]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/huge_memory.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-jammy-kernel.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
76
77 return false;
78 }
79
80 static struct page *get_huge_zero_page(void)
81 {
82 struct page *zero_page;
83 retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 HPAGE_PMD_ORDER);
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 return NULL;
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
94 preempt_disable();
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 preempt_enable();
97 __free_pages(zero_page, compound_order(zero_page));
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
104 return READ_ONCE(huge_zero_page);
105 }
106
107 static void put_huge_zero_page(void)
108 {
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128 }
129
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134 }
135
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
138 {
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145 {
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
150 return HPAGE_PMD_NR;
151 }
152
153 return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165 {
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
172 }
173
174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177 {
178 ssize_t ret = count;
179
180 if (sysfs_streq(buf, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (sysfs_streq(buf, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 } else if (sysfs_streq(buf, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
191
192 if (ret > 0) {
193 int err = start_stop_khugepaged();
194 if (err)
195 ret = err;
196 }
197 return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205 {
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
208 }
209
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214 {
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
225 set_bit(flag, &transparent_hugepage_flags);
226 else
227 clear_bit(flag, &transparent_hugepage_flags);
228
229 return count;
230 }
231
232 static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234 {
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245
246 static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249 {
250 if (sysfs_streq(buf, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 } else if (sysfs_streq(buf, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 } else if (sysfs_streq(buf, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 } else if (sysfs_streq(buf, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else if (sysfs_streq(buf, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285 {
286 return single_hugepage_flag_show(kobj, attr, buf,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 return single_hugepage_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300 {
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
306 static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309 &use_zero_page_attr.attr,
310 &hpage_pmd_size_attr.attr,
311 #ifdef CONFIG_SHMEM
312 &shmem_enabled_attr.attr,
313 #endif
314 NULL,
315 };
316
317 static const struct attribute_group hugepage_attr_group = {
318 .attrs = hugepage_attr,
319 };
320
321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 {
323 int err;
324
325 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326 if (unlikely(!*hugepage_kobj)) {
327 pr_err("failed to create transparent hugepage kobject\n");
328 return -ENOMEM;
329 }
330
331 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
332 if (err) {
333 pr_err("failed to register transparent hugepage group\n");
334 goto delete_obj;
335 }
336
337 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
338 if (err) {
339 pr_err("failed to register transparent hugepage group\n");
340 goto remove_hp_group;
341 }
342
343 return 0;
344
345 remove_hp_group:
346 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347 delete_obj:
348 kobject_put(*hugepage_kobj);
349 return err;
350 }
351
352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353 {
354 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356 kobject_put(hugepage_kobj);
357 }
358 #else
359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360 {
361 return 0;
362 }
363
364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 }
367 #endif /* CONFIG_SYSFS */
368
369 static int __init hugepage_init(void)
370 {
371 int err;
372 struct kobject *hugepage_kobj;
373
374 if (!has_transparent_hugepage()) {
375 transparent_hugepage_flags = 0;
376 return -EINVAL;
377 }
378
379 /*
380 * hugepages can't be allocated by the buddy allocator
381 */
382 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383 /*
384 * we use page->mapping and page->index in second tail page
385 * as list_head: assuming THP order >= 2
386 */
387 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388
389 err = hugepage_init_sysfs(&hugepage_kobj);
390 if (err)
391 goto err_sysfs;
392
393 err = khugepaged_init();
394 if (err)
395 goto err_slab;
396
397 err = register_shrinker(&huge_zero_page_shrinker);
398 if (err)
399 goto err_hzp_shrinker;
400 err = register_shrinker(&deferred_split_shrinker);
401 if (err)
402 goto err_split_shrinker;
403
404 /*
405 * By default disable transparent hugepages on smaller systems,
406 * where the extra memory used could hurt more than TLB overhead
407 * is likely to save. The admin can still enable it through /sys.
408 */
409 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410 transparent_hugepage_flags = 0;
411 return 0;
412 }
413
414 err = start_stop_khugepaged();
415 if (err)
416 goto err_khugepaged;
417
418 return 0;
419 err_khugepaged:
420 unregister_shrinker(&deferred_split_shrinker);
421 err_split_shrinker:
422 unregister_shrinker(&huge_zero_page_shrinker);
423 err_hzp_shrinker:
424 khugepaged_destroy();
425 err_slab:
426 hugepage_exit_sysfs(hugepage_kobj);
427 err_sysfs:
428 return err;
429 }
430 subsys_initcall(hugepage_init);
431
432 static int __init setup_transparent_hugepage(char *str)
433 {
434 int ret = 0;
435 if (!str)
436 goto out;
437 if (!strcmp(str, "always")) {
438 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439 &transparent_hugepage_flags);
440 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441 &transparent_hugepage_flags);
442 ret = 1;
443 } else if (!strcmp(str, "madvise")) {
444 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445 &transparent_hugepage_flags);
446 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447 &transparent_hugepage_flags);
448 ret = 1;
449 } else if (!strcmp(str, "never")) {
450 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 }
456 out:
457 if (!ret)
458 pr_warn("transparent_hugepage= cannot parse, ignored\n");
459 return ret;
460 }
461 __setup("transparent_hugepage=", setup_transparent_hugepage);
462
463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464 {
465 if (likely(vma->vm_flags & VM_WRITE))
466 pmd = pmd_mkwrite(pmd);
467 return pmd;
468 }
469
470 #ifdef CONFIG_MEMCG
471 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472 {
473 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475
476 if (memcg)
477 return &memcg->deferred_split_queue;
478 else
479 return &pgdat->deferred_split_queue;
480 }
481 #else
482 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483 {
484 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485
486 return &pgdat->deferred_split_queue;
487 }
488 #endif
489
490 void prep_transhuge_page(struct page *page)
491 {
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500
501 bool is_transparent_hugepage(struct page *page)
502 {
503 if (!PageCompound(page))
504 return false;
505
506 page = compound_head(page);
507 return is_huge_zero_page(page) ||
508 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509 }
510 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511
512 static unsigned long __thp_get_unmapped_area(struct file *filp,
513 unsigned long addr, unsigned long len,
514 loff_t off, unsigned long flags, unsigned long size)
515 {
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
518 unsigned long len_pad, ret;
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
527 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528 off >> PAGE_SHIFT, flags);
529
530 /*
531 * The failure might be due to length padding. The caller will retry
532 * without the padding.
533 */
534 if (IS_ERR_VALUE(ret))
535 return 0;
536
537 /*
538 * Do not try to align to THP boundary if allocation at the address
539 * hint succeeds.
540 */
541 if (ret == addr)
542 return addr;
543
544 ret += (off - ret) & (size - 1);
545 return ret;
546 }
547
548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549 unsigned long len, unsigned long pgoff, unsigned long flags)
550 {
551 unsigned long ret;
552 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553
554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555 goto out;
556
557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558 if (ret)
559 return ret;
560 out:
561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562 }
563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564
565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566 struct page *page, gfp_t gfp)
567 {
568 struct vm_area_struct *vma = vmf->vma;
569 pgtable_t pgtable;
570 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571 vm_fault_t ret = 0;
572
573 VM_BUG_ON_PAGE(!PageCompound(page), page);
574
575 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576 put_page(page);
577 count_vm_event(THP_FAULT_FALLBACK);
578 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579 return VM_FAULT_FALLBACK;
580 }
581 cgroup_throttle_swaprate(page, gfp);
582
583 pgtable = pte_alloc_one(vma->vm_mm);
584 if (unlikely(!pgtable)) {
585 ret = VM_FAULT_OOM;
586 goto release;
587 }
588
589 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590 /*
591 * The memory barrier inside __SetPageUptodate makes sure that
592 * clear_huge_page writes become visible before the set_pmd_at()
593 * write.
594 */
595 __SetPageUptodate(page);
596
597 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598 if (unlikely(!pmd_none(*vmf->pmd))) {
599 goto unlock_release;
600 } else {
601 pmd_t entry;
602
603 ret = check_stable_address_space(vma->vm_mm);
604 if (ret)
605 goto unlock_release;
606
607 /* Deliver the page fault to userland */
608 if (userfaultfd_missing(vma)) {
609 vm_fault_t ret2;
610
611 spin_unlock(vmf->ptl);
612 put_page(page);
613 pte_free(vma->vm_mm, pgtable);
614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616 return ret2;
617 }
618
619 entry = mk_huge_pmd(page, vma->vm_page_prot);
620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621 page_add_new_anon_rmap(page, vma, haddr, true);
622 lru_cache_add_inactive_or_unevictable(page, vma);
623 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
625 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626 mm_inc_nr_ptes(vma->vm_mm);
627 spin_unlock(vmf->ptl);
628 count_vm_event(THP_FAULT_ALLOC);
629 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630 }
631
632 return 0;
633 unlock_release:
634 spin_unlock(vmf->ptl);
635 release:
636 if (pgtable)
637 pte_free(vma->vm_mm, pgtable);
638 put_page(page);
639 return ret;
640
641 }
642
643 /*
644 * always: directly stall for all thp allocations
645 * defer: wake kswapd and fail if not immediately available
646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647 * fail if not immediately available
648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649 * available
650 * never: never stall for any thp allocation
651 */
652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653 {
654 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655
656 /* Always do synchronous compaction */
657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659
660 /* Kick kcompactd and fail quickly */
661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663
664 /* Synchronous compaction if madvised, otherwise kick kcompactd */
665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666 return GFP_TRANSHUGE_LIGHT |
667 (vma_madvised ? __GFP_DIRECT_RECLAIM :
668 __GFP_KSWAPD_RECLAIM);
669
670 /* Only do synchronous compaction if madvised */
671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672 return GFP_TRANSHUGE_LIGHT |
673 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674
675 return GFP_TRANSHUGE_LIGHT;
676 }
677
678 /* Caller must hold page table lock. */
679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681 struct page *zero_page)
682 {
683 pmd_t entry;
684 if (!pmd_none(*pmd))
685 return false;
686 entry = mk_pmd(zero_page, vma->vm_page_prot);
687 entry = pmd_mkhuge(entry);
688 if (pgtable)
689 pgtable_trans_huge_deposit(mm, pmd, pgtable);
690 set_pmd_at(mm, haddr, pmd, entry);
691 mm_inc_nr_ptes(mm);
692 return true;
693 }
694
695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696 {
697 struct vm_area_struct *vma = vmf->vma;
698 gfp_t gfp;
699 struct page *page;
700 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701
702 if (!transhuge_vma_suitable(vma, haddr))
703 return VM_FAULT_FALLBACK;
704 if (unlikely(anon_vma_prepare(vma)))
705 return VM_FAULT_OOM;
706 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707 return VM_FAULT_OOM;
708 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
709 !mm_forbids_zeropage(vma->vm_mm) &&
710 transparent_hugepage_use_zero_page()) {
711 pgtable_t pgtable;
712 struct page *zero_page;
713 bool set;
714 vm_fault_t ret;
715 pgtable = pte_alloc_one(vma->vm_mm);
716 if (unlikely(!pgtable))
717 return VM_FAULT_OOM;
718 zero_page = mm_get_huge_zero_page(vma->vm_mm);
719 if (unlikely(!zero_page)) {
720 pte_free(vma->vm_mm, pgtable);
721 count_vm_event(THP_FAULT_FALLBACK);
722 return VM_FAULT_FALLBACK;
723 }
724 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
725 ret = 0;
726 set = false;
727 if (pmd_none(*vmf->pmd)) {
728 ret = check_stable_address_space(vma->vm_mm);
729 if (ret) {
730 spin_unlock(vmf->ptl);
731 } else if (userfaultfd_missing(vma)) {
732 spin_unlock(vmf->ptl);
733 ret = handle_userfault(vmf, VM_UFFD_MISSING);
734 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735 } else {
736 set_huge_zero_page(pgtable, vma->vm_mm, vma,
737 haddr, vmf->pmd, zero_page);
738 spin_unlock(vmf->ptl);
739 set = true;
740 }
741 } else
742 spin_unlock(vmf->ptl);
743 if (!set)
744 pte_free(vma->vm_mm, pgtable);
745 return ret;
746 }
747 gfp = alloc_hugepage_direct_gfpmask(vma);
748 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
749 if (unlikely(!page)) {
750 count_vm_event(THP_FAULT_FALLBACK);
751 return VM_FAULT_FALLBACK;
752 }
753 prep_transhuge_page(page);
754 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
755 }
756
757 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
758 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
759 pgtable_t pgtable)
760 {
761 struct mm_struct *mm = vma->vm_mm;
762 pmd_t entry;
763 spinlock_t *ptl;
764
765 ptl = pmd_lock(mm, pmd);
766 if (!pmd_none(*pmd)) {
767 if (write) {
768 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
769 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
770 goto out_unlock;
771 }
772 entry = pmd_mkyoung(*pmd);
773 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
774 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
775 update_mmu_cache_pmd(vma, addr, pmd);
776 }
777
778 goto out_unlock;
779 }
780
781 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
782 if (pfn_t_devmap(pfn))
783 entry = pmd_mkdevmap(entry);
784 if (write) {
785 entry = pmd_mkyoung(pmd_mkdirty(entry));
786 entry = maybe_pmd_mkwrite(entry, vma);
787 }
788
789 if (pgtable) {
790 pgtable_trans_huge_deposit(mm, pmd, pgtable);
791 mm_inc_nr_ptes(mm);
792 pgtable = NULL;
793 }
794
795 set_pmd_at(mm, addr, pmd, entry);
796 update_mmu_cache_pmd(vma, addr, pmd);
797
798 out_unlock:
799 spin_unlock(ptl);
800 if (pgtable)
801 pte_free(mm, pgtable);
802 }
803
804 /**
805 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
806 * @vmf: Structure describing the fault
807 * @pfn: pfn to insert
808 * @pgprot: page protection to use
809 * @write: whether it's a write fault
810 *
811 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
812 * also consult the vmf_insert_mixed_prot() documentation when
813 * @pgprot != @vmf->vma->vm_page_prot.
814 *
815 * Return: vm_fault_t value.
816 */
817 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
818 pgprot_t pgprot, bool write)
819 {
820 unsigned long addr = vmf->address & PMD_MASK;
821 struct vm_area_struct *vma = vmf->vma;
822 pgtable_t pgtable = NULL;
823
824 /*
825 * If we had pmd_special, we could avoid all these restrictions,
826 * but we need to be consistent with PTEs and architectures that
827 * can't support a 'special' bit.
828 */
829 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
830 !pfn_t_devmap(pfn));
831 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
832 (VM_PFNMAP|VM_MIXEDMAP));
833 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
834
835 if (addr < vma->vm_start || addr >= vma->vm_end)
836 return VM_FAULT_SIGBUS;
837
838 if (arch_needs_pgtable_deposit()) {
839 pgtable = pte_alloc_one(vma->vm_mm);
840 if (!pgtable)
841 return VM_FAULT_OOM;
842 }
843
844 track_pfn_insert(vma, &pgprot, pfn);
845
846 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
847 return VM_FAULT_NOPAGE;
848 }
849 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
850
851 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
852 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
853 {
854 if (likely(vma->vm_flags & VM_WRITE))
855 pud = pud_mkwrite(pud);
856 return pud;
857 }
858
859 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
860 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
861 {
862 struct mm_struct *mm = vma->vm_mm;
863 pud_t entry;
864 spinlock_t *ptl;
865
866 ptl = pud_lock(mm, pud);
867 if (!pud_none(*pud)) {
868 if (write) {
869 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
870 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
871 goto out_unlock;
872 }
873 entry = pud_mkyoung(*pud);
874 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
875 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
876 update_mmu_cache_pud(vma, addr, pud);
877 }
878 goto out_unlock;
879 }
880
881 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
882 if (pfn_t_devmap(pfn))
883 entry = pud_mkdevmap(entry);
884 if (write) {
885 entry = pud_mkyoung(pud_mkdirty(entry));
886 entry = maybe_pud_mkwrite(entry, vma);
887 }
888 set_pud_at(mm, addr, pud, entry);
889 update_mmu_cache_pud(vma, addr, pud);
890
891 out_unlock:
892 spin_unlock(ptl);
893 }
894
895 /**
896 * vmf_insert_pfn_pud_prot - insert a pud size pfn
897 * @vmf: Structure describing the fault
898 * @pfn: pfn to insert
899 * @pgprot: page protection to use
900 * @write: whether it's a write fault
901 *
902 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
903 * also consult the vmf_insert_mixed_prot() documentation when
904 * @pgprot != @vmf->vma->vm_page_prot.
905 *
906 * Return: vm_fault_t value.
907 */
908 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
909 pgprot_t pgprot, bool write)
910 {
911 unsigned long addr = vmf->address & PUD_MASK;
912 struct vm_area_struct *vma = vmf->vma;
913
914 /*
915 * If we had pud_special, we could avoid all these restrictions,
916 * but we need to be consistent with PTEs and architectures that
917 * can't support a 'special' bit.
918 */
919 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
920 !pfn_t_devmap(pfn));
921 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
922 (VM_PFNMAP|VM_MIXEDMAP));
923 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
924
925 if (addr < vma->vm_start || addr >= vma->vm_end)
926 return VM_FAULT_SIGBUS;
927
928 track_pfn_insert(vma, &pgprot, pfn);
929
930 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
931 return VM_FAULT_NOPAGE;
932 }
933 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
935
936 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
937 pmd_t *pmd, int flags)
938 {
939 pmd_t _pmd;
940
941 _pmd = pmd_mkyoung(*pmd);
942 if (flags & FOLL_WRITE)
943 _pmd = pmd_mkdirty(_pmd);
944 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
945 pmd, _pmd, flags & FOLL_WRITE))
946 update_mmu_cache_pmd(vma, addr, pmd);
947 }
948
949 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
950 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
951 {
952 unsigned long pfn = pmd_pfn(*pmd);
953 struct mm_struct *mm = vma->vm_mm;
954 struct page *page;
955
956 assert_spin_locked(pmd_lockptr(mm, pmd));
957
958 /*
959 * When we COW a devmap PMD entry, we split it into PTEs, so we should
960 * not be in this function with `flags & FOLL_COW` set.
961 */
962 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
963
964 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
965 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
966 (FOLL_PIN | FOLL_GET)))
967 return NULL;
968
969 if (flags & FOLL_WRITE && !pmd_write(*pmd))
970 return NULL;
971
972 if (pmd_present(*pmd) && pmd_devmap(*pmd))
973 /* pass */;
974 else
975 return NULL;
976
977 if (flags & FOLL_TOUCH)
978 touch_pmd(vma, addr, pmd, flags);
979
980 /*
981 * device mapped pages can only be returned if the
982 * caller will manage the page reference count.
983 */
984 if (!(flags & (FOLL_GET | FOLL_PIN)))
985 return ERR_PTR(-EEXIST);
986
987 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
988 *pgmap = get_dev_pagemap(pfn, *pgmap);
989 if (!*pgmap)
990 return ERR_PTR(-EFAULT);
991 page = pfn_to_page(pfn);
992 if (!try_grab_page(page, flags))
993 page = ERR_PTR(-ENOMEM);
994
995 return page;
996 }
997
998 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
999 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1000 struct vm_area_struct *vma)
1001 {
1002 spinlock_t *dst_ptl, *src_ptl;
1003 struct page *src_page;
1004 pmd_t pmd;
1005 pgtable_t pgtable = NULL;
1006 int ret = -ENOMEM;
1007
1008 /* Skip if can be re-fill on fault */
1009 if (!vma_is_anonymous(vma))
1010 return 0;
1011
1012 pgtable = pte_alloc_one(dst_mm);
1013 if (unlikely(!pgtable))
1014 goto out;
1015
1016 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1017 src_ptl = pmd_lockptr(src_mm, src_pmd);
1018 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1019
1020 ret = -EAGAIN;
1021 pmd = *src_pmd;
1022
1023 /*
1024 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1025 * does not have the VM_UFFD_WP, which means that the uffd
1026 * fork event is not enabled.
1027 */
1028 if (!(vma->vm_flags & VM_UFFD_WP))
1029 pmd = pmd_clear_uffd_wp(pmd);
1030
1031 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1032 if (unlikely(is_swap_pmd(pmd))) {
1033 swp_entry_t entry = pmd_to_swp_entry(pmd);
1034
1035 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1036 if (is_write_migration_entry(entry)) {
1037 make_migration_entry_read(&entry);
1038 pmd = swp_entry_to_pmd(entry);
1039 if (pmd_swp_soft_dirty(*src_pmd))
1040 pmd = pmd_swp_mksoft_dirty(pmd);
1041 set_pmd_at(src_mm, addr, src_pmd, pmd);
1042 }
1043 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1044 mm_inc_nr_ptes(dst_mm);
1045 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1046 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1047 ret = 0;
1048 goto out_unlock;
1049 }
1050 #endif
1051
1052 if (unlikely(!pmd_trans_huge(pmd))) {
1053 pte_free(dst_mm, pgtable);
1054 goto out_unlock;
1055 }
1056 /*
1057 * When page table lock is held, the huge zero pmd should not be
1058 * under splitting since we don't split the page itself, only pmd to
1059 * a page table.
1060 */
1061 if (is_huge_zero_pmd(pmd)) {
1062 struct page *zero_page;
1063 /*
1064 * get_huge_zero_page() will never allocate a new page here,
1065 * since we already have a zero page to copy. It just takes a
1066 * reference.
1067 */
1068 zero_page = mm_get_huge_zero_page(dst_mm);
1069 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1070 zero_page);
1071 ret = 0;
1072 goto out_unlock;
1073 }
1074
1075 src_page = pmd_page(pmd);
1076 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1077 get_page(src_page);
1078 page_dup_rmap(src_page, true);
1079 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1080 mm_inc_nr_ptes(dst_mm);
1081 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1082
1083 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1084 pmd = pmd_mkold(pmd_wrprotect(pmd));
1085 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1086
1087 ret = 0;
1088 out_unlock:
1089 spin_unlock(src_ptl);
1090 spin_unlock(dst_ptl);
1091 out:
1092 return ret;
1093 }
1094
1095 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1096 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1097 pud_t *pud, int flags)
1098 {
1099 pud_t _pud;
1100
1101 _pud = pud_mkyoung(*pud);
1102 if (flags & FOLL_WRITE)
1103 _pud = pud_mkdirty(_pud);
1104 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1105 pud, _pud, flags & FOLL_WRITE))
1106 update_mmu_cache_pud(vma, addr, pud);
1107 }
1108
1109 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1110 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1111 {
1112 unsigned long pfn = pud_pfn(*pud);
1113 struct mm_struct *mm = vma->vm_mm;
1114 struct page *page;
1115
1116 assert_spin_locked(pud_lockptr(mm, pud));
1117
1118 if (flags & FOLL_WRITE && !pud_write(*pud))
1119 return NULL;
1120
1121 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1122 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1123 (FOLL_PIN | FOLL_GET)))
1124 return NULL;
1125
1126 if (pud_present(*pud) && pud_devmap(*pud))
1127 /* pass */;
1128 else
1129 return NULL;
1130
1131 if (flags & FOLL_TOUCH)
1132 touch_pud(vma, addr, pud, flags);
1133
1134 /*
1135 * device mapped pages can only be returned if the
1136 * caller will manage the page reference count.
1137 *
1138 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1139 */
1140 if (!(flags & (FOLL_GET | FOLL_PIN)))
1141 return ERR_PTR(-EEXIST);
1142
1143 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1144 *pgmap = get_dev_pagemap(pfn, *pgmap);
1145 if (!*pgmap)
1146 return ERR_PTR(-EFAULT);
1147 page = pfn_to_page(pfn);
1148 if (!try_grab_page(page, flags))
1149 page = ERR_PTR(-ENOMEM);
1150
1151 return page;
1152 }
1153
1154 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1155 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1156 struct vm_area_struct *vma)
1157 {
1158 spinlock_t *dst_ptl, *src_ptl;
1159 pud_t pud;
1160 int ret;
1161
1162 dst_ptl = pud_lock(dst_mm, dst_pud);
1163 src_ptl = pud_lockptr(src_mm, src_pud);
1164 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1165
1166 ret = -EAGAIN;
1167 pud = *src_pud;
1168 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1169 goto out_unlock;
1170
1171 /*
1172 * When page table lock is held, the huge zero pud should not be
1173 * under splitting since we don't split the page itself, only pud to
1174 * a page table.
1175 */
1176 if (is_huge_zero_pud(pud)) {
1177 /* No huge zero pud yet */
1178 }
1179
1180 pudp_set_wrprotect(src_mm, addr, src_pud);
1181 pud = pud_mkold(pud_wrprotect(pud));
1182 set_pud_at(dst_mm, addr, dst_pud, pud);
1183
1184 ret = 0;
1185 out_unlock:
1186 spin_unlock(src_ptl);
1187 spin_unlock(dst_ptl);
1188 return ret;
1189 }
1190
1191 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1192 {
1193 pud_t entry;
1194 unsigned long haddr;
1195 bool write = vmf->flags & FAULT_FLAG_WRITE;
1196
1197 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1198 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1199 goto unlock;
1200
1201 entry = pud_mkyoung(orig_pud);
1202 if (write)
1203 entry = pud_mkdirty(entry);
1204 haddr = vmf->address & HPAGE_PUD_MASK;
1205 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1206 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1207
1208 unlock:
1209 spin_unlock(vmf->ptl);
1210 }
1211 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1212
1213 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1214 {
1215 pmd_t entry;
1216 unsigned long haddr;
1217 bool write = vmf->flags & FAULT_FLAG_WRITE;
1218
1219 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1220 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1221 goto unlock;
1222
1223 entry = pmd_mkyoung(orig_pmd);
1224 if (write)
1225 entry = pmd_mkdirty(entry);
1226 haddr = vmf->address & HPAGE_PMD_MASK;
1227 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1228 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1229
1230 unlock:
1231 spin_unlock(vmf->ptl);
1232 }
1233
1234 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1235 {
1236 struct vm_area_struct *vma = vmf->vma;
1237 struct page *page;
1238 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1239
1240 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1241 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1242
1243 if (is_huge_zero_pmd(orig_pmd))
1244 goto fallback;
1245
1246 spin_lock(vmf->ptl);
1247
1248 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1249 spin_unlock(vmf->ptl);
1250 return 0;
1251 }
1252
1253 page = pmd_page(orig_pmd);
1254 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1255
1256 /* Lock page for reuse_swap_page() */
1257 if (!trylock_page(page)) {
1258 get_page(page);
1259 spin_unlock(vmf->ptl);
1260 lock_page(page);
1261 spin_lock(vmf->ptl);
1262 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1263 spin_unlock(vmf->ptl);
1264 unlock_page(page);
1265 put_page(page);
1266 return 0;
1267 }
1268 put_page(page);
1269 }
1270
1271 /*
1272 * We can only reuse the page if nobody else maps the huge page or it's
1273 * part.
1274 */
1275 if (reuse_swap_page(page, NULL)) {
1276 pmd_t entry;
1277 entry = pmd_mkyoung(orig_pmd);
1278 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1279 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1280 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1281 unlock_page(page);
1282 spin_unlock(vmf->ptl);
1283 return VM_FAULT_WRITE;
1284 }
1285
1286 unlock_page(page);
1287 spin_unlock(vmf->ptl);
1288 fallback:
1289 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1290 return VM_FAULT_FALLBACK;
1291 }
1292
1293 /*
1294 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1295 * but only after we've gone through a COW cycle and they are dirty.
1296 */
1297 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1298 {
1299 return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1300 }
1301
1302 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1303 unsigned long addr,
1304 pmd_t *pmd,
1305 unsigned int flags)
1306 {
1307 struct mm_struct *mm = vma->vm_mm;
1308 struct page *page = NULL;
1309
1310 assert_spin_locked(pmd_lockptr(mm, pmd));
1311
1312 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1313 goto out;
1314
1315 /* Avoid dumping huge zero page */
1316 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1317 return ERR_PTR(-EFAULT);
1318
1319 /* Full NUMA hinting faults to serialise migration in fault paths */
1320 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1321 goto out;
1322
1323 page = pmd_page(*pmd);
1324 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1325
1326 if (!try_grab_page(page, flags))
1327 return ERR_PTR(-ENOMEM);
1328
1329 if (flags & FOLL_TOUCH)
1330 touch_pmd(vma, addr, pmd, flags);
1331
1332 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1333 /*
1334 * We don't mlock() pte-mapped THPs. This way we can avoid
1335 * leaking mlocked pages into non-VM_LOCKED VMAs.
1336 *
1337 * For anon THP:
1338 *
1339 * In most cases the pmd is the only mapping of the page as we
1340 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1341 * writable private mappings in populate_vma_page_range().
1342 *
1343 * The only scenario when we have the page shared here is if we
1344 * mlocking read-only mapping shared over fork(). We skip
1345 * mlocking such pages.
1346 *
1347 * For file THP:
1348 *
1349 * We can expect PageDoubleMap() to be stable under page lock:
1350 * for file pages we set it in page_add_file_rmap(), which
1351 * requires page to be locked.
1352 */
1353
1354 if (PageAnon(page) && compound_mapcount(page) != 1)
1355 goto skip_mlock;
1356 if (PageDoubleMap(page) || !page->mapping)
1357 goto skip_mlock;
1358 if (!trylock_page(page))
1359 goto skip_mlock;
1360 if (page->mapping && !PageDoubleMap(page))
1361 mlock_vma_page(page);
1362 unlock_page(page);
1363 }
1364 skip_mlock:
1365 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1366 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1367
1368 out:
1369 return page;
1370 }
1371
1372 /* NUMA hinting page fault entry point for trans huge pmds */
1373 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1374 {
1375 struct vm_area_struct *vma = vmf->vma;
1376 struct anon_vma *anon_vma = NULL;
1377 struct page *page;
1378 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1379 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1380 int target_nid, last_cpupid = -1;
1381 bool page_locked;
1382 bool migrated = false;
1383 bool was_writable;
1384 int flags = 0;
1385
1386 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1387 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1388 goto out_unlock;
1389
1390 /*
1391 * If there are potential migrations, wait for completion and retry
1392 * without disrupting NUMA hinting information. Do not relock and
1393 * check_same as the page may no longer be mapped.
1394 */
1395 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1396 page = pmd_page(*vmf->pmd);
1397 if (!get_page_unless_zero(page))
1398 goto out_unlock;
1399 spin_unlock(vmf->ptl);
1400 put_and_wait_on_page_locked(page);
1401 goto out;
1402 }
1403
1404 page = pmd_page(pmd);
1405 BUG_ON(is_huge_zero_page(page));
1406 page_nid = page_to_nid(page);
1407 last_cpupid = page_cpupid_last(page);
1408 count_vm_numa_event(NUMA_HINT_FAULTS);
1409 if (page_nid == this_nid) {
1410 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1411 flags |= TNF_FAULT_LOCAL;
1412 }
1413
1414 /* See similar comment in do_numa_page for explanation */
1415 if (!pmd_savedwrite(pmd))
1416 flags |= TNF_NO_GROUP;
1417
1418 /*
1419 * Acquire the page lock to serialise THP migrations but avoid dropping
1420 * page_table_lock if at all possible
1421 */
1422 page_locked = trylock_page(page);
1423 target_nid = mpol_misplaced(page, vma, haddr);
1424 if (target_nid == NUMA_NO_NODE) {
1425 /* If the page was locked, there are no parallel migrations */
1426 if (page_locked)
1427 goto clear_pmdnuma;
1428 }
1429
1430 /* Migration could have started since the pmd_trans_migrating check */
1431 if (!page_locked) {
1432 page_nid = NUMA_NO_NODE;
1433 if (!get_page_unless_zero(page))
1434 goto out_unlock;
1435 spin_unlock(vmf->ptl);
1436 put_and_wait_on_page_locked(page);
1437 goto out;
1438 }
1439
1440 /*
1441 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1442 * to serialises splits
1443 */
1444 get_page(page);
1445 spin_unlock(vmf->ptl);
1446 anon_vma = page_lock_anon_vma_read(page);
1447
1448 /* Confirm the PMD did not change while page_table_lock was released */
1449 spin_lock(vmf->ptl);
1450 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1451 unlock_page(page);
1452 put_page(page);
1453 page_nid = NUMA_NO_NODE;
1454 goto out_unlock;
1455 }
1456
1457 /* Bail if we fail to protect against THP splits for any reason */
1458 if (unlikely(!anon_vma)) {
1459 put_page(page);
1460 page_nid = NUMA_NO_NODE;
1461 goto clear_pmdnuma;
1462 }
1463
1464 /*
1465 * Since we took the NUMA fault, we must have observed the !accessible
1466 * bit. Make sure all other CPUs agree with that, to avoid them
1467 * modifying the page we're about to migrate.
1468 *
1469 * Must be done under PTL such that we'll observe the relevant
1470 * inc_tlb_flush_pending().
1471 *
1472 * We are not sure a pending tlb flush here is for a huge page
1473 * mapping or not. Hence use the tlb range variant
1474 */
1475 if (mm_tlb_flush_pending(vma->vm_mm)) {
1476 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1477 /*
1478 * change_huge_pmd() released the pmd lock before
1479 * invalidating the secondary MMUs sharing the primary
1480 * MMU pagetables (with ->invalidate_range()). The
1481 * mmu_notifier_invalidate_range_end() (which
1482 * internally calls ->invalidate_range()) in
1483 * change_pmd_range() will run after us, so we can't
1484 * rely on it here and we need an explicit invalidate.
1485 */
1486 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1487 haddr + HPAGE_PMD_SIZE);
1488 }
1489
1490 /*
1491 * Migrate the THP to the requested node, returns with page unlocked
1492 * and access rights restored.
1493 */
1494 spin_unlock(vmf->ptl);
1495
1496 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1497 vmf->pmd, pmd, vmf->address, page, target_nid);
1498 if (migrated) {
1499 flags |= TNF_MIGRATED;
1500 page_nid = target_nid;
1501 } else
1502 flags |= TNF_MIGRATE_FAIL;
1503
1504 goto out;
1505 clear_pmdnuma:
1506 BUG_ON(!PageLocked(page));
1507 was_writable = pmd_savedwrite(pmd);
1508 pmd = pmd_modify(pmd, vma->vm_page_prot);
1509 pmd = pmd_mkyoung(pmd);
1510 if (was_writable)
1511 pmd = pmd_mkwrite(pmd);
1512 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1513 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1514 unlock_page(page);
1515 out_unlock:
1516 spin_unlock(vmf->ptl);
1517
1518 out:
1519 if (anon_vma)
1520 page_unlock_anon_vma_read(anon_vma);
1521
1522 if (page_nid != NUMA_NO_NODE)
1523 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1524 flags);
1525
1526 return 0;
1527 }
1528
1529 /*
1530 * Return true if we do MADV_FREE successfully on entire pmd page.
1531 * Otherwise, return false.
1532 */
1533 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1534 pmd_t *pmd, unsigned long addr, unsigned long next)
1535 {
1536 spinlock_t *ptl;
1537 pmd_t orig_pmd;
1538 struct page *page;
1539 struct mm_struct *mm = tlb->mm;
1540 bool ret = false;
1541
1542 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1543
1544 ptl = pmd_trans_huge_lock(pmd, vma);
1545 if (!ptl)
1546 goto out_unlocked;
1547
1548 orig_pmd = *pmd;
1549 if (is_huge_zero_pmd(orig_pmd))
1550 goto out;
1551
1552 if (unlikely(!pmd_present(orig_pmd))) {
1553 VM_BUG_ON(thp_migration_supported() &&
1554 !is_pmd_migration_entry(orig_pmd));
1555 goto out;
1556 }
1557
1558 page = pmd_page(orig_pmd);
1559 /*
1560 * If other processes are mapping this page, we couldn't discard
1561 * the page unless they all do MADV_FREE so let's skip the page.
1562 */
1563 if (page_mapcount(page) != 1)
1564 goto out;
1565
1566 if (!trylock_page(page))
1567 goto out;
1568
1569 /*
1570 * If user want to discard part-pages of THP, split it so MADV_FREE
1571 * will deactivate only them.
1572 */
1573 if (next - addr != HPAGE_PMD_SIZE) {
1574 get_page(page);
1575 spin_unlock(ptl);
1576 split_huge_page(page);
1577 unlock_page(page);
1578 put_page(page);
1579 goto out_unlocked;
1580 }
1581
1582 if (PageDirty(page))
1583 ClearPageDirty(page);
1584 unlock_page(page);
1585
1586 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1587 pmdp_invalidate(vma, addr, pmd);
1588 orig_pmd = pmd_mkold(orig_pmd);
1589 orig_pmd = pmd_mkclean(orig_pmd);
1590
1591 set_pmd_at(mm, addr, pmd, orig_pmd);
1592 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1593 }
1594
1595 mark_page_lazyfree(page);
1596 ret = true;
1597 out:
1598 spin_unlock(ptl);
1599 out_unlocked:
1600 return ret;
1601 }
1602
1603 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1604 {
1605 pgtable_t pgtable;
1606
1607 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1608 pte_free(mm, pgtable);
1609 mm_dec_nr_ptes(mm);
1610 }
1611
1612 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613 pmd_t *pmd, unsigned long addr)
1614 {
1615 pmd_t orig_pmd;
1616 spinlock_t *ptl;
1617
1618 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1619
1620 ptl = __pmd_trans_huge_lock(pmd, vma);
1621 if (!ptl)
1622 return 0;
1623 /*
1624 * For architectures like ppc64 we look at deposited pgtable
1625 * when calling pmdp_huge_get_and_clear. So do the
1626 * pgtable_trans_huge_withdraw after finishing pmdp related
1627 * operations.
1628 */
1629 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1630 tlb->fullmm);
1631 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1632 if (vma_is_special_huge(vma)) {
1633 if (arch_needs_pgtable_deposit())
1634 zap_deposited_table(tlb->mm, pmd);
1635 spin_unlock(ptl);
1636 if (is_huge_zero_pmd(orig_pmd))
1637 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1638 } else if (is_huge_zero_pmd(orig_pmd)) {
1639 zap_deposited_table(tlb->mm, pmd);
1640 spin_unlock(ptl);
1641 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1642 } else {
1643 struct page *page = NULL;
1644 int flush_needed = 1;
1645
1646 if (pmd_present(orig_pmd)) {
1647 page = pmd_page(orig_pmd);
1648 page_remove_rmap(page, true);
1649 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1650 VM_BUG_ON_PAGE(!PageHead(page), page);
1651 } else if (thp_migration_supported()) {
1652 swp_entry_t entry;
1653
1654 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1655 entry = pmd_to_swp_entry(orig_pmd);
1656 page = pfn_to_page(swp_offset(entry));
1657 flush_needed = 0;
1658 } else
1659 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1660
1661 if (PageAnon(page)) {
1662 zap_deposited_table(tlb->mm, pmd);
1663 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1664 } else {
1665 if (arch_needs_pgtable_deposit())
1666 zap_deposited_table(tlb->mm, pmd);
1667 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1668 }
1669
1670 spin_unlock(ptl);
1671 if (flush_needed)
1672 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1673 }
1674 return 1;
1675 }
1676
1677 #ifndef pmd_move_must_withdraw
1678 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1679 spinlock_t *old_pmd_ptl,
1680 struct vm_area_struct *vma)
1681 {
1682 /*
1683 * With split pmd lock we also need to move preallocated
1684 * PTE page table if new_pmd is on different PMD page table.
1685 *
1686 * We also don't deposit and withdraw tables for file pages.
1687 */
1688 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1689 }
1690 #endif
1691
1692 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1693 {
1694 #ifdef CONFIG_MEM_SOFT_DIRTY
1695 if (unlikely(is_pmd_migration_entry(pmd)))
1696 pmd = pmd_swp_mksoft_dirty(pmd);
1697 else if (pmd_present(pmd))
1698 pmd = pmd_mksoft_dirty(pmd);
1699 #endif
1700 return pmd;
1701 }
1702
1703 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1704 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1705 {
1706 spinlock_t *old_ptl, *new_ptl;
1707 pmd_t pmd;
1708 struct mm_struct *mm = vma->vm_mm;
1709 bool force_flush = false;
1710
1711 /*
1712 * The destination pmd shouldn't be established, free_pgtables()
1713 * should have release it.
1714 */
1715 if (WARN_ON(!pmd_none(*new_pmd))) {
1716 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1717 return false;
1718 }
1719
1720 /*
1721 * We don't have to worry about the ordering of src and dst
1722 * ptlocks because exclusive mmap_lock prevents deadlock.
1723 */
1724 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1725 if (old_ptl) {
1726 new_ptl = pmd_lockptr(mm, new_pmd);
1727 if (new_ptl != old_ptl)
1728 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1729 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1730 if (pmd_present(pmd))
1731 force_flush = true;
1732 VM_BUG_ON(!pmd_none(*new_pmd));
1733
1734 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1735 pgtable_t pgtable;
1736 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1737 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1738 }
1739 pmd = move_soft_dirty_pmd(pmd);
1740 set_pmd_at(mm, new_addr, new_pmd, pmd);
1741 if (force_flush)
1742 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1743 if (new_ptl != old_ptl)
1744 spin_unlock(new_ptl);
1745 spin_unlock(old_ptl);
1746 return true;
1747 }
1748 return false;
1749 }
1750
1751 /*
1752 * Returns
1753 * - 0 if PMD could not be locked
1754 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1755 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1756 */
1757 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1758 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1759 {
1760 struct mm_struct *mm = vma->vm_mm;
1761 spinlock_t *ptl;
1762 pmd_t entry;
1763 bool preserve_write;
1764 int ret;
1765 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1766 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1767 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1768
1769 ptl = __pmd_trans_huge_lock(pmd, vma);
1770 if (!ptl)
1771 return 0;
1772
1773 preserve_write = prot_numa && pmd_write(*pmd);
1774 ret = 1;
1775
1776 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1777 if (is_swap_pmd(*pmd)) {
1778 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1779
1780 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1781 if (is_write_migration_entry(entry)) {
1782 pmd_t newpmd;
1783 /*
1784 * A protection check is difficult so
1785 * just be safe and disable write
1786 */
1787 make_migration_entry_read(&entry);
1788 newpmd = swp_entry_to_pmd(entry);
1789 if (pmd_swp_soft_dirty(*pmd))
1790 newpmd = pmd_swp_mksoft_dirty(newpmd);
1791 set_pmd_at(mm, addr, pmd, newpmd);
1792 }
1793 goto unlock;
1794 }
1795 #endif
1796
1797 /*
1798 * Avoid trapping faults against the zero page. The read-only
1799 * data is likely to be read-cached on the local CPU and
1800 * local/remote hits to the zero page are not interesting.
1801 */
1802 if (prot_numa && is_huge_zero_pmd(*pmd))
1803 goto unlock;
1804
1805 if (prot_numa && pmd_protnone(*pmd))
1806 goto unlock;
1807
1808 /*
1809 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1810 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1811 * which is also under mmap_read_lock(mm):
1812 *
1813 * CPU0: CPU1:
1814 * change_huge_pmd(prot_numa=1)
1815 * pmdp_huge_get_and_clear_notify()
1816 * madvise_dontneed()
1817 * zap_pmd_range()
1818 * pmd_trans_huge(*pmd) == 0 (without ptl)
1819 * // skip the pmd
1820 * set_pmd_at();
1821 * // pmd is re-established
1822 *
1823 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1824 * which may break userspace.
1825 *
1826 * pmdp_invalidate() is required to make sure we don't miss
1827 * dirty/young flags set by hardware.
1828 */
1829 entry = pmdp_invalidate(vma, addr, pmd);
1830
1831 entry = pmd_modify(entry, newprot);
1832 if (preserve_write)
1833 entry = pmd_mk_savedwrite(entry);
1834 if (uffd_wp) {
1835 entry = pmd_wrprotect(entry);
1836 entry = pmd_mkuffd_wp(entry);
1837 } else if (uffd_wp_resolve) {
1838 /*
1839 * Leave the write bit to be handled by PF interrupt
1840 * handler, then things like COW could be properly
1841 * handled.
1842 */
1843 entry = pmd_clear_uffd_wp(entry);
1844 }
1845 ret = HPAGE_PMD_NR;
1846 set_pmd_at(mm, addr, pmd, entry);
1847 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1848 unlock:
1849 spin_unlock(ptl);
1850 return ret;
1851 }
1852
1853 /*
1854 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1855 *
1856 * Note that if it returns page table lock pointer, this routine returns without
1857 * unlocking page table lock. So callers must unlock it.
1858 */
1859 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1860 {
1861 spinlock_t *ptl;
1862 ptl = pmd_lock(vma->vm_mm, pmd);
1863 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1864 pmd_devmap(*pmd)))
1865 return ptl;
1866 spin_unlock(ptl);
1867 return NULL;
1868 }
1869
1870 /*
1871 * Returns true if a given pud maps a thp, false otherwise.
1872 *
1873 * Note that if it returns true, this routine returns without unlocking page
1874 * table lock. So callers must unlock it.
1875 */
1876 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1877 {
1878 spinlock_t *ptl;
1879
1880 ptl = pud_lock(vma->vm_mm, pud);
1881 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1882 return ptl;
1883 spin_unlock(ptl);
1884 return NULL;
1885 }
1886
1887 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1888 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1889 pud_t *pud, unsigned long addr)
1890 {
1891 spinlock_t *ptl;
1892
1893 ptl = __pud_trans_huge_lock(pud, vma);
1894 if (!ptl)
1895 return 0;
1896 /*
1897 * For architectures like ppc64 we look at deposited pgtable
1898 * when calling pudp_huge_get_and_clear. So do the
1899 * pgtable_trans_huge_withdraw after finishing pudp related
1900 * operations.
1901 */
1902 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1903 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1904 if (vma_is_special_huge(vma)) {
1905 spin_unlock(ptl);
1906 /* No zero page support yet */
1907 } else {
1908 /* No support for anonymous PUD pages yet */
1909 BUG();
1910 }
1911 return 1;
1912 }
1913
1914 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1915 unsigned long haddr)
1916 {
1917 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1918 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1919 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1920 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1921
1922 count_vm_event(THP_SPLIT_PUD);
1923
1924 pudp_huge_clear_flush_notify(vma, haddr, pud);
1925 }
1926
1927 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1928 unsigned long address)
1929 {
1930 spinlock_t *ptl;
1931 struct mmu_notifier_range range;
1932
1933 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1934 address & HPAGE_PUD_MASK,
1935 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1936 mmu_notifier_invalidate_range_start(&range);
1937 ptl = pud_lock(vma->vm_mm, pud);
1938 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1939 goto out;
1940 __split_huge_pud_locked(vma, pud, range.start);
1941
1942 out:
1943 spin_unlock(ptl);
1944 /*
1945 * No need to double call mmu_notifier->invalidate_range() callback as
1946 * the above pudp_huge_clear_flush_notify() did already call it.
1947 */
1948 mmu_notifier_invalidate_range_only_end(&range);
1949 }
1950 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1951
1952 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1953 unsigned long haddr, pmd_t *pmd)
1954 {
1955 struct mm_struct *mm = vma->vm_mm;
1956 pgtable_t pgtable;
1957 pmd_t _pmd;
1958 int i;
1959
1960 /*
1961 * Leave pmd empty until pte is filled note that it is fine to delay
1962 * notification until mmu_notifier_invalidate_range_end() as we are
1963 * replacing a zero pmd write protected page with a zero pte write
1964 * protected page.
1965 *
1966 * See Documentation/vm/mmu_notifier.rst
1967 */
1968 pmdp_huge_clear_flush(vma, haddr, pmd);
1969
1970 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1971 pmd_populate(mm, &_pmd, pgtable);
1972
1973 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1974 pte_t *pte, entry;
1975 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1976 entry = pte_mkspecial(entry);
1977 pte = pte_offset_map(&_pmd, haddr);
1978 VM_BUG_ON(!pte_none(*pte));
1979 set_pte_at(mm, haddr, pte, entry);
1980 pte_unmap(pte);
1981 }
1982 smp_wmb(); /* make pte visible before pmd */
1983 pmd_populate(mm, pmd, pgtable);
1984 }
1985
1986 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1987 unsigned long haddr, bool freeze)
1988 {
1989 struct mm_struct *mm = vma->vm_mm;
1990 struct page *page;
1991 pgtable_t pgtable;
1992 pmd_t old_pmd, _pmd;
1993 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1994 unsigned long addr;
1995 int i;
1996
1997 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1998 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1999 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2000 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2001 && !pmd_devmap(*pmd));
2002
2003 count_vm_event(THP_SPLIT_PMD);
2004
2005 if (!vma_is_anonymous(vma)) {
2006 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2007 /*
2008 * We are going to unmap this huge page. So
2009 * just go ahead and zap it
2010 */
2011 if (arch_needs_pgtable_deposit())
2012 zap_deposited_table(mm, pmd);
2013 if (vma_is_special_huge(vma))
2014 return;
2015 page = pmd_page(_pmd);
2016 if (!PageDirty(page) && pmd_dirty(_pmd))
2017 set_page_dirty(page);
2018 if (!PageReferenced(page) && pmd_young(_pmd))
2019 SetPageReferenced(page);
2020 page_remove_rmap(page, true);
2021 put_page(page);
2022 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2023 return;
2024 } else if (is_huge_zero_pmd(*pmd)) {
2025 /*
2026 * FIXME: Do we want to invalidate secondary mmu by calling
2027 * mmu_notifier_invalidate_range() see comments below inside
2028 * __split_huge_pmd() ?
2029 *
2030 * We are going from a zero huge page write protected to zero
2031 * small page also write protected so it does not seems useful
2032 * to invalidate secondary mmu at this time.
2033 */
2034 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2035 }
2036
2037 /*
2038 * Up to this point the pmd is present and huge and userland has the
2039 * whole access to the hugepage during the split (which happens in
2040 * place). If we overwrite the pmd with the not-huge version pointing
2041 * to the pte here (which of course we could if all CPUs were bug
2042 * free), userland could trigger a small page size TLB miss on the
2043 * small sized TLB while the hugepage TLB entry is still established in
2044 * the huge TLB. Some CPU doesn't like that.
2045 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2046 * 383 on page 105. Intel should be safe but is also warns that it's
2047 * only safe if the permission and cache attributes of the two entries
2048 * loaded in the two TLB is identical (which should be the case here).
2049 * But it is generally safer to never allow small and huge TLB entries
2050 * for the same virtual address to be loaded simultaneously. So instead
2051 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2052 * current pmd notpresent (atomically because here the pmd_trans_huge
2053 * must remain set at all times on the pmd until the split is complete
2054 * for this pmd), then we flush the SMP TLB and finally we write the
2055 * non-huge version of the pmd entry with pmd_populate.
2056 */
2057 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2058
2059 pmd_migration = is_pmd_migration_entry(old_pmd);
2060 if (unlikely(pmd_migration)) {
2061 swp_entry_t entry;
2062
2063 entry = pmd_to_swp_entry(old_pmd);
2064 page = pfn_to_page(swp_offset(entry));
2065 write = is_write_migration_entry(entry);
2066 young = false;
2067 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2068 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2069 } else {
2070 page = pmd_page(old_pmd);
2071 if (pmd_dirty(old_pmd))
2072 SetPageDirty(page);
2073 write = pmd_write(old_pmd);
2074 young = pmd_young(old_pmd);
2075 soft_dirty = pmd_soft_dirty(old_pmd);
2076 uffd_wp = pmd_uffd_wp(old_pmd);
2077 }
2078 VM_BUG_ON_PAGE(!page_count(page), page);
2079 page_ref_add(page, HPAGE_PMD_NR - 1);
2080
2081 /*
2082 * Withdraw the table only after we mark the pmd entry invalid.
2083 * This's critical for some architectures (Power).
2084 */
2085 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2086 pmd_populate(mm, &_pmd, pgtable);
2087
2088 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2089 pte_t entry, *pte;
2090 /*
2091 * Note that NUMA hinting access restrictions are not
2092 * transferred to avoid any possibility of altering
2093 * permissions across VMAs.
2094 */
2095 if (freeze || pmd_migration) {
2096 swp_entry_t swp_entry;
2097 swp_entry = make_migration_entry(page + i, write);
2098 entry = swp_entry_to_pte(swp_entry);
2099 if (soft_dirty)
2100 entry = pte_swp_mksoft_dirty(entry);
2101 if (uffd_wp)
2102 entry = pte_swp_mkuffd_wp(entry);
2103 } else {
2104 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2105 entry = maybe_mkwrite(entry, vma);
2106 if (!write)
2107 entry = pte_wrprotect(entry);
2108 if (!young)
2109 entry = pte_mkold(entry);
2110 if (soft_dirty)
2111 entry = pte_mksoft_dirty(entry);
2112 if (uffd_wp)
2113 entry = pte_mkuffd_wp(entry);
2114 }
2115 pte = pte_offset_map(&_pmd, addr);
2116 BUG_ON(!pte_none(*pte));
2117 set_pte_at(mm, addr, pte, entry);
2118 atomic_inc(&page[i]._mapcount);
2119 pte_unmap(pte);
2120 }
2121
2122 /*
2123 * Set PG_double_map before dropping compound_mapcount to avoid
2124 * false-negative page_mapped().
2125 */
2126 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2127 for (i = 0; i < HPAGE_PMD_NR; i++)
2128 atomic_inc(&page[i]._mapcount);
2129 }
2130
2131 lock_page_memcg(page);
2132 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2133 /* Last compound_mapcount is gone. */
2134 __dec_lruvec_page_state(page, NR_ANON_THPS);
2135 if (TestClearPageDoubleMap(page)) {
2136 /* No need in mapcount reference anymore */
2137 for (i = 0; i < HPAGE_PMD_NR; i++)
2138 atomic_dec(&page[i]._mapcount);
2139 }
2140 }
2141 unlock_page_memcg(page);
2142
2143 smp_wmb(); /* make pte visible before pmd */
2144 pmd_populate(mm, pmd, pgtable);
2145
2146 if (freeze) {
2147 for (i = 0; i < HPAGE_PMD_NR; i++) {
2148 page_remove_rmap(page + i, false);
2149 put_page(page + i);
2150 }
2151 }
2152 }
2153
2154 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2155 unsigned long address, bool freeze, struct page *page)
2156 {
2157 spinlock_t *ptl;
2158 struct mmu_notifier_range range;
2159 bool was_locked = false;
2160 pmd_t _pmd;
2161
2162 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2163 address & HPAGE_PMD_MASK,
2164 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2165 mmu_notifier_invalidate_range_start(&range);
2166 ptl = pmd_lock(vma->vm_mm, pmd);
2167
2168 /*
2169 * If caller asks to setup a migration entries, we need a page to check
2170 * pmd against. Otherwise we can end up replacing wrong page.
2171 */
2172 VM_BUG_ON(freeze && !page);
2173 if (page) {
2174 VM_WARN_ON_ONCE(!PageLocked(page));
2175 was_locked = true;
2176 if (page != pmd_page(*pmd))
2177 goto out;
2178 }
2179
2180 repeat:
2181 if (pmd_trans_huge(*pmd)) {
2182 if (!page) {
2183 page = pmd_page(*pmd);
2184 if (unlikely(!trylock_page(page))) {
2185 get_page(page);
2186 _pmd = *pmd;
2187 spin_unlock(ptl);
2188 lock_page(page);
2189 spin_lock(ptl);
2190 if (unlikely(!pmd_same(*pmd, _pmd))) {
2191 unlock_page(page);
2192 put_page(page);
2193 page = NULL;
2194 goto repeat;
2195 }
2196 put_page(page);
2197 }
2198 }
2199 if (PageMlocked(page))
2200 clear_page_mlock(page);
2201 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2202 goto out;
2203 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2204 out:
2205 spin_unlock(ptl);
2206 if (!was_locked && page)
2207 unlock_page(page);
2208 /*
2209 * No need to double call mmu_notifier->invalidate_range() callback.
2210 * They are 3 cases to consider inside __split_huge_pmd_locked():
2211 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2212 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2213 * fault will trigger a flush_notify before pointing to a new page
2214 * (it is fine if the secondary mmu keeps pointing to the old zero
2215 * page in the meantime)
2216 * 3) Split a huge pmd into pte pointing to the same page. No need
2217 * to invalidate secondary tlb entry they are all still valid.
2218 * any further changes to individual pte will notify. So no need
2219 * to call mmu_notifier->invalidate_range()
2220 */
2221 mmu_notifier_invalidate_range_only_end(&range);
2222 }
2223
2224 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2225 bool freeze, struct page *page)
2226 {
2227 pgd_t *pgd;
2228 p4d_t *p4d;
2229 pud_t *pud;
2230 pmd_t *pmd;
2231
2232 pgd = pgd_offset(vma->vm_mm, address);
2233 if (!pgd_present(*pgd))
2234 return;
2235
2236 p4d = p4d_offset(pgd, address);
2237 if (!p4d_present(*p4d))
2238 return;
2239
2240 pud = pud_offset(p4d, address);
2241 if (!pud_present(*pud))
2242 return;
2243
2244 pmd = pmd_offset(pud, address);
2245
2246 __split_huge_pmd(vma, pmd, address, freeze, page);
2247 }
2248
2249 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2250 unsigned long start,
2251 unsigned long end,
2252 long adjust_next)
2253 {
2254 /*
2255 * If the new start address isn't hpage aligned and it could
2256 * previously contain an hugepage: check if we need to split
2257 * an huge pmd.
2258 */
2259 if (start & ~HPAGE_PMD_MASK &&
2260 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2261 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2262 split_huge_pmd_address(vma, start, false, NULL);
2263
2264 /*
2265 * If the new end address isn't hpage aligned and it could
2266 * previously contain an hugepage: check if we need to split
2267 * an huge pmd.
2268 */
2269 if (end & ~HPAGE_PMD_MASK &&
2270 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2271 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2272 split_huge_pmd_address(vma, end, false, NULL);
2273
2274 /*
2275 * If we're also updating the vma->vm_next->vm_start, if the new
2276 * vm_next->vm_start isn't page aligned and it could previously
2277 * contain an hugepage: check if we need to split an huge pmd.
2278 */
2279 if (adjust_next > 0) {
2280 struct vm_area_struct *next = vma->vm_next;
2281 unsigned long nstart = next->vm_start;
2282 nstart += adjust_next << PAGE_SHIFT;
2283 if (nstart & ~HPAGE_PMD_MASK &&
2284 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2285 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2286 split_huge_pmd_address(next, nstart, false, NULL);
2287 }
2288 }
2289
2290 static void unmap_page(struct page *page)
2291 {
2292 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2293 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2294 bool unmap_success;
2295
2296 VM_BUG_ON_PAGE(!PageHead(page), page);
2297
2298 if (PageAnon(page))
2299 ttu_flags |= TTU_SPLIT_FREEZE;
2300
2301 unmap_success = try_to_unmap(page, ttu_flags);
2302 VM_BUG_ON_PAGE(!unmap_success, page);
2303 }
2304
2305 static void remap_page(struct page *page)
2306 {
2307 int i;
2308 if (PageTransHuge(page)) {
2309 remove_migration_ptes(page, page, true);
2310 } else {
2311 for (i = 0; i < HPAGE_PMD_NR; i++)
2312 remove_migration_ptes(page + i, page + i, true);
2313 }
2314 }
2315
2316 static void __split_huge_page_tail(struct page *head, int tail,
2317 struct lruvec *lruvec, struct list_head *list)
2318 {
2319 struct page *page_tail = head + tail;
2320
2321 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2322
2323 /*
2324 * Clone page flags before unfreezing refcount.
2325 *
2326 * After successful get_page_unless_zero() might follow flags change,
2327 * for exmaple lock_page() which set PG_waiters.
2328 */
2329 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2330 page_tail->flags |= (head->flags &
2331 ((1L << PG_referenced) |
2332 (1L << PG_swapbacked) |
2333 (1L << PG_swapcache) |
2334 (1L << PG_mlocked) |
2335 (1L << PG_uptodate) |
2336 (1L << PG_active) |
2337 (1L << PG_workingset) |
2338 (1L << PG_locked) |
2339 (1L << PG_unevictable) |
2340 (1L << PG_dirty)));
2341
2342 /* ->mapping in first tail page is compound_mapcount */
2343 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2344 page_tail);
2345 page_tail->mapping = head->mapping;
2346 page_tail->index = head->index + tail;
2347
2348 /* Page flags must be visible before we make the page non-compound. */
2349 smp_wmb();
2350
2351 /*
2352 * Clear PageTail before unfreezing page refcount.
2353 *
2354 * After successful get_page_unless_zero() might follow put_page()
2355 * which needs correct compound_head().
2356 */
2357 clear_compound_head(page_tail);
2358
2359 /* Finally unfreeze refcount. Additional reference from page cache. */
2360 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2361 PageSwapCache(head)));
2362
2363 if (page_is_young(head))
2364 set_page_young(page_tail);
2365 if (page_is_idle(head))
2366 set_page_idle(page_tail);
2367
2368 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2369
2370 /*
2371 * always add to the tail because some iterators expect new
2372 * pages to show after the currently processed elements - e.g.
2373 * migrate_pages
2374 */
2375 lru_add_page_tail(head, page_tail, lruvec, list);
2376 }
2377
2378 static void __split_huge_page(struct page *page, struct list_head *list,
2379 pgoff_t end, unsigned long flags)
2380 {
2381 struct page *head = compound_head(page);
2382 pg_data_t *pgdat = page_pgdat(head);
2383 struct lruvec *lruvec;
2384 struct address_space *swap_cache = NULL;
2385 unsigned long offset = 0;
2386 int i;
2387
2388 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2389
2390 /* complete memcg works before add pages to LRU */
2391 mem_cgroup_split_huge_fixup(head);
2392
2393 if (PageAnon(head) && PageSwapCache(head)) {
2394 swp_entry_t entry = { .val = page_private(head) };
2395
2396 offset = swp_offset(entry);
2397 swap_cache = swap_address_space(entry);
2398 xa_lock(&swap_cache->i_pages);
2399 }
2400
2401 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2402 __split_huge_page_tail(head, i, lruvec, list);
2403 /* Some pages can be beyond i_size: drop them from page cache */
2404 if (head[i].index >= end) {
2405 ClearPageDirty(head + i);
2406 __delete_from_page_cache(head + i, NULL);
2407 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2408 shmem_uncharge(head->mapping->host, 1);
2409 put_page(head + i);
2410 } else if (!PageAnon(page)) {
2411 __xa_store(&head->mapping->i_pages, head[i].index,
2412 head + i, 0);
2413 } else if (swap_cache) {
2414 __xa_store(&swap_cache->i_pages, offset + i,
2415 head + i, 0);
2416 }
2417 }
2418
2419 ClearPageCompound(head);
2420
2421 split_page_owner(head, HPAGE_PMD_ORDER);
2422
2423 /* See comment in __split_huge_page_tail() */
2424 if (PageAnon(head)) {
2425 /* Additional pin to swap cache */
2426 if (PageSwapCache(head)) {
2427 page_ref_add(head, 2);
2428 xa_unlock(&swap_cache->i_pages);
2429 } else {
2430 page_ref_inc(head);
2431 }
2432 } else {
2433 /* Additional pin to page cache */
2434 page_ref_add(head, 2);
2435 xa_unlock(&head->mapping->i_pages);
2436 }
2437
2438 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2439
2440 remap_page(head);
2441
2442 for (i = 0; i < HPAGE_PMD_NR; i++) {
2443 struct page *subpage = head + i;
2444 if (subpage == page)
2445 continue;
2446 unlock_page(subpage);
2447
2448 /*
2449 * Subpages may be freed if there wasn't any mapping
2450 * like if add_to_swap() is running on a lru page that
2451 * had its mapping zapped. And freeing these pages
2452 * requires taking the lru_lock so we do the put_page
2453 * of the tail pages after the split is complete.
2454 */
2455 put_page(subpage);
2456 }
2457 }
2458
2459 int total_mapcount(struct page *page)
2460 {
2461 int i, compound, ret;
2462
2463 VM_BUG_ON_PAGE(PageTail(page), page);
2464
2465 if (likely(!PageCompound(page)))
2466 return atomic_read(&page->_mapcount) + 1;
2467
2468 compound = compound_mapcount(page);
2469 if (PageHuge(page))
2470 return compound;
2471 ret = compound;
2472 for (i = 0; i < HPAGE_PMD_NR; i++)
2473 ret += atomic_read(&page[i]._mapcount) + 1;
2474 /* File pages has compound_mapcount included in _mapcount */
2475 if (!PageAnon(page))
2476 return ret - compound * HPAGE_PMD_NR;
2477 if (PageDoubleMap(page))
2478 ret -= HPAGE_PMD_NR;
2479 return ret;
2480 }
2481
2482 /*
2483 * This calculates accurately how many mappings a transparent hugepage
2484 * has (unlike page_mapcount() which isn't fully accurate). This full
2485 * accuracy is primarily needed to know if copy-on-write faults can
2486 * reuse the page and change the mapping to read-write instead of
2487 * copying them. At the same time this returns the total_mapcount too.
2488 *
2489 * The function returns the highest mapcount any one of the subpages
2490 * has. If the return value is one, even if different processes are
2491 * mapping different subpages of the transparent hugepage, they can
2492 * all reuse it, because each process is reusing a different subpage.
2493 *
2494 * The total_mapcount is instead counting all virtual mappings of the
2495 * subpages. If the total_mapcount is equal to "one", it tells the
2496 * caller all mappings belong to the same "mm" and in turn the
2497 * anon_vma of the transparent hugepage can become the vma->anon_vma
2498 * local one as no other process may be mapping any of the subpages.
2499 *
2500 * It would be more accurate to replace page_mapcount() with
2501 * page_trans_huge_mapcount(), however we only use
2502 * page_trans_huge_mapcount() in the copy-on-write faults where we
2503 * need full accuracy to avoid breaking page pinning, because
2504 * page_trans_huge_mapcount() is slower than page_mapcount().
2505 */
2506 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2507 {
2508 int i, ret, _total_mapcount, mapcount;
2509
2510 /* hugetlbfs shouldn't call it */
2511 VM_BUG_ON_PAGE(PageHuge(page), page);
2512
2513 if (likely(!PageTransCompound(page))) {
2514 mapcount = atomic_read(&page->_mapcount) + 1;
2515 if (total_mapcount)
2516 *total_mapcount = mapcount;
2517 return mapcount;
2518 }
2519
2520 page = compound_head(page);
2521
2522 _total_mapcount = ret = 0;
2523 for (i = 0; i < HPAGE_PMD_NR; i++) {
2524 mapcount = atomic_read(&page[i]._mapcount) + 1;
2525 ret = max(ret, mapcount);
2526 _total_mapcount += mapcount;
2527 }
2528 if (PageDoubleMap(page)) {
2529 ret -= 1;
2530 _total_mapcount -= HPAGE_PMD_NR;
2531 }
2532 mapcount = compound_mapcount(page);
2533 ret += mapcount;
2534 _total_mapcount += mapcount;
2535 if (total_mapcount)
2536 *total_mapcount = _total_mapcount;
2537 return ret;
2538 }
2539
2540 /* Racy check whether the huge page can be split */
2541 bool can_split_huge_page(struct page *page, int *pextra_pins)
2542 {
2543 int extra_pins;
2544
2545 /* Additional pins from page cache */
2546 if (PageAnon(page))
2547 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2548 else
2549 extra_pins = HPAGE_PMD_NR;
2550 if (pextra_pins)
2551 *pextra_pins = extra_pins;
2552 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2553 }
2554
2555 /*
2556 * This function splits huge page into normal pages. @page can point to any
2557 * subpage of huge page to split. Split doesn't change the position of @page.
2558 *
2559 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2560 * The huge page must be locked.
2561 *
2562 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2563 *
2564 * Both head page and tail pages will inherit mapping, flags, and so on from
2565 * the hugepage.
2566 *
2567 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2568 * they are not mapped.
2569 *
2570 * Returns 0 if the hugepage is split successfully.
2571 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2572 * us.
2573 */
2574 int split_huge_page_to_list(struct page *page, struct list_head *list)
2575 {
2576 struct page *head = compound_head(page);
2577 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2578 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2579 struct anon_vma *anon_vma = NULL;
2580 struct address_space *mapping = NULL;
2581 int count, mapcount, extra_pins, ret;
2582 unsigned long flags;
2583 pgoff_t end;
2584
2585 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2586 VM_BUG_ON_PAGE(!PageLocked(head), head);
2587 VM_BUG_ON_PAGE(!PageCompound(head), head);
2588
2589 if (PageWriteback(head))
2590 return -EBUSY;
2591
2592 if (PageAnon(head)) {
2593 /*
2594 * The caller does not necessarily hold an mmap_lock that would
2595 * prevent the anon_vma disappearing so we first we take a
2596 * reference to it and then lock the anon_vma for write. This
2597 * is similar to page_lock_anon_vma_read except the write lock
2598 * is taken to serialise against parallel split or collapse
2599 * operations.
2600 */
2601 anon_vma = page_get_anon_vma(head);
2602 if (!anon_vma) {
2603 ret = -EBUSY;
2604 goto out;
2605 }
2606 end = -1;
2607 mapping = NULL;
2608 anon_vma_lock_write(anon_vma);
2609 } else {
2610 mapping = head->mapping;
2611
2612 /* Truncated ? */
2613 if (!mapping) {
2614 ret = -EBUSY;
2615 goto out;
2616 }
2617
2618 anon_vma = NULL;
2619 i_mmap_lock_read(mapping);
2620
2621 /*
2622 *__split_huge_page() may need to trim off pages beyond EOF:
2623 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2624 * which cannot be nested inside the page tree lock. So note
2625 * end now: i_size itself may be changed at any moment, but
2626 * head page lock is good enough to serialize the trimming.
2627 */
2628 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2629 }
2630
2631 /*
2632 * Racy check if we can split the page, before unmap_page() will
2633 * split PMDs
2634 */
2635 if (!can_split_huge_page(head, &extra_pins)) {
2636 ret = -EBUSY;
2637 goto out_unlock;
2638 }
2639
2640 unmap_page(head);
2641 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2642
2643 /* prevent PageLRU to go away from under us, and freeze lru stats */
2644 spin_lock_irqsave(&pgdata->lru_lock, flags);
2645
2646 if (mapping) {
2647 XA_STATE(xas, &mapping->i_pages, page_index(head));
2648
2649 /*
2650 * Check if the head page is present in page cache.
2651 * We assume all tail are present too, if head is there.
2652 */
2653 xa_lock(&mapping->i_pages);
2654 if (xas_load(&xas) != head)
2655 goto fail;
2656 }
2657
2658 /* Prevent deferred_split_scan() touching ->_refcount */
2659 spin_lock(&ds_queue->split_queue_lock);
2660 count = page_count(head);
2661 mapcount = total_mapcount(head);
2662 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2663 if (!list_empty(page_deferred_list(head))) {
2664 ds_queue->split_queue_len--;
2665 list_del(page_deferred_list(head));
2666 }
2667 spin_unlock(&ds_queue->split_queue_lock);
2668 if (mapping) {
2669 if (PageSwapBacked(head))
2670 __dec_node_page_state(head, NR_SHMEM_THPS);
2671 else
2672 __dec_node_page_state(head, NR_FILE_THPS);
2673 }
2674
2675 __split_huge_page(page, list, end, flags);
2676 if (PageSwapCache(head)) {
2677 swp_entry_t entry = { .val = page_private(head) };
2678
2679 ret = split_swap_cluster(entry);
2680 } else
2681 ret = 0;
2682 } else {
2683 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2684 pr_alert("total_mapcount: %u, page_count(): %u\n",
2685 mapcount, count);
2686 if (PageTail(page))
2687 dump_page(head, NULL);
2688 dump_page(page, "total_mapcount(head) > 0");
2689 BUG();
2690 }
2691 spin_unlock(&ds_queue->split_queue_lock);
2692 fail: if (mapping)
2693 xa_unlock(&mapping->i_pages);
2694 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2695 remap_page(head);
2696 ret = -EBUSY;
2697 }
2698
2699 out_unlock:
2700 if (anon_vma) {
2701 anon_vma_unlock_write(anon_vma);
2702 put_anon_vma(anon_vma);
2703 }
2704 if (mapping)
2705 i_mmap_unlock_read(mapping);
2706 out:
2707 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2708 return ret;
2709 }
2710
2711 void free_transhuge_page(struct page *page)
2712 {
2713 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2714 unsigned long flags;
2715
2716 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2717 if (!list_empty(page_deferred_list(page))) {
2718 ds_queue->split_queue_len--;
2719 list_del(page_deferred_list(page));
2720 }
2721 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2722 free_compound_page(page);
2723 }
2724
2725 void deferred_split_huge_page(struct page *page)
2726 {
2727 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2728 #ifdef CONFIG_MEMCG
2729 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2730 #endif
2731 unsigned long flags;
2732
2733 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2734
2735 /*
2736 * The try_to_unmap() in page reclaim path might reach here too,
2737 * this may cause a race condition to corrupt deferred split queue.
2738 * And, if page reclaim is already handling the same page, it is
2739 * unnecessary to handle it again in shrinker.
2740 *
2741 * Check PageSwapCache to determine if the page is being
2742 * handled by page reclaim since THP swap would add the page into
2743 * swap cache before calling try_to_unmap().
2744 */
2745 if (PageSwapCache(page))
2746 return;
2747
2748 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2749 if (list_empty(page_deferred_list(page))) {
2750 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2751 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2752 ds_queue->split_queue_len++;
2753 #ifdef CONFIG_MEMCG
2754 if (memcg)
2755 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2756 deferred_split_shrinker.id);
2757 #endif
2758 }
2759 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2760 }
2761
2762 static unsigned long deferred_split_count(struct shrinker *shrink,
2763 struct shrink_control *sc)
2764 {
2765 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2766 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2767
2768 #ifdef CONFIG_MEMCG
2769 if (sc->memcg)
2770 ds_queue = &sc->memcg->deferred_split_queue;
2771 #endif
2772 return READ_ONCE(ds_queue->split_queue_len);
2773 }
2774
2775 static unsigned long deferred_split_scan(struct shrinker *shrink,
2776 struct shrink_control *sc)
2777 {
2778 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2779 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2780 unsigned long flags;
2781 LIST_HEAD(list), *pos, *next;
2782 struct page *page;
2783 int split = 0;
2784
2785 #ifdef CONFIG_MEMCG
2786 if (sc->memcg)
2787 ds_queue = &sc->memcg->deferred_split_queue;
2788 #endif
2789
2790 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2791 /* Take pin on all head pages to avoid freeing them under us */
2792 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2793 page = list_entry((void *)pos, struct page, mapping);
2794 page = compound_head(page);
2795 if (get_page_unless_zero(page)) {
2796 list_move(page_deferred_list(page), &list);
2797 } else {
2798 /* We lost race with put_compound_page() */
2799 list_del_init(page_deferred_list(page));
2800 ds_queue->split_queue_len--;
2801 }
2802 if (!--sc->nr_to_scan)
2803 break;
2804 }
2805 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2806
2807 list_for_each_safe(pos, next, &list) {
2808 page = list_entry((void *)pos, struct page, mapping);
2809 if (!trylock_page(page))
2810 goto next;
2811 /* split_huge_page() removes page from list on success */
2812 if (!split_huge_page(page))
2813 split++;
2814 unlock_page(page);
2815 next:
2816 put_page(page);
2817 }
2818
2819 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2820 list_splice_tail(&list, &ds_queue->split_queue);
2821 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2822
2823 /*
2824 * Stop shrinker if we didn't split any page, but the queue is empty.
2825 * This can happen if pages were freed under us.
2826 */
2827 if (!split && list_empty(&ds_queue->split_queue))
2828 return SHRINK_STOP;
2829 return split;
2830 }
2831
2832 static struct shrinker deferred_split_shrinker = {
2833 .count_objects = deferred_split_count,
2834 .scan_objects = deferred_split_scan,
2835 .seeks = DEFAULT_SEEKS,
2836 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2837 SHRINKER_NONSLAB,
2838 };
2839
2840 #ifdef CONFIG_DEBUG_FS
2841 static int split_huge_pages_set(void *data, u64 val)
2842 {
2843 struct zone *zone;
2844 struct page *page;
2845 unsigned long pfn, max_zone_pfn;
2846 unsigned long total = 0, split = 0;
2847
2848 if (val != 1)
2849 return -EINVAL;
2850
2851 for_each_populated_zone(zone) {
2852 max_zone_pfn = zone_end_pfn(zone);
2853 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2854 if (!pfn_valid(pfn))
2855 continue;
2856
2857 page = pfn_to_page(pfn);
2858 if (!get_page_unless_zero(page))
2859 continue;
2860
2861 if (zone != page_zone(page))
2862 goto next;
2863
2864 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2865 goto next;
2866
2867 total++;
2868 lock_page(page);
2869 if (!split_huge_page(page))
2870 split++;
2871 unlock_page(page);
2872 next:
2873 put_page(page);
2874 }
2875 }
2876
2877 pr_info("%lu of %lu THP split\n", split, total);
2878
2879 return 0;
2880 }
2881 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2882 "%llu\n");
2883
2884 static int __init split_huge_pages_debugfs(void)
2885 {
2886 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2887 &split_huge_pages_fops);
2888 return 0;
2889 }
2890 late_initcall(split_huge_pages_debugfs);
2891 #endif
2892
2893 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2894 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2895 struct page *page)
2896 {
2897 struct vm_area_struct *vma = pvmw->vma;
2898 struct mm_struct *mm = vma->vm_mm;
2899 unsigned long address = pvmw->address;
2900 pmd_t pmdval;
2901 swp_entry_t entry;
2902 pmd_t pmdswp;
2903
2904 if (!(pvmw->pmd && !pvmw->pte))
2905 return;
2906
2907 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2908 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2909 if (pmd_dirty(pmdval))
2910 set_page_dirty(page);
2911 entry = make_migration_entry(page, pmd_write(pmdval));
2912 pmdswp = swp_entry_to_pmd(entry);
2913 if (pmd_soft_dirty(pmdval))
2914 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2915 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2916 page_remove_rmap(page, true);
2917 put_page(page);
2918 }
2919
2920 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2921 {
2922 struct vm_area_struct *vma = pvmw->vma;
2923 struct mm_struct *mm = vma->vm_mm;
2924 unsigned long address = pvmw->address;
2925 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2926 pmd_t pmde;
2927 swp_entry_t entry;
2928
2929 if (!(pvmw->pmd && !pvmw->pte))
2930 return;
2931
2932 entry = pmd_to_swp_entry(*pvmw->pmd);
2933 get_page(new);
2934 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2935 if (pmd_swp_soft_dirty(*pvmw->pmd))
2936 pmde = pmd_mksoft_dirty(pmde);
2937 if (is_write_migration_entry(entry))
2938 pmde = maybe_pmd_mkwrite(pmde, vma);
2939
2940 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2941 if (PageAnon(new))
2942 page_add_anon_rmap(new, vma, mmun_start, true);
2943 else
2944 page_add_file_rmap(new, true);
2945 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2946 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2947 mlock_vma_page(new);
2948 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2949 }
2950 #endif