]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
mm, thp: fix mapped pages avoiding unevictable list on mlock
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23
24 /*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67
68 /**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74 struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78 };
79
80 /**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88 struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96
97
98 static int set_recommended_min_free_kbytes(void)
99 {
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
105 if (!khugepaged_enabled())
106 return 0;
107
108 for_each_populated_zone(zone)
109 nr_zones++;
110
111 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
112 recommended_min = pageblock_nr_pages * nr_zones * 2;
113
114 /*
115 * Make sure that on average at least two pageblocks are almost free
116 * of another type, one for a migratetype to fall back to and a
117 * second to avoid subsequent fallbacks of other types There are 3
118 * MIGRATE_TYPES we care about.
119 */
120 recommended_min += pageblock_nr_pages * nr_zones *
121 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
122
123 /* don't ever allow to reserve more than 5% of the lowmem */
124 recommended_min = min(recommended_min,
125 (unsigned long) nr_free_buffer_pages() / 20);
126 recommended_min <<= (PAGE_SHIFT-10);
127
128 if (recommended_min > min_free_kbytes)
129 min_free_kbytes = recommended_min;
130 setup_per_zone_wmarks();
131 return 0;
132 }
133 late_initcall(set_recommended_min_free_kbytes);
134
135 static int start_khugepaged(void)
136 {
137 int err = 0;
138 if (khugepaged_enabled()) {
139 if (!khugepaged_thread)
140 khugepaged_thread = kthread_run(khugepaged, NULL,
141 "khugepaged");
142 if (unlikely(IS_ERR(khugepaged_thread))) {
143 printk(KERN_ERR
144 "khugepaged: kthread_run(khugepaged) failed\n");
145 err = PTR_ERR(khugepaged_thread);
146 khugepaged_thread = NULL;
147 }
148
149 if (!list_empty(&khugepaged_scan.mm_head))
150 wake_up_interruptible(&khugepaged_wait);
151
152 set_recommended_min_free_kbytes();
153 } else if (khugepaged_thread) {
154 kthread_stop(khugepaged_thread);
155 khugepaged_thread = NULL;
156 }
157
158 return err;
159 }
160
161 #ifdef CONFIG_SYSFS
162
163 static ssize_t double_flag_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf,
165 enum transparent_hugepage_flag enabled,
166 enum transparent_hugepage_flag req_madv)
167 {
168 if (test_bit(enabled, &transparent_hugepage_flags)) {
169 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
170 return sprintf(buf, "[always] madvise never\n");
171 } else if (test_bit(req_madv, &transparent_hugepage_flags))
172 return sprintf(buf, "always [madvise] never\n");
173 else
174 return sprintf(buf, "always madvise [never]\n");
175 }
176 static ssize_t double_flag_store(struct kobject *kobj,
177 struct kobj_attribute *attr,
178 const char *buf, size_t count,
179 enum transparent_hugepage_flag enabled,
180 enum transparent_hugepage_flag req_madv)
181 {
182 if (!memcmp("always", buf,
183 min(sizeof("always")-1, count))) {
184 set_bit(enabled, &transparent_hugepage_flags);
185 clear_bit(req_madv, &transparent_hugepage_flags);
186 } else if (!memcmp("madvise", buf,
187 min(sizeof("madvise")-1, count))) {
188 clear_bit(enabled, &transparent_hugepage_flags);
189 set_bit(req_madv, &transparent_hugepage_flags);
190 } else if (!memcmp("never", buf,
191 min(sizeof("never")-1, count))) {
192 clear_bit(enabled, &transparent_hugepage_flags);
193 clear_bit(req_madv, &transparent_hugepage_flags);
194 } else
195 return -EINVAL;
196
197 return count;
198 }
199
200 static ssize_t enabled_show(struct kobject *kobj,
201 struct kobj_attribute *attr, char *buf)
202 {
203 return double_flag_show(kobj, attr, buf,
204 TRANSPARENT_HUGEPAGE_FLAG,
205 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
206 }
207 static ssize_t enabled_store(struct kobject *kobj,
208 struct kobj_attribute *attr,
209 const char *buf, size_t count)
210 {
211 ssize_t ret;
212
213 ret = double_flag_store(kobj, attr, buf, count,
214 TRANSPARENT_HUGEPAGE_FLAG,
215 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
216
217 if (ret > 0) {
218 int err;
219
220 mutex_lock(&khugepaged_mutex);
221 err = start_khugepaged();
222 mutex_unlock(&khugepaged_mutex);
223
224 if (err)
225 ret = err;
226 }
227
228 return ret;
229 }
230 static struct kobj_attribute enabled_attr =
231 __ATTR(enabled, 0644, enabled_show, enabled_store);
232
233 static ssize_t single_flag_show(struct kobject *kobj,
234 struct kobj_attribute *attr, char *buf,
235 enum transparent_hugepage_flag flag)
236 {
237 return sprintf(buf, "%d\n",
238 !!test_bit(flag, &transparent_hugepage_flags));
239 }
240
241 static ssize_t single_flag_store(struct kobject *kobj,
242 struct kobj_attribute *attr,
243 const char *buf, size_t count,
244 enum transparent_hugepage_flag flag)
245 {
246 unsigned long value;
247 int ret;
248
249 ret = kstrtoul(buf, 10, &value);
250 if (ret < 0)
251 return ret;
252 if (value > 1)
253 return -EINVAL;
254
255 if (value)
256 set_bit(flag, &transparent_hugepage_flags);
257 else
258 clear_bit(flag, &transparent_hugepage_flags);
259
260 return count;
261 }
262
263 /*
264 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
265 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
266 * memory just to allocate one more hugepage.
267 */
268 static ssize_t defrag_show(struct kobject *kobj,
269 struct kobj_attribute *attr, char *buf)
270 {
271 return double_flag_show(kobj, attr, buf,
272 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
273 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
274 }
275 static ssize_t defrag_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count)
278 {
279 return double_flag_store(kobj, attr, buf, count,
280 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
281 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
282 }
283 static struct kobj_attribute defrag_attr =
284 __ATTR(defrag, 0644, defrag_show, defrag_store);
285
286 #ifdef CONFIG_DEBUG_VM
287 static ssize_t debug_cow_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289 {
290 return single_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
292 }
293 static ssize_t debug_cow_store(struct kobject *kobj,
294 struct kobj_attribute *attr,
295 const char *buf, size_t count)
296 {
297 return single_flag_store(kobj, attr, buf, count,
298 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
299 }
300 static struct kobj_attribute debug_cow_attr =
301 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
302 #endif /* CONFIG_DEBUG_VM */
303
304 static struct attribute *hugepage_attr[] = {
305 &enabled_attr.attr,
306 &defrag_attr.attr,
307 #ifdef CONFIG_DEBUG_VM
308 &debug_cow_attr.attr,
309 #endif
310 NULL,
311 };
312
313 static struct attribute_group hugepage_attr_group = {
314 .attrs = hugepage_attr,
315 };
316
317 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 char *buf)
320 {
321 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
322 }
323
324 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
325 struct kobj_attribute *attr,
326 const char *buf, size_t count)
327 {
328 unsigned long msecs;
329 int err;
330
331 err = strict_strtoul(buf, 10, &msecs);
332 if (err || msecs > UINT_MAX)
333 return -EINVAL;
334
335 khugepaged_scan_sleep_millisecs = msecs;
336 wake_up_interruptible(&khugepaged_wait);
337
338 return count;
339 }
340 static struct kobj_attribute scan_sleep_millisecs_attr =
341 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
342 scan_sleep_millisecs_store);
343
344 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
345 struct kobj_attribute *attr,
346 char *buf)
347 {
348 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
349 }
350
351 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count)
354 {
355 unsigned long msecs;
356 int err;
357
358 err = strict_strtoul(buf, 10, &msecs);
359 if (err || msecs > UINT_MAX)
360 return -EINVAL;
361
362 khugepaged_alloc_sleep_millisecs = msecs;
363 wake_up_interruptible(&khugepaged_wait);
364
365 return count;
366 }
367 static struct kobj_attribute alloc_sleep_millisecs_attr =
368 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
369 alloc_sleep_millisecs_store);
370
371 static ssize_t pages_to_scan_show(struct kobject *kobj,
372 struct kobj_attribute *attr,
373 char *buf)
374 {
375 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
376 }
377 static ssize_t pages_to_scan_store(struct kobject *kobj,
378 struct kobj_attribute *attr,
379 const char *buf, size_t count)
380 {
381 int err;
382 unsigned long pages;
383
384 err = strict_strtoul(buf, 10, &pages);
385 if (err || !pages || pages > UINT_MAX)
386 return -EINVAL;
387
388 khugepaged_pages_to_scan = pages;
389
390 return count;
391 }
392 static struct kobj_attribute pages_to_scan_attr =
393 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
394 pages_to_scan_store);
395
396 static ssize_t pages_collapsed_show(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 char *buf)
399 {
400 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
401 }
402 static struct kobj_attribute pages_collapsed_attr =
403 __ATTR_RO(pages_collapsed);
404
405 static ssize_t full_scans_show(struct kobject *kobj,
406 struct kobj_attribute *attr,
407 char *buf)
408 {
409 return sprintf(buf, "%u\n", khugepaged_full_scans);
410 }
411 static struct kobj_attribute full_scans_attr =
412 __ATTR_RO(full_scans);
413
414 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
415 struct kobj_attribute *attr, char *buf)
416 {
417 return single_flag_show(kobj, attr, buf,
418 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
419 }
420 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
421 struct kobj_attribute *attr,
422 const char *buf, size_t count)
423 {
424 return single_flag_store(kobj, attr, buf, count,
425 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
426 }
427 static struct kobj_attribute khugepaged_defrag_attr =
428 __ATTR(defrag, 0644, khugepaged_defrag_show,
429 khugepaged_defrag_store);
430
431 /*
432 * max_ptes_none controls if khugepaged should collapse hugepages over
433 * any unmapped ptes in turn potentially increasing the memory
434 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
435 * reduce the available free memory in the system as it
436 * runs. Increasing max_ptes_none will instead potentially reduce the
437 * free memory in the system during the khugepaged scan.
438 */
439 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
442 {
443 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
444 }
445 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448 {
449 int err;
450 unsigned long max_ptes_none;
451
452 err = strict_strtoul(buf, 10, &max_ptes_none);
453 if (err || max_ptes_none > HPAGE_PMD_NR-1)
454 return -EINVAL;
455
456 khugepaged_max_ptes_none = max_ptes_none;
457
458 return count;
459 }
460 static struct kobj_attribute khugepaged_max_ptes_none_attr =
461 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
462 khugepaged_max_ptes_none_store);
463
464 static struct attribute *khugepaged_attr[] = {
465 &khugepaged_defrag_attr.attr,
466 &khugepaged_max_ptes_none_attr.attr,
467 &pages_to_scan_attr.attr,
468 &pages_collapsed_attr.attr,
469 &full_scans_attr.attr,
470 &scan_sleep_millisecs_attr.attr,
471 &alloc_sleep_millisecs_attr.attr,
472 NULL,
473 };
474
475 static struct attribute_group khugepaged_attr_group = {
476 .attrs = khugepaged_attr,
477 .name = "khugepaged",
478 };
479
480 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
481 {
482 int err;
483
484 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
485 if (unlikely(!*hugepage_kobj)) {
486 printk(KERN_ERR "hugepage: failed kobject create\n");
487 return -ENOMEM;
488 }
489
490 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
491 if (err) {
492 printk(KERN_ERR "hugepage: failed register hugeage group\n");
493 goto delete_obj;
494 }
495
496 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
497 if (err) {
498 printk(KERN_ERR "hugepage: failed register hugeage group\n");
499 goto remove_hp_group;
500 }
501
502 return 0;
503
504 remove_hp_group:
505 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
506 delete_obj:
507 kobject_put(*hugepage_kobj);
508 return err;
509 }
510
511 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
512 {
513 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
514 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
515 kobject_put(hugepage_kobj);
516 }
517 #else
518 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
519 {
520 return 0;
521 }
522
523 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
524 {
525 }
526 #endif /* CONFIG_SYSFS */
527
528 static int __init hugepage_init(void)
529 {
530 int err;
531 struct kobject *hugepage_kobj;
532
533 if (!has_transparent_hugepage()) {
534 transparent_hugepage_flags = 0;
535 return -EINVAL;
536 }
537
538 err = hugepage_init_sysfs(&hugepage_kobj);
539 if (err)
540 return err;
541
542 err = khugepaged_slab_init();
543 if (err)
544 goto out;
545
546 err = mm_slots_hash_init();
547 if (err) {
548 khugepaged_slab_free();
549 goto out;
550 }
551
552 /*
553 * By default disable transparent hugepages on smaller systems,
554 * where the extra memory used could hurt more than TLB overhead
555 * is likely to save. The admin can still enable it through /sys.
556 */
557 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
558 transparent_hugepage_flags = 0;
559
560 start_khugepaged();
561
562 return 0;
563 out:
564 hugepage_exit_sysfs(hugepage_kobj);
565 return err;
566 }
567 module_init(hugepage_init)
568
569 static int __init setup_transparent_hugepage(char *str)
570 {
571 int ret = 0;
572 if (!str)
573 goto out;
574 if (!strcmp(str, "always")) {
575 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
576 &transparent_hugepage_flags);
577 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
578 &transparent_hugepage_flags);
579 ret = 1;
580 } else if (!strcmp(str, "madvise")) {
581 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
582 &transparent_hugepage_flags);
583 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
584 &transparent_hugepage_flags);
585 ret = 1;
586 } else if (!strcmp(str, "never")) {
587 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
588 &transparent_hugepage_flags);
589 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
590 &transparent_hugepage_flags);
591 ret = 1;
592 }
593 out:
594 if (!ret)
595 printk(KERN_WARNING
596 "transparent_hugepage= cannot parse, ignored\n");
597 return ret;
598 }
599 __setup("transparent_hugepage=", setup_transparent_hugepage);
600
601 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
602 {
603 if (likely(vma->vm_flags & VM_WRITE))
604 pmd = pmd_mkwrite(pmd);
605 return pmd;
606 }
607
608 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
609 struct vm_area_struct *vma,
610 unsigned long haddr, pmd_t *pmd,
611 struct page *page)
612 {
613 pgtable_t pgtable;
614
615 VM_BUG_ON(!PageCompound(page));
616 pgtable = pte_alloc_one(mm, haddr);
617 if (unlikely(!pgtable))
618 return VM_FAULT_OOM;
619
620 clear_huge_page(page, haddr, HPAGE_PMD_NR);
621 __SetPageUptodate(page);
622
623 spin_lock(&mm->page_table_lock);
624 if (unlikely(!pmd_none(*pmd))) {
625 spin_unlock(&mm->page_table_lock);
626 mem_cgroup_uncharge_page(page);
627 put_page(page);
628 pte_free(mm, pgtable);
629 } else {
630 pmd_t entry;
631 entry = mk_pmd(page, vma->vm_page_prot);
632 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633 entry = pmd_mkhuge(entry);
634 /*
635 * The spinlocking to take the lru_lock inside
636 * page_add_new_anon_rmap() acts as a full memory
637 * barrier to be sure clear_huge_page writes become
638 * visible after the set_pmd_at() write.
639 */
640 page_add_new_anon_rmap(page, vma, haddr);
641 set_pmd_at(mm, haddr, pmd, entry);
642 pgtable_trans_huge_deposit(mm, pgtable);
643 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644 mm->nr_ptes++;
645 spin_unlock(&mm->page_table_lock);
646 }
647
648 return 0;
649 }
650
651 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
652 {
653 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
654 }
655
656 static inline struct page *alloc_hugepage_vma(int defrag,
657 struct vm_area_struct *vma,
658 unsigned long haddr, int nd,
659 gfp_t extra_gfp)
660 {
661 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
662 HPAGE_PMD_ORDER, vma, haddr, nd);
663 }
664
665 #ifndef CONFIG_NUMA
666 static inline struct page *alloc_hugepage(int defrag)
667 {
668 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
669 HPAGE_PMD_ORDER);
670 }
671 #endif
672
673 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
674 unsigned long address, pmd_t *pmd,
675 unsigned int flags)
676 {
677 struct page *page;
678 unsigned long haddr = address & HPAGE_PMD_MASK;
679 pte_t *pte;
680
681 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
682 if (unlikely(anon_vma_prepare(vma)))
683 return VM_FAULT_OOM;
684 if (unlikely(khugepaged_enter(vma)))
685 return VM_FAULT_OOM;
686 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
687 vma, haddr, numa_node_id(), 0);
688 if (unlikely(!page)) {
689 count_vm_event(THP_FAULT_FALLBACK);
690 goto out;
691 }
692 count_vm_event(THP_FAULT_ALLOC);
693 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
694 put_page(page);
695 goto out;
696 }
697 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
698 page))) {
699 mem_cgroup_uncharge_page(page);
700 put_page(page);
701 goto out;
702 }
703
704 return 0;
705 }
706 out:
707 /*
708 * Use __pte_alloc instead of pte_alloc_map, because we can't
709 * run pte_offset_map on the pmd, if an huge pmd could
710 * materialize from under us from a different thread.
711 */
712 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
713 return VM_FAULT_OOM;
714 /* if an huge pmd materialized from under us just retry later */
715 if (unlikely(pmd_trans_huge(*pmd)))
716 return 0;
717 /*
718 * A regular pmd is established and it can't morph into a huge pmd
719 * from under us anymore at this point because we hold the mmap_sem
720 * read mode and khugepaged takes it in write mode. So now it's
721 * safe to run pte_offset_map().
722 */
723 pte = pte_offset_map(pmd, address);
724 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
725 }
726
727 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
728 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
729 struct vm_area_struct *vma)
730 {
731 struct page *src_page;
732 pmd_t pmd;
733 pgtable_t pgtable;
734 int ret;
735
736 ret = -ENOMEM;
737 pgtable = pte_alloc_one(dst_mm, addr);
738 if (unlikely(!pgtable))
739 goto out;
740
741 spin_lock(&dst_mm->page_table_lock);
742 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
743
744 ret = -EAGAIN;
745 pmd = *src_pmd;
746 if (unlikely(!pmd_trans_huge(pmd))) {
747 pte_free(dst_mm, pgtable);
748 goto out_unlock;
749 }
750 if (unlikely(pmd_trans_splitting(pmd))) {
751 /* split huge page running from under us */
752 spin_unlock(&src_mm->page_table_lock);
753 spin_unlock(&dst_mm->page_table_lock);
754 pte_free(dst_mm, pgtable);
755
756 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
757 goto out;
758 }
759 src_page = pmd_page(pmd);
760 VM_BUG_ON(!PageHead(src_page));
761 get_page(src_page);
762 page_dup_rmap(src_page);
763 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
764
765 pmdp_set_wrprotect(src_mm, addr, src_pmd);
766 pmd = pmd_mkold(pmd_wrprotect(pmd));
767 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
768 pgtable_trans_huge_deposit(dst_mm, pgtable);
769 dst_mm->nr_ptes++;
770
771 ret = 0;
772 out_unlock:
773 spin_unlock(&src_mm->page_table_lock);
774 spin_unlock(&dst_mm->page_table_lock);
775 out:
776 return ret;
777 }
778
779 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
780 struct vm_area_struct *vma,
781 unsigned long address,
782 pmd_t *pmd, pmd_t orig_pmd,
783 struct page *page,
784 unsigned long haddr)
785 {
786 pgtable_t pgtable;
787 pmd_t _pmd;
788 int ret = 0, i;
789 struct page **pages;
790 unsigned long mmun_start; /* For mmu_notifiers */
791 unsigned long mmun_end; /* For mmu_notifiers */
792
793 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
794 GFP_KERNEL);
795 if (unlikely(!pages)) {
796 ret |= VM_FAULT_OOM;
797 goto out;
798 }
799
800 for (i = 0; i < HPAGE_PMD_NR; i++) {
801 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
802 __GFP_OTHER_NODE,
803 vma, address, page_to_nid(page));
804 if (unlikely(!pages[i] ||
805 mem_cgroup_newpage_charge(pages[i], mm,
806 GFP_KERNEL))) {
807 if (pages[i])
808 put_page(pages[i]);
809 mem_cgroup_uncharge_start();
810 while (--i >= 0) {
811 mem_cgroup_uncharge_page(pages[i]);
812 put_page(pages[i]);
813 }
814 mem_cgroup_uncharge_end();
815 kfree(pages);
816 ret |= VM_FAULT_OOM;
817 goto out;
818 }
819 }
820
821 for (i = 0; i < HPAGE_PMD_NR; i++) {
822 copy_user_highpage(pages[i], page + i,
823 haddr + PAGE_SIZE * i, vma);
824 __SetPageUptodate(pages[i]);
825 cond_resched();
826 }
827
828 mmun_start = haddr;
829 mmun_end = haddr + HPAGE_PMD_SIZE;
830 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
831
832 spin_lock(&mm->page_table_lock);
833 if (unlikely(!pmd_same(*pmd, orig_pmd)))
834 goto out_free_pages;
835 VM_BUG_ON(!PageHead(page));
836
837 pmdp_clear_flush(vma, haddr, pmd);
838 /* leave pmd empty until pte is filled */
839
840 pgtable = pgtable_trans_huge_withdraw(mm);
841 pmd_populate(mm, &_pmd, pgtable);
842
843 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
844 pte_t *pte, entry;
845 entry = mk_pte(pages[i], vma->vm_page_prot);
846 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
847 page_add_new_anon_rmap(pages[i], vma, haddr);
848 pte = pte_offset_map(&_pmd, haddr);
849 VM_BUG_ON(!pte_none(*pte));
850 set_pte_at(mm, haddr, pte, entry);
851 pte_unmap(pte);
852 }
853 kfree(pages);
854
855 smp_wmb(); /* make pte visible before pmd */
856 pmd_populate(mm, pmd, pgtable);
857 page_remove_rmap(page);
858 spin_unlock(&mm->page_table_lock);
859
860 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
861
862 ret |= VM_FAULT_WRITE;
863 put_page(page);
864
865 out:
866 return ret;
867
868 out_free_pages:
869 spin_unlock(&mm->page_table_lock);
870 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
871 mem_cgroup_uncharge_start();
872 for (i = 0; i < HPAGE_PMD_NR; i++) {
873 mem_cgroup_uncharge_page(pages[i]);
874 put_page(pages[i]);
875 }
876 mem_cgroup_uncharge_end();
877 kfree(pages);
878 goto out;
879 }
880
881 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
882 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
883 {
884 int ret = 0;
885 struct page *page, *new_page;
886 unsigned long haddr;
887 unsigned long mmun_start; /* For mmu_notifiers */
888 unsigned long mmun_end; /* For mmu_notifiers */
889
890 VM_BUG_ON(!vma->anon_vma);
891 spin_lock(&mm->page_table_lock);
892 if (unlikely(!pmd_same(*pmd, orig_pmd)))
893 goto out_unlock;
894
895 page = pmd_page(orig_pmd);
896 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
897 haddr = address & HPAGE_PMD_MASK;
898 if (page_mapcount(page) == 1) {
899 pmd_t entry;
900 entry = pmd_mkyoung(orig_pmd);
901 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
902 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
903 update_mmu_cache(vma, address, pmd);
904 ret |= VM_FAULT_WRITE;
905 goto out_unlock;
906 }
907 get_page(page);
908 spin_unlock(&mm->page_table_lock);
909
910 if (transparent_hugepage_enabled(vma) &&
911 !transparent_hugepage_debug_cow())
912 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
913 vma, haddr, numa_node_id(), 0);
914 else
915 new_page = NULL;
916
917 if (unlikely(!new_page)) {
918 count_vm_event(THP_FAULT_FALLBACK);
919 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
920 pmd, orig_pmd, page, haddr);
921 if (ret & VM_FAULT_OOM)
922 split_huge_page(page);
923 put_page(page);
924 goto out;
925 }
926 count_vm_event(THP_FAULT_ALLOC);
927
928 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
929 put_page(new_page);
930 split_huge_page(page);
931 put_page(page);
932 ret |= VM_FAULT_OOM;
933 goto out;
934 }
935
936 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
937 __SetPageUptodate(new_page);
938
939 mmun_start = haddr;
940 mmun_end = haddr + HPAGE_PMD_SIZE;
941 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
942
943 spin_lock(&mm->page_table_lock);
944 put_page(page);
945 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
946 spin_unlock(&mm->page_table_lock);
947 mem_cgroup_uncharge_page(new_page);
948 put_page(new_page);
949 goto out_mn;
950 } else {
951 pmd_t entry;
952 VM_BUG_ON(!PageHead(page));
953 entry = mk_pmd(new_page, vma->vm_page_prot);
954 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
955 entry = pmd_mkhuge(entry);
956 pmdp_clear_flush(vma, haddr, pmd);
957 page_add_new_anon_rmap(new_page, vma, haddr);
958 set_pmd_at(mm, haddr, pmd, entry);
959 update_mmu_cache(vma, address, pmd);
960 page_remove_rmap(page);
961 put_page(page);
962 ret |= VM_FAULT_WRITE;
963 }
964 spin_unlock(&mm->page_table_lock);
965 out_mn:
966 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
967 out:
968 return ret;
969 out_unlock:
970 spin_unlock(&mm->page_table_lock);
971 return ret;
972 }
973
974 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
975 unsigned long addr,
976 pmd_t *pmd,
977 unsigned int flags)
978 {
979 struct mm_struct *mm = vma->vm_mm;
980 struct page *page = NULL;
981
982 assert_spin_locked(&mm->page_table_lock);
983
984 if (flags & FOLL_WRITE && !pmd_write(*pmd))
985 goto out;
986
987 page = pmd_page(*pmd);
988 VM_BUG_ON(!PageHead(page));
989 if (flags & FOLL_TOUCH) {
990 pmd_t _pmd;
991 /*
992 * We should set the dirty bit only for FOLL_WRITE but
993 * for now the dirty bit in the pmd is meaningless.
994 * And if the dirty bit will become meaningful and
995 * we'll only set it with FOLL_WRITE, an atomic
996 * set_bit will be required on the pmd to set the
997 * young bit, instead of the current set_pmd_at.
998 */
999 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1000 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1001 }
1002 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1003 if (page->mapping && trylock_page(page)) {
1004 lru_add_drain();
1005 if (page->mapping)
1006 mlock_vma_page(page);
1007 unlock_page(page);
1008 }
1009 }
1010 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1011 VM_BUG_ON(!PageCompound(page));
1012 if (flags & FOLL_GET)
1013 get_page_foll(page);
1014
1015 out:
1016 return page;
1017 }
1018
1019 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1020 pmd_t *pmd, unsigned long addr)
1021 {
1022 int ret = 0;
1023
1024 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1025 struct page *page;
1026 pgtable_t pgtable;
1027 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1028 page = pmd_page(*pmd);
1029 pmd_clear(pmd);
1030 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1031 page_remove_rmap(page);
1032 VM_BUG_ON(page_mapcount(page) < 0);
1033 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1034 VM_BUG_ON(!PageHead(page));
1035 tlb->mm->nr_ptes--;
1036 spin_unlock(&tlb->mm->page_table_lock);
1037 tlb_remove_page(tlb, page);
1038 pte_free(tlb->mm, pgtable);
1039 ret = 1;
1040 }
1041 return ret;
1042 }
1043
1044 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1045 unsigned long addr, unsigned long end,
1046 unsigned char *vec)
1047 {
1048 int ret = 0;
1049
1050 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1051 /*
1052 * All logical pages in the range are present
1053 * if backed by a huge page.
1054 */
1055 spin_unlock(&vma->vm_mm->page_table_lock);
1056 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1057 ret = 1;
1058 }
1059
1060 return ret;
1061 }
1062
1063 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1064 unsigned long old_addr,
1065 unsigned long new_addr, unsigned long old_end,
1066 pmd_t *old_pmd, pmd_t *new_pmd)
1067 {
1068 int ret = 0;
1069 pmd_t pmd;
1070
1071 struct mm_struct *mm = vma->vm_mm;
1072
1073 if ((old_addr & ~HPAGE_PMD_MASK) ||
1074 (new_addr & ~HPAGE_PMD_MASK) ||
1075 old_end - old_addr < HPAGE_PMD_SIZE ||
1076 (new_vma->vm_flags & VM_NOHUGEPAGE))
1077 goto out;
1078
1079 /*
1080 * The destination pmd shouldn't be established, free_pgtables()
1081 * should have release it.
1082 */
1083 if (WARN_ON(!pmd_none(*new_pmd))) {
1084 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1085 goto out;
1086 }
1087
1088 ret = __pmd_trans_huge_lock(old_pmd, vma);
1089 if (ret == 1) {
1090 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1091 VM_BUG_ON(!pmd_none(*new_pmd));
1092 set_pmd_at(mm, new_addr, new_pmd, pmd);
1093 spin_unlock(&mm->page_table_lock);
1094 }
1095 out:
1096 return ret;
1097 }
1098
1099 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1100 unsigned long addr, pgprot_t newprot)
1101 {
1102 struct mm_struct *mm = vma->vm_mm;
1103 int ret = 0;
1104
1105 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1106 pmd_t entry;
1107 entry = pmdp_get_and_clear(mm, addr, pmd);
1108 entry = pmd_modify(entry, newprot);
1109 set_pmd_at(mm, addr, pmd, entry);
1110 spin_unlock(&vma->vm_mm->page_table_lock);
1111 ret = 1;
1112 }
1113
1114 return ret;
1115 }
1116
1117 /*
1118 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1119 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1120 *
1121 * Note that if it returns 1, this routine returns without unlocking page
1122 * table locks. So callers must unlock them.
1123 */
1124 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1125 {
1126 spin_lock(&vma->vm_mm->page_table_lock);
1127 if (likely(pmd_trans_huge(*pmd))) {
1128 if (unlikely(pmd_trans_splitting(*pmd))) {
1129 spin_unlock(&vma->vm_mm->page_table_lock);
1130 wait_split_huge_page(vma->anon_vma, pmd);
1131 return -1;
1132 } else {
1133 /* Thp mapped by 'pmd' is stable, so we can
1134 * handle it as it is. */
1135 return 1;
1136 }
1137 }
1138 spin_unlock(&vma->vm_mm->page_table_lock);
1139 return 0;
1140 }
1141
1142 pmd_t *page_check_address_pmd(struct page *page,
1143 struct mm_struct *mm,
1144 unsigned long address,
1145 enum page_check_address_pmd_flag flag)
1146 {
1147 pgd_t *pgd;
1148 pud_t *pud;
1149 pmd_t *pmd, *ret = NULL;
1150
1151 if (address & ~HPAGE_PMD_MASK)
1152 goto out;
1153
1154 pgd = pgd_offset(mm, address);
1155 if (!pgd_present(*pgd))
1156 goto out;
1157
1158 pud = pud_offset(pgd, address);
1159 if (!pud_present(*pud))
1160 goto out;
1161
1162 pmd = pmd_offset(pud, address);
1163 if (pmd_none(*pmd))
1164 goto out;
1165 if (pmd_page(*pmd) != page)
1166 goto out;
1167 /*
1168 * split_vma() may create temporary aliased mappings. There is
1169 * no risk as long as all huge pmd are found and have their
1170 * splitting bit set before __split_huge_page_refcount
1171 * runs. Finding the same huge pmd more than once during the
1172 * same rmap walk is not a problem.
1173 */
1174 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1175 pmd_trans_splitting(*pmd))
1176 goto out;
1177 if (pmd_trans_huge(*pmd)) {
1178 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1179 !pmd_trans_splitting(*pmd));
1180 ret = pmd;
1181 }
1182 out:
1183 return ret;
1184 }
1185
1186 static int __split_huge_page_splitting(struct page *page,
1187 struct vm_area_struct *vma,
1188 unsigned long address)
1189 {
1190 struct mm_struct *mm = vma->vm_mm;
1191 pmd_t *pmd;
1192 int ret = 0;
1193 /* For mmu_notifiers */
1194 const unsigned long mmun_start = address;
1195 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1196
1197 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1198 spin_lock(&mm->page_table_lock);
1199 pmd = page_check_address_pmd(page, mm, address,
1200 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1201 if (pmd) {
1202 /*
1203 * We can't temporarily set the pmd to null in order
1204 * to split it, the pmd must remain marked huge at all
1205 * times or the VM won't take the pmd_trans_huge paths
1206 * and it won't wait on the anon_vma->root->mutex to
1207 * serialize against split_huge_page*.
1208 */
1209 pmdp_splitting_flush(vma, address, pmd);
1210 ret = 1;
1211 }
1212 spin_unlock(&mm->page_table_lock);
1213 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1214
1215 return ret;
1216 }
1217
1218 static void __split_huge_page_refcount(struct page *page)
1219 {
1220 int i;
1221 struct zone *zone = page_zone(page);
1222 struct lruvec *lruvec;
1223 int tail_count = 0;
1224
1225 /* prevent PageLRU to go away from under us, and freeze lru stats */
1226 spin_lock_irq(&zone->lru_lock);
1227 lruvec = mem_cgroup_page_lruvec(page, zone);
1228
1229 compound_lock(page);
1230 /* complete memcg works before add pages to LRU */
1231 mem_cgroup_split_huge_fixup(page);
1232
1233 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1234 struct page *page_tail = page + i;
1235
1236 /* tail_page->_mapcount cannot change */
1237 BUG_ON(page_mapcount(page_tail) < 0);
1238 tail_count += page_mapcount(page_tail);
1239 /* check for overflow */
1240 BUG_ON(tail_count < 0);
1241 BUG_ON(atomic_read(&page_tail->_count) != 0);
1242 /*
1243 * tail_page->_count is zero and not changing from
1244 * under us. But get_page_unless_zero() may be running
1245 * from under us on the tail_page. If we used
1246 * atomic_set() below instead of atomic_add(), we
1247 * would then run atomic_set() concurrently with
1248 * get_page_unless_zero(), and atomic_set() is
1249 * implemented in C not using locked ops. spin_unlock
1250 * on x86 sometime uses locked ops because of PPro
1251 * errata 66, 92, so unless somebody can guarantee
1252 * atomic_set() here would be safe on all archs (and
1253 * not only on x86), it's safer to use atomic_add().
1254 */
1255 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1256 &page_tail->_count);
1257
1258 /* after clearing PageTail the gup refcount can be released */
1259 smp_mb();
1260
1261 /*
1262 * retain hwpoison flag of the poisoned tail page:
1263 * fix for the unsuitable process killed on Guest Machine(KVM)
1264 * by the memory-failure.
1265 */
1266 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1267 page_tail->flags |= (page->flags &
1268 ((1L << PG_referenced) |
1269 (1L << PG_swapbacked) |
1270 (1L << PG_mlocked) |
1271 (1L << PG_uptodate)));
1272 page_tail->flags |= (1L << PG_dirty);
1273
1274 /* clear PageTail before overwriting first_page */
1275 smp_wmb();
1276
1277 /*
1278 * __split_huge_page_splitting() already set the
1279 * splitting bit in all pmd that could map this
1280 * hugepage, that will ensure no CPU can alter the
1281 * mapcount on the head page. The mapcount is only
1282 * accounted in the head page and it has to be
1283 * transferred to all tail pages in the below code. So
1284 * for this code to be safe, the split the mapcount
1285 * can't change. But that doesn't mean userland can't
1286 * keep changing and reading the page contents while
1287 * we transfer the mapcount, so the pmd splitting
1288 * status is achieved setting a reserved bit in the
1289 * pmd, not by clearing the present bit.
1290 */
1291 page_tail->_mapcount = page->_mapcount;
1292
1293 BUG_ON(page_tail->mapping);
1294 page_tail->mapping = page->mapping;
1295
1296 page_tail->index = page->index + i;
1297
1298 BUG_ON(!PageAnon(page_tail));
1299 BUG_ON(!PageUptodate(page_tail));
1300 BUG_ON(!PageDirty(page_tail));
1301 BUG_ON(!PageSwapBacked(page_tail));
1302
1303 lru_add_page_tail(page, page_tail, lruvec);
1304 }
1305 atomic_sub(tail_count, &page->_count);
1306 BUG_ON(atomic_read(&page->_count) <= 0);
1307
1308 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1309 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1310
1311 ClearPageCompound(page);
1312 compound_unlock(page);
1313 spin_unlock_irq(&zone->lru_lock);
1314
1315 for (i = 1; i < HPAGE_PMD_NR; i++) {
1316 struct page *page_tail = page + i;
1317 BUG_ON(page_count(page_tail) <= 0);
1318 /*
1319 * Tail pages may be freed if there wasn't any mapping
1320 * like if add_to_swap() is running on a lru page that
1321 * had its mapping zapped. And freeing these pages
1322 * requires taking the lru_lock so we do the put_page
1323 * of the tail pages after the split is complete.
1324 */
1325 put_page(page_tail);
1326 }
1327
1328 /*
1329 * Only the head page (now become a regular page) is required
1330 * to be pinned by the caller.
1331 */
1332 BUG_ON(page_count(page) <= 0);
1333 }
1334
1335 static int __split_huge_page_map(struct page *page,
1336 struct vm_area_struct *vma,
1337 unsigned long address)
1338 {
1339 struct mm_struct *mm = vma->vm_mm;
1340 pmd_t *pmd, _pmd;
1341 int ret = 0, i;
1342 pgtable_t pgtable;
1343 unsigned long haddr;
1344
1345 spin_lock(&mm->page_table_lock);
1346 pmd = page_check_address_pmd(page, mm, address,
1347 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1348 if (pmd) {
1349 pgtable = pgtable_trans_huge_withdraw(mm);
1350 pmd_populate(mm, &_pmd, pgtable);
1351
1352 haddr = address;
1353 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1354 pte_t *pte, entry;
1355 BUG_ON(PageCompound(page+i));
1356 entry = mk_pte(page + i, vma->vm_page_prot);
1357 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1358 if (!pmd_write(*pmd))
1359 entry = pte_wrprotect(entry);
1360 else
1361 BUG_ON(page_mapcount(page) != 1);
1362 if (!pmd_young(*pmd))
1363 entry = pte_mkold(entry);
1364 pte = pte_offset_map(&_pmd, haddr);
1365 BUG_ON(!pte_none(*pte));
1366 set_pte_at(mm, haddr, pte, entry);
1367 pte_unmap(pte);
1368 }
1369
1370 smp_wmb(); /* make pte visible before pmd */
1371 /*
1372 * Up to this point the pmd is present and huge and
1373 * userland has the whole access to the hugepage
1374 * during the split (which happens in place). If we
1375 * overwrite the pmd with the not-huge version
1376 * pointing to the pte here (which of course we could
1377 * if all CPUs were bug free), userland could trigger
1378 * a small page size TLB miss on the small sized TLB
1379 * while the hugepage TLB entry is still established
1380 * in the huge TLB. Some CPU doesn't like that. See
1381 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1382 * Erratum 383 on page 93. Intel should be safe but is
1383 * also warns that it's only safe if the permission
1384 * and cache attributes of the two entries loaded in
1385 * the two TLB is identical (which should be the case
1386 * here). But it is generally safer to never allow
1387 * small and huge TLB entries for the same virtual
1388 * address to be loaded simultaneously. So instead of
1389 * doing "pmd_populate(); flush_tlb_range();" we first
1390 * mark the current pmd notpresent (atomically because
1391 * here the pmd_trans_huge and pmd_trans_splitting
1392 * must remain set at all times on the pmd until the
1393 * split is complete for this pmd), then we flush the
1394 * SMP TLB and finally we write the non-huge version
1395 * of the pmd entry with pmd_populate.
1396 */
1397 pmdp_invalidate(vma, address, pmd);
1398 pmd_populate(mm, pmd, pgtable);
1399 ret = 1;
1400 }
1401 spin_unlock(&mm->page_table_lock);
1402
1403 return ret;
1404 }
1405
1406 /* must be called with anon_vma->root->mutex hold */
1407 static void __split_huge_page(struct page *page,
1408 struct anon_vma *anon_vma)
1409 {
1410 int mapcount, mapcount2;
1411 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1412 struct anon_vma_chain *avc;
1413
1414 BUG_ON(!PageHead(page));
1415 BUG_ON(PageTail(page));
1416
1417 mapcount = 0;
1418 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1419 struct vm_area_struct *vma = avc->vma;
1420 unsigned long addr = vma_address(page, vma);
1421 BUG_ON(is_vma_temporary_stack(vma));
1422 mapcount += __split_huge_page_splitting(page, vma, addr);
1423 }
1424 /*
1425 * It is critical that new vmas are added to the tail of the
1426 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1427 * and establishes a child pmd before
1428 * __split_huge_page_splitting() freezes the parent pmd (so if
1429 * we fail to prevent copy_huge_pmd() from running until the
1430 * whole __split_huge_page() is complete), we will still see
1431 * the newly established pmd of the child later during the
1432 * walk, to be able to set it as pmd_trans_splitting too.
1433 */
1434 if (mapcount != page_mapcount(page))
1435 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1436 mapcount, page_mapcount(page));
1437 BUG_ON(mapcount != page_mapcount(page));
1438
1439 __split_huge_page_refcount(page);
1440
1441 mapcount2 = 0;
1442 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1443 struct vm_area_struct *vma = avc->vma;
1444 unsigned long addr = vma_address(page, vma);
1445 BUG_ON(is_vma_temporary_stack(vma));
1446 mapcount2 += __split_huge_page_map(page, vma, addr);
1447 }
1448 if (mapcount != mapcount2)
1449 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1450 mapcount, mapcount2, page_mapcount(page));
1451 BUG_ON(mapcount != mapcount2);
1452 }
1453
1454 int split_huge_page(struct page *page)
1455 {
1456 struct anon_vma *anon_vma;
1457 int ret = 1;
1458
1459 BUG_ON(!PageAnon(page));
1460 anon_vma = page_lock_anon_vma(page);
1461 if (!anon_vma)
1462 goto out;
1463 ret = 0;
1464 if (!PageCompound(page))
1465 goto out_unlock;
1466
1467 BUG_ON(!PageSwapBacked(page));
1468 __split_huge_page(page, anon_vma);
1469 count_vm_event(THP_SPLIT);
1470
1471 BUG_ON(PageCompound(page));
1472 out_unlock:
1473 page_unlock_anon_vma(anon_vma);
1474 out:
1475 return ret;
1476 }
1477
1478 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1479
1480 int hugepage_madvise(struct vm_area_struct *vma,
1481 unsigned long *vm_flags, int advice)
1482 {
1483 struct mm_struct *mm = vma->vm_mm;
1484
1485 switch (advice) {
1486 case MADV_HUGEPAGE:
1487 /*
1488 * Be somewhat over-protective like KSM for now!
1489 */
1490 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1491 return -EINVAL;
1492 if (mm->def_flags & VM_NOHUGEPAGE)
1493 return -EINVAL;
1494 *vm_flags &= ~VM_NOHUGEPAGE;
1495 *vm_flags |= VM_HUGEPAGE;
1496 /*
1497 * If the vma become good for khugepaged to scan,
1498 * register it here without waiting a page fault that
1499 * may not happen any time soon.
1500 */
1501 if (unlikely(khugepaged_enter_vma_merge(vma)))
1502 return -ENOMEM;
1503 break;
1504 case MADV_NOHUGEPAGE:
1505 /*
1506 * Be somewhat over-protective like KSM for now!
1507 */
1508 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1509 return -EINVAL;
1510 *vm_flags &= ~VM_HUGEPAGE;
1511 *vm_flags |= VM_NOHUGEPAGE;
1512 /*
1513 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1514 * this vma even if we leave the mm registered in khugepaged if
1515 * it got registered before VM_NOHUGEPAGE was set.
1516 */
1517 break;
1518 }
1519
1520 return 0;
1521 }
1522
1523 static int __init khugepaged_slab_init(void)
1524 {
1525 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1526 sizeof(struct mm_slot),
1527 __alignof__(struct mm_slot), 0, NULL);
1528 if (!mm_slot_cache)
1529 return -ENOMEM;
1530
1531 return 0;
1532 }
1533
1534 static void __init khugepaged_slab_free(void)
1535 {
1536 kmem_cache_destroy(mm_slot_cache);
1537 mm_slot_cache = NULL;
1538 }
1539
1540 static inline struct mm_slot *alloc_mm_slot(void)
1541 {
1542 if (!mm_slot_cache) /* initialization failed */
1543 return NULL;
1544 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1545 }
1546
1547 static inline void free_mm_slot(struct mm_slot *mm_slot)
1548 {
1549 kmem_cache_free(mm_slot_cache, mm_slot);
1550 }
1551
1552 static int __init mm_slots_hash_init(void)
1553 {
1554 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1555 GFP_KERNEL);
1556 if (!mm_slots_hash)
1557 return -ENOMEM;
1558 return 0;
1559 }
1560
1561 #if 0
1562 static void __init mm_slots_hash_free(void)
1563 {
1564 kfree(mm_slots_hash);
1565 mm_slots_hash = NULL;
1566 }
1567 #endif
1568
1569 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1570 {
1571 struct mm_slot *mm_slot;
1572 struct hlist_head *bucket;
1573 struct hlist_node *node;
1574
1575 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1576 % MM_SLOTS_HASH_HEADS];
1577 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1578 if (mm == mm_slot->mm)
1579 return mm_slot;
1580 }
1581 return NULL;
1582 }
1583
1584 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1585 struct mm_slot *mm_slot)
1586 {
1587 struct hlist_head *bucket;
1588
1589 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1590 % MM_SLOTS_HASH_HEADS];
1591 mm_slot->mm = mm;
1592 hlist_add_head(&mm_slot->hash, bucket);
1593 }
1594
1595 static inline int khugepaged_test_exit(struct mm_struct *mm)
1596 {
1597 return atomic_read(&mm->mm_users) == 0;
1598 }
1599
1600 int __khugepaged_enter(struct mm_struct *mm)
1601 {
1602 struct mm_slot *mm_slot;
1603 int wakeup;
1604
1605 mm_slot = alloc_mm_slot();
1606 if (!mm_slot)
1607 return -ENOMEM;
1608
1609 /* __khugepaged_exit() must not run from under us */
1610 VM_BUG_ON(khugepaged_test_exit(mm));
1611 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1612 free_mm_slot(mm_slot);
1613 return 0;
1614 }
1615
1616 spin_lock(&khugepaged_mm_lock);
1617 insert_to_mm_slots_hash(mm, mm_slot);
1618 /*
1619 * Insert just behind the scanning cursor, to let the area settle
1620 * down a little.
1621 */
1622 wakeup = list_empty(&khugepaged_scan.mm_head);
1623 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1624 spin_unlock(&khugepaged_mm_lock);
1625
1626 atomic_inc(&mm->mm_count);
1627 if (wakeup)
1628 wake_up_interruptible(&khugepaged_wait);
1629
1630 return 0;
1631 }
1632
1633 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1634 {
1635 unsigned long hstart, hend;
1636 if (!vma->anon_vma)
1637 /*
1638 * Not yet faulted in so we will register later in the
1639 * page fault if needed.
1640 */
1641 return 0;
1642 if (vma->vm_ops)
1643 /* khugepaged not yet working on file or special mappings */
1644 return 0;
1645 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1646 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1647 hend = vma->vm_end & HPAGE_PMD_MASK;
1648 if (hstart < hend)
1649 return khugepaged_enter(vma);
1650 return 0;
1651 }
1652
1653 void __khugepaged_exit(struct mm_struct *mm)
1654 {
1655 struct mm_slot *mm_slot;
1656 int free = 0;
1657
1658 spin_lock(&khugepaged_mm_lock);
1659 mm_slot = get_mm_slot(mm);
1660 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1661 hlist_del(&mm_slot->hash);
1662 list_del(&mm_slot->mm_node);
1663 free = 1;
1664 }
1665 spin_unlock(&khugepaged_mm_lock);
1666
1667 if (free) {
1668 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1669 free_mm_slot(mm_slot);
1670 mmdrop(mm);
1671 } else if (mm_slot) {
1672 /*
1673 * This is required to serialize against
1674 * khugepaged_test_exit() (which is guaranteed to run
1675 * under mmap sem read mode). Stop here (after we
1676 * return all pagetables will be destroyed) until
1677 * khugepaged has finished working on the pagetables
1678 * under the mmap_sem.
1679 */
1680 down_write(&mm->mmap_sem);
1681 up_write(&mm->mmap_sem);
1682 }
1683 }
1684
1685 static void release_pte_page(struct page *page)
1686 {
1687 /* 0 stands for page_is_file_cache(page) == false */
1688 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1689 unlock_page(page);
1690 putback_lru_page(page);
1691 }
1692
1693 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1694 {
1695 while (--_pte >= pte) {
1696 pte_t pteval = *_pte;
1697 if (!pte_none(pteval))
1698 release_pte_page(pte_page(pteval));
1699 }
1700 }
1701
1702 static void release_all_pte_pages(pte_t *pte)
1703 {
1704 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1705 }
1706
1707 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1708 unsigned long address,
1709 pte_t *pte)
1710 {
1711 struct page *page;
1712 pte_t *_pte;
1713 int referenced = 0, isolated = 0, none = 0;
1714 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1715 _pte++, address += PAGE_SIZE) {
1716 pte_t pteval = *_pte;
1717 if (pte_none(pteval)) {
1718 if (++none <= khugepaged_max_ptes_none)
1719 continue;
1720 else {
1721 release_pte_pages(pte, _pte);
1722 goto out;
1723 }
1724 }
1725 if (!pte_present(pteval) || !pte_write(pteval)) {
1726 release_pte_pages(pte, _pte);
1727 goto out;
1728 }
1729 page = vm_normal_page(vma, address, pteval);
1730 if (unlikely(!page)) {
1731 release_pte_pages(pte, _pte);
1732 goto out;
1733 }
1734 VM_BUG_ON(PageCompound(page));
1735 BUG_ON(!PageAnon(page));
1736 VM_BUG_ON(!PageSwapBacked(page));
1737
1738 /* cannot use mapcount: can't collapse if there's a gup pin */
1739 if (page_count(page) != 1) {
1740 release_pte_pages(pte, _pte);
1741 goto out;
1742 }
1743 /*
1744 * We can do it before isolate_lru_page because the
1745 * page can't be freed from under us. NOTE: PG_lock
1746 * is needed to serialize against split_huge_page
1747 * when invoked from the VM.
1748 */
1749 if (!trylock_page(page)) {
1750 release_pte_pages(pte, _pte);
1751 goto out;
1752 }
1753 /*
1754 * Isolate the page to avoid collapsing an hugepage
1755 * currently in use by the VM.
1756 */
1757 if (isolate_lru_page(page)) {
1758 unlock_page(page);
1759 release_pte_pages(pte, _pte);
1760 goto out;
1761 }
1762 /* 0 stands for page_is_file_cache(page) == false */
1763 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1764 VM_BUG_ON(!PageLocked(page));
1765 VM_BUG_ON(PageLRU(page));
1766
1767 /* If there is no mapped pte young don't collapse the page */
1768 if (pte_young(pteval) || PageReferenced(page) ||
1769 mmu_notifier_test_young(vma->vm_mm, address))
1770 referenced = 1;
1771 }
1772 if (unlikely(!referenced))
1773 release_all_pte_pages(pte);
1774 else
1775 isolated = 1;
1776 out:
1777 return isolated;
1778 }
1779
1780 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1781 struct vm_area_struct *vma,
1782 unsigned long address,
1783 spinlock_t *ptl)
1784 {
1785 pte_t *_pte;
1786 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1787 pte_t pteval = *_pte;
1788 struct page *src_page;
1789
1790 if (pte_none(pteval)) {
1791 clear_user_highpage(page, address);
1792 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1793 } else {
1794 src_page = pte_page(pteval);
1795 copy_user_highpage(page, src_page, address, vma);
1796 VM_BUG_ON(page_mapcount(src_page) != 1);
1797 release_pte_page(src_page);
1798 /*
1799 * ptl mostly unnecessary, but preempt has to
1800 * be disabled to update the per-cpu stats
1801 * inside page_remove_rmap().
1802 */
1803 spin_lock(ptl);
1804 /*
1805 * paravirt calls inside pte_clear here are
1806 * superfluous.
1807 */
1808 pte_clear(vma->vm_mm, address, _pte);
1809 page_remove_rmap(src_page);
1810 spin_unlock(ptl);
1811 free_page_and_swap_cache(src_page);
1812 }
1813
1814 address += PAGE_SIZE;
1815 page++;
1816 }
1817 }
1818
1819 static void khugepaged_alloc_sleep(void)
1820 {
1821 wait_event_freezable_timeout(khugepaged_wait, false,
1822 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1823 }
1824
1825 #ifdef CONFIG_NUMA
1826 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1827 {
1828 if (IS_ERR(*hpage)) {
1829 if (!*wait)
1830 return false;
1831
1832 *wait = false;
1833 *hpage = NULL;
1834 khugepaged_alloc_sleep();
1835 } else if (*hpage) {
1836 put_page(*hpage);
1837 *hpage = NULL;
1838 }
1839
1840 return true;
1841 }
1842
1843 static struct page
1844 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1845 struct vm_area_struct *vma, unsigned long address,
1846 int node)
1847 {
1848 VM_BUG_ON(*hpage);
1849 /*
1850 * Allocate the page while the vma is still valid and under
1851 * the mmap_sem read mode so there is no memory allocation
1852 * later when we take the mmap_sem in write mode. This is more
1853 * friendly behavior (OTOH it may actually hide bugs) to
1854 * filesystems in userland with daemons allocating memory in
1855 * the userland I/O paths. Allocating memory with the
1856 * mmap_sem in read mode is good idea also to allow greater
1857 * scalability.
1858 */
1859 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1860 node, __GFP_OTHER_NODE);
1861
1862 /*
1863 * After allocating the hugepage, release the mmap_sem read lock in
1864 * preparation for taking it in write mode.
1865 */
1866 up_read(&mm->mmap_sem);
1867 if (unlikely(!*hpage)) {
1868 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1869 *hpage = ERR_PTR(-ENOMEM);
1870 return NULL;
1871 }
1872
1873 count_vm_event(THP_COLLAPSE_ALLOC);
1874 return *hpage;
1875 }
1876 #else
1877 static struct page *khugepaged_alloc_hugepage(bool *wait)
1878 {
1879 struct page *hpage;
1880
1881 do {
1882 hpage = alloc_hugepage(khugepaged_defrag());
1883 if (!hpage) {
1884 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1885 if (!*wait)
1886 return NULL;
1887
1888 *wait = false;
1889 khugepaged_alloc_sleep();
1890 } else
1891 count_vm_event(THP_COLLAPSE_ALLOC);
1892 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1893
1894 return hpage;
1895 }
1896
1897 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1898 {
1899 if (!*hpage)
1900 *hpage = khugepaged_alloc_hugepage(wait);
1901
1902 if (unlikely(!*hpage))
1903 return false;
1904
1905 return true;
1906 }
1907
1908 static struct page
1909 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1910 struct vm_area_struct *vma, unsigned long address,
1911 int node)
1912 {
1913 up_read(&mm->mmap_sem);
1914 VM_BUG_ON(!*hpage);
1915 return *hpage;
1916 }
1917 #endif
1918
1919 static void collapse_huge_page(struct mm_struct *mm,
1920 unsigned long address,
1921 struct page **hpage,
1922 struct vm_area_struct *vma,
1923 int node)
1924 {
1925 pgd_t *pgd;
1926 pud_t *pud;
1927 pmd_t *pmd, _pmd;
1928 pte_t *pte;
1929 pgtable_t pgtable;
1930 struct page *new_page;
1931 spinlock_t *ptl;
1932 int isolated;
1933 unsigned long hstart, hend;
1934 unsigned long mmun_start; /* For mmu_notifiers */
1935 unsigned long mmun_end; /* For mmu_notifiers */
1936
1937 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1938
1939 /* release the mmap_sem read lock. */
1940 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1941 if (!new_page)
1942 return;
1943
1944 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
1945 return;
1946
1947 /*
1948 * Prevent all access to pagetables with the exception of
1949 * gup_fast later hanlded by the ptep_clear_flush and the VM
1950 * handled by the anon_vma lock + PG_lock.
1951 */
1952 down_write(&mm->mmap_sem);
1953 if (unlikely(khugepaged_test_exit(mm)))
1954 goto out;
1955
1956 vma = find_vma(mm, address);
1957 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1958 hend = vma->vm_end & HPAGE_PMD_MASK;
1959 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1960 goto out;
1961
1962 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1963 (vma->vm_flags & VM_NOHUGEPAGE))
1964 goto out;
1965
1966 if (!vma->anon_vma || vma->vm_ops)
1967 goto out;
1968 if (is_vma_temporary_stack(vma))
1969 goto out;
1970 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1971
1972 pgd = pgd_offset(mm, address);
1973 if (!pgd_present(*pgd))
1974 goto out;
1975
1976 pud = pud_offset(pgd, address);
1977 if (!pud_present(*pud))
1978 goto out;
1979
1980 pmd = pmd_offset(pud, address);
1981 /* pmd can't go away or become huge under us */
1982 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1983 goto out;
1984
1985 anon_vma_lock(vma->anon_vma);
1986
1987 pte = pte_offset_map(pmd, address);
1988 ptl = pte_lockptr(mm, pmd);
1989
1990 mmun_start = address;
1991 mmun_end = address + HPAGE_PMD_SIZE;
1992 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1993 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1994 /*
1995 * After this gup_fast can't run anymore. This also removes
1996 * any huge TLB entry from the CPU so we won't allow
1997 * huge and small TLB entries for the same virtual address
1998 * to avoid the risk of CPU bugs in that area.
1999 */
2000 _pmd = pmdp_clear_flush(vma, address, pmd);
2001 spin_unlock(&mm->page_table_lock);
2002 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2003
2004 spin_lock(ptl);
2005 isolated = __collapse_huge_page_isolate(vma, address, pte);
2006 spin_unlock(ptl);
2007
2008 if (unlikely(!isolated)) {
2009 pte_unmap(pte);
2010 spin_lock(&mm->page_table_lock);
2011 BUG_ON(!pmd_none(*pmd));
2012 set_pmd_at(mm, address, pmd, _pmd);
2013 spin_unlock(&mm->page_table_lock);
2014 anon_vma_unlock(vma->anon_vma);
2015 goto out;
2016 }
2017
2018 /*
2019 * All pages are isolated and locked so anon_vma rmap
2020 * can't run anymore.
2021 */
2022 anon_vma_unlock(vma->anon_vma);
2023
2024 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2025 pte_unmap(pte);
2026 __SetPageUptodate(new_page);
2027 pgtable = pmd_pgtable(_pmd);
2028
2029 _pmd = mk_pmd(new_page, vma->vm_page_prot);
2030 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2031 _pmd = pmd_mkhuge(_pmd);
2032
2033 /*
2034 * spin_lock() below is not the equivalent of smp_wmb(), so
2035 * this is needed to avoid the copy_huge_page writes to become
2036 * visible after the set_pmd_at() write.
2037 */
2038 smp_wmb();
2039
2040 spin_lock(&mm->page_table_lock);
2041 BUG_ON(!pmd_none(*pmd));
2042 page_add_new_anon_rmap(new_page, vma, address);
2043 set_pmd_at(mm, address, pmd, _pmd);
2044 update_mmu_cache(vma, address, pmd);
2045 pgtable_trans_huge_deposit(mm, pgtable);
2046 spin_unlock(&mm->page_table_lock);
2047
2048 *hpage = NULL;
2049
2050 khugepaged_pages_collapsed++;
2051 out_up_write:
2052 up_write(&mm->mmap_sem);
2053 return;
2054
2055 out:
2056 mem_cgroup_uncharge_page(new_page);
2057 goto out_up_write;
2058 }
2059
2060 static int khugepaged_scan_pmd(struct mm_struct *mm,
2061 struct vm_area_struct *vma,
2062 unsigned long address,
2063 struct page **hpage)
2064 {
2065 pgd_t *pgd;
2066 pud_t *pud;
2067 pmd_t *pmd;
2068 pte_t *pte, *_pte;
2069 int ret = 0, referenced = 0, none = 0;
2070 struct page *page;
2071 unsigned long _address;
2072 spinlock_t *ptl;
2073 int node = -1;
2074
2075 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2076
2077 pgd = pgd_offset(mm, address);
2078 if (!pgd_present(*pgd))
2079 goto out;
2080
2081 pud = pud_offset(pgd, address);
2082 if (!pud_present(*pud))
2083 goto out;
2084
2085 pmd = pmd_offset(pud, address);
2086 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2087 goto out;
2088
2089 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2090 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2091 _pte++, _address += PAGE_SIZE) {
2092 pte_t pteval = *_pte;
2093 if (pte_none(pteval)) {
2094 if (++none <= khugepaged_max_ptes_none)
2095 continue;
2096 else
2097 goto out_unmap;
2098 }
2099 if (!pte_present(pteval) || !pte_write(pteval))
2100 goto out_unmap;
2101 page = vm_normal_page(vma, _address, pteval);
2102 if (unlikely(!page))
2103 goto out_unmap;
2104 /*
2105 * Chose the node of the first page. This could
2106 * be more sophisticated and look at more pages,
2107 * but isn't for now.
2108 */
2109 if (node == -1)
2110 node = page_to_nid(page);
2111 VM_BUG_ON(PageCompound(page));
2112 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2113 goto out_unmap;
2114 /* cannot use mapcount: can't collapse if there's a gup pin */
2115 if (page_count(page) != 1)
2116 goto out_unmap;
2117 if (pte_young(pteval) || PageReferenced(page) ||
2118 mmu_notifier_test_young(vma->vm_mm, address))
2119 referenced = 1;
2120 }
2121 if (referenced)
2122 ret = 1;
2123 out_unmap:
2124 pte_unmap_unlock(pte, ptl);
2125 if (ret)
2126 /* collapse_huge_page will return with the mmap_sem released */
2127 collapse_huge_page(mm, address, hpage, vma, node);
2128 out:
2129 return ret;
2130 }
2131
2132 static void collect_mm_slot(struct mm_slot *mm_slot)
2133 {
2134 struct mm_struct *mm = mm_slot->mm;
2135
2136 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2137
2138 if (khugepaged_test_exit(mm)) {
2139 /* free mm_slot */
2140 hlist_del(&mm_slot->hash);
2141 list_del(&mm_slot->mm_node);
2142
2143 /*
2144 * Not strictly needed because the mm exited already.
2145 *
2146 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2147 */
2148
2149 /* khugepaged_mm_lock actually not necessary for the below */
2150 free_mm_slot(mm_slot);
2151 mmdrop(mm);
2152 }
2153 }
2154
2155 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2156 struct page **hpage)
2157 __releases(&khugepaged_mm_lock)
2158 __acquires(&khugepaged_mm_lock)
2159 {
2160 struct mm_slot *mm_slot;
2161 struct mm_struct *mm;
2162 struct vm_area_struct *vma;
2163 int progress = 0;
2164
2165 VM_BUG_ON(!pages);
2166 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2167
2168 if (khugepaged_scan.mm_slot)
2169 mm_slot = khugepaged_scan.mm_slot;
2170 else {
2171 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2172 struct mm_slot, mm_node);
2173 khugepaged_scan.address = 0;
2174 khugepaged_scan.mm_slot = mm_slot;
2175 }
2176 spin_unlock(&khugepaged_mm_lock);
2177
2178 mm = mm_slot->mm;
2179 down_read(&mm->mmap_sem);
2180 if (unlikely(khugepaged_test_exit(mm)))
2181 vma = NULL;
2182 else
2183 vma = find_vma(mm, khugepaged_scan.address);
2184
2185 progress++;
2186 for (; vma; vma = vma->vm_next) {
2187 unsigned long hstart, hend;
2188
2189 cond_resched();
2190 if (unlikely(khugepaged_test_exit(mm))) {
2191 progress++;
2192 break;
2193 }
2194
2195 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2196 !khugepaged_always()) ||
2197 (vma->vm_flags & VM_NOHUGEPAGE)) {
2198 skip:
2199 progress++;
2200 continue;
2201 }
2202 if (!vma->anon_vma || vma->vm_ops)
2203 goto skip;
2204 if (is_vma_temporary_stack(vma))
2205 goto skip;
2206 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2207
2208 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2209 hend = vma->vm_end & HPAGE_PMD_MASK;
2210 if (hstart >= hend)
2211 goto skip;
2212 if (khugepaged_scan.address > hend)
2213 goto skip;
2214 if (khugepaged_scan.address < hstart)
2215 khugepaged_scan.address = hstart;
2216 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2217
2218 while (khugepaged_scan.address < hend) {
2219 int ret;
2220 cond_resched();
2221 if (unlikely(khugepaged_test_exit(mm)))
2222 goto breakouterloop;
2223
2224 VM_BUG_ON(khugepaged_scan.address < hstart ||
2225 khugepaged_scan.address + HPAGE_PMD_SIZE >
2226 hend);
2227 ret = khugepaged_scan_pmd(mm, vma,
2228 khugepaged_scan.address,
2229 hpage);
2230 /* move to next address */
2231 khugepaged_scan.address += HPAGE_PMD_SIZE;
2232 progress += HPAGE_PMD_NR;
2233 if (ret)
2234 /* we released mmap_sem so break loop */
2235 goto breakouterloop_mmap_sem;
2236 if (progress >= pages)
2237 goto breakouterloop;
2238 }
2239 }
2240 breakouterloop:
2241 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2242 breakouterloop_mmap_sem:
2243
2244 spin_lock(&khugepaged_mm_lock);
2245 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2246 /*
2247 * Release the current mm_slot if this mm is about to die, or
2248 * if we scanned all vmas of this mm.
2249 */
2250 if (khugepaged_test_exit(mm) || !vma) {
2251 /*
2252 * Make sure that if mm_users is reaching zero while
2253 * khugepaged runs here, khugepaged_exit will find
2254 * mm_slot not pointing to the exiting mm.
2255 */
2256 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2257 khugepaged_scan.mm_slot = list_entry(
2258 mm_slot->mm_node.next,
2259 struct mm_slot, mm_node);
2260 khugepaged_scan.address = 0;
2261 } else {
2262 khugepaged_scan.mm_slot = NULL;
2263 khugepaged_full_scans++;
2264 }
2265
2266 collect_mm_slot(mm_slot);
2267 }
2268
2269 return progress;
2270 }
2271
2272 static int khugepaged_has_work(void)
2273 {
2274 return !list_empty(&khugepaged_scan.mm_head) &&
2275 khugepaged_enabled();
2276 }
2277
2278 static int khugepaged_wait_event(void)
2279 {
2280 return !list_empty(&khugepaged_scan.mm_head) ||
2281 kthread_should_stop();
2282 }
2283
2284 static void khugepaged_do_scan(void)
2285 {
2286 struct page *hpage = NULL;
2287 unsigned int progress = 0, pass_through_head = 0;
2288 unsigned int pages = khugepaged_pages_to_scan;
2289 bool wait = true;
2290
2291 barrier(); /* write khugepaged_pages_to_scan to local stack */
2292
2293 while (progress < pages) {
2294 if (!khugepaged_prealloc_page(&hpage, &wait))
2295 break;
2296
2297 cond_resched();
2298
2299 if (unlikely(kthread_should_stop() || freezing(current)))
2300 break;
2301
2302 spin_lock(&khugepaged_mm_lock);
2303 if (!khugepaged_scan.mm_slot)
2304 pass_through_head++;
2305 if (khugepaged_has_work() &&
2306 pass_through_head < 2)
2307 progress += khugepaged_scan_mm_slot(pages - progress,
2308 &hpage);
2309 else
2310 progress = pages;
2311 spin_unlock(&khugepaged_mm_lock);
2312 }
2313
2314 if (!IS_ERR_OR_NULL(hpage))
2315 put_page(hpage);
2316 }
2317
2318 static void khugepaged_wait_work(void)
2319 {
2320 try_to_freeze();
2321
2322 if (khugepaged_has_work()) {
2323 if (!khugepaged_scan_sleep_millisecs)
2324 return;
2325
2326 wait_event_freezable_timeout(khugepaged_wait,
2327 kthread_should_stop(),
2328 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2329 return;
2330 }
2331
2332 if (khugepaged_enabled())
2333 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2334 }
2335
2336 static int khugepaged(void *none)
2337 {
2338 struct mm_slot *mm_slot;
2339
2340 set_freezable();
2341 set_user_nice(current, 19);
2342
2343 while (!kthread_should_stop()) {
2344 khugepaged_do_scan();
2345 khugepaged_wait_work();
2346 }
2347
2348 spin_lock(&khugepaged_mm_lock);
2349 mm_slot = khugepaged_scan.mm_slot;
2350 khugepaged_scan.mm_slot = NULL;
2351 if (mm_slot)
2352 collect_mm_slot(mm_slot);
2353 spin_unlock(&khugepaged_mm_lock);
2354 return 0;
2355 }
2356
2357 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2358 {
2359 struct page *page;
2360
2361 spin_lock(&mm->page_table_lock);
2362 if (unlikely(!pmd_trans_huge(*pmd))) {
2363 spin_unlock(&mm->page_table_lock);
2364 return;
2365 }
2366 page = pmd_page(*pmd);
2367 VM_BUG_ON(!page_count(page));
2368 get_page(page);
2369 spin_unlock(&mm->page_table_lock);
2370
2371 split_huge_page(page);
2372
2373 put_page(page);
2374 BUG_ON(pmd_trans_huge(*pmd));
2375 }
2376
2377 static void split_huge_page_address(struct mm_struct *mm,
2378 unsigned long address)
2379 {
2380 pgd_t *pgd;
2381 pud_t *pud;
2382 pmd_t *pmd;
2383
2384 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2385
2386 pgd = pgd_offset(mm, address);
2387 if (!pgd_present(*pgd))
2388 return;
2389
2390 pud = pud_offset(pgd, address);
2391 if (!pud_present(*pud))
2392 return;
2393
2394 pmd = pmd_offset(pud, address);
2395 if (!pmd_present(*pmd))
2396 return;
2397 /*
2398 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2399 * materialize from under us.
2400 */
2401 split_huge_page_pmd(mm, pmd);
2402 }
2403
2404 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2405 unsigned long start,
2406 unsigned long end,
2407 long adjust_next)
2408 {
2409 /*
2410 * If the new start address isn't hpage aligned and it could
2411 * previously contain an hugepage: check if we need to split
2412 * an huge pmd.
2413 */
2414 if (start & ~HPAGE_PMD_MASK &&
2415 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2416 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2417 split_huge_page_address(vma->vm_mm, start);
2418
2419 /*
2420 * If the new end address isn't hpage aligned and it could
2421 * previously contain an hugepage: check if we need to split
2422 * an huge pmd.
2423 */
2424 if (end & ~HPAGE_PMD_MASK &&
2425 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2426 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2427 split_huge_page_address(vma->vm_mm, end);
2428
2429 /*
2430 * If we're also updating the vma->vm_next->vm_start, if the new
2431 * vm_next->vm_start isn't page aligned and it could previously
2432 * contain an hugepage: check if we need to split an huge pmd.
2433 */
2434 if (adjust_next > 0) {
2435 struct vm_area_struct *next = vma->vm_next;
2436 unsigned long nstart = next->vm_start;
2437 nstart += adjust_next << PAGE_SHIFT;
2438 if (nstart & ~HPAGE_PMD_MASK &&
2439 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2440 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2441 split_huge_page_address(next->vm_mm, nstart);
2442 }
2443 }