]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/huge_memory.c
memcg: adjust to support new THP refcounting
[mirror_ubuntu-zesty-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/dax.h>
20 #include <linux/kthread.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/migrate.h>
26 #include <linux/hashtable.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/page_idle.h>
29
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 #include "internal.h"
33
34 enum scan_result {
35 SCAN_FAIL,
36 SCAN_SUCCEED,
37 SCAN_PMD_NULL,
38 SCAN_EXCEED_NONE_PTE,
39 SCAN_PTE_NON_PRESENT,
40 SCAN_PAGE_RO,
41 SCAN_NO_REFERENCED_PAGE,
42 SCAN_PAGE_NULL,
43 SCAN_SCAN_ABORT,
44 SCAN_PAGE_COUNT,
45 SCAN_PAGE_LRU,
46 SCAN_PAGE_LOCK,
47 SCAN_PAGE_ANON,
48 SCAN_ANY_PROCESS,
49 SCAN_VMA_NULL,
50 SCAN_VMA_CHECK,
51 SCAN_ADDRESS_RANGE,
52 SCAN_SWAP_CACHE_PAGE,
53 SCAN_DEL_PAGE_LRU,
54 SCAN_ALLOC_HUGE_PAGE_FAIL,
55 SCAN_CGROUP_CHARGE_FAIL
56 };
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/huge_memory.h>
60
61 /*
62 * By default transparent hugepage support is disabled in order that avoid
63 * to risk increase the memory footprint of applications without a guaranteed
64 * benefit. When transparent hugepage support is enabled, is for all mappings,
65 * and khugepaged scans all mappings.
66 * Defrag is invoked by khugepaged hugepage allocations and by page faults
67 * for all hugepage allocations.
68 */
69 unsigned long transparent_hugepage_flags __read_mostly =
70 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
71 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
72 #endif
73 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
74 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
75 #endif
76 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
77 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
78 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79
80 /* default scan 8*512 pte (or vmas) every 30 second */
81 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
82 static unsigned int khugepaged_pages_collapsed;
83 static unsigned int khugepaged_full_scans;
84 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
85 /* during fragmentation poll the hugepage allocator once every minute */
86 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
87 static struct task_struct *khugepaged_thread __read_mostly;
88 static DEFINE_MUTEX(khugepaged_mutex);
89 static DEFINE_SPINLOCK(khugepaged_mm_lock);
90 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
91 /*
92 * default collapse hugepages if there is at least one pte mapped like
93 * it would have happened if the vma was large enough during page
94 * fault.
95 */
96 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
97
98 static int khugepaged(void *none);
99 static int khugepaged_slab_init(void);
100 static void khugepaged_slab_exit(void);
101
102 #define MM_SLOTS_HASH_BITS 10
103 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
104
105 static struct kmem_cache *mm_slot_cache __read_mostly;
106
107 /**
108 * struct mm_slot - hash lookup from mm to mm_slot
109 * @hash: hash collision list
110 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
111 * @mm: the mm that this information is valid for
112 */
113 struct mm_slot {
114 struct hlist_node hash;
115 struct list_head mm_node;
116 struct mm_struct *mm;
117 };
118
119 /**
120 * struct khugepaged_scan - cursor for scanning
121 * @mm_head: the head of the mm list to scan
122 * @mm_slot: the current mm_slot we are scanning
123 * @address: the next address inside that to be scanned
124 *
125 * There is only the one khugepaged_scan instance of this cursor structure.
126 */
127 struct khugepaged_scan {
128 struct list_head mm_head;
129 struct mm_slot *mm_slot;
130 unsigned long address;
131 };
132 static struct khugepaged_scan khugepaged_scan = {
133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134 };
135
136
137 static void set_recommended_min_free_kbytes(void)
138 {
139 struct zone *zone;
140 int nr_zones = 0;
141 unsigned long recommended_min;
142
143 for_each_populated_zone(zone)
144 nr_zones++;
145
146 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
147 recommended_min = pageblock_nr_pages * nr_zones * 2;
148
149 /*
150 * Make sure that on average at least two pageblocks are almost free
151 * of another type, one for a migratetype to fall back to and a
152 * second to avoid subsequent fallbacks of other types There are 3
153 * MIGRATE_TYPES we care about.
154 */
155 recommended_min += pageblock_nr_pages * nr_zones *
156 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
157
158 /* don't ever allow to reserve more than 5% of the lowmem */
159 recommended_min = min(recommended_min,
160 (unsigned long) nr_free_buffer_pages() / 20);
161 recommended_min <<= (PAGE_SHIFT-10);
162
163 if (recommended_min > min_free_kbytes) {
164 if (user_min_free_kbytes >= 0)
165 pr_info("raising min_free_kbytes from %d to %lu "
166 "to help transparent hugepage allocations\n",
167 min_free_kbytes, recommended_min);
168
169 min_free_kbytes = recommended_min;
170 }
171 setup_per_zone_wmarks();
172 }
173
174 static int start_stop_khugepaged(void)
175 {
176 int err = 0;
177 if (khugepaged_enabled()) {
178 if (!khugepaged_thread)
179 khugepaged_thread = kthread_run(khugepaged, NULL,
180 "khugepaged");
181 if (IS_ERR(khugepaged_thread)) {
182 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
183 err = PTR_ERR(khugepaged_thread);
184 khugepaged_thread = NULL;
185 goto fail;
186 }
187
188 if (!list_empty(&khugepaged_scan.mm_head))
189 wake_up_interruptible(&khugepaged_wait);
190
191 set_recommended_min_free_kbytes();
192 } else if (khugepaged_thread) {
193 kthread_stop(khugepaged_thread);
194 khugepaged_thread = NULL;
195 }
196 fail:
197 return err;
198 }
199
200 static atomic_t huge_zero_refcount;
201 struct page *huge_zero_page __read_mostly;
202
203 struct page *get_huge_zero_page(void)
204 {
205 struct page *zero_page;
206 retry:
207 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
208 return READ_ONCE(huge_zero_page);
209
210 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
211 HPAGE_PMD_ORDER);
212 if (!zero_page) {
213 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
214 return NULL;
215 }
216 count_vm_event(THP_ZERO_PAGE_ALLOC);
217 preempt_disable();
218 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
219 preempt_enable();
220 __free_pages(zero_page, compound_order(zero_page));
221 goto retry;
222 }
223
224 /* We take additional reference here. It will be put back by shrinker */
225 atomic_set(&huge_zero_refcount, 2);
226 preempt_enable();
227 return READ_ONCE(huge_zero_page);
228 }
229
230 static void put_huge_zero_page(void)
231 {
232 /*
233 * Counter should never go to zero here. Only shrinker can put
234 * last reference.
235 */
236 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
237 }
238
239 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
240 struct shrink_control *sc)
241 {
242 /* we can free zero page only if last reference remains */
243 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
244 }
245
246 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
247 struct shrink_control *sc)
248 {
249 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
250 struct page *zero_page = xchg(&huge_zero_page, NULL);
251 BUG_ON(zero_page == NULL);
252 __free_pages(zero_page, compound_order(zero_page));
253 return HPAGE_PMD_NR;
254 }
255
256 return 0;
257 }
258
259 static struct shrinker huge_zero_page_shrinker = {
260 .count_objects = shrink_huge_zero_page_count,
261 .scan_objects = shrink_huge_zero_page_scan,
262 .seeks = DEFAULT_SEEKS,
263 };
264
265 #ifdef CONFIG_SYSFS
266
267 static ssize_t double_flag_show(struct kobject *kobj,
268 struct kobj_attribute *attr, char *buf,
269 enum transparent_hugepage_flag enabled,
270 enum transparent_hugepage_flag req_madv)
271 {
272 if (test_bit(enabled, &transparent_hugepage_flags)) {
273 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
274 return sprintf(buf, "[always] madvise never\n");
275 } else if (test_bit(req_madv, &transparent_hugepage_flags))
276 return sprintf(buf, "always [madvise] never\n");
277 else
278 return sprintf(buf, "always madvise [never]\n");
279 }
280 static ssize_t double_flag_store(struct kobject *kobj,
281 struct kobj_attribute *attr,
282 const char *buf, size_t count,
283 enum transparent_hugepage_flag enabled,
284 enum transparent_hugepage_flag req_madv)
285 {
286 if (!memcmp("always", buf,
287 min(sizeof("always")-1, count))) {
288 set_bit(enabled, &transparent_hugepage_flags);
289 clear_bit(req_madv, &transparent_hugepage_flags);
290 } else if (!memcmp("madvise", buf,
291 min(sizeof("madvise")-1, count))) {
292 clear_bit(enabled, &transparent_hugepage_flags);
293 set_bit(req_madv, &transparent_hugepage_flags);
294 } else if (!memcmp("never", buf,
295 min(sizeof("never")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
297 clear_bit(req_madv, &transparent_hugepage_flags);
298 } else
299 return -EINVAL;
300
301 return count;
302 }
303
304 static ssize_t enabled_show(struct kobject *kobj,
305 struct kobj_attribute *attr, char *buf)
306 {
307 return double_flag_show(kobj, attr, buf,
308 TRANSPARENT_HUGEPAGE_FLAG,
309 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
310 }
311 static ssize_t enabled_store(struct kobject *kobj,
312 struct kobj_attribute *attr,
313 const char *buf, size_t count)
314 {
315 ssize_t ret;
316
317 ret = double_flag_store(kobj, attr, buf, count,
318 TRANSPARENT_HUGEPAGE_FLAG,
319 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
320
321 if (ret > 0) {
322 int err;
323
324 mutex_lock(&khugepaged_mutex);
325 err = start_stop_khugepaged();
326 mutex_unlock(&khugepaged_mutex);
327
328 if (err)
329 ret = err;
330 }
331
332 return ret;
333 }
334 static struct kobj_attribute enabled_attr =
335 __ATTR(enabled, 0644, enabled_show, enabled_store);
336
337 static ssize_t single_flag_show(struct kobject *kobj,
338 struct kobj_attribute *attr, char *buf,
339 enum transparent_hugepage_flag flag)
340 {
341 return sprintf(buf, "%d\n",
342 !!test_bit(flag, &transparent_hugepage_flags));
343 }
344
345 static ssize_t single_flag_store(struct kobject *kobj,
346 struct kobj_attribute *attr,
347 const char *buf, size_t count,
348 enum transparent_hugepage_flag flag)
349 {
350 unsigned long value;
351 int ret;
352
353 ret = kstrtoul(buf, 10, &value);
354 if (ret < 0)
355 return ret;
356 if (value > 1)
357 return -EINVAL;
358
359 if (value)
360 set_bit(flag, &transparent_hugepage_flags);
361 else
362 clear_bit(flag, &transparent_hugepage_flags);
363
364 return count;
365 }
366
367 /*
368 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
369 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
370 * memory just to allocate one more hugepage.
371 */
372 static ssize_t defrag_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
374 {
375 return double_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
377 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
378 }
379 static ssize_t defrag_store(struct kobject *kobj,
380 struct kobj_attribute *attr,
381 const char *buf, size_t count)
382 {
383 return double_flag_store(kobj, attr, buf, count,
384 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
385 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
386 }
387 static struct kobj_attribute defrag_attr =
388 __ATTR(defrag, 0644, defrag_show, defrag_store);
389
390 static ssize_t use_zero_page_show(struct kobject *kobj,
391 struct kobj_attribute *attr, char *buf)
392 {
393 return single_flag_show(kobj, attr, buf,
394 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
395 }
396 static ssize_t use_zero_page_store(struct kobject *kobj,
397 struct kobj_attribute *attr, const char *buf, size_t count)
398 {
399 return single_flag_store(kobj, attr, buf, count,
400 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401 }
402 static struct kobj_attribute use_zero_page_attr =
403 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
404 #ifdef CONFIG_DEBUG_VM
405 static ssize_t debug_cow_show(struct kobject *kobj,
406 struct kobj_attribute *attr, char *buf)
407 {
408 return single_flag_show(kobj, attr, buf,
409 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
410 }
411 static ssize_t debug_cow_store(struct kobject *kobj,
412 struct kobj_attribute *attr,
413 const char *buf, size_t count)
414 {
415 return single_flag_store(kobj, attr, buf, count,
416 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
417 }
418 static struct kobj_attribute debug_cow_attr =
419 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
420 #endif /* CONFIG_DEBUG_VM */
421
422 static struct attribute *hugepage_attr[] = {
423 &enabled_attr.attr,
424 &defrag_attr.attr,
425 &use_zero_page_attr.attr,
426 #ifdef CONFIG_DEBUG_VM
427 &debug_cow_attr.attr,
428 #endif
429 NULL,
430 };
431
432 static struct attribute_group hugepage_attr_group = {
433 .attrs = hugepage_attr,
434 };
435
436 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
437 struct kobj_attribute *attr,
438 char *buf)
439 {
440 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
441 }
442
443 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
444 struct kobj_attribute *attr,
445 const char *buf, size_t count)
446 {
447 unsigned long msecs;
448 int err;
449
450 err = kstrtoul(buf, 10, &msecs);
451 if (err || msecs > UINT_MAX)
452 return -EINVAL;
453
454 khugepaged_scan_sleep_millisecs = msecs;
455 wake_up_interruptible(&khugepaged_wait);
456
457 return count;
458 }
459 static struct kobj_attribute scan_sleep_millisecs_attr =
460 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
461 scan_sleep_millisecs_store);
462
463 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
464 struct kobj_attribute *attr,
465 char *buf)
466 {
467 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
468 }
469
470 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
471 struct kobj_attribute *attr,
472 const char *buf, size_t count)
473 {
474 unsigned long msecs;
475 int err;
476
477 err = kstrtoul(buf, 10, &msecs);
478 if (err || msecs > UINT_MAX)
479 return -EINVAL;
480
481 khugepaged_alloc_sleep_millisecs = msecs;
482 wake_up_interruptible(&khugepaged_wait);
483
484 return count;
485 }
486 static struct kobj_attribute alloc_sleep_millisecs_attr =
487 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
488 alloc_sleep_millisecs_store);
489
490 static ssize_t pages_to_scan_show(struct kobject *kobj,
491 struct kobj_attribute *attr,
492 char *buf)
493 {
494 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
495 }
496 static ssize_t pages_to_scan_store(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 const char *buf, size_t count)
499 {
500 int err;
501 unsigned long pages;
502
503 err = kstrtoul(buf, 10, &pages);
504 if (err || !pages || pages > UINT_MAX)
505 return -EINVAL;
506
507 khugepaged_pages_to_scan = pages;
508
509 return count;
510 }
511 static struct kobj_attribute pages_to_scan_attr =
512 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
513 pages_to_scan_store);
514
515 static ssize_t pages_collapsed_show(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 char *buf)
518 {
519 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
520 }
521 static struct kobj_attribute pages_collapsed_attr =
522 __ATTR_RO(pages_collapsed);
523
524 static ssize_t full_scans_show(struct kobject *kobj,
525 struct kobj_attribute *attr,
526 char *buf)
527 {
528 return sprintf(buf, "%u\n", khugepaged_full_scans);
529 }
530 static struct kobj_attribute full_scans_attr =
531 __ATTR_RO(full_scans);
532
533 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
534 struct kobj_attribute *attr, char *buf)
535 {
536 return single_flag_show(kobj, attr, buf,
537 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
538 }
539 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 const char *buf, size_t count)
542 {
543 return single_flag_store(kobj, attr, buf, count,
544 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
545 }
546 static struct kobj_attribute khugepaged_defrag_attr =
547 __ATTR(defrag, 0644, khugepaged_defrag_show,
548 khugepaged_defrag_store);
549
550 /*
551 * max_ptes_none controls if khugepaged should collapse hugepages over
552 * any unmapped ptes in turn potentially increasing the memory
553 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
554 * reduce the available free memory in the system as it
555 * runs. Increasing max_ptes_none will instead potentially reduce the
556 * free memory in the system during the khugepaged scan.
557 */
558 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
559 struct kobj_attribute *attr,
560 char *buf)
561 {
562 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
563 }
564 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
565 struct kobj_attribute *attr,
566 const char *buf, size_t count)
567 {
568 int err;
569 unsigned long max_ptes_none;
570
571 err = kstrtoul(buf, 10, &max_ptes_none);
572 if (err || max_ptes_none > HPAGE_PMD_NR-1)
573 return -EINVAL;
574
575 khugepaged_max_ptes_none = max_ptes_none;
576
577 return count;
578 }
579 static struct kobj_attribute khugepaged_max_ptes_none_attr =
580 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
581 khugepaged_max_ptes_none_store);
582
583 static struct attribute *khugepaged_attr[] = {
584 &khugepaged_defrag_attr.attr,
585 &khugepaged_max_ptes_none_attr.attr,
586 &pages_to_scan_attr.attr,
587 &pages_collapsed_attr.attr,
588 &full_scans_attr.attr,
589 &scan_sleep_millisecs_attr.attr,
590 &alloc_sleep_millisecs_attr.attr,
591 NULL,
592 };
593
594 static struct attribute_group khugepaged_attr_group = {
595 .attrs = khugepaged_attr,
596 .name = "khugepaged",
597 };
598
599 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
600 {
601 int err;
602
603 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
604 if (unlikely(!*hugepage_kobj)) {
605 pr_err("failed to create transparent hugepage kobject\n");
606 return -ENOMEM;
607 }
608
609 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
610 if (err) {
611 pr_err("failed to register transparent hugepage group\n");
612 goto delete_obj;
613 }
614
615 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
616 if (err) {
617 pr_err("failed to register transparent hugepage group\n");
618 goto remove_hp_group;
619 }
620
621 return 0;
622
623 remove_hp_group:
624 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
625 delete_obj:
626 kobject_put(*hugepage_kobj);
627 return err;
628 }
629
630 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
631 {
632 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
633 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
634 kobject_put(hugepage_kobj);
635 }
636 #else
637 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
638 {
639 return 0;
640 }
641
642 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
643 {
644 }
645 #endif /* CONFIG_SYSFS */
646
647 static int __init hugepage_init(void)
648 {
649 int err;
650 struct kobject *hugepage_kobj;
651
652 if (!has_transparent_hugepage()) {
653 transparent_hugepage_flags = 0;
654 return -EINVAL;
655 }
656
657 err = hugepage_init_sysfs(&hugepage_kobj);
658 if (err)
659 goto err_sysfs;
660
661 err = khugepaged_slab_init();
662 if (err)
663 goto err_slab;
664
665 err = register_shrinker(&huge_zero_page_shrinker);
666 if (err)
667 goto err_hzp_shrinker;
668
669 /*
670 * By default disable transparent hugepages on smaller systems,
671 * where the extra memory used could hurt more than TLB overhead
672 * is likely to save. The admin can still enable it through /sys.
673 */
674 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
675 transparent_hugepage_flags = 0;
676 return 0;
677 }
678
679 err = start_stop_khugepaged();
680 if (err)
681 goto err_khugepaged;
682
683 return 0;
684 err_khugepaged:
685 unregister_shrinker(&huge_zero_page_shrinker);
686 err_hzp_shrinker:
687 khugepaged_slab_exit();
688 err_slab:
689 hugepage_exit_sysfs(hugepage_kobj);
690 err_sysfs:
691 return err;
692 }
693 subsys_initcall(hugepage_init);
694
695 static int __init setup_transparent_hugepage(char *str)
696 {
697 int ret = 0;
698 if (!str)
699 goto out;
700 if (!strcmp(str, "always")) {
701 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
702 &transparent_hugepage_flags);
703 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
704 &transparent_hugepage_flags);
705 ret = 1;
706 } else if (!strcmp(str, "madvise")) {
707 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
708 &transparent_hugepage_flags);
709 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
710 &transparent_hugepage_flags);
711 ret = 1;
712 } else if (!strcmp(str, "never")) {
713 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
714 &transparent_hugepage_flags);
715 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
716 &transparent_hugepage_flags);
717 ret = 1;
718 }
719 out:
720 if (!ret)
721 pr_warn("transparent_hugepage= cannot parse, ignored\n");
722 return ret;
723 }
724 __setup("transparent_hugepage=", setup_transparent_hugepage);
725
726 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
727 {
728 if (likely(vma->vm_flags & VM_WRITE))
729 pmd = pmd_mkwrite(pmd);
730 return pmd;
731 }
732
733 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
734 {
735 pmd_t entry;
736 entry = mk_pmd(page, prot);
737 entry = pmd_mkhuge(entry);
738 return entry;
739 }
740
741 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
742 struct vm_area_struct *vma,
743 unsigned long address, pmd_t *pmd,
744 struct page *page, gfp_t gfp,
745 unsigned int flags)
746 {
747 struct mem_cgroup *memcg;
748 pgtable_t pgtable;
749 spinlock_t *ptl;
750 unsigned long haddr = address & HPAGE_PMD_MASK;
751
752 VM_BUG_ON_PAGE(!PageCompound(page), page);
753
754 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
755 put_page(page);
756 count_vm_event(THP_FAULT_FALLBACK);
757 return VM_FAULT_FALLBACK;
758 }
759
760 pgtable = pte_alloc_one(mm, haddr);
761 if (unlikely(!pgtable)) {
762 mem_cgroup_cancel_charge(page, memcg, true);
763 put_page(page);
764 return VM_FAULT_OOM;
765 }
766
767 clear_huge_page(page, haddr, HPAGE_PMD_NR);
768 /*
769 * The memory barrier inside __SetPageUptodate makes sure that
770 * clear_huge_page writes become visible before the set_pmd_at()
771 * write.
772 */
773 __SetPageUptodate(page);
774
775 ptl = pmd_lock(mm, pmd);
776 if (unlikely(!pmd_none(*pmd))) {
777 spin_unlock(ptl);
778 mem_cgroup_cancel_charge(page, memcg, true);
779 put_page(page);
780 pte_free(mm, pgtable);
781 } else {
782 pmd_t entry;
783
784 /* Deliver the page fault to userland */
785 if (userfaultfd_missing(vma)) {
786 int ret;
787
788 spin_unlock(ptl);
789 mem_cgroup_cancel_charge(page, memcg, true);
790 put_page(page);
791 pte_free(mm, pgtable);
792 ret = handle_userfault(vma, address, flags,
793 VM_UFFD_MISSING);
794 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
795 return ret;
796 }
797
798 entry = mk_huge_pmd(page, vma->vm_page_prot);
799 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
800 page_add_new_anon_rmap(page, vma, haddr, true);
801 mem_cgroup_commit_charge(page, memcg, false, true);
802 lru_cache_add_active_or_unevictable(page, vma);
803 pgtable_trans_huge_deposit(mm, pmd, pgtable);
804 set_pmd_at(mm, haddr, pmd, entry);
805 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
806 atomic_long_inc(&mm->nr_ptes);
807 spin_unlock(ptl);
808 count_vm_event(THP_FAULT_ALLOC);
809 }
810
811 return 0;
812 }
813
814 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
815 {
816 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
817 }
818
819 /* Caller must hold page table lock. */
820 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
821 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
822 struct page *zero_page)
823 {
824 pmd_t entry;
825 if (!pmd_none(*pmd))
826 return false;
827 entry = mk_pmd(zero_page, vma->vm_page_prot);
828 entry = pmd_mkhuge(entry);
829 pgtable_trans_huge_deposit(mm, pmd, pgtable);
830 set_pmd_at(mm, haddr, pmd, entry);
831 atomic_long_inc(&mm->nr_ptes);
832 return true;
833 }
834
835 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
836 unsigned long address, pmd_t *pmd,
837 unsigned int flags)
838 {
839 gfp_t gfp;
840 struct page *page;
841 unsigned long haddr = address & HPAGE_PMD_MASK;
842
843 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
844 return VM_FAULT_FALLBACK;
845 if (unlikely(anon_vma_prepare(vma)))
846 return VM_FAULT_OOM;
847 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
848 return VM_FAULT_OOM;
849 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
850 transparent_hugepage_use_zero_page()) {
851 spinlock_t *ptl;
852 pgtable_t pgtable;
853 struct page *zero_page;
854 bool set;
855 int ret;
856 pgtable = pte_alloc_one(mm, haddr);
857 if (unlikely(!pgtable))
858 return VM_FAULT_OOM;
859 zero_page = get_huge_zero_page();
860 if (unlikely(!zero_page)) {
861 pte_free(mm, pgtable);
862 count_vm_event(THP_FAULT_FALLBACK);
863 return VM_FAULT_FALLBACK;
864 }
865 ptl = pmd_lock(mm, pmd);
866 ret = 0;
867 set = false;
868 if (pmd_none(*pmd)) {
869 if (userfaultfd_missing(vma)) {
870 spin_unlock(ptl);
871 ret = handle_userfault(vma, address, flags,
872 VM_UFFD_MISSING);
873 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
874 } else {
875 set_huge_zero_page(pgtable, mm, vma,
876 haddr, pmd,
877 zero_page);
878 spin_unlock(ptl);
879 set = true;
880 }
881 } else
882 spin_unlock(ptl);
883 if (!set) {
884 pte_free(mm, pgtable);
885 put_huge_zero_page();
886 }
887 return ret;
888 }
889 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
890 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
891 if (unlikely(!page)) {
892 count_vm_event(THP_FAULT_FALLBACK);
893 return VM_FAULT_FALLBACK;
894 }
895 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
896 flags);
897 }
898
899 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
900 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
901 {
902 struct mm_struct *mm = vma->vm_mm;
903 pmd_t entry;
904 spinlock_t *ptl;
905
906 ptl = pmd_lock(mm, pmd);
907 if (pmd_none(*pmd)) {
908 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
909 if (write) {
910 entry = pmd_mkyoung(pmd_mkdirty(entry));
911 entry = maybe_pmd_mkwrite(entry, vma);
912 }
913 set_pmd_at(mm, addr, pmd, entry);
914 update_mmu_cache_pmd(vma, addr, pmd);
915 }
916 spin_unlock(ptl);
917 }
918
919 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
920 pmd_t *pmd, unsigned long pfn, bool write)
921 {
922 pgprot_t pgprot = vma->vm_page_prot;
923 /*
924 * If we had pmd_special, we could avoid all these restrictions,
925 * but we need to be consistent with PTEs and architectures that
926 * can't support a 'special' bit.
927 */
928 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
929 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
930 (VM_PFNMAP|VM_MIXEDMAP));
931 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
932 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
933
934 if (addr < vma->vm_start || addr >= vma->vm_end)
935 return VM_FAULT_SIGBUS;
936 if (track_pfn_insert(vma, &pgprot, pfn))
937 return VM_FAULT_SIGBUS;
938 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
939 return VM_FAULT_NOPAGE;
940 }
941
942 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
944 struct vm_area_struct *vma)
945 {
946 spinlock_t *dst_ptl, *src_ptl;
947 struct page *src_page;
948 pmd_t pmd;
949 pgtable_t pgtable;
950 int ret;
951
952 ret = -ENOMEM;
953 pgtable = pte_alloc_one(dst_mm, addr);
954 if (unlikely(!pgtable))
955 goto out;
956
957 dst_ptl = pmd_lock(dst_mm, dst_pmd);
958 src_ptl = pmd_lockptr(src_mm, src_pmd);
959 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
960
961 ret = -EAGAIN;
962 pmd = *src_pmd;
963 if (unlikely(!pmd_trans_huge(pmd))) {
964 pte_free(dst_mm, pgtable);
965 goto out_unlock;
966 }
967 /*
968 * When page table lock is held, the huge zero pmd should not be
969 * under splitting since we don't split the page itself, only pmd to
970 * a page table.
971 */
972 if (is_huge_zero_pmd(pmd)) {
973 struct page *zero_page;
974 /*
975 * get_huge_zero_page() will never allocate a new page here,
976 * since we already have a zero page to copy. It just takes a
977 * reference.
978 */
979 zero_page = get_huge_zero_page();
980 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
981 zero_page);
982 ret = 0;
983 goto out_unlock;
984 }
985
986 if (unlikely(pmd_trans_splitting(pmd))) {
987 /* split huge page running from under us */
988 spin_unlock(src_ptl);
989 spin_unlock(dst_ptl);
990 pte_free(dst_mm, pgtable);
991
992 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
993 goto out;
994 }
995 src_page = pmd_page(pmd);
996 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
997 get_page(src_page);
998 page_dup_rmap(src_page);
999 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1000
1001 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1002 pmd = pmd_mkold(pmd_wrprotect(pmd));
1003 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1004 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1005 atomic_long_inc(&dst_mm->nr_ptes);
1006
1007 ret = 0;
1008 out_unlock:
1009 spin_unlock(src_ptl);
1010 spin_unlock(dst_ptl);
1011 out:
1012 return ret;
1013 }
1014
1015 void huge_pmd_set_accessed(struct mm_struct *mm,
1016 struct vm_area_struct *vma,
1017 unsigned long address,
1018 pmd_t *pmd, pmd_t orig_pmd,
1019 int dirty)
1020 {
1021 spinlock_t *ptl;
1022 pmd_t entry;
1023 unsigned long haddr;
1024
1025 ptl = pmd_lock(mm, pmd);
1026 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1027 goto unlock;
1028
1029 entry = pmd_mkyoung(orig_pmd);
1030 haddr = address & HPAGE_PMD_MASK;
1031 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1032 update_mmu_cache_pmd(vma, address, pmd);
1033
1034 unlock:
1035 spin_unlock(ptl);
1036 }
1037
1038 /*
1039 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1040 * during copy_user_huge_page()'s copy_page_rep(): in the case when
1041 * the source page gets split and a tail freed before copy completes.
1042 * Called under pmd_lock of checked pmd, so safe from splitting itself.
1043 */
1044 static void get_user_huge_page(struct page *page)
1045 {
1046 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1047 struct page *endpage = page + HPAGE_PMD_NR;
1048
1049 atomic_add(HPAGE_PMD_NR, &page->_count);
1050 while (++page < endpage)
1051 get_huge_page_tail(page);
1052 } else {
1053 get_page(page);
1054 }
1055 }
1056
1057 static void put_user_huge_page(struct page *page)
1058 {
1059 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1060 struct page *endpage = page + HPAGE_PMD_NR;
1061
1062 while (page < endpage)
1063 put_page(page++);
1064 } else {
1065 put_page(page);
1066 }
1067 }
1068
1069 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1070 struct vm_area_struct *vma,
1071 unsigned long address,
1072 pmd_t *pmd, pmd_t orig_pmd,
1073 struct page *page,
1074 unsigned long haddr)
1075 {
1076 struct mem_cgroup *memcg;
1077 spinlock_t *ptl;
1078 pgtable_t pgtable;
1079 pmd_t _pmd;
1080 int ret = 0, i;
1081 struct page **pages;
1082 unsigned long mmun_start; /* For mmu_notifiers */
1083 unsigned long mmun_end; /* For mmu_notifiers */
1084
1085 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1086 GFP_KERNEL);
1087 if (unlikely(!pages)) {
1088 ret |= VM_FAULT_OOM;
1089 goto out;
1090 }
1091
1092 for (i = 0; i < HPAGE_PMD_NR; i++) {
1093 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1094 __GFP_OTHER_NODE,
1095 vma, address, page_to_nid(page));
1096 if (unlikely(!pages[i] ||
1097 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1098 &memcg, false))) {
1099 if (pages[i])
1100 put_page(pages[i]);
1101 while (--i >= 0) {
1102 memcg = (void *)page_private(pages[i]);
1103 set_page_private(pages[i], 0);
1104 mem_cgroup_cancel_charge(pages[i], memcg,
1105 false);
1106 put_page(pages[i]);
1107 }
1108 kfree(pages);
1109 ret |= VM_FAULT_OOM;
1110 goto out;
1111 }
1112 set_page_private(pages[i], (unsigned long)memcg);
1113 }
1114
1115 for (i = 0; i < HPAGE_PMD_NR; i++) {
1116 copy_user_highpage(pages[i], page + i,
1117 haddr + PAGE_SIZE * i, vma);
1118 __SetPageUptodate(pages[i]);
1119 cond_resched();
1120 }
1121
1122 mmun_start = haddr;
1123 mmun_end = haddr + HPAGE_PMD_SIZE;
1124 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1125
1126 ptl = pmd_lock(mm, pmd);
1127 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1128 goto out_free_pages;
1129 VM_BUG_ON_PAGE(!PageHead(page), page);
1130
1131 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1132 /* leave pmd empty until pte is filled */
1133
1134 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1135 pmd_populate(mm, &_pmd, pgtable);
1136
1137 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1138 pte_t *pte, entry;
1139 entry = mk_pte(pages[i], vma->vm_page_prot);
1140 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1141 memcg = (void *)page_private(pages[i]);
1142 set_page_private(pages[i], 0);
1143 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1144 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1145 lru_cache_add_active_or_unevictable(pages[i], vma);
1146 pte = pte_offset_map(&_pmd, haddr);
1147 VM_BUG_ON(!pte_none(*pte));
1148 set_pte_at(mm, haddr, pte, entry);
1149 pte_unmap(pte);
1150 }
1151 kfree(pages);
1152
1153 smp_wmb(); /* make pte visible before pmd */
1154 pmd_populate(mm, pmd, pgtable);
1155 page_remove_rmap(page, true);
1156 spin_unlock(ptl);
1157
1158 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1159
1160 ret |= VM_FAULT_WRITE;
1161 put_page(page);
1162
1163 out:
1164 return ret;
1165
1166 out_free_pages:
1167 spin_unlock(ptl);
1168 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1169 for (i = 0; i < HPAGE_PMD_NR; i++) {
1170 memcg = (void *)page_private(pages[i]);
1171 set_page_private(pages[i], 0);
1172 mem_cgroup_cancel_charge(pages[i], memcg, false);
1173 put_page(pages[i]);
1174 }
1175 kfree(pages);
1176 goto out;
1177 }
1178
1179 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1180 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1181 {
1182 spinlock_t *ptl;
1183 int ret = 0;
1184 struct page *page = NULL, *new_page;
1185 struct mem_cgroup *memcg;
1186 unsigned long haddr;
1187 unsigned long mmun_start; /* For mmu_notifiers */
1188 unsigned long mmun_end; /* For mmu_notifiers */
1189 gfp_t huge_gfp; /* for allocation and charge */
1190
1191 ptl = pmd_lockptr(mm, pmd);
1192 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1193 haddr = address & HPAGE_PMD_MASK;
1194 if (is_huge_zero_pmd(orig_pmd))
1195 goto alloc;
1196 spin_lock(ptl);
1197 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1198 goto out_unlock;
1199
1200 page = pmd_page(orig_pmd);
1201 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1202 if (page_mapcount(page) == 1) {
1203 pmd_t entry;
1204 entry = pmd_mkyoung(orig_pmd);
1205 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1206 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1207 update_mmu_cache_pmd(vma, address, pmd);
1208 ret |= VM_FAULT_WRITE;
1209 goto out_unlock;
1210 }
1211 get_user_huge_page(page);
1212 spin_unlock(ptl);
1213 alloc:
1214 if (transparent_hugepage_enabled(vma) &&
1215 !transparent_hugepage_debug_cow()) {
1216 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1217 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1218 } else
1219 new_page = NULL;
1220
1221 if (unlikely(!new_page)) {
1222 if (!page) {
1223 split_huge_page_pmd(vma, address, pmd);
1224 ret |= VM_FAULT_FALLBACK;
1225 } else {
1226 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1227 pmd, orig_pmd, page, haddr);
1228 if (ret & VM_FAULT_OOM) {
1229 split_huge_page(page);
1230 ret |= VM_FAULT_FALLBACK;
1231 }
1232 put_user_huge_page(page);
1233 }
1234 count_vm_event(THP_FAULT_FALLBACK);
1235 goto out;
1236 }
1237
1238 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1239 true))) {
1240 put_page(new_page);
1241 if (page) {
1242 split_huge_page(page);
1243 put_user_huge_page(page);
1244 } else
1245 split_huge_page_pmd(vma, address, pmd);
1246 ret |= VM_FAULT_FALLBACK;
1247 count_vm_event(THP_FAULT_FALLBACK);
1248 goto out;
1249 }
1250
1251 count_vm_event(THP_FAULT_ALLOC);
1252
1253 if (!page)
1254 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1255 else
1256 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1257 __SetPageUptodate(new_page);
1258
1259 mmun_start = haddr;
1260 mmun_end = haddr + HPAGE_PMD_SIZE;
1261 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1262
1263 spin_lock(ptl);
1264 if (page)
1265 put_user_huge_page(page);
1266 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1267 spin_unlock(ptl);
1268 mem_cgroup_cancel_charge(new_page, memcg, true);
1269 put_page(new_page);
1270 goto out_mn;
1271 } else {
1272 pmd_t entry;
1273 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1274 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1275 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1276 page_add_new_anon_rmap(new_page, vma, haddr, true);
1277 mem_cgroup_commit_charge(new_page, memcg, false, true);
1278 lru_cache_add_active_or_unevictable(new_page, vma);
1279 set_pmd_at(mm, haddr, pmd, entry);
1280 update_mmu_cache_pmd(vma, address, pmd);
1281 if (!page) {
1282 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1283 put_huge_zero_page();
1284 } else {
1285 VM_BUG_ON_PAGE(!PageHead(page), page);
1286 page_remove_rmap(page, true);
1287 put_page(page);
1288 }
1289 ret |= VM_FAULT_WRITE;
1290 }
1291 spin_unlock(ptl);
1292 out_mn:
1293 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1294 out:
1295 return ret;
1296 out_unlock:
1297 spin_unlock(ptl);
1298 return ret;
1299 }
1300
1301 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1302 unsigned long addr,
1303 pmd_t *pmd,
1304 unsigned int flags)
1305 {
1306 struct mm_struct *mm = vma->vm_mm;
1307 struct page *page = NULL;
1308
1309 assert_spin_locked(pmd_lockptr(mm, pmd));
1310
1311 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1312 goto out;
1313
1314 /* Avoid dumping huge zero page */
1315 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1316 return ERR_PTR(-EFAULT);
1317
1318 /* Full NUMA hinting faults to serialise migration in fault paths */
1319 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1320 goto out;
1321
1322 page = pmd_page(*pmd);
1323 VM_BUG_ON_PAGE(!PageHead(page), page);
1324 if (flags & FOLL_TOUCH) {
1325 pmd_t _pmd;
1326 /*
1327 * We should set the dirty bit only for FOLL_WRITE but
1328 * for now the dirty bit in the pmd is meaningless.
1329 * And if the dirty bit will become meaningful and
1330 * we'll only set it with FOLL_WRITE, an atomic
1331 * set_bit will be required on the pmd to set the
1332 * young bit, instead of the current set_pmd_at.
1333 */
1334 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1335 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1336 pmd, _pmd, 1))
1337 update_mmu_cache_pmd(vma, addr, pmd);
1338 }
1339 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1340 if (page->mapping && trylock_page(page)) {
1341 lru_add_drain();
1342 if (page->mapping)
1343 mlock_vma_page(page);
1344 unlock_page(page);
1345 }
1346 }
1347 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1348 VM_BUG_ON_PAGE(!PageCompound(page), page);
1349 if (flags & FOLL_GET)
1350 get_page_foll(page);
1351
1352 out:
1353 return page;
1354 }
1355
1356 /* NUMA hinting page fault entry point for trans huge pmds */
1357 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1358 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1359 {
1360 spinlock_t *ptl;
1361 struct anon_vma *anon_vma = NULL;
1362 struct page *page;
1363 unsigned long haddr = addr & HPAGE_PMD_MASK;
1364 int page_nid = -1, this_nid = numa_node_id();
1365 int target_nid, last_cpupid = -1;
1366 bool page_locked;
1367 bool migrated = false;
1368 bool was_writable;
1369 int flags = 0;
1370
1371 /* A PROT_NONE fault should not end up here */
1372 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1373
1374 ptl = pmd_lock(mm, pmdp);
1375 if (unlikely(!pmd_same(pmd, *pmdp)))
1376 goto out_unlock;
1377
1378 /*
1379 * If there are potential migrations, wait for completion and retry
1380 * without disrupting NUMA hinting information. Do not relock and
1381 * check_same as the page may no longer be mapped.
1382 */
1383 if (unlikely(pmd_trans_migrating(*pmdp))) {
1384 page = pmd_page(*pmdp);
1385 spin_unlock(ptl);
1386 wait_on_page_locked(page);
1387 goto out;
1388 }
1389
1390 page = pmd_page(pmd);
1391 BUG_ON(is_huge_zero_page(page));
1392 page_nid = page_to_nid(page);
1393 last_cpupid = page_cpupid_last(page);
1394 count_vm_numa_event(NUMA_HINT_FAULTS);
1395 if (page_nid == this_nid) {
1396 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1397 flags |= TNF_FAULT_LOCAL;
1398 }
1399
1400 /* See similar comment in do_numa_page for explanation */
1401 if (!(vma->vm_flags & VM_WRITE))
1402 flags |= TNF_NO_GROUP;
1403
1404 /*
1405 * Acquire the page lock to serialise THP migrations but avoid dropping
1406 * page_table_lock if at all possible
1407 */
1408 page_locked = trylock_page(page);
1409 target_nid = mpol_misplaced(page, vma, haddr);
1410 if (target_nid == -1) {
1411 /* If the page was locked, there are no parallel migrations */
1412 if (page_locked)
1413 goto clear_pmdnuma;
1414 }
1415
1416 /* Migration could have started since the pmd_trans_migrating check */
1417 if (!page_locked) {
1418 spin_unlock(ptl);
1419 wait_on_page_locked(page);
1420 page_nid = -1;
1421 goto out;
1422 }
1423
1424 /*
1425 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1426 * to serialises splits
1427 */
1428 get_page(page);
1429 spin_unlock(ptl);
1430 anon_vma = page_lock_anon_vma_read(page);
1431
1432 /* Confirm the PMD did not change while page_table_lock was released */
1433 spin_lock(ptl);
1434 if (unlikely(!pmd_same(pmd, *pmdp))) {
1435 unlock_page(page);
1436 put_page(page);
1437 page_nid = -1;
1438 goto out_unlock;
1439 }
1440
1441 /* Bail if we fail to protect against THP splits for any reason */
1442 if (unlikely(!anon_vma)) {
1443 put_page(page);
1444 page_nid = -1;
1445 goto clear_pmdnuma;
1446 }
1447
1448 /*
1449 * Migrate the THP to the requested node, returns with page unlocked
1450 * and access rights restored.
1451 */
1452 spin_unlock(ptl);
1453 migrated = migrate_misplaced_transhuge_page(mm, vma,
1454 pmdp, pmd, addr, page, target_nid);
1455 if (migrated) {
1456 flags |= TNF_MIGRATED;
1457 page_nid = target_nid;
1458 } else
1459 flags |= TNF_MIGRATE_FAIL;
1460
1461 goto out;
1462 clear_pmdnuma:
1463 BUG_ON(!PageLocked(page));
1464 was_writable = pmd_write(pmd);
1465 pmd = pmd_modify(pmd, vma->vm_page_prot);
1466 pmd = pmd_mkyoung(pmd);
1467 if (was_writable)
1468 pmd = pmd_mkwrite(pmd);
1469 set_pmd_at(mm, haddr, pmdp, pmd);
1470 update_mmu_cache_pmd(vma, addr, pmdp);
1471 unlock_page(page);
1472 out_unlock:
1473 spin_unlock(ptl);
1474
1475 out:
1476 if (anon_vma)
1477 page_unlock_anon_vma_read(anon_vma);
1478
1479 if (page_nid != -1)
1480 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1481
1482 return 0;
1483 }
1484
1485 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1486 pmd_t *pmd, unsigned long addr)
1487 {
1488 pmd_t orig_pmd;
1489 spinlock_t *ptl;
1490
1491 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1492 return 0;
1493 /*
1494 * For architectures like ppc64 we look at deposited pgtable
1495 * when calling pmdp_huge_get_and_clear. So do the
1496 * pgtable_trans_huge_withdraw after finishing pmdp related
1497 * operations.
1498 */
1499 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1500 tlb->fullmm);
1501 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1502 if (vma_is_dax(vma)) {
1503 spin_unlock(ptl);
1504 if (is_huge_zero_pmd(orig_pmd))
1505 put_huge_zero_page();
1506 } else if (is_huge_zero_pmd(orig_pmd)) {
1507 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1508 atomic_long_dec(&tlb->mm->nr_ptes);
1509 spin_unlock(ptl);
1510 put_huge_zero_page();
1511 } else {
1512 struct page *page = pmd_page(orig_pmd);
1513 page_remove_rmap(page, true);
1514 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1515 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1516 VM_BUG_ON_PAGE(!PageHead(page), page);
1517 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1518 atomic_long_dec(&tlb->mm->nr_ptes);
1519 spin_unlock(ptl);
1520 tlb_remove_page(tlb, page);
1521 }
1522 return 1;
1523 }
1524
1525 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1526 unsigned long old_addr,
1527 unsigned long new_addr, unsigned long old_end,
1528 pmd_t *old_pmd, pmd_t *new_pmd)
1529 {
1530 spinlock_t *old_ptl, *new_ptl;
1531 int ret = 0;
1532 pmd_t pmd;
1533
1534 struct mm_struct *mm = vma->vm_mm;
1535
1536 if ((old_addr & ~HPAGE_PMD_MASK) ||
1537 (new_addr & ~HPAGE_PMD_MASK) ||
1538 old_end - old_addr < HPAGE_PMD_SIZE ||
1539 (new_vma->vm_flags & VM_NOHUGEPAGE))
1540 goto out;
1541
1542 /*
1543 * The destination pmd shouldn't be established, free_pgtables()
1544 * should have release it.
1545 */
1546 if (WARN_ON(!pmd_none(*new_pmd))) {
1547 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1548 goto out;
1549 }
1550
1551 /*
1552 * We don't have to worry about the ordering of src and dst
1553 * ptlocks because exclusive mmap_sem prevents deadlock.
1554 */
1555 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1556 if (ret == 1) {
1557 new_ptl = pmd_lockptr(mm, new_pmd);
1558 if (new_ptl != old_ptl)
1559 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1560 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1561 VM_BUG_ON(!pmd_none(*new_pmd));
1562
1563 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1564 pgtable_t pgtable;
1565 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1566 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1567 }
1568 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1569 if (new_ptl != old_ptl)
1570 spin_unlock(new_ptl);
1571 spin_unlock(old_ptl);
1572 }
1573 out:
1574 return ret;
1575 }
1576
1577 /*
1578 * Returns
1579 * - 0 if PMD could not be locked
1580 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1581 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1582 */
1583 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1584 unsigned long addr, pgprot_t newprot, int prot_numa)
1585 {
1586 struct mm_struct *mm = vma->vm_mm;
1587 spinlock_t *ptl;
1588 int ret = 0;
1589
1590 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1591 pmd_t entry;
1592 bool preserve_write = prot_numa && pmd_write(*pmd);
1593 ret = 1;
1594
1595 /*
1596 * Avoid trapping faults against the zero page. The read-only
1597 * data is likely to be read-cached on the local CPU and
1598 * local/remote hits to the zero page are not interesting.
1599 */
1600 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1601 spin_unlock(ptl);
1602 return ret;
1603 }
1604
1605 if (!prot_numa || !pmd_protnone(*pmd)) {
1606 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1607 entry = pmd_modify(entry, newprot);
1608 if (preserve_write)
1609 entry = pmd_mkwrite(entry);
1610 ret = HPAGE_PMD_NR;
1611 set_pmd_at(mm, addr, pmd, entry);
1612 BUG_ON(!preserve_write && pmd_write(entry));
1613 }
1614 spin_unlock(ptl);
1615 }
1616
1617 return ret;
1618 }
1619
1620 /*
1621 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1622 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1623 *
1624 * Note that if it returns 1, this routine returns without unlocking page
1625 * table locks. So callers must unlock them.
1626 */
1627 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1628 spinlock_t **ptl)
1629 {
1630 *ptl = pmd_lock(vma->vm_mm, pmd);
1631 if (likely(pmd_trans_huge(*pmd))) {
1632 if (unlikely(pmd_trans_splitting(*pmd))) {
1633 spin_unlock(*ptl);
1634 wait_split_huge_page(vma->anon_vma, pmd);
1635 return -1;
1636 } else {
1637 /* Thp mapped by 'pmd' is stable, so we can
1638 * handle it as it is. */
1639 return 1;
1640 }
1641 }
1642 spin_unlock(*ptl);
1643 return 0;
1644 }
1645
1646 /*
1647 * This function returns whether a given @page is mapped onto the @address
1648 * in the virtual space of @mm.
1649 *
1650 * When it's true, this function returns *pmd with holding the page table lock
1651 * and passing it back to the caller via @ptl.
1652 * If it's false, returns NULL without holding the page table lock.
1653 */
1654 pmd_t *page_check_address_pmd(struct page *page,
1655 struct mm_struct *mm,
1656 unsigned long address,
1657 enum page_check_address_pmd_flag flag,
1658 spinlock_t **ptl)
1659 {
1660 pgd_t *pgd;
1661 pud_t *pud;
1662 pmd_t *pmd;
1663
1664 if (address & ~HPAGE_PMD_MASK)
1665 return NULL;
1666
1667 pgd = pgd_offset(mm, address);
1668 if (!pgd_present(*pgd))
1669 return NULL;
1670 pud = pud_offset(pgd, address);
1671 if (!pud_present(*pud))
1672 return NULL;
1673 pmd = pmd_offset(pud, address);
1674
1675 *ptl = pmd_lock(mm, pmd);
1676 if (!pmd_present(*pmd))
1677 goto unlock;
1678 if (pmd_page(*pmd) != page)
1679 goto unlock;
1680 /*
1681 * split_vma() may create temporary aliased mappings. There is
1682 * no risk as long as all huge pmd are found and have their
1683 * splitting bit set before __split_huge_page_refcount
1684 * runs. Finding the same huge pmd more than once during the
1685 * same rmap walk is not a problem.
1686 */
1687 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1688 pmd_trans_splitting(*pmd))
1689 goto unlock;
1690 if (pmd_trans_huge(*pmd)) {
1691 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1692 !pmd_trans_splitting(*pmd));
1693 return pmd;
1694 }
1695 unlock:
1696 spin_unlock(*ptl);
1697 return NULL;
1698 }
1699
1700 static int __split_huge_page_splitting(struct page *page,
1701 struct vm_area_struct *vma,
1702 unsigned long address)
1703 {
1704 struct mm_struct *mm = vma->vm_mm;
1705 spinlock_t *ptl;
1706 pmd_t *pmd;
1707 int ret = 0;
1708 /* For mmu_notifiers */
1709 const unsigned long mmun_start = address;
1710 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1711
1712 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1713 pmd = page_check_address_pmd(page, mm, address,
1714 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1715 if (pmd) {
1716 /*
1717 * We can't temporarily set the pmd to null in order
1718 * to split it, the pmd must remain marked huge at all
1719 * times or the VM won't take the pmd_trans_huge paths
1720 * and it won't wait on the anon_vma->root->rwsem to
1721 * serialize against split_huge_page*.
1722 */
1723 pmdp_splitting_flush(vma, address, pmd);
1724
1725 ret = 1;
1726 spin_unlock(ptl);
1727 }
1728 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1729
1730 return ret;
1731 }
1732
1733 static void __split_huge_page_refcount(struct page *page,
1734 struct list_head *list)
1735 {
1736 int i;
1737 struct zone *zone = page_zone(page);
1738 struct lruvec *lruvec;
1739 int tail_count = 0;
1740
1741 /* prevent PageLRU to go away from under us, and freeze lru stats */
1742 spin_lock_irq(&zone->lru_lock);
1743 lruvec = mem_cgroup_page_lruvec(page, zone);
1744
1745 compound_lock(page);
1746 /* complete memcg works before add pages to LRU */
1747 mem_cgroup_split_huge_fixup(page);
1748
1749 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1750 struct page *page_tail = page + i;
1751
1752 /* tail_page->_mapcount cannot change */
1753 BUG_ON(page_mapcount(page_tail) < 0);
1754 tail_count += page_mapcount(page_tail);
1755 /* check for overflow */
1756 BUG_ON(tail_count < 0);
1757 BUG_ON(atomic_read(&page_tail->_count) != 0);
1758 /*
1759 * tail_page->_count is zero and not changing from
1760 * under us. But get_page_unless_zero() may be running
1761 * from under us on the tail_page. If we used
1762 * atomic_set() below instead of atomic_add(), we
1763 * would then run atomic_set() concurrently with
1764 * get_page_unless_zero(), and atomic_set() is
1765 * implemented in C not using locked ops. spin_unlock
1766 * on x86 sometime uses locked ops because of PPro
1767 * errata 66, 92, so unless somebody can guarantee
1768 * atomic_set() here would be safe on all archs (and
1769 * not only on x86), it's safer to use atomic_add().
1770 */
1771 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1772 &page_tail->_count);
1773
1774 /* after clearing PageTail the gup refcount can be released */
1775 smp_mb__after_atomic();
1776
1777 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1778 page_tail->flags |= (page->flags &
1779 ((1L << PG_referenced) |
1780 (1L << PG_swapbacked) |
1781 (1L << PG_mlocked) |
1782 (1L << PG_uptodate) |
1783 (1L << PG_active) |
1784 (1L << PG_unevictable)));
1785 page_tail->flags |= (1L << PG_dirty);
1786
1787 clear_compound_head(page_tail);
1788
1789 if (page_is_young(page))
1790 set_page_young(page_tail);
1791 if (page_is_idle(page))
1792 set_page_idle(page_tail);
1793
1794 /*
1795 * __split_huge_page_splitting() already set the
1796 * splitting bit in all pmd that could map this
1797 * hugepage, that will ensure no CPU can alter the
1798 * mapcount on the head page. The mapcount is only
1799 * accounted in the head page and it has to be
1800 * transferred to all tail pages in the below code. So
1801 * for this code to be safe, the split the mapcount
1802 * can't change. But that doesn't mean userland can't
1803 * keep changing and reading the page contents while
1804 * we transfer the mapcount, so the pmd splitting
1805 * status is achieved setting a reserved bit in the
1806 * pmd, not by clearing the present bit.
1807 */
1808 page_tail->_mapcount = page->_mapcount;
1809
1810 BUG_ON(page_tail->mapping != TAIL_MAPPING);
1811 page_tail->mapping = page->mapping;
1812
1813 page_tail->index = page->index + i;
1814 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1815
1816 BUG_ON(!PageAnon(page_tail));
1817 BUG_ON(!PageUptodate(page_tail));
1818 BUG_ON(!PageDirty(page_tail));
1819 BUG_ON(!PageSwapBacked(page_tail));
1820
1821 lru_add_page_tail(page, page_tail, lruvec, list);
1822 }
1823 atomic_sub(tail_count, &page->_count);
1824 BUG_ON(atomic_read(&page->_count) <= 0);
1825
1826 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1827
1828 ClearPageCompound(page);
1829 compound_unlock(page);
1830 spin_unlock_irq(&zone->lru_lock);
1831
1832 for (i = 1; i < HPAGE_PMD_NR; i++) {
1833 struct page *page_tail = page + i;
1834 BUG_ON(page_count(page_tail) <= 0);
1835 /*
1836 * Tail pages may be freed if there wasn't any mapping
1837 * like if add_to_swap() is running on a lru page that
1838 * had its mapping zapped. And freeing these pages
1839 * requires taking the lru_lock so we do the put_page
1840 * of the tail pages after the split is complete.
1841 */
1842 put_page(page_tail);
1843 }
1844
1845 /*
1846 * Only the head page (now become a regular page) is required
1847 * to be pinned by the caller.
1848 */
1849 BUG_ON(page_count(page) <= 0);
1850 }
1851
1852 static int __split_huge_page_map(struct page *page,
1853 struct vm_area_struct *vma,
1854 unsigned long address)
1855 {
1856 struct mm_struct *mm = vma->vm_mm;
1857 spinlock_t *ptl;
1858 pmd_t *pmd, _pmd;
1859 int ret = 0, i;
1860 pgtable_t pgtable;
1861 unsigned long haddr;
1862
1863 pmd = page_check_address_pmd(page, mm, address,
1864 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1865 if (pmd) {
1866 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1867 pmd_populate(mm, &_pmd, pgtable);
1868 if (pmd_write(*pmd))
1869 BUG_ON(page_mapcount(page) != 1);
1870
1871 haddr = address;
1872 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1873 pte_t *pte, entry;
1874 BUG_ON(PageCompound(page+i));
1875 /*
1876 * Note that NUMA hinting access restrictions are not
1877 * transferred to avoid any possibility of altering
1878 * permissions across VMAs.
1879 */
1880 entry = mk_pte(page + i, vma->vm_page_prot);
1881 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1882 if (!pmd_write(*pmd))
1883 entry = pte_wrprotect(entry);
1884 if (!pmd_young(*pmd))
1885 entry = pte_mkold(entry);
1886 pte = pte_offset_map(&_pmd, haddr);
1887 BUG_ON(!pte_none(*pte));
1888 set_pte_at(mm, haddr, pte, entry);
1889 pte_unmap(pte);
1890 }
1891
1892 smp_wmb(); /* make pte visible before pmd */
1893 /*
1894 * Up to this point the pmd is present and huge and
1895 * userland has the whole access to the hugepage
1896 * during the split (which happens in place). If we
1897 * overwrite the pmd with the not-huge version
1898 * pointing to the pte here (which of course we could
1899 * if all CPUs were bug free), userland could trigger
1900 * a small page size TLB miss on the small sized TLB
1901 * while the hugepage TLB entry is still established
1902 * in the huge TLB. Some CPU doesn't like that. See
1903 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1904 * Erratum 383 on page 93. Intel should be safe but is
1905 * also warns that it's only safe if the permission
1906 * and cache attributes of the two entries loaded in
1907 * the two TLB is identical (which should be the case
1908 * here). But it is generally safer to never allow
1909 * small and huge TLB entries for the same virtual
1910 * address to be loaded simultaneously. So instead of
1911 * doing "pmd_populate(); flush_pmd_tlb_range();" we first
1912 * mark the current pmd notpresent (atomically because
1913 * here the pmd_trans_huge and pmd_trans_splitting
1914 * must remain set at all times on the pmd until the
1915 * split is complete for this pmd), then we flush the
1916 * SMP TLB and finally we write the non-huge version
1917 * of the pmd entry with pmd_populate.
1918 */
1919 pmdp_invalidate(vma, address, pmd);
1920 pmd_populate(mm, pmd, pgtable);
1921 ret = 1;
1922 spin_unlock(ptl);
1923 }
1924
1925 return ret;
1926 }
1927
1928 /* must be called with anon_vma->root->rwsem held */
1929 static void __split_huge_page(struct page *page,
1930 struct anon_vma *anon_vma,
1931 struct list_head *list)
1932 {
1933 int mapcount, mapcount2;
1934 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1935 struct anon_vma_chain *avc;
1936
1937 BUG_ON(!PageHead(page));
1938 BUG_ON(PageTail(page));
1939
1940 mapcount = 0;
1941 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1942 struct vm_area_struct *vma = avc->vma;
1943 unsigned long addr = vma_address(page, vma);
1944 BUG_ON(is_vma_temporary_stack(vma));
1945 mapcount += __split_huge_page_splitting(page, vma, addr);
1946 }
1947 /*
1948 * It is critical that new vmas are added to the tail of the
1949 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1950 * and establishes a child pmd before
1951 * __split_huge_page_splitting() freezes the parent pmd (so if
1952 * we fail to prevent copy_huge_pmd() from running until the
1953 * whole __split_huge_page() is complete), we will still see
1954 * the newly established pmd of the child later during the
1955 * walk, to be able to set it as pmd_trans_splitting too.
1956 */
1957 if (mapcount != page_mapcount(page)) {
1958 pr_err("mapcount %d page_mapcount %d\n",
1959 mapcount, page_mapcount(page));
1960 BUG();
1961 }
1962
1963 __split_huge_page_refcount(page, list);
1964
1965 mapcount2 = 0;
1966 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1967 struct vm_area_struct *vma = avc->vma;
1968 unsigned long addr = vma_address(page, vma);
1969 BUG_ON(is_vma_temporary_stack(vma));
1970 mapcount2 += __split_huge_page_map(page, vma, addr);
1971 }
1972 if (mapcount != mapcount2) {
1973 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1974 mapcount, mapcount2, page_mapcount(page));
1975 BUG();
1976 }
1977 }
1978
1979 /*
1980 * Split a hugepage into normal pages. This doesn't change the position of head
1981 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1982 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1983 * from the hugepage.
1984 * Return 0 if the hugepage is split successfully otherwise return 1.
1985 */
1986 int split_huge_page_to_list(struct page *page, struct list_head *list)
1987 {
1988 struct anon_vma *anon_vma;
1989 int ret = 1;
1990
1991 BUG_ON(is_huge_zero_page(page));
1992 BUG_ON(!PageAnon(page));
1993
1994 /*
1995 * The caller does not necessarily hold an mmap_sem that would prevent
1996 * the anon_vma disappearing so we first we take a reference to it
1997 * and then lock the anon_vma for write. This is similar to
1998 * page_lock_anon_vma_read except the write lock is taken to serialise
1999 * against parallel split or collapse operations.
2000 */
2001 anon_vma = page_get_anon_vma(page);
2002 if (!anon_vma)
2003 goto out;
2004 anon_vma_lock_write(anon_vma);
2005
2006 ret = 0;
2007 if (!PageCompound(page))
2008 goto out_unlock;
2009
2010 BUG_ON(!PageSwapBacked(page));
2011 __split_huge_page(page, anon_vma, list);
2012 count_vm_event(THP_SPLIT);
2013
2014 BUG_ON(PageCompound(page));
2015 out_unlock:
2016 anon_vma_unlock_write(anon_vma);
2017 put_anon_vma(anon_vma);
2018 out:
2019 return ret;
2020 }
2021
2022 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
2023
2024 int hugepage_madvise(struct vm_area_struct *vma,
2025 unsigned long *vm_flags, int advice)
2026 {
2027 switch (advice) {
2028 case MADV_HUGEPAGE:
2029 #ifdef CONFIG_S390
2030 /*
2031 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2032 * can't handle this properly after s390_enable_sie, so we simply
2033 * ignore the madvise to prevent qemu from causing a SIGSEGV.
2034 */
2035 if (mm_has_pgste(vma->vm_mm))
2036 return 0;
2037 #endif
2038 /*
2039 * Be somewhat over-protective like KSM for now!
2040 */
2041 if (*vm_flags & VM_NO_THP)
2042 return -EINVAL;
2043 *vm_flags &= ~VM_NOHUGEPAGE;
2044 *vm_flags |= VM_HUGEPAGE;
2045 /*
2046 * If the vma become good for khugepaged to scan,
2047 * register it here without waiting a page fault that
2048 * may not happen any time soon.
2049 */
2050 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
2051 return -ENOMEM;
2052 break;
2053 case MADV_NOHUGEPAGE:
2054 /*
2055 * Be somewhat over-protective like KSM for now!
2056 */
2057 if (*vm_flags & VM_NO_THP)
2058 return -EINVAL;
2059 *vm_flags &= ~VM_HUGEPAGE;
2060 *vm_flags |= VM_NOHUGEPAGE;
2061 /*
2062 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2063 * this vma even if we leave the mm registered in khugepaged if
2064 * it got registered before VM_NOHUGEPAGE was set.
2065 */
2066 break;
2067 }
2068
2069 return 0;
2070 }
2071
2072 static int __init khugepaged_slab_init(void)
2073 {
2074 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2075 sizeof(struct mm_slot),
2076 __alignof__(struct mm_slot), 0, NULL);
2077 if (!mm_slot_cache)
2078 return -ENOMEM;
2079
2080 return 0;
2081 }
2082
2083 static void __init khugepaged_slab_exit(void)
2084 {
2085 kmem_cache_destroy(mm_slot_cache);
2086 }
2087
2088 static inline struct mm_slot *alloc_mm_slot(void)
2089 {
2090 if (!mm_slot_cache) /* initialization failed */
2091 return NULL;
2092 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2093 }
2094
2095 static inline void free_mm_slot(struct mm_slot *mm_slot)
2096 {
2097 kmem_cache_free(mm_slot_cache, mm_slot);
2098 }
2099
2100 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2101 {
2102 struct mm_slot *mm_slot;
2103
2104 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2105 if (mm == mm_slot->mm)
2106 return mm_slot;
2107
2108 return NULL;
2109 }
2110
2111 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2112 struct mm_slot *mm_slot)
2113 {
2114 mm_slot->mm = mm;
2115 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2116 }
2117
2118 static inline int khugepaged_test_exit(struct mm_struct *mm)
2119 {
2120 return atomic_read(&mm->mm_users) == 0;
2121 }
2122
2123 int __khugepaged_enter(struct mm_struct *mm)
2124 {
2125 struct mm_slot *mm_slot;
2126 int wakeup;
2127
2128 mm_slot = alloc_mm_slot();
2129 if (!mm_slot)
2130 return -ENOMEM;
2131
2132 /* __khugepaged_exit() must not run from under us */
2133 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2134 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2135 free_mm_slot(mm_slot);
2136 return 0;
2137 }
2138
2139 spin_lock(&khugepaged_mm_lock);
2140 insert_to_mm_slots_hash(mm, mm_slot);
2141 /*
2142 * Insert just behind the scanning cursor, to let the area settle
2143 * down a little.
2144 */
2145 wakeup = list_empty(&khugepaged_scan.mm_head);
2146 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2147 spin_unlock(&khugepaged_mm_lock);
2148
2149 atomic_inc(&mm->mm_count);
2150 if (wakeup)
2151 wake_up_interruptible(&khugepaged_wait);
2152
2153 return 0;
2154 }
2155
2156 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2157 unsigned long vm_flags)
2158 {
2159 unsigned long hstart, hend;
2160 if (!vma->anon_vma)
2161 /*
2162 * Not yet faulted in so we will register later in the
2163 * page fault if needed.
2164 */
2165 return 0;
2166 if (vma->vm_ops)
2167 /* khugepaged not yet working on file or special mappings */
2168 return 0;
2169 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2170 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2171 hend = vma->vm_end & HPAGE_PMD_MASK;
2172 if (hstart < hend)
2173 return khugepaged_enter(vma, vm_flags);
2174 return 0;
2175 }
2176
2177 void __khugepaged_exit(struct mm_struct *mm)
2178 {
2179 struct mm_slot *mm_slot;
2180 int free = 0;
2181
2182 spin_lock(&khugepaged_mm_lock);
2183 mm_slot = get_mm_slot(mm);
2184 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2185 hash_del(&mm_slot->hash);
2186 list_del(&mm_slot->mm_node);
2187 free = 1;
2188 }
2189 spin_unlock(&khugepaged_mm_lock);
2190
2191 if (free) {
2192 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2193 free_mm_slot(mm_slot);
2194 mmdrop(mm);
2195 } else if (mm_slot) {
2196 /*
2197 * This is required to serialize against
2198 * khugepaged_test_exit() (which is guaranteed to run
2199 * under mmap sem read mode). Stop here (after we
2200 * return all pagetables will be destroyed) until
2201 * khugepaged has finished working on the pagetables
2202 * under the mmap_sem.
2203 */
2204 down_write(&mm->mmap_sem);
2205 up_write(&mm->mmap_sem);
2206 }
2207 }
2208
2209 static void release_pte_page(struct page *page)
2210 {
2211 /* 0 stands for page_is_file_cache(page) == false */
2212 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2213 unlock_page(page);
2214 putback_lru_page(page);
2215 }
2216
2217 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2218 {
2219 while (--_pte >= pte) {
2220 pte_t pteval = *_pte;
2221 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2222 release_pte_page(pte_page(pteval));
2223 }
2224 }
2225
2226 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2227 unsigned long address,
2228 pte_t *pte)
2229 {
2230 struct page *page = NULL;
2231 pte_t *_pte;
2232 int none_or_zero = 0, result = 0;
2233 bool referenced = false, writable = false;
2234
2235 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2236 _pte++, address += PAGE_SIZE) {
2237 pte_t pteval = *_pte;
2238 if (pte_none(pteval) || (pte_present(pteval) &&
2239 is_zero_pfn(pte_pfn(pteval)))) {
2240 if (!userfaultfd_armed(vma) &&
2241 ++none_or_zero <= khugepaged_max_ptes_none) {
2242 continue;
2243 } else {
2244 result = SCAN_EXCEED_NONE_PTE;
2245 goto out;
2246 }
2247 }
2248 if (!pte_present(pteval)) {
2249 result = SCAN_PTE_NON_PRESENT;
2250 goto out;
2251 }
2252 page = vm_normal_page(vma, address, pteval);
2253 if (unlikely(!page)) {
2254 result = SCAN_PAGE_NULL;
2255 goto out;
2256 }
2257
2258 VM_BUG_ON_PAGE(PageCompound(page), page);
2259 VM_BUG_ON_PAGE(!PageAnon(page), page);
2260 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2261
2262 /*
2263 * We can do it before isolate_lru_page because the
2264 * page can't be freed from under us. NOTE: PG_lock
2265 * is needed to serialize against split_huge_page
2266 * when invoked from the VM.
2267 */
2268 if (!trylock_page(page)) {
2269 result = SCAN_PAGE_LOCK;
2270 goto out;
2271 }
2272
2273 /*
2274 * cannot use mapcount: can't collapse if there's a gup pin.
2275 * The page must only be referenced by the scanned process
2276 * and page swap cache.
2277 */
2278 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2279 unlock_page(page);
2280 result = SCAN_PAGE_COUNT;
2281 goto out;
2282 }
2283 if (pte_write(pteval)) {
2284 writable = true;
2285 } else {
2286 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2287 unlock_page(page);
2288 result = SCAN_SWAP_CACHE_PAGE;
2289 goto out;
2290 }
2291 /*
2292 * Page is not in the swap cache. It can be collapsed
2293 * into a THP.
2294 */
2295 }
2296
2297 /*
2298 * Isolate the page to avoid collapsing an hugepage
2299 * currently in use by the VM.
2300 */
2301 if (isolate_lru_page(page)) {
2302 unlock_page(page);
2303 result = SCAN_DEL_PAGE_LRU;
2304 goto out;
2305 }
2306 /* 0 stands for page_is_file_cache(page) == false */
2307 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2308 VM_BUG_ON_PAGE(!PageLocked(page), page);
2309 VM_BUG_ON_PAGE(PageLRU(page), page);
2310
2311 /* If there is no mapped pte young don't collapse the page */
2312 if (pte_young(pteval) ||
2313 page_is_young(page) || PageReferenced(page) ||
2314 mmu_notifier_test_young(vma->vm_mm, address))
2315 referenced = true;
2316 }
2317 if (likely(writable)) {
2318 if (likely(referenced)) {
2319 result = SCAN_SUCCEED;
2320 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2321 referenced, writable, result);
2322 return 1;
2323 }
2324 } else {
2325 result = SCAN_PAGE_RO;
2326 }
2327
2328 out:
2329 release_pte_pages(pte, _pte);
2330 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2331 referenced, writable, result);
2332 return 0;
2333 }
2334
2335 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2336 struct vm_area_struct *vma,
2337 unsigned long address,
2338 spinlock_t *ptl)
2339 {
2340 pte_t *_pte;
2341 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2342 pte_t pteval = *_pte;
2343 struct page *src_page;
2344
2345 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2346 clear_user_highpage(page, address);
2347 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2348 if (is_zero_pfn(pte_pfn(pteval))) {
2349 /*
2350 * ptl mostly unnecessary.
2351 */
2352 spin_lock(ptl);
2353 /*
2354 * paravirt calls inside pte_clear here are
2355 * superfluous.
2356 */
2357 pte_clear(vma->vm_mm, address, _pte);
2358 spin_unlock(ptl);
2359 }
2360 } else {
2361 src_page = pte_page(pteval);
2362 copy_user_highpage(page, src_page, address, vma);
2363 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2364 release_pte_page(src_page);
2365 /*
2366 * ptl mostly unnecessary, but preempt has to
2367 * be disabled to update the per-cpu stats
2368 * inside page_remove_rmap().
2369 */
2370 spin_lock(ptl);
2371 /*
2372 * paravirt calls inside pte_clear here are
2373 * superfluous.
2374 */
2375 pte_clear(vma->vm_mm, address, _pte);
2376 page_remove_rmap(src_page, false);
2377 spin_unlock(ptl);
2378 free_page_and_swap_cache(src_page);
2379 }
2380
2381 address += PAGE_SIZE;
2382 page++;
2383 }
2384 }
2385
2386 static void khugepaged_alloc_sleep(void)
2387 {
2388 DEFINE_WAIT(wait);
2389
2390 add_wait_queue(&khugepaged_wait, &wait);
2391 freezable_schedule_timeout_interruptible(
2392 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2393 remove_wait_queue(&khugepaged_wait, &wait);
2394 }
2395
2396 static int khugepaged_node_load[MAX_NUMNODES];
2397
2398 static bool khugepaged_scan_abort(int nid)
2399 {
2400 int i;
2401
2402 /*
2403 * If zone_reclaim_mode is disabled, then no extra effort is made to
2404 * allocate memory locally.
2405 */
2406 if (!zone_reclaim_mode)
2407 return false;
2408
2409 /* If there is a count for this node already, it must be acceptable */
2410 if (khugepaged_node_load[nid])
2411 return false;
2412
2413 for (i = 0; i < MAX_NUMNODES; i++) {
2414 if (!khugepaged_node_load[i])
2415 continue;
2416 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2417 return true;
2418 }
2419 return false;
2420 }
2421
2422 #ifdef CONFIG_NUMA
2423 static int khugepaged_find_target_node(void)
2424 {
2425 static int last_khugepaged_target_node = NUMA_NO_NODE;
2426 int nid, target_node = 0, max_value = 0;
2427
2428 /* find first node with max normal pages hit */
2429 for (nid = 0; nid < MAX_NUMNODES; nid++)
2430 if (khugepaged_node_load[nid] > max_value) {
2431 max_value = khugepaged_node_load[nid];
2432 target_node = nid;
2433 }
2434
2435 /* do some balance if several nodes have the same hit record */
2436 if (target_node <= last_khugepaged_target_node)
2437 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2438 nid++)
2439 if (max_value == khugepaged_node_load[nid]) {
2440 target_node = nid;
2441 break;
2442 }
2443
2444 last_khugepaged_target_node = target_node;
2445 return target_node;
2446 }
2447
2448 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2449 {
2450 if (IS_ERR(*hpage)) {
2451 if (!*wait)
2452 return false;
2453
2454 *wait = false;
2455 *hpage = NULL;
2456 khugepaged_alloc_sleep();
2457 } else if (*hpage) {
2458 put_page(*hpage);
2459 *hpage = NULL;
2460 }
2461
2462 return true;
2463 }
2464
2465 static struct page *
2466 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2467 unsigned long address, int node)
2468 {
2469 VM_BUG_ON_PAGE(*hpage, *hpage);
2470
2471 /*
2472 * Before allocating the hugepage, release the mmap_sem read lock.
2473 * The allocation can take potentially a long time if it involves
2474 * sync compaction, and we do not need to hold the mmap_sem during
2475 * that. We will recheck the vma after taking it again in write mode.
2476 */
2477 up_read(&mm->mmap_sem);
2478
2479 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2480 if (unlikely(!*hpage)) {
2481 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2482 *hpage = ERR_PTR(-ENOMEM);
2483 return NULL;
2484 }
2485
2486 count_vm_event(THP_COLLAPSE_ALLOC);
2487 return *hpage;
2488 }
2489 #else
2490 static int khugepaged_find_target_node(void)
2491 {
2492 return 0;
2493 }
2494
2495 static inline struct page *alloc_hugepage(int defrag)
2496 {
2497 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2498 HPAGE_PMD_ORDER);
2499 }
2500
2501 static struct page *khugepaged_alloc_hugepage(bool *wait)
2502 {
2503 struct page *hpage;
2504
2505 do {
2506 hpage = alloc_hugepage(khugepaged_defrag());
2507 if (!hpage) {
2508 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2509 if (!*wait)
2510 return NULL;
2511
2512 *wait = false;
2513 khugepaged_alloc_sleep();
2514 } else
2515 count_vm_event(THP_COLLAPSE_ALLOC);
2516 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2517
2518 return hpage;
2519 }
2520
2521 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2522 {
2523 if (!*hpage)
2524 *hpage = khugepaged_alloc_hugepage(wait);
2525
2526 if (unlikely(!*hpage))
2527 return false;
2528
2529 return true;
2530 }
2531
2532 static struct page *
2533 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2534 unsigned long address, int node)
2535 {
2536 up_read(&mm->mmap_sem);
2537 VM_BUG_ON(!*hpage);
2538
2539 return *hpage;
2540 }
2541 #endif
2542
2543 static bool hugepage_vma_check(struct vm_area_struct *vma)
2544 {
2545 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2546 (vma->vm_flags & VM_NOHUGEPAGE))
2547 return false;
2548
2549 if (!vma->anon_vma || vma->vm_ops)
2550 return false;
2551 if (is_vma_temporary_stack(vma))
2552 return false;
2553 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2554 return true;
2555 }
2556
2557 static void collapse_huge_page(struct mm_struct *mm,
2558 unsigned long address,
2559 struct page **hpage,
2560 struct vm_area_struct *vma,
2561 int node)
2562 {
2563 pmd_t *pmd, _pmd;
2564 pte_t *pte;
2565 pgtable_t pgtable;
2566 struct page *new_page;
2567 spinlock_t *pmd_ptl, *pte_ptl;
2568 int isolated, result = 0;
2569 unsigned long hstart, hend;
2570 struct mem_cgroup *memcg;
2571 unsigned long mmun_start; /* For mmu_notifiers */
2572 unsigned long mmun_end; /* For mmu_notifiers */
2573 gfp_t gfp;
2574
2575 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2576
2577 /* Only allocate from the target node */
2578 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2579 __GFP_THISNODE;
2580
2581 /* release the mmap_sem read lock. */
2582 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2583 if (!new_page) {
2584 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2585 goto out_nolock;
2586 }
2587
2588 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2589 result = SCAN_CGROUP_CHARGE_FAIL;
2590 goto out_nolock;
2591 }
2592
2593 /*
2594 * Prevent all access to pagetables with the exception of
2595 * gup_fast later hanlded by the ptep_clear_flush and the VM
2596 * handled by the anon_vma lock + PG_lock.
2597 */
2598 down_write(&mm->mmap_sem);
2599 if (unlikely(khugepaged_test_exit(mm))) {
2600 result = SCAN_ANY_PROCESS;
2601 goto out;
2602 }
2603
2604 vma = find_vma(mm, address);
2605 if (!vma) {
2606 result = SCAN_VMA_NULL;
2607 goto out;
2608 }
2609 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2610 hend = vma->vm_end & HPAGE_PMD_MASK;
2611 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2612 result = SCAN_ADDRESS_RANGE;
2613 goto out;
2614 }
2615 if (!hugepage_vma_check(vma)) {
2616 result = SCAN_VMA_CHECK;
2617 goto out;
2618 }
2619 pmd = mm_find_pmd(mm, address);
2620 if (!pmd) {
2621 result = SCAN_PMD_NULL;
2622 goto out;
2623 }
2624
2625 anon_vma_lock_write(vma->anon_vma);
2626
2627 pte = pte_offset_map(pmd, address);
2628 pte_ptl = pte_lockptr(mm, pmd);
2629
2630 mmun_start = address;
2631 mmun_end = address + HPAGE_PMD_SIZE;
2632 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2633 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2634 /*
2635 * After this gup_fast can't run anymore. This also removes
2636 * any huge TLB entry from the CPU so we won't allow
2637 * huge and small TLB entries for the same virtual address
2638 * to avoid the risk of CPU bugs in that area.
2639 */
2640 _pmd = pmdp_collapse_flush(vma, address, pmd);
2641 spin_unlock(pmd_ptl);
2642 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2643
2644 spin_lock(pte_ptl);
2645 isolated = __collapse_huge_page_isolate(vma, address, pte);
2646 spin_unlock(pte_ptl);
2647
2648 if (unlikely(!isolated)) {
2649 pte_unmap(pte);
2650 spin_lock(pmd_ptl);
2651 BUG_ON(!pmd_none(*pmd));
2652 /*
2653 * We can only use set_pmd_at when establishing
2654 * hugepmds and never for establishing regular pmds that
2655 * points to regular pagetables. Use pmd_populate for that
2656 */
2657 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2658 spin_unlock(pmd_ptl);
2659 anon_vma_unlock_write(vma->anon_vma);
2660 result = SCAN_FAIL;
2661 goto out;
2662 }
2663
2664 /*
2665 * All pages are isolated and locked so anon_vma rmap
2666 * can't run anymore.
2667 */
2668 anon_vma_unlock_write(vma->anon_vma);
2669
2670 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2671 pte_unmap(pte);
2672 __SetPageUptodate(new_page);
2673 pgtable = pmd_pgtable(_pmd);
2674
2675 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2676 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2677
2678 /*
2679 * spin_lock() below is not the equivalent of smp_wmb(), so
2680 * this is needed to avoid the copy_huge_page writes to become
2681 * visible after the set_pmd_at() write.
2682 */
2683 smp_wmb();
2684
2685 spin_lock(pmd_ptl);
2686 BUG_ON(!pmd_none(*pmd));
2687 page_add_new_anon_rmap(new_page, vma, address, true);
2688 mem_cgroup_commit_charge(new_page, memcg, false, true);
2689 lru_cache_add_active_or_unevictable(new_page, vma);
2690 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2691 set_pmd_at(mm, address, pmd, _pmd);
2692 update_mmu_cache_pmd(vma, address, pmd);
2693 spin_unlock(pmd_ptl);
2694
2695 *hpage = NULL;
2696
2697 khugepaged_pages_collapsed++;
2698 result = SCAN_SUCCEED;
2699 out_up_write:
2700 up_write(&mm->mmap_sem);
2701 trace_mm_collapse_huge_page(mm, isolated, result);
2702 return;
2703
2704 out_nolock:
2705 trace_mm_collapse_huge_page(mm, isolated, result);
2706 return;
2707 out:
2708 mem_cgroup_cancel_charge(new_page, memcg, true);
2709 goto out_up_write;
2710 }
2711
2712 static int khugepaged_scan_pmd(struct mm_struct *mm,
2713 struct vm_area_struct *vma,
2714 unsigned long address,
2715 struct page **hpage)
2716 {
2717 pmd_t *pmd;
2718 pte_t *pte, *_pte;
2719 int ret = 0, none_or_zero = 0, result = 0;
2720 struct page *page = NULL;
2721 unsigned long _address;
2722 spinlock_t *ptl;
2723 int node = NUMA_NO_NODE;
2724 bool writable = false, referenced = false;
2725
2726 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2727
2728 pmd = mm_find_pmd(mm, address);
2729 if (!pmd) {
2730 result = SCAN_PMD_NULL;
2731 goto out;
2732 }
2733
2734 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2735 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2736 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2737 _pte++, _address += PAGE_SIZE) {
2738 pte_t pteval = *_pte;
2739 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2740 if (!userfaultfd_armed(vma) &&
2741 ++none_or_zero <= khugepaged_max_ptes_none) {
2742 continue;
2743 } else {
2744 result = SCAN_EXCEED_NONE_PTE;
2745 goto out_unmap;
2746 }
2747 }
2748 if (!pte_present(pteval)) {
2749 result = SCAN_PTE_NON_PRESENT;
2750 goto out_unmap;
2751 }
2752 if (pte_write(pteval))
2753 writable = true;
2754
2755 page = vm_normal_page(vma, _address, pteval);
2756 if (unlikely(!page)) {
2757 result = SCAN_PAGE_NULL;
2758 goto out_unmap;
2759 }
2760 /*
2761 * Record which node the original page is from and save this
2762 * information to khugepaged_node_load[].
2763 * Khupaged will allocate hugepage from the node has the max
2764 * hit record.
2765 */
2766 node = page_to_nid(page);
2767 if (khugepaged_scan_abort(node)) {
2768 result = SCAN_SCAN_ABORT;
2769 goto out_unmap;
2770 }
2771 khugepaged_node_load[node]++;
2772 VM_BUG_ON_PAGE(PageCompound(page), page);
2773 if (!PageLRU(page)) {
2774 result = SCAN_SCAN_ABORT;
2775 goto out_unmap;
2776 }
2777 if (PageLocked(page)) {
2778 result = SCAN_PAGE_LOCK;
2779 goto out_unmap;
2780 }
2781 if (!PageAnon(page)) {
2782 result = SCAN_PAGE_ANON;
2783 goto out_unmap;
2784 }
2785
2786 /*
2787 * cannot use mapcount: can't collapse if there's a gup pin.
2788 * The page must only be referenced by the scanned process
2789 * and page swap cache.
2790 */
2791 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2792 result = SCAN_PAGE_COUNT;
2793 goto out_unmap;
2794 }
2795 if (pte_young(pteval) ||
2796 page_is_young(page) || PageReferenced(page) ||
2797 mmu_notifier_test_young(vma->vm_mm, address))
2798 referenced = true;
2799 }
2800 if (writable) {
2801 if (referenced) {
2802 result = SCAN_SUCCEED;
2803 ret = 1;
2804 } else {
2805 result = SCAN_NO_REFERENCED_PAGE;
2806 }
2807 } else {
2808 result = SCAN_PAGE_RO;
2809 }
2810 out_unmap:
2811 pte_unmap_unlock(pte, ptl);
2812 if (ret) {
2813 node = khugepaged_find_target_node();
2814 /* collapse_huge_page will return with the mmap_sem released */
2815 collapse_huge_page(mm, address, hpage, vma, node);
2816 }
2817 out:
2818 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2819 none_or_zero, result);
2820 return ret;
2821 }
2822
2823 static void collect_mm_slot(struct mm_slot *mm_slot)
2824 {
2825 struct mm_struct *mm = mm_slot->mm;
2826
2827 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2828
2829 if (khugepaged_test_exit(mm)) {
2830 /* free mm_slot */
2831 hash_del(&mm_slot->hash);
2832 list_del(&mm_slot->mm_node);
2833
2834 /*
2835 * Not strictly needed because the mm exited already.
2836 *
2837 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2838 */
2839
2840 /* khugepaged_mm_lock actually not necessary for the below */
2841 free_mm_slot(mm_slot);
2842 mmdrop(mm);
2843 }
2844 }
2845
2846 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2847 struct page **hpage)
2848 __releases(&khugepaged_mm_lock)
2849 __acquires(&khugepaged_mm_lock)
2850 {
2851 struct mm_slot *mm_slot;
2852 struct mm_struct *mm;
2853 struct vm_area_struct *vma;
2854 int progress = 0;
2855
2856 VM_BUG_ON(!pages);
2857 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2858
2859 if (khugepaged_scan.mm_slot)
2860 mm_slot = khugepaged_scan.mm_slot;
2861 else {
2862 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2863 struct mm_slot, mm_node);
2864 khugepaged_scan.address = 0;
2865 khugepaged_scan.mm_slot = mm_slot;
2866 }
2867 spin_unlock(&khugepaged_mm_lock);
2868
2869 mm = mm_slot->mm;
2870 down_read(&mm->mmap_sem);
2871 if (unlikely(khugepaged_test_exit(mm)))
2872 vma = NULL;
2873 else
2874 vma = find_vma(mm, khugepaged_scan.address);
2875
2876 progress++;
2877 for (; vma; vma = vma->vm_next) {
2878 unsigned long hstart, hend;
2879
2880 cond_resched();
2881 if (unlikely(khugepaged_test_exit(mm))) {
2882 progress++;
2883 break;
2884 }
2885 if (!hugepage_vma_check(vma)) {
2886 skip:
2887 progress++;
2888 continue;
2889 }
2890 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2891 hend = vma->vm_end & HPAGE_PMD_MASK;
2892 if (hstart >= hend)
2893 goto skip;
2894 if (khugepaged_scan.address > hend)
2895 goto skip;
2896 if (khugepaged_scan.address < hstart)
2897 khugepaged_scan.address = hstart;
2898 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2899
2900 while (khugepaged_scan.address < hend) {
2901 int ret;
2902 cond_resched();
2903 if (unlikely(khugepaged_test_exit(mm)))
2904 goto breakouterloop;
2905
2906 VM_BUG_ON(khugepaged_scan.address < hstart ||
2907 khugepaged_scan.address + HPAGE_PMD_SIZE >
2908 hend);
2909 ret = khugepaged_scan_pmd(mm, vma,
2910 khugepaged_scan.address,
2911 hpage);
2912 /* move to next address */
2913 khugepaged_scan.address += HPAGE_PMD_SIZE;
2914 progress += HPAGE_PMD_NR;
2915 if (ret)
2916 /* we released mmap_sem so break loop */
2917 goto breakouterloop_mmap_sem;
2918 if (progress >= pages)
2919 goto breakouterloop;
2920 }
2921 }
2922 breakouterloop:
2923 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2924 breakouterloop_mmap_sem:
2925
2926 spin_lock(&khugepaged_mm_lock);
2927 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2928 /*
2929 * Release the current mm_slot if this mm is about to die, or
2930 * if we scanned all vmas of this mm.
2931 */
2932 if (khugepaged_test_exit(mm) || !vma) {
2933 /*
2934 * Make sure that if mm_users is reaching zero while
2935 * khugepaged runs here, khugepaged_exit will find
2936 * mm_slot not pointing to the exiting mm.
2937 */
2938 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2939 khugepaged_scan.mm_slot = list_entry(
2940 mm_slot->mm_node.next,
2941 struct mm_slot, mm_node);
2942 khugepaged_scan.address = 0;
2943 } else {
2944 khugepaged_scan.mm_slot = NULL;
2945 khugepaged_full_scans++;
2946 }
2947
2948 collect_mm_slot(mm_slot);
2949 }
2950
2951 return progress;
2952 }
2953
2954 static int khugepaged_has_work(void)
2955 {
2956 return !list_empty(&khugepaged_scan.mm_head) &&
2957 khugepaged_enabled();
2958 }
2959
2960 static int khugepaged_wait_event(void)
2961 {
2962 return !list_empty(&khugepaged_scan.mm_head) ||
2963 kthread_should_stop();
2964 }
2965
2966 static void khugepaged_do_scan(void)
2967 {
2968 struct page *hpage = NULL;
2969 unsigned int progress = 0, pass_through_head = 0;
2970 unsigned int pages = khugepaged_pages_to_scan;
2971 bool wait = true;
2972
2973 barrier(); /* write khugepaged_pages_to_scan to local stack */
2974
2975 while (progress < pages) {
2976 if (!khugepaged_prealloc_page(&hpage, &wait))
2977 break;
2978
2979 cond_resched();
2980
2981 if (unlikely(kthread_should_stop() || try_to_freeze()))
2982 break;
2983
2984 spin_lock(&khugepaged_mm_lock);
2985 if (!khugepaged_scan.mm_slot)
2986 pass_through_head++;
2987 if (khugepaged_has_work() &&
2988 pass_through_head < 2)
2989 progress += khugepaged_scan_mm_slot(pages - progress,
2990 &hpage);
2991 else
2992 progress = pages;
2993 spin_unlock(&khugepaged_mm_lock);
2994 }
2995
2996 if (!IS_ERR_OR_NULL(hpage))
2997 put_page(hpage);
2998 }
2999
3000 static void khugepaged_wait_work(void)
3001 {
3002 if (khugepaged_has_work()) {
3003 if (!khugepaged_scan_sleep_millisecs)
3004 return;
3005
3006 wait_event_freezable_timeout(khugepaged_wait,
3007 kthread_should_stop(),
3008 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
3009 return;
3010 }
3011
3012 if (khugepaged_enabled())
3013 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
3014 }
3015
3016 static int khugepaged(void *none)
3017 {
3018 struct mm_slot *mm_slot;
3019
3020 set_freezable();
3021 set_user_nice(current, MAX_NICE);
3022
3023 while (!kthread_should_stop()) {
3024 khugepaged_do_scan();
3025 khugepaged_wait_work();
3026 }
3027
3028 spin_lock(&khugepaged_mm_lock);
3029 mm_slot = khugepaged_scan.mm_slot;
3030 khugepaged_scan.mm_slot = NULL;
3031 if (mm_slot)
3032 collect_mm_slot(mm_slot);
3033 spin_unlock(&khugepaged_mm_lock);
3034 return 0;
3035 }
3036
3037 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
3038 unsigned long haddr, pmd_t *pmd)
3039 {
3040 struct mm_struct *mm = vma->vm_mm;
3041 pgtable_t pgtable;
3042 pmd_t _pmd;
3043 int i;
3044
3045 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3046 /* leave pmd empty until pte is filled */
3047
3048 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3049 pmd_populate(mm, &_pmd, pgtable);
3050
3051 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
3052 pte_t *pte, entry;
3053 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
3054 entry = pte_mkspecial(entry);
3055 pte = pte_offset_map(&_pmd, haddr);
3056 VM_BUG_ON(!pte_none(*pte));
3057 set_pte_at(mm, haddr, pte, entry);
3058 pte_unmap(pte);
3059 }
3060 smp_wmb(); /* make pte visible before pmd */
3061 pmd_populate(mm, pmd, pgtable);
3062 put_huge_zero_page();
3063 }
3064
3065 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
3066 pmd_t *pmd)
3067 {
3068 spinlock_t *ptl;
3069 struct page *page = NULL;
3070 struct mm_struct *mm = vma->vm_mm;
3071 unsigned long haddr = address & HPAGE_PMD_MASK;
3072 unsigned long mmun_start; /* For mmu_notifiers */
3073 unsigned long mmun_end; /* For mmu_notifiers */
3074
3075 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
3076
3077 mmun_start = haddr;
3078 mmun_end = haddr + HPAGE_PMD_SIZE;
3079 again:
3080 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3081 ptl = pmd_lock(mm, pmd);
3082 if (unlikely(!pmd_trans_huge(*pmd)))
3083 goto unlock;
3084 if (vma_is_dax(vma)) {
3085 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3086 if (is_huge_zero_pmd(_pmd))
3087 put_huge_zero_page();
3088 } else if (is_huge_zero_pmd(*pmd)) {
3089 __split_huge_zero_page_pmd(vma, haddr, pmd);
3090 } else {
3091 page = pmd_page(*pmd);
3092 VM_BUG_ON_PAGE(!page_count(page), page);
3093 get_page(page);
3094 }
3095 unlock:
3096 spin_unlock(ptl);
3097 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3098
3099 if (!page)
3100 return;
3101
3102 split_huge_page(page);
3103 put_page(page);
3104
3105 /*
3106 * We don't always have down_write of mmap_sem here: a racing
3107 * do_huge_pmd_wp_page() might have copied-on-write to another
3108 * huge page before our split_huge_page() got the anon_vma lock.
3109 */
3110 if (unlikely(pmd_trans_huge(*pmd)))
3111 goto again;
3112 }
3113
3114 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3115 pmd_t *pmd)
3116 {
3117 struct vm_area_struct *vma;
3118
3119 vma = find_vma(mm, address);
3120 BUG_ON(vma == NULL);
3121 split_huge_page_pmd(vma, address, pmd);
3122 }
3123
3124 static void split_huge_page_address(struct mm_struct *mm,
3125 unsigned long address)
3126 {
3127 pgd_t *pgd;
3128 pud_t *pud;
3129 pmd_t *pmd;
3130
3131 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3132
3133 pgd = pgd_offset(mm, address);
3134 if (!pgd_present(*pgd))
3135 return;
3136
3137 pud = pud_offset(pgd, address);
3138 if (!pud_present(*pud))
3139 return;
3140
3141 pmd = pmd_offset(pud, address);
3142 if (!pmd_present(*pmd))
3143 return;
3144 /*
3145 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3146 * materialize from under us.
3147 */
3148 split_huge_page_pmd_mm(mm, address, pmd);
3149 }
3150
3151 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3152 unsigned long start,
3153 unsigned long end,
3154 long adjust_next)
3155 {
3156 /*
3157 * If the new start address isn't hpage aligned and it could
3158 * previously contain an hugepage: check if we need to split
3159 * an huge pmd.
3160 */
3161 if (start & ~HPAGE_PMD_MASK &&
3162 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3163 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3164 split_huge_page_address(vma->vm_mm, start);
3165
3166 /*
3167 * If the new end address isn't hpage aligned and it could
3168 * previously contain an hugepage: check if we need to split
3169 * an huge pmd.
3170 */
3171 if (end & ~HPAGE_PMD_MASK &&
3172 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3173 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3174 split_huge_page_address(vma->vm_mm, end);
3175
3176 /*
3177 * If we're also updating the vma->vm_next->vm_start, if the new
3178 * vm_next->vm_start isn't page aligned and it could previously
3179 * contain an hugepage: check if we need to split an huge pmd.
3180 */
3181 if (adjust_next > 0) {
3182 struct vm_area_struct *next = vma->vm_next;
3183 unsigned long nstart = next->vm_start;
3184 nstart += adjust_next << PAGE_SHIFT;
3185 if (nstart & ~HPAGE_PMD_MASK &&
3186 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3187 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3188 split_huge_page_address(next->vm_mm, nstart);
3189 }
3190 }