]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/huge_memory.c
net: rtnetlink: prevent underflows in do_setvfinfo()
[mirror_ubuntu-bionic-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/page_owner.h>
37
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41
42 /*
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
49 */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60
61 static struct shrinker deferred_split_shrinker;
62
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65
66 static struct page *get_huge_zero_page(void)
67 {
68 struct page *zero_page;
69 retry:
70 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
71 return READ_ONCE(huge_zero_page);
72
73 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
74 HPAGE_PMD_ORDER);
75 if (!zero_page) {
76 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
77 return NULL;
78 }
79 count_vm_event(THP_ZERO_PAGE_ALLOC);
80 preempt_disable();
81 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
82 preempt_enable();
83 __free_pages(zero_page, compound_order(zero_page));
84 goto retry;
85 }
86
87 /* We take additional reference here. It will be put back by shrinker */
88 atomic_set(&huge_zero_refcount, 2);
89 preempt_enable();
90 return READ_ONCE(huge_zero_page);
91 }
92
93 static void put_huge_zero_page(void)
94 {
95 /*
96 * Counter should never go to zero here. Only shrinker can put
97 * last reference.
98 */
99 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
100 }
101
102 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103 {
104 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
105 return READ_ONCE(huge_zero_page);
106
107 if (!get_huge_zero_page())
108 return NULL;
109
110 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
111 put_huge_zero_page();
112
113 return READ_ONCE(huge_zero_page);
114 }
115
116 void mm_put_huge_zero_page(struct mm_struct *mm)
117 {
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 put_huge_zero_page();
120 }
121
122 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
123 struct shrink_control *sc)
124 {
125 /* we can free zero page only if last reference remains */
126 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
127 }
128
129 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
130 struct shrink_control *sc)
131 {
132 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
133 struct page *zero_page = xchg(&huge_zero_page, NULL);
134 BUG_ON(zero_page == NULL);
135 __free_pages(zero_page, compound_order(zero_page));
136 return HPAGE_PMD_NR;
137 }
138
139 return 0;
140 }
141
142 static struct shrinker huge_zero_page_shrinker = {
143 .count_objects = shrink_huge_zero_page_count,
144 .scan_objects = shrink_huge_zero_page_scan,
145 .seeks = DEFAULT_SEEKS,
146 };
147
148 #ifdef CONFIG_SYSFS
149 static ssize_t enabled_show(struct kobject *kobj,
150 struct kobj_attribute *attr, char *buf)
151 {
152 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
153 return sprintf(buf, "[always] madvise never\n");
154 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
155 return sprintf(buf, "always [madvise] never\n");
156 else
157 return sprintf(buf, "always madvise [never]\n");
158 }
159
160 static ssize_t enabled_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
163 {
164 ssize_t ret = count;
165
166 if (!memcmp("always", buf,
167 min(sizeof("always")-1, count))) {
168 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
169 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
170 } else if (!memcmp("madvise", buf,
171 min(sizeof("madvise")-1, count))) {
172 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
173 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
174 } else if (!memcmp("never", buf,
175 min(sizeof("never")-1, count))) {
176 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
177 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
178 } else
179 ret = -EINVAL;
180
181 if (ret > 0) {
182 int err = start_stop_khugepaged();
183 if (err)
184 ret = err;
185 }
186 return ret;
187 }
188 static struct kobj_attribute enabled_attr =
189 __ATTR(enabled, 0644, enabled_show, enabled_store);
190
191 ssize_t single_hugepage_flag_show(struct kobject *kobj,
192 struct kobj_attribute *attr, char *buf,
193 enum transparent_hugepage_flag flag)
194 {
195 return sprintf(buf, "%d\n",
196 !!test_bit(flag, &transparent_hugepage_flags));
197 }
198
199 ssize_t single_hugepage_flag_store(struct kobject *kobj,
200 struct kobj_attribute *attr,
201 const char *buf, size_t count,
202 enum transparent_hugepage_flag flag)
203 {
204 unsigned long value;
205 int ret;
206
207 ret = kstrtoul(buf, 10, &value);
208 if (ret < 0)
209 return ret;
210 if (value > 1)
211 return -EINVAL;
212
213 if (value)
214 set_bit(flag, &transparent_hugepage_flags);
215 else
216 clear_bit(flag, &transparent_hugepage_flags);
217
218 return count;
219 }
220
221 static ssize_t defrag_show(struct kobject *kobj,
222 struct kobj_attribute *attr, char *buf)
223 {
224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
225 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
227 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
228 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
229 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
230 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
231 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
232 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
233 }
234
235 static ssize_t defrag_store(struct kobject *kobj,
236 struct kobj_attribute *attr,
237 const char *buf, size_t count)
238 {
239 if (!memcmp("always", buf,
240 min(sizeof("always")-1, count))) {
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
243 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
244 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
245 } else if (!memcmp("defer+madvise", buf,
246 min(sizeof("defer+madvise")-1, count))) {
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
250 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
251 } else if (!memcmp("defer", buf,
252 min(sizeof("defer")-1, count))) {
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
256 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 } else if (!memcmp("madvise", buf,
258 min(sizeof("madvise")-1, count))) {
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
262 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 } else if (!memcmp("never", buf,
264 min(sizeof("never")-1, count))) {
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 } else
270 return -EINVAL;
271
272 return count;
273 }
274 static struct kobj_attribute defrag_attr =
275 __ATTR(defrag, 0644, defrag_show, defrag_store);
276
277 static ssize_t use_zero_page_show(struct kobject *kobj,
278 struct kobj_attribute *attr, char *buf)
279 {
280 return single_hugepage_flag_show(kobj, attr, buf,
281 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282 }
283 static ssize_t use_zero_page_store(struct kobject *kobj,
284 struct kobj_attribute *attr, const char *buf, size_t count)
285 {
286 return single_hugepage_flag_store(kobj, attr, buf, count,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static struct kobj_attribute use_zero_page_attr =
290 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291
292 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
293 struct kobj_attribute *attr, char *buf)
294 {
295 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296 }
297 static struct kobj_attribute hpage_pmd_size_attr =
298 __ATTR_RO(hpage_pmd_size);
299
300 #ifdef CONFIG_DEBUG_VM
301 static ssize_t debug_cow_show(struct kobject *kobj,
302 struct kobj_attribute *attr, char *buf)
303 {
304 return single_hugepage_flag_show(kobj, attr, buf,
305 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306 }
307 static ssize_t debug_cow_store(struct kobject *kobj,
308 struct kobj_attribute *attr,
309 const char *buf, size_t count)
310 {
311 return single_hugepage_flag_store(kobj, attr, buf, count,
312 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 }
314 static struct kobj_attribute debug_cow_attr =
315 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
316 #endif /* CONFIG_DEBUG_VM */
317
318 static struct attribute *hugepage_attr[] = {
319 &enabled_attr.attr,
320 &defrag_attr.attr,
321 &use_zero_page_attr.attr,
322 &hpage_pmd_size_attr.attr,
323 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
324 &shmem_enabled_attr.attr,
325 #endif
326 #ifdef CONFIG_DEBUG_VM
327 &debug_cow_attr.attr,
328 #endif
329 NULL,
330 };
331
332 static const struct attribute_group hugepage_attr_group = {
333 .attrs = hugepage_attr,
334 };
335
336 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 {
338 int err;
339
340 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
341 if (unlikely(!*hugepage_kobj)) {
342 pr_err("failed to create transparent hugepage kobject\n");
343 return -ENOMEM;
344 }
345
346 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
347 if (err) {
348 pr_err("failed to register transparent hugepage group\n");
349 goto delete_obj;
350 }
351
352 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
353 if (err) {
354 pr_err("failed to register transparent hugepage group\n");
355 goto remove_hp_group;
356 }
357
358 return 0;
359
360 remove_hp_group:
361 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
362 delete_obj:
363 kobject_put(*hugepage_kobj);
364 return err;
365 }
366
367 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 {
369 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
370 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
371 kobject_put(hugepage_kobj);
372 }
373 #else
374 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375 {
376 return 0;
377 }
378
379 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380 {
381 }
382 #endif /* CONFIG_SYSFS */
383
384 static int __init hugepage_init(void)
385 {
386 int err;
387 struct kobject *hugepage_kobj;
388
389 if (!has_transparent_hugepage()) {
390 transparent_hugepage_flags = 0;
391 return -EINVAL;
392 }
393
394 /*
395 * hugepages can't be allocated by the buddy allocator
396 */
397 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 /*
399 * we use page->mapping and page->index in second tail page
400 * as list_head: assuming THP order >= 2
401 */
402 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403
404 err = hugepage_init_sysfs(&hugepage_kobj);
405 if (err)
406 goto err_sysfs;
407
408 err = khugepaged_init();
409 if (err)
410 goto err_slab;
411
412 err = register_shrinker(&huge_zero_page_shrinker);
413 if (err)
414 goto err_hzp_shrinker;
415 err = register_shrinker(&deferred_split_shrinker);
416 if (err)
417 goto err_split_shrinker;
418
419 /*
420 * By default disable transparent hugepages on smaller systems,
421 * where the extra memory used could hurt more than TLB overhead
422 * is likely to save. The admin can still enable it through /sys.
423 */
424 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
425 transparent_hugepage_flags = 0;
426 return 0;
427 }
428
429 err = start_stop_khugepaged();
430 if (err)
431 goto err_khugepaged;
432
433 return 0;
434 err_khugepaged:
435 unregister_shrinker(&deferred_split_shrinker);
436 err_split_shrinker:
437 unregister_shrinker(&huge_zero_page_shrinker);
438 err_hzp_shrinker:
439 khugepaged_destroy();
440 err_slab:
441 hugepage_exit_sysfs(hugepage_kobj);
442 err_sysfs:
443 return err;
444 }
445 subsys_initcall(hugepage_init);
446
447 static int __init setup_transparent_hugepage(char *str)
448 {
449 int ret = 0;
450 if (!str)
451 goto out;
452 if (!strcmp(str, "always")) {
453 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
454 &transparent_hugepage_flags);
455 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
456 &transparent_hugepage_flags);
457 ret = 1;
458 } else if (!strcmp(str, "madvise")) {
459 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "never")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 }
471 out:
472 if (!ret)
473 pr_warn("transparent_hugepage= cannot parse, ignored\n");
474 return ret;
475 }
476 __setup("transparent_hugepage=", setup_transparent_hugepage);
477
478 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479 {
480 if (likely(vma->vm_flags & VM_WRITE))
481 pmd = pmd_mkwrite(pmd);
482 return pmd;
483 }
484
485 static inline struct list_head *page_deferred_list(struct page *page)
486 {
487 /*
488 * ->lru in the tail pages is occupied by compound_head.
489 * Let's use ->mapping + ->index in the second tail page as list_head.
490 */
491 return (struct list_head *)&page[2].mapping;
492 }
493
494 void prep_transhuge_page(struct page *page)
495 {
496 /*
497 * we use page->mapping and page->indexlru in second tail page
498 * as list_head: assuming THP order >= 2
499 */
500
501 INIT_LIST_HEAD(page_deferred_list(page));
502 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
503 }
504
505 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
506 loff_t off, unsigned long flags, unsigned long size)
507 {
508 unsigned long addr;
509 loff_t off_end = off + len;
510 loff_t off_align = round_up(off, size);
511 unsigned long len_pad;
512
513 if (off_end <= off_align || (off_end - off_align) < size)
514 return 0;
515
516 len_pad = len + size;
517 if (len_pad < len || (off + len_pad) < off)
518 return 0;
519
520 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
521 off >> PAGE_SHIFT, flags);
522 if (IS_ERR_VALUE(addr))
523 return 0;
524
525 addr += (off - addr) & (size - 1);
526 return addr;
527 }
528
529 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
530 unsigned long len, unsigned long pgoff, unsigned long flags)
531 {
532 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
533
534 if (addr)
535 goto out;
536 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
537 goto out;
538
539 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
540 if (addr)
541 return addr;
542
543 out:
544 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
545 }
546 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
547
548 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
549 gfp_t gfp)
550 {
551 struct vm_area_struct *vma = vmf->vma;
552 struct mem_cgroup *memcg;
553 pgtable_t pgtable;
554 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
555 int ret = 0;
556
557 VM_BUG_ON_PAGE(!PageCompound(page), page);
558
559 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
560 true)) {
561 put_page(page);
562 count_vm_event(THP_FAULT_FALLBACK);
563 return VM_FAULT_FALLBACK;
564 }
565
566 pgtable = pte_alloc_one(vma->vm_mm, haddr);
567 if (unlikely(!pgtable)) {
568 ret = VM_FAULT_OOM;
569 goto release;
570 }
571
572 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
573 /*
574 * The memory barrier inside __SetPageUptodate makes sure that
575 * clear_huge_page writes become visible before the set_pmd_at()
576 * write.
577 */
578 __SetPageUptodate(page);
579
580 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
581 if (unlikely(!pmd_none(*vmf->pmd))) {
582 goto unlock_release;
583 } else {
584 pmd_t entry;
585
586 ret = check_stable_address_space(vma->vm_mm);
587 if (ret)
588 goto unlock_release;
589
590 /* Deliver the page fault to userland */
591 if (userfaultfd_missing(vma)) {
592 int ret;
593
594 spin_unlock(vmf->ptl);
595 mem_cgroup_cancel_charge(page, memcg, true);
596 put_page(page);
597 pte_free(vma->vm_mm, pgtable);
598 ret = handle_userfault(vmf, VM_UFFD_MISSING);
599 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
600 return ret;
601 }
602
603 entry = mk_huge_pmd(page, vma->vm_page_prot);
604 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
605 page_add_new_anon_rmap(page, vma, haddr, true);
606 mem_cgroup_commit_charge(page, memcg, false, true);
607 lru_cache_add_active_or_unevictable(page, vma);
608 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
609 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
610 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
611 mm_inc_nr_ptes(vma->vm_mm);
612 spin_unlock(vmf->ptl);
613 count_vm_event(THP_FAULT_ALLOC);
614 }
615
616 return 0;
617 unlock_release:
618 spin_unlock(vmf->ptl);
619 release:
620 if (pgtable)
621 pte_free(vma->vm_mm, pgtable);
622 mem_cgroup_cancel_charge(page, memcg, true);
623 put_page(page);
624 return ret;
625
626 }
627
628 /*
629 * always: directly stall for all thp allocations
630 * defer: wake kswapd and fail if not immediately available
631 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
632 * fail if not immediately available
633 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
634 * available
635 * never: never stall for any thp allocation
636 */
637 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
638 {
639 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
640
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
645 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
646 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
647 __GFP_KSWAPD_RECLAIM);
648 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
649 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
650 0);
651 return GFP_TRANSHUGE_LIGHT;
652 }
653
654 /* Caller must hold page table lock. */
655 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
656 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
657 struct page *zero_page)
658 {
659 pmd_t entry;
660 if (!pmd_none(*pmd))
661 return false;
662 entry = mk_pmd(zero_page, vma->vm_page_prot);
663 entry = pmd_mkhuge(entry);
664 if (pgtable)
665 pgtable_trans_huge_deposit(mm, pmd, pgtable);
666 set_pmd_at(mm, haddr, pmd, entry);
667 mm_inc_nr_ptes(mm);
668 return true;
669 }
670
671 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
672 {
673 struct vm_area_struct *vma = vmf->vma;
674 gfp_t gfp;
675 struct page *page;
676 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
677
678 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
679 return VM_FAULT_FALLBACK;
680 if (unlikely(anon_vma_prepare(vma)))
681 return VM_FAULT_OOM;
682 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
683 return VM_FAULT_OOM;
684 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
685 !mm_forbids_zeropage(vma->vm_mm) &&
686 transparent_hugepage_use_zero_page()) {
687 pgtable_t pgtable;
688 struct page *zero_page;
689 bool set;
690 int ret;
691 pgtable = pte_alloc_one(vma->vm_mm, haddr);
692 if (unlikely(!pgtable))
693 return VM_FAULT_OOM;
694 zero_page = mm_get_huge_zero_page(vma->vm_mm);
695 if (unlikely(!zero_page)) {
696 pte_free(vma->vm_mm, pgtable);
697 count_vm_event(THP_FAULT_FALLBACK);
698 return VM_FAULT_FALLBACK;
699 }
700 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
701 ret = 0;
702 set = false;
703 if (pmd_none(*vmf->pmd)) {
704 ret = check_stable_address_space(vma->vm_mm);
705 if (ret) {
706 spin_unlock(vmf->ptl);
707 } else if (userfaultfd_missing(vma)) {
708 spin_unlock(vmf->ptl);
709 ret = handle_userfault(vmf, VM_UFFD_MISSING);
710 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
711 } else {
712 set_huge_zero_page(pgtable, vma->vm_mm, vma,
713 haddr, vmf->pmd, zero_page);
714 spin_unlock(vmf->ptl);
715 set = true;
716 }
717 } else
718 spin_unlock(vmf->ptl);
719 if (!set)
720 pte_free(vma->vm_mm, pgtable);
721 return ret;
722 }
723 gfp = alloc_hugepage_direct_gfpmask(vma);
724 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
725 if (unlikely(!page)) {
726 count_vm_event(THP_FAULT_FALLBACK);
727 return VM_FAULT_FALLBACK;
728 }
729 prep_transhuge_page(page);
730 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
731 }
732
733 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
734 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
735 pgtable_t pgtable)
736 {
737 struct mm_struct *mm = vma->vm_mm;
738 pmd_t entry;
739 spinlock_t *ptl;
740
741 ptl = pmd_lock(mm, pmd);
742 if (!pmd_none(*pmd)) {
743 if (write) {
744 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
745 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
746 goto out_unlock;
747 }
748 entry = pmd_mkyoung(*pmd);
749 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
750 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
751 update_mmu_cache_pmd(vma, addr, pmd);
752 }
753
754 goto out_unlock;
755 }
756
757 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
758 if (pfn_t_devmap(pfn))
759 entry = pmd_mkdevmap(entry);
760 if (write) {
761 entry = pmd_mkyoung(pmd_mkdirty(entry));
762 entry = maybe_pmd_mkwrite(entry, vma);
763 }
764
765 if (pgtable) {
766 pgtable_trans_huge_deposit(mm, pmd, pgtable);
767 mm_inc_nr_ptes(mm);
768 pgtable = NULL;
769 }
770
771 set_pmd_at(mm, addr, pmd, entry);
772 update_mmu_cache_pmd(vma, addr, pmd);
773
774 out_unlock:
775 spin_unlock(ptl);
776 if (pgtable)
777 pte_free(mm, pgtable);
778 }
779
780 int vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
781 {
782 unsigned long addr = vmf->address & PMD_MASK;
783 struct vm_area_struct *vma = vmf->vma;
784 pgprot_t pgprot = vma->vm_page_prot;
785 pgtable_t pgtable = NULL;
786
787 /*
788 * If we had pmd_special, we could avoid all these restrictions,
789 * but we need to be consistent with PTEs and architectures that
790 * can't support a 'special' bit.
791 */
792 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
793 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
794 (VM_PFNMAP|VM_MIXEDMAP));
795 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
796 BUG_ON(!pfn_t_devmap(pfn));
797
798 if (addr < vma->vm_start || addr >= vma->vm_end)
799 return VM_FAULT_SIGBUS;
800
801 if (arch_needs_pgtable_deposit()) {
802 pgtable = pte_alloc_one(vma->vm_mm, addr);
803 if (!pgtable)
804 return VM_FAULT_OOM;
805 }
806
807 track_pfn_insert(vma, &pgprot, pfn);
808
809 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
810 return VM_FAULT_NOPAGE;
811 }
812 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
813
814 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
815 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
816 {
817 if (likely(vma->vm_flags & VM_WRITE))
818 pud = pud_mkwrite(pud);
819 return pud;
820 }
821
822 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
823 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
824 {
825 struct mm_struct *mm = vma->vm_mm;
826 pud_t entry;
827 spinlock_t *ptl;
828
829 ptl = pud_lock(mm, pud);
830 if (!pud_none(*pud)) {
831 if (write) {
832 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
833 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
834 goto out_unlock;
835 }
836 entry = pud_mkyoung(*pud);
837 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
838 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
839 update_mmu_cache_pud(vma, addr, pud);
840 }
841 goto out_unlock;
842 }
843
844 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
845 if (pfn_t_devmap(pfn))
846 entry = pud_mkdevmap(entry);
847 if (write) {
848 entry = pud_mkyoung(pud_mkdirty(entry));
849 entry = maybe_pud_mkwrite(entry, vma);
850 }
851 set_pud_at(mm, addr, pud, entry);
852 update_mmu_cache_pud(vma, addr, pud);
853
854 out_unlock:
855 spin_unlock(ptl);
856 }
857
858 int vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
859 {
860 unsigned long addr = vmf->address & PUD_MASK;
861 struct vm_area_struct *vma = vmf->vma;
862 pgprot_t pgprot = vma->vm_page_prot;
863
864 /*
865 * If we had pud_special, we could avoid all these restrictions,
866 * but we need to be consistent with PTEs and architectures that
867 * can't support a 'special' bit.
868 */
869 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
870 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
871 (VM_PFNMAP|VM_MIXEDMAP));
872 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
873 BUG_ON(!pfn_t_devmap(pfn));
874
875 if (addr < vma->vm_start || addr >= vma->vm_end)
876 return VM_FAULT_SIGBUS;
877
878 track_pfn_insert(vma, &pgprot, pfn);
879
880 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
881 return VM_FAULT_NOPAGE;
882 }
883 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
884 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
885
886 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
887 pmd_t *pmd, int flags)
888 {
889 pmd_t _pmd;
890
891 _pmd = pmd_mkyoung(*pmd);
892 if (flags & FOLL_WRITE)
893 _pmd = pmd_mkdirty(_pmd);
894 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
895 pmd, _pmd, flags & FOLL_WRITE))
896 update_mmu_cache_pmd(vma, addr, pmd);
897 }
898
899 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
900 pmd_t *pmd, int flags)
901 {
902 unsigned long pfn = pmd_pfn(*pmd);
903 struct mm_struct *mm = vma->vm_mm;
904 struct dev_pagemap *pgmap;
905 struct page *page;
906
907 assert_spin_locked(pmd_lockptr(mm, pmd));
908
909 /*
910 * When we COW a devmap PMD entry, we split it into PTEs, so we should
911 * not be in this function with `flags & FOLL_COW` set.
912 */
913 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
914
915 if (flags & FOLL_WRITE && !pmd_write(*pmd))
916 return NULL;
917
918 if (pmd_present(*pmd) && pmd_devmap(*pmd))
919 /* pass */;
920 else
921 return NULL;
922
923 if (flags & FOLL_TOUCH)
924 touch_pmd(vma, addr, pmd, flags);
925
926 /*
927 * device mapped pages can only be returned if the
928 * caller will manage the page reference count.
929 */
930 if (!(flags & FOLL_GET))
931 return ERR_PTR(-EEXIST);
932
933 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
934 pgmap = get_dev_pagemap(pfn, NULL);
935 if (!pgmap)
936 return ERR_PTR(-EFAULT);
937 page = pfn_to_page(pfn);
938 get_page(page);
939 put_dev_pagemap(pgmap);
940
941 return page;
942 }
943
944 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
946 struct vm_area_struct *vma)
947 {
948 spinlock_t *dst_ptl, *src_ptl;
949 struct page *src_page;
950 pmd_t pmd;
951 pgtable_t pgtable = NULL;
952 int ret = -ENOMEM;
953
954 /* Skip if can be re-fill on fault */
955 if (!vma_is_anonymous(vma))
956 return 0;
957
958 pgtable = pte_alloc_one(dst_mm, addr);
959 if (unlikely(!pgtable))
960 goto out;
961
962 dst_ptl = pmd_lock(dst_mm, dst_pmd);
963 src_ptl = pmd_lockptr(src_mm, src_pmd);
964 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
965
966 ret = -EAGAIN;
967 pmd = *src_pmd;
968
969 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
970 if (unlikely(is_swap_pmd(pmd))) {
971 swp_entry_t entry = pmd_to_swp_entry(pmd);
972
973 VM_BUG_ON(!is_pmd_migration_entry(pmd));
974 if (is_write_migration_entry(entry)) {
975 make_migration_entry_read(&entry);
976 pmd = swp_entry_to_pmd(entry);
977 if (pmd_swp_soft_dirty(*src_pmd))
978 pmd = pmd_swp_mksoft_dirty(pmd);
979 set_pmd_at(src_mm, addr, src_pmd, pmd);
980 }
981 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
982 mm_inc_nr_ptes(dst_mm);
983 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
984 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
985 ret = 0;
986 goto out_unlock;
987 }
988 #endif
989
990 if (unlikely(!pmd_trans_huge(pmd))) {
991 pte_free(dst_mm, pgtable);
992 goto out_unlock;
993 }
994 /*
995 * When page table lock is held, the huge zero pmd should not be
996 * under splitting since we don't split the page itself, only pmd to
997 * a page table.
998 */
999 if (is_huge_zero_pmd(pmd)) {
1000 struct page *zero_page;
1001 /*
1002 * get_huge_zero_page() will never allocate a new page here,
1003 * since we already have a zero page to copy. It just takes a
1004 * reference.
1005 */
1006 zero_page = mm_get_huge_zero_page(dst_mm);
1007 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1008 zero_page);
1009 ret = 0;
1010 goto out_unlock;
1011 }
1012
1013 src_page = pmd_page(pmd);
1014 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1015 get_page(src_page);
1016 page_dup_rmap(src_page, true);
1017 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1018 mm_inc_nr_ptes(dst_mm);
1019 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1020
1021 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1022 pmd = pmd_mkold(pmd_wrprotect(pmd));
1023 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1024
1025 ret = 0;
1026 out_unlock:
1027 spin_unlock(src_ptl);
1028 spin_unlock(dst_ptl);
1029 out:
1030 return ret;
1031 }
1032
1033 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1034 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1035 pud_t *pud, int flags)
1036 {
1037 pud_t _pud;
1038
1039 _pud = pud_mkyoung(*pud);
1040 if (flags & FOLL_WRITE)
1041 _pud = pud_mkdirty(_pud);
1042 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1043 pud, _pud, flags & FOLL_WRITE))
1044 update_mmu_cache_pud(vma, addr, pud);
1045 }
1046
1047 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1048 pud_t *pud, int flags)
1049 {
1050 unsigned long pfn = pud_pfn(*pud);
1051 struct mm_struct *mm = vma->vm_mm;
1052 struct dev_pagemap *pgmap;
1053 struct page *page;
1054
1055 assert_spin_locked(pud_lockptr(mm, pud));
1056
1057 if (flags & FOLL_WRITE && !pud_write(*pud))
1058 return NULL;
1059
1060 if (pud_present(*pud) && pud_devmap(*pud))
1061 /* pass */;
1062 else
1063 return NULL;
1064
1065 if (flags & FOLL_TOUCH)
1066 touch_pud(vma, addr, pud, flags);
1067
1068 /*
1069 * device mapped pages can only be returned if the
1070 * caller will manage the page reference count.
1071 */
1072 if (!(flags & FOLL_GET))
1073 return ERR_PTR(-EEXIST);
1074
1075 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1076 pgmap = get_dev_pagemap(pfn, NULL);
1077 if (!pgmap)
1078 return ERR_PTR(-EFAULT);
1079 page = pfn_to_page(pfn);
1080 get_page(page);
1081 put_dev_pagemap(pgmap);
1082
1083 return page;
1084 }
1085
1086 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1087 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1088 struct vm_area_struct *vma)
1089 {
1090 spinlock_t *dst_ptl, *src_ptl;
1091 pud_t pud;
1092 int ret;
1093
1094 dst_ptl = pud_lock(dst_mm, dst_pud);
1095 src_ptl = pud_lockptr(src_mm, src_pud);
1096 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1097
1098 ret = -EAGAIN;
1099 pud = *src_pud;
1100 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1101 goto out_unlock;
1102
1103 /*
1104 * When page table lock is held, the huge zero pud should not be
1105 * under splitting since we don't split the page itself, only pud to
1106 * a page table.
1107 */
1108 if (is_huge_zero_pud(pud)) {
1109 /* No huge zero pud yet */
1110 }
1111
1112 pudp_set_wrprotect(src_mm, addr, src_pud);
1113 pud = pud_mkold(pud_wrprotect(pud));
1114 set_pud_at(dst_mm, addr, dst_pud, pud);
1115
1116 ret = 0;
1117 out_unlock:
1118 spin_unlock(src_ptl);
1119 spin_unlock(dst_ptl);
1120 return ret;
1121 }
1122
1123 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1124 {
1125 pud_t entry;
1126 unsigned long haddr;
1127 bool write = vmf->flags & FAULT_FLAG_WRITE;
1128
1129 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1130 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1131 goto unlock;
1132
1133 entry = pud_mkyoung(orig_pud);
1134 if (write)
1135 entry = pud_mkdirty(entry);
1136 haddr = vmf->address & HPAGE_PUD_MASK;
1137 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1138 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1139
1140 unlock:
1141 spin_unlock(vmf->ptl);
1142 }
1143 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1144
1145 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1146 {
1147 pmd_t entry;
1148 unsigned long haddr;
1149 bool write = vmf->flags & FAULT_FLAG_WRITE;
1150
1151 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1152 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1153 goto unlock;
1154
1155 entry = pmd_mkyoung(orig_pmd);
1156 if (write)
1157 entry = pmd_mkdirty(entry);
1158 haddr = vmf->address & HPAGE_PMD_MASK;
1159 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1160 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1161
1162 unlock:
1163 spin_unlock(vmf->ptl);
1164 }
1165
1166 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1167 struct page *page)
1168 {
1169 struct vm_area_struct *vma = vmf->vma;
1170 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1171 struct mem_cgroup *memcg;
1172 pgtable_t pgtable;
1173 pmd_t _pmd;
1174 int ret = 0, i;
1175 struct page **pages;
1176 unsigned long mmun_start; /* For mmu_notifiers */
1177 unsigned long mmun_end; /* For mmu_notifiers */
1178
1179 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1180 GFP_KERNEL);
1181 if (unlikely(!pages)) {
1182 ret |= VM_FAULT_OOM;
1183 goto out;
1184 }
1185
1186 for (i = 0; i < HPAGE_PMD_NR; i++) {
1187 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1188 vmf->address, page_to_nid(page));
1189 if (unlikely(!pages[i] ||
1190 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1191 GFP_KERNEL, &memcg, false))) {
1192 if (pages[i])
1193 put_page(pages[i]);
1194 while (--i >= 0) {
1195 memcg = (void *)page_private(pages[i]);
1196 set_page_private(pages[i], 0);
1197 mem_cgroup_cancel_charge(pages[i], memcg,
1198 false);
1199 put_page(pages[i]);
1200 }
1201 kfree(pages);
1202 ret |= VM_FAULT_OOM;
1203 goto out;
1204 }
1205 set_page_private(pages[i], (unsigned long)memcg);
1206 }
1207
1208 for (i = 0; i < HPAGE_PMD_NR; i++) {
1209 copy_user_highpage(pages[i], page + i,
1210 haddr + PAGE_SIZE * i, vma);
1211 __SetPageUptodate(pages[i]);
1212 cond_resched();
1213 }
1214
1215 mmun_start = haddr;
1216 mmun_end = haddr + HPAGE_PMD_SIZE;
1217 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1218
1219 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1220 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1221 goto out_free_pages;
1222 VM_BUG_ON_PAGE(!PageHead(page), page);
1223
1224 /*
1225 * Leave pmd empty until pte is filled note we must notify here as
1226 * concurrent CPU thread might write to new page before the call to
1227 * mmu_notifier_invalidate_range_end() happens which can lead to a
1228 * device seeing memory write in different order than CPU.
1229 *
1230 * See Documentation/vm/mmu_notifier.txt
1231 */
1232 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1233
1234 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1235 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1236
1237 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1238 pte_t entry;
1239 entry = mk_pte(pages[i], vma->vm_page_prot);
1240 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1241 memcg = (void *)page_private(pages[i]);
1242 set_page_private(pages[i], 0);
1243 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1244 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1245 lru_cache_add_active_or_unevictable(pages[i], vma);
1246 vmf->pte = pte_offset_map(&_pmd, haddr);
1247 VM_BUG_ON(!pte_none(*vmf->pte));
1248 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1249 pte_unmap(vmf->pte);
1250 }
1251 kfree(pages);
1252
1253 smp_wmb(); /* make pte visible before pmd */
1254 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1255 page_remove_rmap(page, true);
1256 spin_unlock(vmf->ptl);
1257
1258 /*
1259 * No need to double call mmu_notifier->invalidate_range() callback as
1260 * the above pmdp_huge_clear_flush_notify() did already call it.
1261 */
1262 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1263 mmun_end);
1264
1265 ret |= VM_FAULT_WRITE;
1266 put_page(page);
1267
1268 out:
1269 return ret;
1270
1271 out_free_pages:
1272 spin_unlock(vmf->ptl);
1273 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1274 for (i = 0; i < HPAGE_PMD_NR; i++) {
1275 memcg = (void *)page_private(pages[i]);
1276 set_page_private(pages[i], 0);
1277 mem_cgroup_cancel_charge(pages[i], memcg, false);
1278 put_page(pages[i]);
1279 }
1280 kfree(pages);
1281 goto out;
1282 }
1283
1284 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1285 {
1286 struct vm_area_struct *vma = vmf->vma;
1287 struct page *page = NULL, *new_page;
1288 struct mem_cgroup *memcg;
1289 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1290 unsigned long mmun_start; /* For mmu_notifiers */
1291 unsigned long mmun_end; /* For mmu_notifiers */
1292 gfp_t huge_gfp; /* for allocation and charge */
1293 int ret = 0;
1294
1295 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1296 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1297 if (is_huge_zero_pmd(orig_pmd))
1298 goto alloc;
1299 spin_lock(vmf->ptl);
1300 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1301 goto out_unlock;
1302
1303 page = pmd_page(orig_pmd);
1304 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1305 /*
1306 * We can only reuse the page if nobody else maps the huge page or it's
1307 * part.
1308 */
1309 if (!trylock_page(page)) {
1310 get_page(page);
1311 spin_unlock(vmf->ptl);
1312 lock_page(page);
1313 spin_lock(vmf->ptl);
1314 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1315 unlock_page(page);
1316 put_page(page);
1317 goto out_unlock;
1318 }
1319 put_page(page);
1320 }
1321 if (reuse_swap_page(page, NULL)) {
1322 pmd_t entry;
1323 entry = pmd_mkyoung(orig_pmd);
1324 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1325 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1326 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1327 ret |= VM_FAULT_WRITE;
1328 unlock_page(page);
1329 goto out_unlock;
1330 }
1331 unlock_page(page);
1332 get_page(page);
1333 spin_unlock(vmf->ptl);
1334 alloc:
1335 if (transparent_hugepage_enabled(vma) &&
1336 !transparent_hugepage_debug_cow()) {
1337 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1338 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1339 } else
1340 new_page = NULL;
1341
1342 if (likely(new_page)) {
1343 prep_transhuge_page(new_page);
1344 } else {
1345 if (!page) {
1346 split_huge_pmd(vma, vmf->pmd, vmf->address);
1347 ret |= VM_FAULT_FALLBACK;
1348 } else {
1349 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1350 if (ret & VM_FAULT_OOM) {
1351 split_huge_pmd(vma, vmf->pmd, vmf->address);
1352 ret |= VM_FAULT_FALLBACK;
1353 }
1354 put_page(page);
1355 }
1356 count_vm_event(THP_FAULT_FALLBACK);
1357 goto out;
1358 }
1359
1360 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1361 huge_gfp | __GFP_NORETRY, &memcg, true))) {
1362 put_page(new_page);
1363 split_huge_pmd(vma, vmf->pmd, vmf->address);
1364 if (page)
1365 put_page(page);
1366 ret |= VM_FAULT_FALLBACK;
1367 count_vm_event(THP_FAULT_FALLBACK);
1368 goto out;
1369 }
1370
1371 count_vm_event(THP_FAULT_ALLOC);
1372
1373 if (!page)
1374 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1375 else
1376 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1377 __SetPageUptodate(new_page);
1378
1379 mmun_start = haddr;
1380 mmun_end = haddr + HPAGE_PMD_SIZE;
1381 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1382
1383 spin_lock(vmf->ptl);
1384 if (page)
1385 put_page(page);
1386 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1387 spin_unlock(vmf->ptl);
1388 mem_cgroup_cancel_charge(new_page, memcg, true);
1389 put_page(new_page);
1390 goto out_mn;
1391 } else {
1392 pmd_t entry;
1393 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1394 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1395 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1396 page_add_new_anon_rmap(new_page, vma, haddr, true);
1397 mem_cgroup_commit_charge(new_page, memcg, false, true);
1398 lru_cache_add_active_or_unevictable(new_page, vma);
1399 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1400 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1401 if (!page) {
1402 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1403 } else {
1404 VM_BUG_ON_PAGE(!PageHead(page), page);
1405 page_remove_rmap(page, true);
1406 put_page(page);
1407 }
1408 ret |= VM_FAULT_WRITE;
1409 }
1410 spin_unlock(vmf->ptl);
1411 out_mn:
1412 /*
1413 * No need to double call mmu_notifier->invalidate_range() callback as
1414 * the above pmdp_huge_clear_flush_notify() did already call it.
1415 */
1416 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1417 mmun_end);
1418 out:
1419 return ret;
1420 out_unlock:
1421 spin_unlock(vmf->ptl);
1422 return ret;
1423 }
1424
1425 /*
1426 * FOLL_FORCE can write to even unwritable pmd's, but only
1427 * after we've gone through a COW cycle and they are dirty.
1428 */
1429 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1430 {
1431 return pmd_write(pmd) ||
1432 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1433 }
1434
1435 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1436 unsigned long addr,
1437 pmd_t *pmd,
1438 unsigned int flags)
1439 {
1440 struct mm_struct *mm = vma->vm_mm;
1441 struct page *page = NULL;
1442
1443 assert_spin_locked(pmd_lockptr(mm, pmd));
1444
1445 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1446 goto out;
1447
1448 /* Avoid dumping huge zero page */
1449 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1450 return ERR_PTR(-EFAULT);
1451
1452 /* Full NUMA hinting faults to serialise migration in fault paths */
1453 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1454 goto out;
1455
1456 page = pmd_page(*pmd);
1457 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1458 if (flags & FOLL_TOUCH)
1459 touch_pmd(vma, addr, pmd, flags);
1460 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1461 /*
1462 * We don't mlock() pte-mapped THPs. This way we can avoid
1463 * leaking mlocked pages into non-VM_LOCKED VMAs.
1464 *
1465 * For anon THP:
1466 *
1467 * In most cases the pmd is the only mapping of the page as we
1468 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1469 * writable private mappings in populate_vma_page_range().
1470 *
1471 * The only scenario when we have the page shared here is if we
1472 * mlocking read-only mapping shared over fork(). We skip
1473 * mlocking such pages.
1474 *
1475 * For file THP:
1476 *
1477 * We can expect PageDoubleMap() to be stable under page lock:
1478 * for file pages we set it in page_add_file_rmap(), which
1479 * requires page to be locked.
1480 */
1481
1482 if (PageAnon(page) && compound_mapcount(page) != 1)
1483 goto skip_mlock;
1484 if (PageDoubleMap(page) || !page->mapping)
1485 goto skip_mlock;
1486 if (!trylock_page(page))
1487 goto skip_mlock;
1488 lru_add_drain();
1489 if (page->mapping && !PageDoubleMap(page))
1490 mlock_vma_page(page);
1491 unlock_page(page);
1492 }
1493 skip_mlock:
1494 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1495 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1496 if (flags & FOLL_GET)
1497 get_page(page);
1498
1499 out:
1500 return page;
1501 }
1502
1503 /* NUMA hinting page fault entry point for trans huge pmds */
1504 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1505 {
1506 struct vm_area_struct *vma = vmf->vma;
1507 struct anon_vma *anon_vma = NULL;
1508 struct page *page;
1509 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1510 int page_nid = -1, this_nid = numa_node_id();
1511 int target_nid, last_cpupid = -1;
1512 bool page_locked;
1513 bool migrated = false;
1514 bool was_writable;
1515 int flags = 0;
1516
1517 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1518 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1519 goto out_unlock;
1520
1521 /*
1522 * If there are potential migrations, wait for completion and retry
1523 * without disrupting NUMA hinting information. Do not relock and
1524 * check_same as the page may no longer be mapped.
1525 */
1526 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1527 page = pmd_page(*vmf->pmd);
1528 if (!get_page_unless_zero(page))
1529 goto out_unlock;
1530 spin_unlock(vmf->ptl);
1531 wait_on_page_locked(page);
1532 put_page(page);
1533 goto out;
1534 }
1535
1536 page = pmd_page(pmd);
1537 BUG_ON(is_huge_zero_page(page));
1538 page_nid = page_to_nid(page);
1539 last_cpupid = page_cpupid_last(page);
1540 count_vm_numa_event(NUMA_HINT_FAULTS);
1541 if (page_nid == this_nid) {
1542 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1543 flags |= TNF_FAULT_LOCAL;
1544 }
1545
1546 /* See similar comment in do_numa_page for explanation */
1547 if (!pmd_savedwrite(pmd))
1548 flags |= TNF_NO_GROUP;
1549
1550 /*
1551 * Acquire the page lock to serialise THP migrations but avoid dropping
1552 * page_table_lock if at all possible
1553 */
1554 page_locked = trylock_page(page);
1555 target_nid = mpol_misplaced(page, vma, haddr);
1556 if (target_nid == -1) {
1557 /* If the page was locked, there are no parallel migrations */
1558 if (page_locked)
1559 goto clear_pmdnuma;
1560 }
1561
1562 /* Migration could have started since the pmd_trans_migrating check */
1563 if (!page_locked) {
1564 page_nid = -1;
1565 if (!get_page_unless_zero(page))
1566 goto out_unlock;
1567 spin_unlock(vmf->ptl);
1568 wait_on_page_locked(page);
1569 put_page(page);
1570 goto out;
1571 }
1572
1573 /*
1574 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1575 * to serialises splits
1576 */
1577 get_page(page);
1578 spin_unlock(vmf->ptl);
1579 anon_vma = page_lock_anon_vma_read(page);
1580
1581 /* Confirm the PMD did not change while page_table_lock was released */
1582 spin_lock(vmf->ptl);
1583 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1584 unlock_page(page);
1585 put_page(page);
1586 page_nid = -1;
1587 goto out_unlock;
1588 }
1589
1590 /* Bail if we fail to protect against THP splits for any reason */
1591 if (unlikely(!anon_vma)) {
1592 put_page(page);
1593 page_nid = -1;
1594 goto clear_pmdnuma;
1595 }
1596
1597 /*
1598 * Since we took the NUMA fault, we must have observed the !accessible
1599 * bit. Make sure all other CPUs agree with that, to avoid them
1600 * modifying the page we're about to migrate.
1601 *
1602 * Must be done under PTL such that we'll observe the relevant
1603 * inc_tlb_flush_pending().
1604 *
1605 * We are not sure a pending tlb flush here is for a huge page
1606 * mapping or not. Hence use the tlb range variant
1607 */
1608 if (mm_tlb_flush_pending(vma->vm_mm))
1609 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1610
1611 /*
1612 * Migrate the THP to the requested node, returns with page unlocked
1613 * and access rights restored.
1614 */
1615 spin_unlock(vmf->ptl);
1616
1617 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1618 vmf->pmd, pmd, vmf->address, page, target_nid);
1619 if (migrated) {
1620 flags |= TNF_MIGRATED;
1621 page_nid = target_nid;
1622 } else
1623 flags |= TNF_MIGRATE_FAIL;
1624
1625 goto out;
1626 clear_pmdnuma:
1627 BUG_ON(!PageLocked(page));
1628 was_writable = pmd_savedwrite(pmd);
1629 pmd = pmd_modify(pmd, vma->vm_page_prot);
1630 pmd = pmd_mkyoung(pmd);
1631 if (was_writable)
1632 pmd = pmd_mkwrite(pmd);
1633 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1634 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1635 unlock_page(page);
1636 out_unlock:
1637 spin_unlock(vmf->ptl);
1638
1639 out:
1640 if (anon_vma)
1641 page_unlock_anon_vma_read(anon_vma);
1642
1643 if (page_nid != -1)
1644 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1645 flags);
1646
1647 return 0;
1648 }
1649
1650 /*
1651 * Return true if we do MADV_FREE successfully on entire pmd page.
1652 * Otherwise, return false.
1653 */
1654 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1655 pmd_t *pmd, unsigned long addr, unsigned long next)
1656 {
1657 spinlock_t *ptl;
1658 pmd_t orig_pmd;
1659 struct page *page;
1660 struct mm_struct *mm = tlb->mm;
1661 bool ret = false;
1662
1663 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1664
1665 ptl = pmd_trans_huge_lock(pmd, vma);
1666 if (!ptl)
1667 goto out_unlocked;
1668
1669 orig_pmd = *pmd;
1670 if (is_huge_zero_pmd(orig_pmd))
1671 goto out;
1672
1673 if (unlikely(!pmd_present(orig_pmd))) {
1674 VM_BUG_ON(thp_migration_supported() &&
1675 !is_pmd_migration_entry(orig_pmd));
1676 goto out;
1677 }
1678
1679 page = pmd_page(orig_pmd);
1680 /*
1681 * If other processes are mapping this page, we couldn't discard
1682 * the page unless they all do MADV_FREE so let's skip the page.
1683 */
1684 if (page_mapcount(page) != 1)
1685 goto out;
1686
1687 if (!trylock_page(page))
1688 goto out;
1689
1690 /*
1691 * If user want to discard part-pages of THP, split it so MADV_FREE
1692 * will deactivate only them.
1693 */
1694 if (next - addr != HPAGE_PMD_SIZE) {
1695 get_page(page);
1696 spin_unlock(ptl);
1697 split_huge_page(page);
1698 unlock_page(page);
1699 put_page(page);
1700 goto out_unlocked;
1701 }
1702
1703 if (PageDirty(page))
1704 ClearPageDirty(page);
1705 unlock_page(page);
1706
1707 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1708 pmdp_invalidate(vma, addr, pmd);
1709 orig_pmd = pmd_mkold(orig_pmd);
1710 orig_pmd = pmd_mkclean(orig_pmd);
1711
1712 set_pmd_at(mm, addr, pmd, orig_pmd);
1713 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1714 }
1715
1716 mark_page_lazyfree(page);
1717 ret = true;
1718 out:
1719 spin_unlock(ptl);
1720 out_unlocked:
1721 return ret;
1722 }
1723
1724 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1725 {
1726 pgtable_t pgtable;
1727
1728 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1729 pte_free(mm, pgtable);
1730 mm_dec_nr_ptes(mm);
1731 }
1732
1733 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1734 pmd_t *pmd, unsigned long addr)
1735 {
1736 pmd_t orig_pmd;
1737 spinlock_t *ptl;
1738
1739 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1740
1741 ptl = __pmd_trans_huge_lock(pmd, vma);
1742 if (!ptl)
1743 return 0;
1744 /*
1745 * For architectures like ppc64 we look at deposited pgtable
1746 * when calling pmdp_huge_get_and_clear. So do the
1747 * pgtable_trans_huge_withdraw after finishing pmdp related
1748 * operations.
1749 */
1750 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1751 tlb->fullmm);
1752 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1753 if (vma_is_dax(vma)) {
1754 if (arch_needs_pgtable_deposit())
1755 zap_deposited_table(tlb->mm, pmd);
1756 spin_unlock(ptl);
1757 if (is_huge_zero_pmd(orig_pmd))
1758 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1759 } else if (is_huge_zero_pmd(orig_pmd)) {
1760 zap_deposited_table(tlb->mm, pmd);
1761 spin_unlock(ptl);
1762 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1763 } else {
1764 struct page *page = NULL;
1765 int flush_needed = 1;
1766
1767 if (pmd_present(orig_pmd)) {
1768 page = pmd_page(orig_pmd);
1769 page_remove_rmap(page, true);
1770 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1771 VM_BUG_ON_PAGE(!PageHead(page), page);
1772 } else if (thp_migration_supported()) {
1773 swp_entry_t entry;
1774
1775 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1776 entry = pmd_to_swp_entry(orig_pmd);
1777 page = pfn_to_page(swp_offset(entry));
1778 flush_needed = 0;
1779 } else
1780 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1781
1782 if (PageAnon(page)) {
1783 zap_deposited_table(tlb->mm, pmd);
1784 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1785 } else {
1786 if (arch_needs_pgtable_deposit())
1787 zap_deposited_table(tlb->mm, pmd);
1788 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1789 }
1790
1791 spin_unlock(ptl);
1792 if (flush_needed)
1793 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1794 }
1795 return 1;
1796 }
1797
1798 #ifndef pmd_move_must_withdraw
1799 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1800 spinlock_t *old_pmd_ptl,
1801 struct vm_area_struct *vma)
1802 {
1803 /*
1804 * With split pmd lock we also need to move preallocated
1805 * PTE page table if new_pmd is on different PMD page table.
1806 *
1807 * We also don't deposit and withdraw tables for file pages.
1808 */
1809 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1810 }
1811 #endif
1812
1813 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1814 {
1815 #ifdef CONFIG_MEM_SOFT_DIRTY
1816 if (unlikely(is_pmd_migration_entry(pmd)))
1817 pmd = pmd_swp_mksoft_dirty(pmd);
1818 else if (pmd_present(pmd))
1819 pmd = pmd_mksoft_dirty(pmd);
1820 #endif
1821 return pmd;
1822 }
1823
1824 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1825 unsigned long new_addr, unsigned long old_end,
1826 pmd_t *old_pmd, pmd_t *new_pmd)
1827 {
1828 spinlock_t *old_ptl, *new_ptl;
1829 pmd_t pmd;
1830 struct mm_struct *mm = vma->vm_mm;
1831 bool force_flush = false;
1832
1833 if ((old_addr & ~HPAGE_PMD_MASK) ||
1834 (new_addr & ~HPAGE_PMD_MASK) ||
1835 old_end - old_addr < HPAGE_PMD_SIZE)
1836 return false;
1837
1838 /*
1839 * The destination pmd shouldn't be established, free_pgtables()
1840 * should have release it.
1841 */
1842 if (WARN_ON(!pmd_none(*new_pmd))) {
1843 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1844 return false;
1845 }
1846
1847 /*
1848 * We don't have to worry about the ordering of src and dst
1849 * ptlocks because exclusive mmap_sem prevents deadlock.
1850 */
1851 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1852 if (old_ptl) {
1853 new_ptl = pmd_lockptr(mm, new_pmd);
1854 if (new_ptl != old_ptl)
1855 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1856 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1857 if (pmd_present(pmd))
1858 force_flush = true;
1859 VM_BUG_ON(!pmd_none(*new_pmd));
1860
1861 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1862 pgtable_t pgtable;
1863 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1864 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1865 }
1866 pmd = move_soft_dirty_pmd(pmd);
1867 set_pmd_at(mm, new_addr, new_pmd, pmd);
1868 if (force_flush)
1869 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1870 if (new_ptl != old_ptl)
1871 spin_unlock(new_ptl);
1872 spin_unlock(old_ptl);
1873 return true;
1874 }
1875 return false;
1876 }
1877
1878 /*
1879 * Returns
1880 * - 0 if PMD could not be locked
1881 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1882 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1883 */
1884 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1885 unsigned long addr, pgprot_t newprot, int prot_numa)
1886 {
1887 struct mm_struct *mm = vma->vm_mm;
1888 spinlock_t *ptl;
1889 pmd_t entry;
1890 bool preserve_write;
1891 int ret;
1892
1893 ptl = __pmd_trans_huge_lock(pmd, vma);
1894 if (!ptl)
1895 return 0;
1896
1897 preserve_write = prot_numa && pmd_write(*pmd);
1898 ret = 1;
1899
1900 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1901 if (is_swap_pmd(*pmd)) {
1902 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1903
1904 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1905 if (is_write_migration_entry(entry)) {
1906 pmd_t newpmd;
1907 /*
1908 * A protection check is difficult so
1909 * just be safe and disable write
1910 */
1911 make_migration_entry_read(&entry);
1912 newpmd = swp_entry_to_pmd(entry);
1913 if (pmd_swp_soft_dirty(*pmd))
1914 newpmd = pmd_swp_mksoft_dirty(newpmd);
1915 set_pmd_at(mm, addr, pmd, newpmd);
1916 }
1917 goto unlock;
1918 }
1919 #endif
1920
1921 /*
1922 * Avoid trapping faults against the zero page. The read-only
1923 * data is likely to be read-cached on the local CPU and
1924 * local/remote hits to the zero page are not interesting.
1925 */
1926 if (prot_numa && is_huge_zero_pmd(*pmd))
1927 goto unlock;
1928
1929 if (prot_numa && pmd_protnone(*pmd))
1930 goto unlock;
1931
1932 /*
1933 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1934 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1935 * which is also under down_read(mmap_sem):
1936 *
1937 * CPU0: CPU1:
1938 * change_huge_pmd(prot_numa=1)
1939 * pmdp_huge_get_and_clear_notify()
1940 * madvise_dontneed()
1941 * zap_pmd_range()
1942 * pmd_trans_huge(*pmd) == 0 (without ptl)
1943 * // skip the pmd
1944 * set_pmd_at();
1945 * // pmd is re-established
1946 *
1947 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1948 * which may break userspace.
1949 *
1950 * pmdp_invalidate() is required to make sure we don't miss
1951 * dirty/young flags set by hardware.
1952 */
1953 entry = *pmd;
1954 pmdp_invalidate(vma, addr, pmd);
1955
1956 /*
1957 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1958 * corrupt them.
1959 */
1960 if (pmd_dirty(*pmd))
1961 entry = pmd_mkdirty(entry);
1962 if (pmd_young(*pmd))
1963 entry = pmd_mkyoung(entry);
1964
1965 entry = pmd_modify(entry, newprot);
1966 if (preserve_write)
1967 entry = pmd_mk_savedwrite(entry);
1968 ret = HPAGE_PMD_NR;
1969 set_pmd_at(mm, addr, pmd, entry);
1970 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1971 unlock:
1972 spin_unlock(ptl);
1973 return ret;
1974 }
1975
1976 /*
1977 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1978 *
1979 * Note that if it returns page table lock pointer, this routine returns without
1980 * unlocking page table lock. So callers must unlock it.
1981 */
1982 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1983 {
1984 spinlock_t *ptl;
1985 ptl = pmd_lock(vma->vm_mm, pmd);
1986 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1987 pmd_devmap(*pmd)))
1988 return ptl;
1989 spin_unlock(ptl);
1990 return NULL;
1991 }
1992
1993 /*
1994 * Returns true if a given pud maps a thp, false otherwise.
1995 *
1996 * Note that if it returns true, this routine returns without unlocking page
1997 * table lock. So callers must unlock it.
1998 */
1999 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2000 {
2001 spinlock_t *ptl;
2002
2003 ptl = pud_lock(vma->vm_mm, pud);
2004 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2005 return ptl;
2006 spin_unlock(ptl);
2007 return NULL;
2008 }
2009
2010 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2011 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2012 pud_t *pud, unsigned long addr)
2013 {
2014 pud_t orig_pud;
2015 spinlock_t *ptl;
2016
2017 ptl = __pud_trans_huge_lock(pud, vma);
2018 if (!ptl)
2019 return 0;
2020 /*
2021 * For architectures like ppc64 we look at deposited pgtable
2022 * when calling pudp_huge_get_and_clear. So do the
2023 * pgtable_trans_huge_withdraw after finishing pudp related
2024 * operations.
2025 */
2026 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
2027 tlb->fullmm);
2028 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2029 if (vma_is_dax(vma)) {
2030 spin_unlock(ptl);
2031 /* No zero page support yet */
2032 } else {
2033 /* No support for anonymous PUD pages yet */
2034 BUG();
2035 }
2036 return 1;
2037 }
2038
2039 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2040 unsigned long haddr)
2041 {
2042 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2043 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2044 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2045 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2046
2047 count_vm_event(THP_SPLIT_PUD);
2048
2049 pudp_huge_clear_flush_notify(vma, haddr, pud);
2050 }
2051
2052 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2053 unsigned long address)
2054 {
2055 spinlock_t *ptl;
2056 struct mm_struct *mm = vma->vm_mm;
2057 unsigned long haddr = address & HPAGE_PUD_MASK;
2058
2059 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2060 ptl = pud_lock(mm, pud);
2061 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2062 goto out;
2063 __split_huge_pud_locked(vma, pud, haddr);
2064
2065 out:
2066 spin_unlock(ptl);
2067 /*
2068 * No need to double call mmu_notifier->invalidate_range() callback as
2069 * the above pudp_huge_clear_flush_notify() did already call it.
2070 */
2071 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2072 HPAGE_PUD_SIZE);
2073 }
2074 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2075
2076 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2077 unsigned long haddr, pmd_t *pmd)
2078 {
2079 struct mm_struct *mm = vma->vm_mm;
2080 pgtable_t pgtable;
2081 pmd_t _pmd;
2082 int i;
2083
2084 /*
2085 * Leave pmd empty until pte is filled note that it is fine to delay
2086 * notification until mmu_notifier_invalidate_range_end() as we are
2087 * replacing a zero pmd write protected page with a zero pte write
2088 * protected page.
2089 *
2090 * See Documentation/vm/mmu_notifier.txt
2091 */
2092 pmdp_huge_clear_flush(vma, haddr, pmd);
2093
2094 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2095 pmd_populate(mm, &_pmd, pgtable);
2096
2097 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2098 pte_t *pte, entry;
2099 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2100 entry = pte_mkspecial(entry);
2101 pte = pte_offset_map(&_pmd, haddr);
2102 VM_BUG_ON(!pte_none(*pte));
2103 set_pte_at(mm, haddr, pte, entry);
2104 pte_unmap(pte);
2105 }
2106 smp_wmb(); /* make pte visible before pmd */
2107 pmd_populate(mm, pmd, pgtable);
2108 }
2109
2110 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2111 unsigned long haddr, bool freeze)
2112 {
2113 struct mm_struct *mm = vma->vm_mm;
2114 struct page *page;
2115 pgtable_t pgtable;
2116 pmd_t _pmd;
2117 bool young, write, dirty, soft_dirty, pmd_migration = false;
2118 unsigned long addr;
2119 int i;
2120
2121 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2122 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2123 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2124 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2125 && !pmd_devmap(*pmd));
2126
2127 count_vm_event(THP_SPLIT_PMD);
2128
2129 if (!vma_is_anonymous(vma)) {
2130 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2131 /*
2132 * We are going to unmap this huge page. So
2133 * just go ahead and zap it
2134 */
2135 if (arch_needs_pgtable_deposit())
2136 zap_deposited_table(mm, pmd);
2137 if (vma_is_dax(vma))
2138 return;
2139 page = pmd_page(_pmd);
2140 if (!PageDirty(page) && pmd_dirty(_pmd))
2141 set_page_dirty(page);
2142 if (!PageReferenced(page) && pmd_young(_pmd))
2143 SetPageReferenced(page);
2144 page_remove_rmap(page, true);
2145 put_page(page);
2146 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2147 return;
2148 } else if (is_huge_zero_pmd(*pmd)) {
2149 /*
2150 * FIXME: Do we want to invalidate secondary mmu by calling
2151 * mmu_notifier_invalidate_range() see comments below inside
2152 * __split_huge_pmd() ?
2153 *
2154 * We are going from a zero huge page write protected to zero
2155 * small page also write protected so it does not seems useful
2156 * to invalidate secondary mmu at this time.
2157 */
2158 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2159 }
2160
2161 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2162 pmd_migration = is_pmd_migration_entry(*pmd);
2163 if (pmd_migration) {
2164 swp_entry_t entry;
2165
2166 entry = pmd_to_swp_entry(*pmd);
2167 page = pfn_to_page(swp_offset(entry));
2168 } else
2169 #endif
2170 page = pmd_page(*pmd);
2171 VM_BUG_ON_PAGE(!page_count(page), page);
2172 page_ref_add(page, HPAGE_PMD_NR - 1);
2173 write = pmd_write(*pmd);
2174 young = pmd_young(*pmd);
2175 dirty = pmd_dirty(*pmd);
2176 soft_dirty = pmd_soft_dirty(*pmd);
2177
2178 pmdp_huge_split_prepare(vma, haddr, pmd);
2179 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2180 pmd_populate(mm, &_pmd, pgtable);
2181
2182 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2183 pte_t entry, *pte;
2184 /*
2185 * Note that NUMA hinting access restrictions are not
2186 * transferred to avoid any possibility of altering
2187 * permissions across VMAs.
2188 */
2189 if (freeze || pmd_migration) {
2190 swp_entry_t swp_entry;
2191 swp_entry = make_migration_entry(page + i, write);
2192 entry = swp_entry_to_pte(swp_entry);
2193 if (soft_dirty)
2194 entry = pte_swp_mksoft_dirty(entry);
2195 } else {
2196 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2197 entry = maybe_mkwrite(entry, vma);
2198 if (!write)
2199 entry = pte_wrprotect(entry);
2200 if (!young)
2201 entry = pte_mkold(entry);
2202 if (soft_dirty)
2203 entry = pte_mksoft_dirty(entry);
2204 }
2205 if (dirty)
2206 SetPageDirty(page + i);
2207 pte = pte_offset_map(&_pmd, addr);
2208 BUG_ON(!pte_none(*pte));
2209 set_pte_at(mm, addr, pte, entry);
2210 atomic_inc(&page[i]._mapcount);
2211 pte_unmap(pte);
2212 }
2213
2214 /*
2215 * Set PG_double_map before dropping compound_mapcount to avoid
2216 * false-negative page_mapped().
2217 */
2218 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2219 for (i = 0; i < HPAGE_PMD_NR; i++)
2220 atomic_inc(&page[i]._mapcount);
2221 }
2222
2223 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2224 /* Last compound_mapcount is gone. */
2225 __dec_node_page_state(page, NR_ANON_THPS);
2226 if (TestClearPageDoubleMap(page)) {
2227 /* No need in mapcount reference anymore */
2228 for (i = 0; i < HPAGE_PMD_NR; i++)
2229 atomic_dec(&page[i]._mapcount);
2230 }
2231 }
2232
2233 smp_wmb(); /* make pte visible before pmd */
2234 /*
2235 * Up to this point the pmd is present and huge and userland has the
2236 * whole access to the hugepage during the split (which happens in
2237 * place). If we overwrite the pmd with the not-huge version pointing
2238 * to the pte here (which of course we could if all CPUs were bug
2239 * free), userland could trigger a small page size TLB miss on the
2240 * small sized TLB while the hugepage TLB entry is still established in
2241 * the huge TLB. Some CPU doesn't like that.
2242 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2243 * 383 on page 93. Intel should be safe but is also warns that it's
2244 * only safe if the permission and cache attributes of the two entries
2245 * loaded in the two TLB is identical (which should be the case here).
2246 * But it is generally safer to never allow small and huge TLB entries
2247 * for the same virtual address to be loaded simultaneously. So instead
2248 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2249 * current pmd notpresent (atomically because here the pmd_trans_huge
2250 * and pmd_trans_splitting must remain set at all times on the pmd
2251 * until the split is complete for this pmd), then we flush the SMP TLB
2252 * and finally we write the non-huge version of the pmd entry with
2253 * pmd_populate.
2254 */
2255 pmdp_invalidate(vma, haddr, pmd);
2256 pmd_populate(mm, pmd, pgtable);
2257
2258 if (freeze) {
2259 for (i = 0; i < HPAGE_PMD_NR; i++) {
2260 page_remove_rmap(page + i, false);
2261 put_page(page + i);
2262 }
2263 }
2264 }
2265
2266 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2267 unsigned long address, bool freeze, struct page *page)
2268 {
2269 spinlock_t *ptl;
2270 struct mm_struct *mm = vma->vm_mm;
2271 unsigned long haddr = address & HPAGE_PMD_MASK;
2272
2273 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2274 ptl = pmd_lock(mm, pmd);
2275
2276 /*
2277 * If caller asks to setup a migration entries, we need a page to check
2278 * pmd against. Otherwise we can end up replacing wrong page.
2279 */
2280 VM_BUG_ON(freeze && !page);
2281 if (page && page != pmd_page(*pmd))
2282 goto out;
2283
2284 if (pmd_trans_huge(*pmd)) {
2285 page = pmd_page(*pmd);
2286 if (PageMlocked(page))
2287 clear_page_mlock(page);
2288 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2289 goto out;
2290 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2291 out:
2292 spin_unlock(ptl);
2293 /*
2294 * No need to double call mmu_notifier->invalidate_range() callback.
2295 * They are 3 cases to consider inside __split_huge_pmd_locked():
2296 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2297 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2298 * fault will trigger a flush_notify before pointing to a new page
2299 * (it is fine if the secondary mmu keeps pointing to the old zero
2300 * page in the meantime)
2301 * 3) Split a huge pmd into pte pointing to the same page. No need
2302 * to invalidate secondary tlb entry they are all still valid.
2303 * any further changes to individual pte will notify. So no need
2304 * to call mmu_notifier->invalidate_range()
2305 */
2306 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2307 HPAGE_PMD_SIZE);
2308 }
2309
2310 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2311 bool freeze, struct page *page)
2312 {
2313 pgd_t *pgd;
2314 p4d_t *p4d;
2315 pud_t *pud;
2316 pmd_t *pmd;
2317
2318 pgd = pgd_offset(vma->vm_mm, address);
2319 if (!pgd_present(*pgd))
2320 return;
2321
2322 p4d = p4d_offset(pgd, address);
2323 if (!p4d_present(*p4d))
2324 return;
2325
2326 pud = pud_offset(p4d, address);
2327 if (!pud_present(*pud))
2328 return;
2329
2330 pmd = pmd_offset(pud, address);
2331
2332 __split_huge_pmd(vma, pmd, address, freeze, page);
2333 }
2334
2335 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2336 unsigned long start,
2337 unsigned long end,
2338 long adjust_next)
2339 {
2340 /*
2341 * If the new start address isn't hpage aligned and it could
2342 * previously contain an hugepage: check if we need to split
2343 * an huge pmd.
2344 */
2345 if (start & ~HPAGE_PMD_MASK &&
2346 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2347 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2348 split_huge_pmd_address(vma, start, false, NULL);
2349
2350 /*
2351 * If the new end address isn't hpage aligned and it could
2352 * previously contain an hugepage: check if we need to split
2353 * an huge pmd.
2354 */
2355 if (end & ~HPAGE_PMD_MASK &&
2356 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2357 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2358 split_huge_pmd_address(vma, end, false, NULL);
2359
2360 /*
2361 * If we're also updating the vma->vm_next->vm_start, if the new
2362 * vm_next->vm_start isn't page aligned and it could previously
2363 * contain an hugepage: check if we need to split an huge pmd.
2364 */
2365 if (adjust_next > 0) {
2366 struct vm_area_struct *next = vma->vm_next;
2367 unsigned long nstart = next->vm_start;
2368 nstart += adjust_next << PAGE_SHIFT;
2369 if (nstart & ~HPAGE_PMD_MASK &&
2370 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2371 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2372 split_huge_pmd_address(next, nstart, false, NULL);
2373 }
2374 }
2375
2376 static void unmap_page(struct page *page)
2377 {
2378 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2379 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2380 bool unmap_success;
2381
2382 VM_BUG_ON_PAGE(!PageHead(page), page);
2383
2384 if (PageAnon(page))
2385 ttu_flags |= TTU_SPLIT_FREEZE;
2386
2387 unmap_success = try_to_unmap(page, ttu_flags);
2388 VM_BUG_ON_PAGE(!unmap_success, page);
2389 }
2390
2391 static void remap_page(struct page *page)
2392 {
2393 int i;
2394 if (PageTransHuge(page)) {
2395 remove_migration_ptes(page, page, true);
2396 } else {
2397 for (i = 0; i < HPAGE_PMD_NR; i++)
2398 remove_migration_ptes(page + i, page + i, true);
2399 }
2400 }
2401
2402 static void __split_huge_page_tail(struct page *head, int tail,
2403 struct lruvec *lruvec, struct list_head *list)
2404 {
2405 struct page *page_tail = head + tail;
2406
2407 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2408
2409 /*
2410 * Clone page flags before unfreezing refcount.
2411 *
2412 * After successful get_page_unless_zero() might follow flags change,
2413 * for exmaple lock_page() which set PG_waiters.
2414 */
2415 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2416 page_tail->flags |= (head->flags &
2417 ((1L << PG_referenced) |
2418 (1L << PG_swapbacked) |
2419 (1L << PG_swapcache) |
2420 (1L << PG_mlocked) |
2421 (1L << PG_uptodate) |
2422 (1L << PG_active) |
2423 (1L << PG_locked) |
2424 (1L << PG_unevictable) |
2425 (1L << PG_dirty)));
2426
2427 /* ->mapping in first tail page is compound_mapcount */
2428 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2429 page_tail);
2430 page_tail->mapping = head->mapping;
2431 page_tail->index = head->index + tail;
2432
2433 /* Page flags must be visible before we make the page non-compound. */
2434 smp_wmb();
2435
2436 /*
2437 * Clear PageTail before unfreezing page refcount.
2438 *
2439 * After successful get_page_unless_zero() might follow put_page()
2440 * which needs correct compound_head().
2441 */
2442 clear_compound_head(page_tail);
2443
2444 /* Finally unfreeze refcount. Additional reference from page cache. */
2445 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2446 PageSwapCache(head)));
2447
2448 if (page_is_young(head))
2449 set_page_young(page_tail);
2450 if (page_is_idle(head))
2451 set_page_idle(page_tail);
2452
2453 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2454 lru_add_page_tail(head, page_tail, lruvec, list);
2455 }
2456
2457 static void __split_huge_page(struct page *page, struct list_head *list,
2458 pgoff_t end, unsigned long flags)
2459 {
2460 struct page *head = compound_head(page);
2461 struct zone *zone = page_zone(head);
2462 struct lruvec *lruvec;
2463 int i;
2464
2465 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2466
2467 /* complete memcg works before add pages to LRU */
2468 mem_cgroup_split_huge_fixup(head);
2469
2470 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2471 __split_huge_page_tail(head, i, lruvec, list);
2472 /* Some pages can be beyond i_size: drop them from page cache */
2473 if (head[i].index >= end) {
2474 ClearPageDirty(head + i);
2475 __delete_from_page_cache(head + i, NULL);
2476 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2477 shmem_uncharge(head->mapping->host, 1);
2478 put_page(head + i);
2479 }
2480 }
2481
2482 ClearPageCompound(head);
2483
2484 split_page_owner(head, HPAGE_PMD_ORDER);
2485
2486 /* See comment in __split_huge_page_tail() */
2487 if (PageAnon(head)) {
2488 /* Additional pin to radix tree of swap cache */
2489 if (PageSwapCache(head))
2490 page_ref_add(head, 2);
2491 else
2492 page_ref_inc(head);
2493 } else {
2494 /* Additional pin to radix tree */
2495 page_ref_add(head, 2);
2496 spin_unlock(&head->mapping->tree_lock);
2497 }
2498
2499 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2500
2501 remap_page(head);
2502
2503 for (i = 0; i < HPAGE_PMD_NR; i++) {
2504 struct page *subpage = head + i;
2505 if (subpage == page)
2506 continue;
2507 unlock_page(subpage);
2508
2509 /*
2510 * Subpages may be freed if there wasn't any mapping
2511 * like if add_to_swap() is running on a lru page that
2512 * had its mapping zapped. And freeing these pages
2513 * requires taking the lru_lock so we do the put_page
2514 * of the tail pages after the split is complete.
2515 */
2516 put_page(subpage);
2517 }
2518 }
2519
2520 int total_mapcount(struct page *page)
2521 {
2522 int i, compound, ret;
2523
2524 VM_BUG_ON_PAGE(PageTail(page), page);
2525
2526 if (likely(!PageCompound(page)))
2527 return atomic_read(&page->_mapcount) + 1;
2528
2529 compound = compound_mapcount(page);
2530 if (PageHuge(page))
2531 return compound;
2532 ret = compound;
2533 for (i = 0; i < HPAGE_PMD_NR; i++)
2534 ret += atomic_read(&page[i]._mapcount) + 1;
2535 /* File pages has compound_mapcount included in _mapcount */
2536 if (!PageAnon(page))
2537 return ret - compound * HPAGE_PMD_NR;
2538 if (PageDoubleMap(page))
2539 ret -= HPAGE_PMD_NR;
2540 return ret;
2541 }
2542
2543 /*
2544 * This calculates accurately how many mappings a transparent hugepage
2545 * has (unlike page_mapcount() which isn't fully accurate). This full
2546 * accuracy is primarily needed to know if copy-on-write faults can
2547 * reuse the page and change the mapping to read-write instead of
2548 * copying them. At the same time this returns the total_mapcount too.
2549 *
2550 * The function returns the highest mapcount any one of the subpages
2551 * has. If the return value is one, even if different processes are
2552 * mapping different subpages of the transparent hugepage, they can
2553 * all reuse it, because each process is reusing a different subpage.
2554 *
2555 * The total_mapcount is instead counting all virtual mappings of the
2556 * subpages. If the total_mapcount is equal to "one", it tells the
2557 * caller all mappings belong to the same "mm" and in turn the
2558 * anon_vma of the transparent hugepage can become the vma->anon_vma
2559 * local one as no other process may be mapping any of the subpages.
2560 *
2561 * It would be more accurate to replace page_mapcount() with
2562 * page_trans_huge_mapcount(), however we only use
2563 * page_trans_huge_mapcount() in the copy-on-write faults where we
2564 * need full accuracy to avoid breaking page pinning, because
2565 * page_trans_huge_mapcount() is slower than page_mapcount().
2566 */
2567 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2568 {
2569 int i, ret, _total_mapcount, mapcount;
2570
2571 /* hugetlbfs shouldn't call it */
2572 VM_BUG_ON_PAGE(PageHuge(page), page);
2573
2574 if (likely(!PageTransCompound(page))) {
2575 mapcount = atomic_read(&page->_mapcount) + 1;
2576 if (total_mapcount)
2577 *total_mapcount = mapcount;
2578 return mapcount;
2579 }
2580
2581 page = compound_head(page);
2582
2583 _total_mapcount = ret = 0;
2584 for (i = 0; i < HPAGE_PMD_NR; i++) {
2585 mapcount = atomic_read(&page[i]._mapcount) + 1;
2586 ret = max(ret, mapcount);
2587 _total_mapcount += mapcount;
2588 }
2589 if (PageDoubleMap(page)) {
2590 ret -= 1;
2591 _total_mapcount -= HPAGE_PMD_NR;
2592 }
2593 mapcount = compound_mapcount(page);
2594 ret += mapcount;
2595 _total_mapcount += mapcount;
2596 if (total_mapcount)
2597 *total_mapcount = _total_mapcount;
2598 return ret;
2599 }
2600
2601 /* Racy check whether the huge page can be split */
2602 bool can_split_huge_page(struct page *page, int *pextra_pins)
2603 {
2604 int extra_pins;
2605
2606 /* Additional pins from radix tree */
2607 if (PageAnon(page))
2608 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2609 else
2610 extra_pins = HPAGE_PMD_NR;
2611 if (pextra_pins)
2612 *pextra_pins = extra_pins;
2613 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2614 }
2615
2616 /*
2617 * This function splits huge page into normal pages. @page can point to any
2618 * subpage of huge page to split. Split doesn't change the position of @page.
2619 *
2620 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2621 * The huge page must be locked.
2622 *
2623 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2624 *
2625 * Both head page and tail pages will inherit mapping, flags, and so on from
2626 * the hugepage.
2627 *
2628 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2629 * they are not mapped.
2630 *
2631 * Returns 0 if the hugepage is split successfully.
2632 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2633 * us.
2634 */
2635 int split_huge_page_to_list(struct page *page, struct list_head *list)
2636 {
2637 struct page *head = compound_head(page);
2638 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2639 struct anon_vma *anon_vma = NULL;
2640 struct address_space *mapping = NULL;
2641 int count, mapcount, extra_pins, ret;
2642 bool mlocked;
2643 unsigned long flags;
2644 pgoff_t end;
2645
2646 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2647 VM_BUG_ON_PAGE(!PageLocked(page), page);
2648 VM_BUG_ON_PAGE(!PageCompound(page), page);
2649
2650 if (PageWriteback(page))
2651 return -EBUSY;
2652
2653 if (PageAnon(head)) {
2654 /*
2655 * The caller does not necessarily hold an mmap_sem that would
2656 * prevent the anon_vma disappearing so we first we take a
2657 * reference to it and then lock the anon_vma for write. This
2658 * is similar to page_lock_anon_vma_read except the write lock
2659 * is taken to serialise against parallel split or collapse
2660 * operations.
2661 */
2662 anon_vma = page_get_anon_vma(head);
2663 if (!anon_vma) {
2664 ret = -EBUSY;
2665 goto out;
2666 }
2667 end = -1;
2668 mapping = NULL;
2669 anon_vma_lock_write(anon_vma);
2670 } else {
2671 mapping = head->mapping;
2672
2673 /* Truncated ? */
2674 if (!mapping) {
2675 ret = -EBUSY;
2676 goto out;
2677 }
2678
2679 anon_vma = NULL;
2680 i_mmap_lock_read(mapping);
2681
2682 /*
2683 *__split_huge_page() may need to trim off pages beyond EOF:
2684 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2685 * which cannot be nested inside the page tree lock. So note
2686 * end now: i_size itself may be changed at any moment, but
2687 * head page lock is good enough to serialize the trimming.
2688 */
2689 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2690 }
2691
2692 /*
2693 * Racy check if we can split the page, before unmap_page() will
2694 * split PMDs
2695 */
2696 if (!can_split_huge_page(head, &extra_pins)) {
2697 ret = -EBUSY;
2698 goto out_unlock;
2699 }
2700
2701 mlocked = PageMlocked(page);
2702 unmap_page(head);
2703 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2704
2705 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2706 if (mlocked)
2707 lru_add_drain();
2708
2709 /* prevent PageLRU to go away from under us, and freeze lru stats */
2710 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2711
2712 if (mapping) {
2713 void **pslot;
2714
2715 spin_lock(&mapping->tree_lock);
2716 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2717 page_index(head));
2718 /*
2719 * Check if the head page is present in radix tree.
2720 * We assume all tail are present too, if head is there.
2721 */
2722 if (radix_tree_deref_slot_protected(pslot,
2723 &mapping->tree_lock) != head)
2724 goto fail;
2725 }
2726
2727 /* Prevent deferred_split_scan() touching ->_refcount */
2728 spin_lock(&pgdata->split_queue_lock);
2729 count = page_count(head);
2730 mapcount = total_mapcount(head);
2731 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2732 if (!list_empty(page_deferred_list(head))) {
2733 pgdata->split_queue_len--;
2734 list_del(page_deferred_list(head));
2735 }
2736 if (mapping)
2737 __dec_node_page_state(page, NR_SHMEM_THPS);
2738 spin_unlock(&pgdata->split_queue_lock);
2739 __split_huge_page(page, list, end, flags);
2740 if (PageSwapCache(head)) {
2741 swp_entry_t entry = { .val = page_private(head) };
2742
2743 ret = split_swap_cluster(entry);
2744 } else
2745 ret = 0;
2746 } else {
2747 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2748 pr_alert("total_mapcount: %u, page_count(): %u\n",
2749 mapcount, count);
2750 if (PageTail(page))
2751 dump_page(head, NULL);
2752 dump_page(page, "total_mapcount(head) > 0");
2753 BUG();
2754 }
2755 spin_unlock(&pgdata->split_queue_lock);
2756 fail: if (mapping)
2757 spin_unlock(&mapping->tree_lock);
2758 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2759 remap_page(head);
2760 ret = -EBUSY;
2761 }
2762
2763 out_unlock:
2764 if (anon_vma) {
2765 anon_vma_unlock_write(anon_vma);
2766 put_anon_vma(anon_vma);
2767 }
2768 if (mapping)
2769 i_mmap_unlock_read(mapping);
2770 out:
2771 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2772 return ret;
2773 }
2774
2775 void free_transhuge_page(struct page *page)
2776 {
2777 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2778 unsigned long flags;
2779
2780 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2781 if (!list_empty(page_deferred_list(page))) {
2782 pgdata->split_queue_len--;
2783 list_del(page_deferred_list(page));
2784 }
2785 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2786 free_compound_page(page);
2787 }
2788
2789 void deferred_split_huge_page(struct page *page)
2790 {
2791 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2792 unsigned long flags;
2793
2794 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2795
2796 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797 if (list_empty(page_deferred_list(page))) {
2798 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2799 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2800 pgdata->split_queue_len++;
2801 }
2802 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2803 }
2804
2805 static unsigned long deferred_split_count(struct shrinker *shrink,
2806 struct shrink_control *sc)
2807 {
2808 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2809 return READ_ONCE(pgdata->split_queue_len);
2810 }
2811
2812 static unsigned long deferred_split_scan(struct shrinker *shrink,
2813 struct shrink_control *sc)
2814 {
2815 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2816 unsigned long flags;
2817 LIST_HEAD(list), *pos, *next;
2818 struct page *page;
2819 int split = 0;
2820
2821 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2822 /* Take pin on all head pages to avoid freeing them under us */
2823 list_for_each_safe(pos, next, &pgdata->split_queue) {
2824 page = list_entry((void *)pos, struct page, mapping);
2825 page = compound_head(page);
2826 if (get_page_unless_zero(page)) {
2827 list_move(page_deferred_list(page), &list);
2828 } else {
2829 /* We lost race with put_compound_page() */
2830 list_del_init(page_deferred_list(page));
2831 pgdata->split_queue_len--;
2832 }
2833 if (!--sc->nr_to_scan)
2834 break;
2835 }
2836 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2837
2838 list_for_each_safe(pos, next, &list) {
2839 page = list_entry((void *)pos, struct page, mapping);
2840 if (!trylock_page(page))
2841 goto next;
2842 /* split_huge_page() removes page from list on success */
2843 if (!split_huge_page(page))
2844 split++;
2845 unlock_page(page);
2846 next:
2847 put_page(page);
2848 }
2849
2850 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2851 list_splice_tail(&list, &pgdata->split_queue);
2852 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2853
2854 /*
2855 * Stop shrinker if we didn't split any page, but the queue is empty.
2856 * This can happen if pages were freed under us.
2857 */
2858 if (!split && list_empty(&pgdata->split_queue))
2859 return SHRINK_STOP;
2860 return split;
2861 }
2862
2863 static struct shrinker deferred_split_shrinker = {
2864 .count_objects = deferred_split_count,
2865 .scan_objects = deferred_split_scan,
2866 .seeks = DEFAULT_SEEKS,
2867 .flags = SHRINKER_NUMA_AWARE,
2868 };
2869
2870 #ifdef CONFIG_DEBUG_FS
2871 static int split_huge_pages_set(void *data, u64 val)
2872 {
2873 struct zone *zone;
2874 struct page *page;
2875 unsigned long pfn, max_zone_pfn;
2876 unsigned long total = 0, split = 0;
2877
2878 if (val != 1)
2879 return -EINVAL;
2880
2881 for_each_populated_zone(zone) {
2882 max_zone_pfn = zone_end_pfn(zone);
2883 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2884 if (!pfn_valid(pfn))
2885 continue;
2886
2887 page = pfn_to_page(pfn);
2888 if (!get_page_unless_zero(page))
2889 continue;
2890
2891 if (zone != page_zone(page))
2892 goto next;
2893
2894 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2895 goto next;
2896
2897 total++;
2898 lock_page(page);
2899 if (!split_huge_page(page))
2900 split++;
2901 unlock_page(page);
2902 next:
2903 put_page(page);
2904 }
2905 }
2906
2907 pr_info("%lu of %lu THP split\n", split, total);
2908
2909 return 0;
2910 }
2911 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2912 "%llu\n");
2913
2914 static int __init split_huge_pages_debugfs(void)
2915 {
2916 void *ret;
2917
2918 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2919 &split_huge_pages_fops);
2920 if (!ret)
2921 pr_warn("Failed to create split_huge_pages in debugfs");
2922 return 0;
2923 }
2924 late_initcall(split_huge_pages_debugfs);
2925 #endif
2926
2927 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2928 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2929 struct page *page)
2930 {
2931 struct vm_area_struct *vma = pvmw->vma;
2932 struct mm_struct *mm = vma->vm_mm;
2933 unsigned long address = pvmw->address;
2934 pmd_t pmdval;
2935 swp_entry_t entry;
2936 pmd_t pmdswp;
2937
2938 if (!(pvmw->pmd && !pvmw->pte))
2939 return;
2940
2941 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2942 pmdval = *pvmw->pmd;
2943 pmdp_invalidate(vma, address, pvmw->pmd);
2944 if (pmd_dirty(pmdval))
2945 set_page_dirty(page);
2946 entry = make_migration_entry(page, pmd_write(pmdval));
2947 pmdswp = swp_entry_to_pmd(entry);
2948 if (pmd_soft_dirty(pmdval))
2949 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2950 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2951 page_remove_rmap(page, true);
2952 put_page(page);
2953 }
2954
2955 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2956 {
2957 struct vm_area_struct *vma = pvmw->vma;
2958 struct mm_struct *mm = vma->vm_mm;
2959 unsigned long address = pvmw->address;
2960 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2961 pmd_t pmde;
2962 swp_entry_t entry;
2963
2964 if (!(pvmw->pmd && !pvmw->pte))
2965 return;
2966
2967 entry = pmd_to_swp_entry(*pvmw->pmd);
2968 get_page(new);
2969 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2970 if (pmd_swp_soft_dirty(*pvmw->pmd))
2971 pmde = pmd_mksoft_dirty(pmde);
2972 if (is_write_migration_entry(entry))
2973 pmde = maybe_pmd_mkwrite(pmde, vma);
2974
2975 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2976 page_add_anon_rmap(new, vma, mmun_start, true);
2977 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2978 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2979 mlock_vma_page(new);
2980 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2981 }
2982 #endif