page + i, write);
1631 entry = swp_entry_to_pte(swp_entry);
1632 if (soft_dirty)
1633 entry = pte_swp_mksoft_dirty(entry);
1634 } else {
1635 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1636 entry = maybe_mkwrite(entry, vma);
1637 if (!write)
1638 entry = pte_wrprotect(entry);
1639 if (!young)
1640 entry = pte_mkold(entry);
1641 if (soft_dirty)
1642 entry = pte_mksoft_dirty(entry);
1643 }
1644 if (dirty)
1645 SetPageDirty(page + i);
1646 pte = pte_offset_map(&_pmd, addr);
1647 BUG_ON(!pte_none(*pte));
1648 set_pte_at(mm, addr, pte, entry);
1649 atomic_inc(&page[i]._mapcount);
1650 pte_unmap(pte);
1651 }
1652
1653 /*
1654 * Set PG_double_map before dropping compound_mapcount to avoid
1655 * false-negative page_mapped().
1656 */
1657 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1658 for (i = 0; i < HPAGE_PMD_NR; i++)
1659 atomic_inc(&page[i]._mapcount);
1660 }
1661
1662 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1663 /* Last compound_mapcount is gone. */
1664 __dec_node_page_state(page, NR_ANON_THPS);
1665 if (TestClearPageDoubleMap(page)) {
1666 /* No need in mapcount reference anymore */
1667 for (i = 0; i < HPAGE_PMD_NR; i++)
1668 atomic_dec(&page[i]._mapcount);
1669 }
1670 }
1671
1672 smp_wmb(); /* make pte visible before pmd */
1673 /*
1674 * Up to this point the pmd is present and huge and userland has the
1675 * whole access to the hugepage during the split (which happens in
1676 * place). If we overwrite the pmd with the not-huge version pointing
1677 * to the pte here (which of course we could if all CPUs were bug
1678 * free), userland could trigger a small page size TLB miss on the
1679 * small sized TLB while the hugepage TLB entry is still established in
1680 * the huge TLB. Some CPU doesn't like that.
1681 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1682 * 383 on page 93. Intel should be safe but is also warns that it's
1683 * only safe if the permission and cache attributes of the two entries
1684 * loaded in the two TLB is identical (which should be the case here).
1685 * But it is generally safer to never allow small and huge TLB entries
1686 * for the same virtual address to be loaded simultaneously. So instead
1687 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1688 * current pmd notpresent (atomically because here the pmd_trans_huge
1689 * and pmd_trans_splitting must remain set at all times on the pmd
1690 * until the split is complete for this pmd), then we flush the SMP TLB
1691 * and finally we write the non-huge version of the pmd entry with
1692 * pmd_populate.
1693 */
1694 pmdp_invalidate(vma, haddr, pmd);
1695 pmd_populate(mm, pmd, pgtable);
1696
1697 if (freeze) {
1698 for (i = 0; i < HPAGE_PMD_NR; i++) {
1699 page_remove_rmap(page + i, false);
1700 put_page(page + i);
1701 }
1702 }
1703 }
1704
1705 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1706 unsigned long address, bool freeze, struct page *page)
1707 {
1708 spinlock_t *ptl;
1709 struct mm_struct *mm = vma->vm_mm;
1710 unsigned long haddr = address & HPAGE_PMD_MASK;
1711
1712 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1713 ptl = pmd_lock(mm, pmd);
1714
1715 /*
1716 * If caller asks to setup a migration entries, we need a page to check
1717 * pmd against. Otherwise we can end up replacing wrong page.
1718 */
1719 VM_BUG_ON(freeze && !page);
1720 if (page && page != pmd_page(*pmd))
1721 goto out;
1722
1723 if (pmd_trans_huge(*pmd)) {
1724 page = pmd_page(*pmd);
1725 if (PageMlocked(page))
1726 clear_page_mlock(page);
1727 } else if (!pmd_devmap(*pmd))
1728 goto out;
1729 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1730 out:
1731 spin_unlock(ptl);
1732 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1733 }
1734
1735 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1736 bool freeze, struct page *page)
1737 {
1738 pgd_t *pgd;
1739 pud_t *pud;
1740 pmd_t *pmd;
1741
1742 pgd = pgd_offset(vma->vm_mm, address);
1743 if (!pgd_present(*pgd))
1744 return;
1745
1746 pud = pud_offset(pgd, address);
1747 if (!pud_present(*pud))
1748 return;
1749
1750 pmd = pmd_offset(pud, address);
1751
1752 __split_huge_pmd(vma, pmd, address, freeze, page);
1753 }
1754
1755 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1756 unsigned long start,
1757 unsigned long end,
1758 long adjust_next)
1759 {
1760 /*
1761 * If the new start address isn't hpage aligned and it could
1762 * previously contain an hugepage: check if we need to split
1763 * an huge pmd.
1764 */
1765 if (start & ~HPAGE_PMD_MASK &&
1766 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1767 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1768 split_huge_pmd_address(vma, start, false, NULL);
1769
1770 /*
1771 * If the new end address isn't hpage aligned and it could
1772 * previously contain an hugepage: check if we need to split
1773 * an huge pmd.
1774 */
1775 if (end & ~HPAGE_PMD_MASK &&
1776 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1777 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1778 split_huge_pmd_address(vma, end, false, NULL);
1779
1780 /*
1781 * If we're also updating the vma->vm_next->vm_start, if the new
1782 * vm_next->vm_start isn't page aligned and it could previously
1783 * contain an hugepage: check if we need to split an huge pmd.
1784 */
1785 if (adjust_next > 0) {
1786 struct vm_area_struct *next = vma->vm_next;
1787 unsigned long nstart = next->vm_start;
1788 nstart += adjust_next << PAGE_SHIFT;
1789 if (nstart & ~HPAGE_PMD_MASK &&
1790 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1791 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1792 split_huge_pmd_address(next, nstart, false, NULL);
1793 }
1794 }
1795
1796 static void freeze_page(struct page *page)
1797 {
1798 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1799 TTU_RMAP_LOCKED;
1800 int i, ret;
1801
1802 VM_BUG_ON_PAGE(!PageHead(page), page);
1803
1804 if (PageAnon(page))
1805 ttu_flags |= TTU_MIGRATION;
1806
1807 /* We only need TTU_SPLIT_HUGE_PMD once */
1808 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1809 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1810 /* Cut short if the page is unmapped */
1811 if (page_count(page) == 1)
1812 return;
1813
1814 ret = try_to_unmap(page + i, ttu_flags);
1815 }
1816 VM_BUG_ON_PAGE(ret, page + i - 1);
1817 }
1818
1819 static void unfreeze_page(struct page *page)
1820 {
1821 int i;
1822
1823 for (i = 0; i < HPAGE_PMD_NR; i++)
1824 remove_migration_ptes(page + i, page + i, true);
1825 }
1826
1827 static void __split_huge_page_tail(struct page *head, int tail,
1828 struct lruvec *lruvec, struct list_head *list)
1829 {
1830 struct page *page_tail = head + tail;
1831
1832 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1833 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1834
1835 /*
1836 * tail_page->_refcount is zero and not changing from under us. But
1837 * get_page_unless_zero() may be running from under us on the
1838 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1839 * atomic_add(), we would then run atomic_set() concurrently with
1840 * get_page_unless_zero(), and atomic_set() is implemented in C not
1841 * using locked ops. spin_unlock on x86 sometime uses locked ops
1842 * because of PPro errata 66, 92, so unless somebody can guarantee
1843 * atomic_set() here would be safe on all archs (and not only on x86),
1844 * it's safer to use atomic_inc()/atomic_add().
1845 */
1846 if (PageAnon(head)) {
1847 page_ref_inc(page_tail);
1848 } else {
1849 /* Additional pin to radix tree */
1850 page_ref_add(page_tail, 2);
1851 }
1852
1853 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1854 page_tail->flags |= (head->flags &
1855 ((1L << PG_referenced) |
1856 (1L << PG_swapbacked) |
1857 (1L << PG_mlocked) |
1858 (1L << PG_uptodate) |
1859 (1L << PG_active) |
1860 (1L << PG_locked) |
1861 (1L << PG_unevictable) |
1862 (1L << PG_dirty)));
1863
1864 /*
1865 * After clearing PageTail the gup refcount can be released.
1866 * Page flags also must be visible before we make the page non-compound.
1867 */
1868 smp_wmb();
1869
1870 clear_compound_head(page_tail);
1871
1872 if (page_is_young(head))
1873 set_page_young(page_tail);
1874 if (page_is_idle(head))
1875 set_page_idle(page_tail);
1876
1877 /* ->mapping in first tail page is compound_mapcount */
1878 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1879 page_tail);
1880 page_tail->mapping = head->mapping;
1881
1882 page_tail->index = head->index + tail;
1883 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1884 lru_add_page_tail(head, page_tail, lruvec, list);
1885 }
1886
1887 static void __split_huge_page(struct page *page, struct list_head *list,
1888 unsigned long flags)
1889 {
1890 struct page *head = compound_head(page);
1891 struct zone *zone = page_zone(head);
1892 struct lruvec *lruvec;
1893 pgoff_t end = -1;
1894 int i;
1895
1896 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1897
1898 /* complete memcg works before add pages to LRU */
1899 mem_cgroup_split_huge_fixup(head);
1900
1901 if (!PageAnon(page))
1902 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1903
1904 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1905 __split_huge_page_tail(head, i, lruvec, list);
1906 /* Some pages can be beyond i_size: drop them from page cache */
1907 if (head[i].index >= end) {
1908 __ClearPageDirty(head + i);
1909 __delete_from_page_cache(head + i, NULL);
1910 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1911 shmem_uncharge(head->mapping->host, 1);
1912 put_page(head + i);
1913 }
1914 }
1915
1916 ClearPageCompound(head);
1917 /* See comment in __split_huge_page_tail() */
1918 if (PageAnon(head)) {
1919 page_ref_inc(head);
1920 } else {
1921 /* Additional pin to radix tree */
1922 page_ref_add(head, 2);
1923 spin_unlock(&head->mapping->tree_lock);
1924 }
1925
1926 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1927
1928 unfreeze_page(head);
1929
1930 for (i = 0; i < HPAGE_PMD_NR; i++) {
1931 struct page *subpage = head + i;
1932 if (subpage == page)
1933 continue;
1934 unlock_page(subpage);
1935
1936 /*
1937 * Subpages may be freed if there wasn't any mapping
1938 * like if add_to_swap() is running on a lru page that
1939 * had its mapping zapped. And freeing these pages
1940 * requires taking the lru_lock so we do the put_page
1941 * of the tail pages after the split is complete.
1942 */
1943 put_page(subpage);
1944 }
1945 }
1946
1947 int total_mapcount(struct page *page)
1948 {
1949 int i, compound, ret;
1950
1951 VM_BUG_ON_PAGE(PageTail(page), page);
1952
1953 if (likely(!PageCompound(page)))
1954 return atomic_read(&page->_mapcount) + 1;
1955
1956 compound = compound_mapcount(page);
1957 if (PageHuge(page))
1958 return compound;
1959 ret = compound;
1960 for (i = 0; i < HPAGE_PMD_NR; i++)
1961 ret += atomic_read(&page[i]._mapcount) + 1;
1962 /* File pages has compound_mapcount included in _mapcount */
1963 if (!PageAnon(page))
1964 return ret - compound * HPAGE_PMD_NR;
1965 if (PageDoubleMap(page))
1966 ret -= HPAGE_PMD_NR;
1967 return ret;
1968 }
1969
1970 /*
1971 * This calculates accurately how many mappings a transparent hugepage
1972 * has (unlike page_mapcount() which isn't fully accurate). This full
1973 * accuracy is primarily needed to know if copy-on-write faults can
1974 * reuse the page and change the mapping to read-write instead of
1975 * copying them. At the same time this returns the total_mapcount too.
1976 *
1977 * The function returns the highest mapcount any one of the subpages
1978 * has. If the return value is one, even if different processes are
1979 * mapping different subpages of the transparent hugepage, they can
1980 * all reuse it, because each process is reusing a different subpage.
1981 *
1982 * The total_mapcount is instead counting all virtual mappings of the
1983 * subpages. If the total_mapcount is equal to "one", it tells the
1984 * caller all mappings belong to the same "mm" and in turn the
1985 * anon_vma of the transparent hugepage can become the vma->anon_vma
1986 * local one as no other process may be mapping any of the subpages.
1987 *
1988 * It would be more accurate to replace page_mapcount() with
1989 * page_trans_huge_mapcount(), however we only use
1990 * page_trans_huge_mapcount() in the copy-on-write faults where we
1991 * need full accuracy to avoid breaking page pinning, because
1992 * page_trans_huge_mapcount() is slower than page_mapcount().
1993 */
1994 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1995 {
1996 int i, ret, _total_mapcount, mapcount;
1997
1998 /* hugetlbfs shouldn't call it */
1999 VM_BUG_ON_PAGE(PageHuge(page), page);
2000
2001 if (likely(!PageTransCompound(page))) {
2002 mapcount = atomic_read(&page->_mapcount) + 1;
2003 if (total_mapcount)
2004 *total_mapcount = mapcount;
2005 return mapcount;
2006 }
2007
2008 page = compound_head(page);
2009
2010 _total_mapcount = ret = 0;
2011 for (i = 0; i < HPAGE_PMD_NR; i++) {
2012 mapcount = atomic_read(&page[i]._mapcount) + 1;
2013 ret = max(ret, mapcount);
2014 _total_mapcount += mapcount;
2015 }
2016 if (PageDoubleMap(page)) {
2017 ret -= 1;
2018 _total_mapcount -= HPAGE_PMD_NR;
2019 }
2020 mapcount = compound_mapcount(page);
2021 ret += mapcount;
2022 _total_mapcount += mapcount;
2023 if (total_mapcount)
2024 *total_mapcount = _total_mapcount;
2025 return ret;
2026 }
2027
2028 /*
2029 * This function splits huge page into normal pages. @page can point to any
2030 * subpage of huge page to split. Split doesn't change the position of @page.
2031 *
2032 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2033 * The huge page must be locked.
2034 *
2035 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2036 *
2037 * Both head page and tail pages will inherit mapping, flags, and so on from
2038 * the hugepage.
2039 *
2040 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2041 * they are not mapped.
2042 *
2043 * Returns 0 if the hugepage is split successfully.
2044 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2045 * us.
2046 */
2047 int split_huge_page_to_list(struct page *page, struct list_head *list)
2048 {
2049 struct page *head = compound_head(page);
2050 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2051 struct anon_vma *anon_vma = NULL;
2052 struct address_space *mapping = NULL;
2053 int count, mapcount, extra_pins, ret;
2054 bool mlocked;
2055 unsigned long flags;
2056
2057 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2058 VM_BUG_ON_PAGE(!PageLocked(page), page);
2059 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2060 VM_BUG_ON_PAGE(!PageCompound(page), page);
2061
2062 if (PageAnon(head)) {
2063 /*
2064 * The caller does not necessarily hold an mmap_sem that would
2065 * prevent the anon_vma disappearing so we first we take a
2066 * reference to it and then lock the anon_vma for write. This
2067 * is similar to page_lock_anon_vma_read except the write lock
2068 * is taken to serialise against parallel split or collapse
2069 * operations.
2070 */
2071 anon_vma = page_get_anon_vma(head);
2072 if (!anon_vma) {
2073 ret = -EBUSY;
2074 goto out;
2075 }
2076 extra_pins = 0;
2077 mapping = NULL;
2078 anon_vma_lock_write(anon_vma);
2079 } else {
2080 mapping = head->mapping;
2081
2082 /* Truncated ? */
2083 if (!mapping) {
2084 ret = -EBUSY;
2085 goto out;
2086 }
2087
2088 /* Addidional pins from radix tree */
2089 extra_pins = HPAGE_PMD_NR;
2090 anon_vma = NULL;
2091 i_mmap_lock_read(mapping);
2092 }
2093
2094 /*
2095 * Racy check if we can split the page, before freeze_page() will
2096 * split PMDs
2097 */
2098 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2099 ret = -EBUSY;
2100 goto out_unlock;
2101 }
2102
2103 mlocked = PageMlocked(page);
2104 freeze_page(head);
2105 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2106
2107 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2108 if (mlocked)
2109 lru_add_drain();
2110
2111 /* prevent PageLRU to go away from under us, and freeze lru stats */
2112 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2113
2114 if (mapping) {
2115 void **pslot;
2116
2117 spin_lock(&mapping->tree_lock);
2118 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2119 page_index(head));
2120 /*
2121 * Check if the head page is present in radix tree.
2122 * We assume all tail are present too, if head is there.
2123 */
2124 if (radix_tree_deref_slot_protected(pslot,
2125 &mapping->tree_lock) != head)
2126 goto fail;
2127 }
2128
2129 /* Prevent deferred_split_scan() touching ->_refcount */
2130 spin_lock(&pgdata->split_queue_lock);
2131 count = page_count(head);
2132 mapcount = total_mapcount(head);
2133 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2134 if (!list_empty(page_deferred_list(head))) {
2135 pgdata->split_queue_len--;
2136 list_del(page_deferred_list(head));
2137 }
2138 if (mapping)
2139 __dec_node_page_state(page, NR_SHMEM_THPS);
2140 spin_unlock(&pgdata->split_queue_lock);
2141 __split_huge_page(page, list, flags);
2142 ret = 0;
2143 } else {
2144 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2145 pr_alert("total_mapcount: %u, page_count(): %u\n",
2146 mapcount, count);
2147 if (PageTail(page))
2148 dump_page(head, NULL);
2149 dump_page(page, "total_mapcount(head) > 0");
2150 BUG();
2151 }
2152 spin_unlock(&pgdata->split_queue_lock);
2153 fail: if (mapping)
2154 spin_unlock(&mapping->tree_lock);
2155 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2156 unfreeze_page(head);
2157 ret = -EBUSY;
2158 }
2159
2160 out_unlock:
2161 if (anon_vma) {
2162 anon_vma_unlock_write(anon_vma);
2163 put_anon_vma(anon_vma);
2164 }
2165 if (mapping)
2166 i_mmap_unlock_read(mapping);
2167 out:
2168 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2169 return ret;
2170 }
2171
2172 void free_transhuge_page(struct page *page)
2173 {
2174 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2175 unsigned long flags;
2176
2177 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2178 if (!list_empty(page_deferred_list(page))) {
2179 pgdata->split_queue_len--;
2180 list_del(page_deferred_list(page));
2181 }
2182 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2183 free_compound_page(page);
2184 }
2185
2186 void deferred_split_huge_page(struct page *page)
2187 {
2188 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2189 unsigned long flags;
2190
2191 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2192
2193 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2194 if (list_empty(page_deferred_list(page))) {
2195 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2196 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2197 pgdata->split_queue_len++;
2198 }
2199 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2200 }
2201
2202 static unsigned long deferred_split_count(struct shrinker *shrink,
2203 struct shrink_control *sc)
2204 {
2205 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2206 return ACCESS_ONCE(pgdata->split_queue_len);
2207 }
2208
2209 static unsigned long deferred_split_scan(struct shrinker *shrink,
2210 struct shrink_control *sc)
2211 {
2212 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2213 unsigned long flags;
2214 LIST_HEAD(list), *pos, *next;
2215 struct page *page;
2216 int split = 0;
2217
2218 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2219 /* Take pin on all head pages to avoid freeing them under us */
2220 list_for_each_safe(pos, next, &pgdata->split_queue) {
2221 page = list_entry((void *)pos, struct page, mapping);
2222 page = compound_head(page);
2223 if (get_page_unless_zero(page)) {
2224 list_move(page_deferred_list(page), &list);
2225 } else {
2226 /* We lost race with put_compound_page() */
2227 list_del_init(page_deferred_list(page));
2228 pgdata->split_queue_len--;
2229 }
2230 if (!--sc->nr_to_scan)
2231 break;
2232 }
2233 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2234
2235 list_for_each_safe(pos, next, &list) {
2236 page = list_entry((void *)pos, struct page, mapping);
2237 lock_page(page);
2238 /* split_huge_page() removes page from list on success */
2239 if (!split_huge_page(page))
2240 split++;
2241 unlock_page(page);
2242 put_page(page);
2243 }
2244
2245 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2246 list_splice_tail(&list, &pgdata->split_queue);
2247 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2248
2249 /*
2250 * Stop shrinker if we didn't split any page, but the queue is empty.
2251 * This can happen if pages were freed under us.
2252 */
2253 if (!split && list_empty(&pgdata->split_queue))
2254 return SHRINK_STOP;
2255 return split;
2256 }
2257
2258 static struct shrinker deferred_split_shrinker = {
2259 .count_objects = deferred_split_count,
2260 .scan_objects = deferred_split_scan,
2261 .seeks = DEFAULT_SEEKS,
2262 .flags = SHRINKER_NUMA_AWARE,
2263 };
2264
2265 #ifdef CONFIG_DEBUG_FS
2266 static int split_huge_pages_set(void *data, u64 val)
2267 {
2268 struct zone *zone;
2269 struct page *page;
2270 unsigned long pfn, max_zone_pfn;
2271 unsigned long total = 0, split = 0;
2272
2273 if (val != 1)
2274 return -EINVAL;
2275
2276 for_each_populated_zone(zone) {
2277 max_zone_pfn = zone_end_pfn(zone);
2278 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2279 if (!pfn_valid(pfn))
2280 continue;
2281
2282 page = pfn_to_page(pfn);
2283 if (!get_page_unless_zero(page))
2284 continue;
2285
2286 if (zone != page_zone(page))
2287 goto next;
2288
2289 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2290 goto next;
2291
2292 total++;
2293 lock_page(page);
2294 if (!split_huge_page(page))
2295 split++;
2296 unlock_page(page);
2297 next:
2298 put_page(page);
2299 }
2300 }
2301
2302 pr_info("%lu of %lu THP split\n", split, total);
2303
2304 return 0;
2305 }
2306 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2307 "%llu\n");
2308
2309 static int __init split_huge_pages_debugfs(void)
2310 {
2311 void *ret;
2312
2313 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2314 &split_huge_pages_fops);
2315 if (!ret)
2316 pr_warn("Failed to create split_huge_pages in debugfs");
2317 return 0;
2318 }
2319 late_initcall(split_huge_pages_debugfs);
2320 #endif