]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/huge_memory.c
mm: memcg: fix use after free in mem_cgroup_iter()
[mirror_ubuntu-bionic-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 static struct page *get_huge_zero_page(void)
66 {
67 struct page *zero_page;
68 retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 return READ_ONCE(huge_zero_page);
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 HPAGE_PMD_ORDER);
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 return NULL;
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
79 preempt_disable();
80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 preempt_enable();
82 __free_pages(zero_page, compound_order(zero_page));
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
89 return READ_ONCE(huge_zero_page);
90 }
91
92 static void put_huge_zero_page(void)
93 {
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113 }
114
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119 }
120
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
123 {
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130 {
131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
134 __free_pages(zero_page, compound_order(zero_page));
135 return HPAGE_PMD_NR;
136 }
137
138 return 0;
139 }
140
141 static struct shrinker huge_zero_page_shrinker = {
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
144 .seeks = DEFAULT_SEEKS,
145 };
146
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150 {
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
157 }
158
159 static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162 {
163 ssize_t ret = count;
164
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
179
180 if (ret > 0) {
181 int err = start_stop_khugepaged();
182 if (err)
183 ret = err;
184 }
185 return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193 {
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
196 }
197
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202 {
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
213 set_bit(flag, &transparent_hugepage_flags);
214 else
215 clear_bit(flag, &transparent_hugepage_flags);
216
217 return count;
218 }
219
220 static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222 {
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233
234 static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237 {
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278 {
279 return single_hugepage_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 return single_hugepage_flag_store(kobj, attr, buf, count,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293 {
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302 {
303 return single_hugepage_flag_show(kobj, attr, buf,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309 {
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316
317 static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
320 &use_zero_page_attr.attr,
321 &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327 #endif
328 NULL,
329 };
330
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
333 };
334
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 int err;
338
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
342 return -ENOMEM;
343 }
344
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 if (err) {
347 pr_err("failed to register transparent hugepage group\n");
348 goto delete_obj;
349 }
350
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 if (err) {
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
355 }
356
357 return 0;
358
359 remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364 }
365
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 return 0;
376 }
377
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382
383 static int __init hugepage_init(void)
384 {
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
405 goto err_sysfs;
406
407 err = khugepaged_init();
408 if (err)
409 goto err_slab;
410
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
417
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 transparent_hugepage_flags = 0;
425 return 0;
426 }
427
428 err = start_stop_khugepaged();
429 if (err)
430 goto err_khugepaged;
431
432 return 0;
433 err_khugepaged:
434 unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 khugepaged_destroy();
439 err_slab:
440 hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 return err;
443 }
444 subsys_initcall(hugepage_init);
445
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470 out:
471 if (!ret)
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482 }
483
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 /*
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
489 */
490 return (struct list_head *)&page[2].mapping;
491 }
492
493 void prep_transhuge_page(struct page *page)
494 {
495 /*
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
498 */
499
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 }
503
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
506 {
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
511
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
514
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
518
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
523
524 addr += (off - addr) & (size - 1);
525 return addr;
526 }
527
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
530 {
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
537
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
541
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544 }
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 gfp_t gfp)
549 {
550 struct vm_area_struct *vma = vmf->vma;
551 struct mem_cgroup *memcg;
552 pgtable_t pgtable;
553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 int ret = 0;
555
556 VM_BUG_ON_PAGE(!PageCompound(page), page);
557
558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
559 true)) {
560 put_page(page);
561 count_vm_event(THP_FAULT_FALLBACK);
562 return VM_FAULT_FALLBACK;
563 }
564
565 pgtable = pte_alloc_one(vma->vm_mm, haddr);
566 if (unlikely(!pgtable)) {
567 ret = VM_FAULT_OOM;
568 goto release;
569 }
570
571 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
572 /*
573 * The memory barrier inside __SetPageUptodate makes sure that
574 * clear_huge_page writes become visible before the set_pmd_at()
575 * write.
576 */
577 __SetPageUptodate(page);
578
579 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
580 if (unlikely(!pmd_none(*vmf->pmd))) {
581 goto unlock_release;
582 } else {
583 pmd_t entry;
584
585 ret = check_stable_address_space(vma->vm_mm);
586 if (ret)
587 goto unlock_release;
588
589 /* Deliver the page fault to userland */
590 if (userfaultfd_missing(vma)) {
591 int ret;
592
593 spin_unlock(vmf->ptl);
594 mem_cgroup_cancel_charge(page, memcg, true);
595 put_page(page);
596 pte_free(vma->vm_mm, pgtable);
597 ret = handle_userfault(vmf, VM_UFFD_MISSING);
598 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
599 return ret;
600 }
601
602 entry = mk_huge_pmd(page, vma->vm_page_prot);
603 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
604 page_add_new_anon_rmap(page, vma, haddr, true);
605 mem_cgroup_commit_charge(page, memcg, false, true);
606 lru_cache_add_active_or_unevictable(page, vma);
607 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
608 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
609 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
610 mm_inc_nr_ptes(vma->vm_mm);
611 spin_unlock(vmf->ptl);
612 count_vm_event(THP_FAULT_ALLOC);
613 }
614
615 return 0;
616 unlock_release:
617 spin_unlock(vmf->ptl);
618 release:
619 if (pgtable)
620 pte_free(vma->vm_mm, pgtable);
621 mem_cgroup_cancel_charge(page, memcg, true);
622 put_page(page);
623 return ret;
624
625 }
626
627 /*
628 * always: directly stall for all thp allocations
629 * defer: wake kswapd and fail if not immediately available
630 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
631 * fail if not immediately available
632 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
633 * available
634 * never: never stall for any thp allocation
635 */
636 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
637 {
638 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
639
640 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
641 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
642 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
643 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
644 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
645 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
646 __GFP_KSWAPD_RECLAIM);
647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
648 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
649 0);
650 return GFP_TRANSHUGE_LIGHT;
651 }
652
653 /* Caller must hold page table lock. */
654 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
655 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
656 struct page *zero_page)
657 {
658 pmd_t entry;
659 if (!pmd_none(*pmd))
660 return false;
661 entry = mk_pmd(zero_page, vma->vm_page_prot);
662 entry = pmd_mkhuge(entry);
663 if (pgtable)
664 pgtable_trans_huge_deposit(mm, pmd, pgtable);
665 set_pmd_at(mm, haddr, pmd, entry);
666 mm_inc_nr_ptes(mm);
667 return true;
668 }
669
670 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
671 {
672 struct vm_area_struct *vma = vmf->vma;
673 gfp_t gfp;
674 struct page *page;
675 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
676
677 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
678 return VM_FAULT_FALLBACK;
679 if (unlikely(anon_vma_prepare(vma)))
680 return VM_FAULT_OOM;
681 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
682 return VM_FAULT_OOM;
683 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
684 !mm_forbids_zeropage(vma->vm_mm) &&
685 transparent_hugepage_use_zero_page()) {
686 pgtable_t pgtable;
687 struct page *zero_page;
688 bool set;
689 int ret;
690 pgtable = pte_alloc_one(vma->vm_mm, haddr);
691 if (unlikely(!pgtable))
692 return VM_FAULT_OOM;
693 zero_page = mm_get_huge_zero_page(vma->vm_mm);
694 if (unlikely(!zero_page)) {
695 pte_free(vma->vm_mm, pgtable);
696 count_vm_event(THP_FAULT_FALLBACK);
697 return VM_FAULT_FALLBACK;
698 }
699 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
700 ret = 0;
701 set = false;
702 if (pmd_none(*vmf->pmd)) {
703 ret = check_stable_address_space(vma->vm_mm);
704 if (ret) {
705 spin_unlock(vmf->ptl);
706 } else if (userfaultfd_missing(vma)) {
707 spin_unlock(vmf->ptl);
708 ret = handle_userfault(vmf, VM_UFFD_MISSING);
709 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
710 } else {
711 set_huge_zero_page(pgtable, vma->vm_mm, vma,
712 haddr, vmf->pmd, zero_page);
713 spin_unlock(vmf->ptl);
714 set = true;
715 }
716 } else
717 spin_unlock(vmf->ptl);
718 if (!set)
719 pte_free(vma->vm_mm, pgtable);
720 return ret;
721 }
722 gfp = alloc_hugepage_direct_gfpmask(vma);
723 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
724 if (unlikely(!page)) {
725 count_vm_event(THP_FAULT_FALLBACK);
726 return VM_FAULT_FALLBACK;
727 }
728 prep_transhuge_page(page);
729 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
730 }
731
732 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
733 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
734 pgtable_t pgtable)
735 {
736 struct mm_struct *mm = vma->vm_mm;
737 pmd_t entry;
738 spinlock_t *ptl;
739
740 ptl = pmd_lock(mm, pmd);
741 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
742 if (pfn_t_devmap(pfn))
743 entry = pmd_mkdevmap(entry);
744 if (write) {
745 entry = pmd_mkyoung(pmd_mkdirty(entry));
746 entry = maybe_pmd_mkwrite(entry, vma);
747 }
748
749 if (pgtable) {
750 pgtable_trans_huge_deposit(mm, pmd, pgtable);
751 mm_inc_nr_ptes(mm);
752 }
753
754 set_pmd_at(mm, addr, pmd, entry);
755 update_mmu_cache_pmd(vma, addr, pmd);
756 spin_unlock(ptl);
757 }
758
759 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
760 pmd_t *pmd, pfn_t pfn, bool write)
761 {
762 pgprot_t pgprot = vma->vm_page_prot;
763 pgtable_t pgtable = NULL;
764 /*
765 * If we had pmd_special, we could avoid all these restrictions,
766 * but we need to be consistent with PTEs and architectures that
767 * can't support a 'special' bit.
768 */
769 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
770 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
771 (VM_PFNMAP|VM_MIXEDMAP));
772 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
773 BUG_ON(!pfn_t_devmap(pfn));
774
775 if (addr < vma->vm_start || addr >= vma->vm_end)
776 return VM_FAULT_SIGBUS;
777
778 if (arch_needs_pgtable_deposit()) {
779 pgtable = pte_alloc_one(vma->vm_mm, addr);
780 if (!pgtable)
781 return VM_FAULT_OOM;
782 }
783
784 track_pfn_insert(vma, &pgprot, pfn);
785
786 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
787 return VM_FAULT_NOPAGE;
788 }
789 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
790
791 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
792 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
793 {
794 if (likely(vma->vm_flags & VM_WRITE))
795 pud = pud_mkwrite(pud);
796 return pud;
797 }
798
799 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
800 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
801 {
802 struct mm_struct *mm = vma->vm_mm;
803 pud_t entry;
804 spinlock_t *ptl;
805
806 ptl = pud_lock(mm, pud);
807 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
808 if (pfn_t_devmap(pfn))
809 entry = pud_mkdevmap(entry);
810 if (write) {
811 entry = pud_mkyoung(pud_mkdirty(entry));
812 entry = maybe_pud_mkwrite(entry, vma);
813 }
814 set_pud_at(mm, addr, pud, entry);
815 update_mmu_cache_pud(vma, addr, pud);
816 spin_unlock(ptl);
817 }
818
819 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
820 pud_t *pud, pfn_t pfn, bool write)
821 {
822 pgprot_t pgprot = vma->vm_page_prot;
823 /*
824 * If we had pud_special, we could avoid all these restrictions,
825 * but we need to be consistent with PTEs and architectures that
826 * can't support a 'special' bit.
827 */
828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
829 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
830 (VM_PFNMAP|VM_MIXEDMAP));
831 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
832 BUG_ON(!pfn_t_devmap(pfn));
833
834 if (addr < vma->vm_start || addr >= vma->vm_end)
835 return VM_FAULT_SIGBUS;
836
837 track_pfn_insert(vma, &pgprot, pfn);
838
839 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
840 return VM_FAULT_NOPAGE;
841 }
842 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
843 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
844
845 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
846 pmd_t *pmd, int flags)
847 {
848 pmd_t _pmd;
849
850 _pmd = pmd_mkyoung(*pmd);
851 if (flags & FOLL_WRITE)
852 _pmd = pmd_mkdirty(_pmd);
853 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
854 pmd, _pmd, flags & FOLL_WRITE))
855 update_mmu_cache_pmd(vma, addr, pmd);
856 }
857
858 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
859 pmd_t *pmd, int flags)
860 {
861 unsigned long pfn = pmd_pfn(*pmd);
862 struct mm_struct *mm = vma->vm_mm;
863 struct dev_pagemap *pgmap;
864 struct page *page;
865
866 assert_spin_locked(pmd_lockptr(mm, pmd));
867
868 /*
869 * When we COW a devmap PMD entry, we split it into PTEs, so we should
870 * not be in this function with `flags & FOLL_COW` set.
871 */
872 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
873
874 if (flags & FOLL_WRITE && !pmd_write(*pmd))
875 return NULL;
876
877 if (pmd_present(*pmd) && pmd_devmap(*pmd))
878 /* pass */;
879 else
880 return NULL;
881
882 if (flags & FOLL_TOUCH)
883 touch_pmd(vma, addr, pmd, flags);
884
885 /*
886 * device mapped pages can only be returned if the
887 * caller will manage the page reference count.
888 */
889 if (!(flags & FOLL_GET))
890 return ERR_PTR(-EEXIST);
891
892 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
893 pgmap = get_dev_pagemap(pfn, NULL);
894 if (!pgmap)
895 return ERR_PTR(-EFAULT);
896 page = pfn_to_page(pfn);
897 get_page(page);
898 put_dev_pagemap(pgmap);
899
900 return page;
901 }
902
903 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
904 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
905 struct vm_area_struct *vma)
906 {
907 spinlock_t *dst_ptl, *src_ptl;
908 struct page *src_page;
909 pmd_t pmd;
910 pgtable_t pgtable = NULL;
911 int ret = -ENOMEM;
912
913 /* Skip if can be re-fill on fault */
914 if (!vma_is_anonymous(vma))
915 return 0;
916
917 pgtable = pte_alloc_one(dst_mm, addr);
918 if (unlikely(!pgtable))
919 goto out;
920
921 dst_ptl = pmd_lock(dst_mm, dst_pmd);
922 src_ptl = pmd_lockptr(src_mm, src_pmd);
923 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
924
925 ret = -EAGAIN;
926 pmd = *src_pmd;
927
928 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
929 if (unlikely(is_swap_pmd(pmd))) {
930 swp_entry_t entry = pmd_to_swp_entry(pmd);
931
932 VM_BUG_ON(!is_pmd_migration_entry(pmd));
933 if (is_write_migration_entry(entry)) {
934 make_migration_entry_read(&entry);
935 pmd = swp_entry_to_pmd(entry);
936 if (pmd_swp_soft_dirty(*src_pmd))
937 pmd = pmd_swp_mksoft_dirty(pmd);
938 set_pmd_at(src_mm, addr, src_pmd, pmd);
939 }
940 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
941 mm_inc_nr_ptes(dst_mm);
942 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
943 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
944 ret = 0;
945 goto out_unlock;
946 }
947 #endif
948
949 if (unlikely(!pmd_trans_huge(pmd))) {
950 pte_free(dst_mm, pgtable);
951 goto out_unlock;
952 }
953 /*
954 * When page table lock is held, the huge zero pmd should not be
955 * under splitting since we don't split the page itself, only pmd to
956 * a page table.
957 */
958 if (is_huge_zero_pmd(pmd)) {
959 struct page *zero_page;
960 /*
961 * get_huge_zero_page() will never allocate a new page here,
962 * since we already have a zero page to copy. It just takes a
963 * reference.
964 */
965 zero_page = mm_get_huge_zero_page(dst_mm);
966 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
967 zero_page);
968 ret = 0;
969 goto out_unlock;
970 }
971
972 src_page = pmd_page(pmd);
973 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
974 get_page(src_page);
975 page_dup_rmap(src_page, true);
976 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
977 mm_inc_nr_ptes(dst_mm);
978 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
979
980 pmdp_set_wrprotect(src_mm, addr, src_pmd);
981 pmd = pmd_mkold(pmd_wrprotect(pmd));
982 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
983
984 ret = 0;
985 out_unlock:
986 spin_unlock(src_ptl);
987 spin_unlock(dst_ptl);
988 out:
989 return ret;
990 }
991
992 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
993 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
994 pud_t *pud, int flags)
995 {
996 pud_t _pud;
997
998 _pud = pud_mkyoung(*pud);
999 if (flags & FOLL_WRITE)
1000 _pud = pud_mkdirty(_pud);
1001 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1002 pud, _pud, flags & FOLL_WRITE))
1003 update_mmu_cache_pud(vma, addr, pud);
1004 }
1005
1006 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1007 pud_t *pud, int flags)
1008 {
1009 unsigned long pfn = pud_pfn(*pud);
1010 struct mm_struct *mm = vma->vm_mm;
1011 struct dev_pagemap *pgmap;
1012 struct page *page;
1013
1014 assert_spin_locked(pud_lockptr(mm, pud));
1015
1016 if (flags & FOLL_WRITE && !pud_write(*pud))
1017 return NULL;
1018
1019 if (pud_present(*pud) && pud_devmap(*pud))
1020 /* pass */;
1021 else
1022 return NULL;
1023
1024 if (flags & FOLL_TOUCH)
1025 touch_pud(vma, addr, pud, flags);
1026
1027 /*
1028 * device mapped pages can only be returned if the
1029 * caller will manage the page reference count.
1030 */
1031 if (!(flags & FOLL_GET))
1032 return ERR_PTR(-EEXIST);
1033
1034 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1035 pgmap = get_dev_pagemap(pfn, NULL);
1036 if (!pgmap)
1037 return ERR_PTR(-EFAULT);
1038 page = pfn_to_page(pfn);
1039 get_page(page);
1040 put_dev_pagemap(pgmap);
1041
1042 return page;
1043 }
1044
1045 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1047 struct vm_area_struct *vma)
1048 {
1049 spinlock_t *dst_ptl, *src_ptl;
1050 pud_t pud;
1051 int ret;
1052
1053 dst_ptl = pud_lock(dst_mm, dst_pud);
1054 src_ptl = pud_lockptr(src_mm, src_pud);
1055 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1056
1057 ret = -EAGAIN;
1058 pud = *src_pud;
1059 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1060 goto out_unlock;
1061
1062 /*
1063 * When page table lock is held, the huge zero pud should not be
1064 * under splitting since we don't split the page itself, only pud to
1065 * a page table.
1066 */
1067 if (is_huge_zero_pud(pud)) {
1068 /* No huge zero pud yet */
1069 }
1070
1071 pudp_set_wrprotect(src_mm, addr, src_pud);
1072 pud = pud_mkold(pud_wrprotect(pud));
1073 set_pud_at(dst_mm, addr, dst_pud, pud);
1074
1075 ret = 0;
1076 out_unlock:
1077 spin_unlock(src_ptl);
1078 spin_unlock(dst_ptl);
1079 return ret;
1080 }
1081
1082 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1083 {
1084 pud_t entry;
1085 unsigned long haddr;
1086 bool write = vmf->flags & FAULT_FLAG_WRITE;
1087
1088 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1089 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1090 goto unlock;
1091
1092 entry = pud_mkyoung(orig_pud);
1093 if (write)
1094 entry = pud_mkdirty(entry);
1095 haddr = vmf->address & HPAGE_PUD_MASK;
1096 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1097 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1098
1099 unlock:
1100 spin_unlock(vmf->ptl);
1101 }
1102 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1103
1104 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1105 {
1106 pmd_t entry;
1107 unsigned long haddr;
1108 bool write = vmf->flags & FAULT_FLAG_WRITE;
1109
1110 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1111 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1112 goto unlock;
1113
1114 entry = pmd_mkyoung(orig_pmd);
1115 if (write)
1116 entry = pmd_mkdirty(entry);
1117 haddr = vmf->address & HPAGE_PMD_MASK;
1118 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1119 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1120
1121 unlock:
1122 spin_unlock(vmf->ptl);
1123 }
1124
1125 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1126 struct page *page)
1127 {
1128 struct vm_area_struct *vma = vmf->vma;
1129 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1130 struct mem_cgroup *memcg;
1131 pgtable_t pgtable;
1132 pmd_t _pmd;
1133 int ret = 0, i;
1134 struct page **pages;
1135 unsigned long mmun_start; /* For mmu_notifiers */
1136 unsigned long mmun_end; /* For mmu_notifiers */
1137
1138 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1139 GFP_KERNEL);
1140 if (unlikely(!pages)) {
1141 ret |= VM_FAULT_OOM;
1142 goto out;
1143 }
1144
1145 for (i = 0; i < HPAGE_PMD_NR; i++) {
1146 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1147 vmf->address, page_to_nid(page));
1148 if (unlikely(!pages[i] ||
1149 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1150 GFP_KERNEL, &memcg, false))) {
1151 if (pages[i])
1152 put_page(pages[i]);
1153 while (--i >= 0) {
1154 memcg = (void *)page_private(pages[i]);
1155 set_page_private(pages[i], 0);
1156 mem_cgroup_cancel_charge(pages[i], memcg,
1157 false);
1158 put_page(pages[i]);
1159 }
1160 kfree(pages);
1161 ret |= VM_FAULT_OOM;
1162 goto out;
1163 }
1164 set_page_private(pages[i], (unsigned long)memcg);
1165 }
1166
1167 for (i = 0; i < HPAGE_PMD_NR; i++) {
1168 copy_user_highpage(pages[i], page + i,
1169 haddr + PAGE_SIZE * i, vma);
1170 __SetPageUptodate(pages[i]);
1171 cond_resched();
1172 }
1173
1174 mmun_start = haddr;
1175 mmun_end = haddr + HPAGE_PMD_SIZE;
1176 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1177
1178 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1179 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1180 goto out_free_pages;
1181 VM_BUG_ON_PAGE(!PageHead(page), page);
1182
1183 /*
1184 * Leave pmd empty until pte is filled note we must notify here as
1185 * concurrent CPU thread might write to new page before the call to
1186 * mmu_notifier_invalidate_range_end() happens which can lead to a
1187 * device seeing memory write in different order than CPU.
1188 *
1189 * See Documentation/vm/mmu_notifier.txt
1190 */
1191 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1192
1193 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1194 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1195
1196 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1197 pte_t entry;
1198 entry = mk_pte(pages[i], vma->vm_page_prot);
1199 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1200 memcg = (void *)page_private(pages[i]);
1201 set_page_private(pages[i], 0);
1202 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1203 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1204 lru_cache_add_active_or_unevictable(pages[i], vma);
1205 vmf->pte = pte_offset_map(&_pmd, haddr);
1206 VM_BUG_ON(!pte_none(*vmf->pte));
1207 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1208 pte_unmap(vmf->pte);
1209 }
1210 kfree(pages);
1211
1212 smp_wmb(); /* make pte visible before pmd */
1213 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1214 page_remove_rmap(page, true);
1215 spin_unlock(vmf->ptl);
1216
1217 /*
1218 * No need to double call mmu_notifier->invalidate_range() callback as
1219 * the above pmdp_huge_clear_flush_notify() did already call it.
1220 */
1221 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1222 mmun_end);
1223
1224 ret |= VM_FAULT_WRITE;
1225 put_page(page);
1226
1227 out:
1228 return ret;
1229
1230 out_free_pages:
1231 spin_unlock(vmf->ptl);
1232 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1233 for (i = 0; i < HPAGE_PMD_NR; i++) {
1234 memcg = (void *)page_private(pages[i]);
1235 set_page_private(pages[i], 0);
1236 mem_cgroup_cancel_charge(pages[i], memcg, false);
1237 put_page(pages[i]);
1238 }
1239 kfree(pages);
1240 goto out;
1241 }
1242
1243 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1244 {
1245 struct vm_area_struct *vma = vmf->vma;
1246 struct page *page = NULL, *new_page;
1247 struct mem_cgroup *memcg;
1248 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1249 unsigned long mmun_start; /* For mmu_notifiers */
1250 unsigned long mmun_end; /* For mmu_notifiers */
1251 gfp_t huge_gfp; /* for allocation and charge */
1252 int ret = 0;
1253
1254 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1255 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1256 if (is_huge_zero_pmd(orig_pmd))
1257 goto alloc;
1258 spin_lock(vmf->ptl);
1259 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1260 goto out_unlock;
1261
1262 page = pmd_page(orig_pmd);
1263 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1264 /*
1265 * We can only reuse the page if nobody else maps the huge page or it's
1266 * part.
1267 */
1268 if (!trylock_page(page)) {
1269 get_page(page);
1270 spin_unlock(vmf->ptl);
1271 lock_page(page);
1272 spin_lock(vmf->ptl);
1273 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1274 unlock_page(page);
1275 put_page(page);
1276 goto out_unlock;
1277 }
1278 put_page(page);
1279 }
1280 if (reuse_swap_page(page, NULL)) {
1281 pmd_t entry;
1282 entry = pmd_mkyoung(orig_pmd);
1283 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1284 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1285 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1286 ret |= VM_FAULT_WRITE;
1287 unlock_page(page);
1288 goto out_unlock;
1289 }
1290 unlock_page(page);
1291 get_page(page);
1292 spin_unlock(vmf->ptl);
1293 alloc:
1294 if (transparent_hugepage_enabled(vma) &&
1295 !transparent_hugepage_debug_cow()) {
1296 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1297 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1298 } else
1299 new_page = NULL;
1300
1301 if (likely(new_page)) {
1302 prep_transhuge_page(new_page);
1303 } else {
1304 if (!page) {
1305 split_huge_pmd(vma, vmf->pmd, vmf->address);
1306 ret |= VM_FAULT_FALLBACK;
1307 } else {
1308 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1309 if (ret & VM_FAULT_OOM) {
1310 split_huge_pmd(vma, vmf->pmd, vmf->address);
1311 ret |= VM_FAULT_FALLBACK;
1312 }
1313 put_page(page);
1314 }
1315 count_vm_event(THP_FAULT_FALLBACK);
1316 goto out;
1317 }
1318
1319 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1320 huge_gfp | __GFP_NORETRY, &memcg, true))) {
1321 put_page(new_page);
1322 split_huge_pmd(vma, vmf->pmd, vmf->address);
1323 if (page)
1324 put_page(page);
1325 ret |= VM_FAULT_FALLBACK;
1326 count_vm_event(THP_FAULT_FALLBACK);
1327 goto out;
1328 }
1329
1330 count_vm_event(THP_FAULT_ALLOC);
1331
1332 if (!page)
1333 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1334 else
1335 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1336 __SetPageUptodate(new_page);
1337
1338 mmun_start = haddr;
1339 mmun_end = haddr + HPAGE_PMD_SIZE;
1340 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1341
1342 spin_lock(vmf->ptl);
1343 if (page)
1344 put_page(page);
1345 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1346 spin_unlock(vmf->ptl);
1347 mem_cgroup_cancel_charge(new_page, memcg, true);
1348 put_page(new_page);
1349 goto out_mn;
1350 } else {
1351 pmd_t entry;
1352 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1353 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1354 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1355 page_add_new_anon_rmap(new_page, vma, haddr, true);
1356 mem_cgroup_commit_charge(new_page, memcg, false, true);
1357 lru_cache_add_active_or_unevictable(new_page, vma);
1358 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1359 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1360 if (!page) {
1361 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1362 } else {
1363 VM_BUG_ON_PAGE(!PageHead(page), page);
1364 page_remove_rmap(page, true);
1365 put_page(page);
1366 }
1367 ret |= VM_FAULT_WRITE;
1368 }
1369 spin_unlock(vmf->ptl);
1370 out_mn:
1371 /*
1372 * No need to double call mmu_notifier->invalidate_range() callback as
1373 * the above pmdp_huge_clear_flush_notify() did already call it.
1374 */
1375 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1376 mmun_end);
1377 out:
1378 return ret;
1379 out_unlock:
1380 spin_unlock(vmf->ptl);
1381 return ret;
1382 }
1383
1384 /*
1385 * FOLL_FORCE can write to even unwritable pmd's, but only
1386 * after we've gone through a COW cycle and they are dirty.
1387 */
1388 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1389 {
1390 return pmd_write(pmd) ||
1391 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1392 }
1393
1394 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1395 unsigned long addr,
1396 pmd_t *pmd,
1397 unsigned int flags)
1398 {
1399 struct mm_struct *mm = vma->vm_mm;
1400 struct page *page = NULL;
1401
1402 assert_spin_locked(pmd_lockptr(mm, pmd));
1403
1404 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1405 goto out;
1406
1407 /* Avoid dumping huge zero page */
1408 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1409 return ERR_PTR(-EFAULT);
1410
1411 /* Full NUMA hinting faults to serialise migration in fault paths */
1412 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1413 goto out;
1414
1415 page = pmd_page(*pmd);
1416 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1417 if (flags & FOLL_TOUCH)
1418 touch_pmd(vma, addr, pmd, flags);
1419 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1420 /*
1421 * We don't mlock() pte-mapped THPs. This way we can avoid
1422 * leaking mlocked pages into non-VM_LOCKED VMAs.
1423 *
1424 * For anon THP:
1425 *
1426 * In most cases the pmd is the only mapping of the page as we
1427 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1428 * writable private mappings in populate_vma_page_range().
1429 *
1430 * The only scenario when we have the page shared here is if we
1431 * mlocking read-only mapping shared over fork(). We skip
1432 * mlocking such pages.
1433 *
1434 * For file THP:
1435 *
1436 * We can expect PageDoubleMap() to be stable under page lock:
1437 * for file pages we set it in page_add_file_rmap(), which
1438 * requires page to be locked.
1439 */
1440
1441 if (PageAnon(page) && compound_mapcount(page) != 1)
1442 goto skip_mlock;
1443 if (PageDoubleMap(page) || !page->mapping)
1444 goto skip_mlock;
1445 if (!trylock_page(page))
1446 goto skip_mlock;
1447 lru_add_drain();
1448 if (page->mapping && !PageDoubleMap(page))
1449 mlock_vma_page(page);
1450 unlock_page(page);
1451 }
1452 skip_mlock:
1453 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1454 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1455 if (flags & FOLL_GET)
1456 get_page(page);
1457
1458 out:
1459 return page;
1460 }
1461
1462 /* NUMA hinting page fault entry point for trans huge pmds */
1463 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1464 {
1465 struct vm_area_struct *vma = vmf->vma;
1466 struct anon_vma *anon_vma = NULL;
1467 struct page *page;
1468 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1469 int page_nid = -1, this_nid = numa_node_id();
1470 int target_nid, last_cpupid = -1;
1471 bool page_locked;
1472 bool migrated = false;
1473 bool was_writable;
1474 int flags = 0;
1475
1476 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1477 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1478 goto out_unlock;
1479
1480 /*
1481 * If there are potential migrations, wait for completion and retry
1482 * without disrupting NUMA hinting information. Do not relock and
1483 * check_same as the page may no longer be mapped.
1484 */
1485 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1486 page = pmd_page(*vmf->pmd);
1487 if (!get_page_unless_zero(page))
1488 goto out_unlock;
1489 spin_unlock(vmf->ptl);
1490 wait_on_page_locked(page);
1491 put_page(page);
1492 goto out;
1493 }
1494
1495 page = pmd_page(pmd);
1496 BUG_ON(is_huge_zero_page(page));
1497 page_nid = page_to_nid(page);
1498 last_cpupid = page_cpupid_last(page);
1499 count_vm_numa_event(NUMA_HINT_FAULTS);
1500 if (page_nid == this_nid) {
1501 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1502 flags |= TNF_FAULT_LOCAL;
1503 }
1504
1505 /* See similar comment in do_numa_page for explanation */
1506 if (!pmd_savedwrite(pmd))
1507 flags |= TNF_NO_GROUP;
1508
1509 /*
1510 * Acquire the page lock to serialise THP migrations but avoid dropping
1511 * page_table_lock if at all possible
1512 */
1513 page_locked = trylock_page(page);
1514 target_nid = mpol_misplaced(page, vma, haddr);
1515 if (target_nid == -1) {
1516 /* If the page was locked, there are no parallel migrations */
1517 if (page_locked)
1518 goto clear_pmdnuma;
1519 }
1520
1521 /* Migration could have started since the pmd_trans_migrating check */
1522 if (!page_locked) {
1523 page_nid = -1;
1524 if (!get_page_unless_zero(page))
1525 goto out_unlock;
1526 spin_unlock(vmf->ptl);
1527 wait_on_page_locked(page);
1528 put_page(page);
1529 goto out;
1530 }
1531
1532 /*
1533 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1534 * to serialises splits
1535 */
1536 get_page(page);
1537 spin_unlock(vmf->ptl);
1538 anon_vma = page_lock_anon_vma_read(page);
1539
1540 /* Confirm the PMD did not change while page_table_lock was released */
1541 spin_lock(vmf->ptl);
1542 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1543 unlock_page(page);
1544 put_page(page);
1545 page_nid = -1;
1546 goto out_unlock;
1547 }
1548
1549 /* Bail if we fail to protect against THP splits for any reason */
1550 if (unlikely(!anon_vma)) {
1551 put_page(page);
1552 page_nid = -1;
1553 goto clear_pmdnuma;
1554 }
1555
1556 /*
1557 * Since we took the NUMA fault, we must have observed the !accessible
1558 * bit. Make sure all other CPUs agree with that, to avoid them
1559 * modifying the page we're about to migrate.
1560 *
1561 * Must be done under PTL such that we'll observe the relevant
1562 * inc_tlb_flush_pending().
1563 *
1564 * We are not sure a pending tlb flush here is for a huge page
1565 * mapping or not. Hence use the tlb range variant
1566 */
1567 if (mm_tlb_flush_pending(vma->vm_mm))
1568 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1569
1570 /*
1571 * Migrate the THP to the requested node, returns with page unlocked
1572 * and access rights restored.
1573 */
1574 spin_unlock(vmf->ptl);
1575
1576 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1577 vmf->pmd, pmd, vmf->address, page, target_nid);
1578 if (migrated) {
1579 flags |= TNF_MIGRATED;
1580 page_nid = target_nid;
1581 } else
1582 flags |= TNF_MIGRATE_FAIL;
1583
1584 goto out;
1585 clear_pmdnuma:
1586 BUG_ON(!PageLocked(page));
1587 was_writable = pmd_savedwrite(pmd);
1588 pmd = pmd_modify(pmd, vma->vm_page_prot);
1589 pmd = pmd_mkyoung(pmd);
1590 if (was_writable)
1591 pmd = pmd_mkwrite(pmd);
1592 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1593 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1594 unlock_page(page);
1595 out_unlock:
1596 spin_unlock(vmf->ptl);
1597
1598 out:
1599 if (anon_vma)
1600 page_unlock_anon_vma_read(anon_vma);
1601
1602 if (page_nid != -1)
1603 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1604 flags);
1605
1606 return 0;
1607 }
1608
1609 /*
1610 * Return true if we do MADV_FREE successfully on entire pmd page.
1611 * Otherwise, return false.
1612 */
1613 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1614 pmd_t *pmd, unsigned long addr, unsigned long next)
1615 {
1616 spinlock_t *ptl;
1617 pmd_t orig_pmd;
1618 struct page *page;
1619 struct mm_struct *mm = tlb->mm;
1620 bool ret = false;
1621
1622 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1623
1624 ptl = pmd_trans_huge_lock(pmd, vma);
1625 if (!ptl)
1626 goto out_unlocked;
1627
1628 orig_pmd = *pmd;
1629 if (is_huge_zero_pmd(orig_pmd))
1630 goto out;
1631
1632 if (unlikely(!pmd_present(orig_pmd))) {
1633 VM_BUG_ON(thp_migration_supported() &&
1634 !is_pmd_migration_entry(orig_pmd));
1635 goto out;
1636 }
1637
1638 page = pmd_page(orig_pmd);
1639 /*
1640 * If other processes are mapping this page, we couldn't discard
1641 * the page unless they all do MADV_FREE so let's skip the page.
1642 */
1643 if (page_mapcount(page) != 1)
1644 goto out;
1645
1646 if (!trylock_page(page))
1647 goto out;
1648
1649 /*
1650 * If user want to discard part-pages of THP, split it so MADV_FREE
1651 * will deactivate only them.
1652 */
1653 if (next - addr != HPAGE_PMD_SIZE) {
1654 get_page(page);
1655 spin_unlock(ptl);
1656 split_huge_page(page);
1657 unlock_page(page);
1658 put_page(page);
1659 goto out_unlocked;
1660 }
1661
1662 if (PageDirty(page))
1663 ClearPageDirty(page);
1664 unlock_page(page);
1665
1666 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1667 pmdp_invalidate(vma, addr, pmd);
1668 orig_pmd = pmd_mkold(orig_pmd);
1669 orig_pmd = pmd_mkclean(orig_pmd);
1670
1671 set_pmd_at(mm, addr, pmd, orig_pmd);
1672 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1673 }
1674
1675 mark_page_lazyfree(page);
1676 ret = true;
1677 out:
1678 spin_unlock(ptl);
1679 out_unlocked:
1680 return ret;
1681 }
1682
1683 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1684 {
1685 pgtable_t pgtable;
1686
1687 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1688 pte_free(mm, pgtable);
1689 mm_dec_nr_ptes(mm);
1690 }
1691
1692 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1693 pmd_t *pmd, unsigned long addr)
1694 {
1695 pmd_t orig_pmd;
1696 spinlock_t *ptl;
1697
1698 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1699
1700 ptl = __pmd_trans_huge_lock(pmd, vma);
1701 if (!ptl)
1702 return 0;
1703 /*
1704 * For architectures like ppc64 we look at deposited pgtable
1705 * when calling pmdp_huge_get_and_clear. So do the
1706 * pgtable_trans_huge_withdraw after finishing pmdp related
1707 * operations.
1708 */
1709 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1710 tlb->fullmm);
1711 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1712 if (vma_is_dax(vma)) {
1713 if (arch_needs_pgtable_deposit())
1714 zap_deposited_table(tlb->mm, pmd);
1715 spin_unlock(ptl);
1716 if (is_huge_zero_pmd(orig_pmd))
1717 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1718 } else if (is_huge_zero_pmd(orig_pmd)) {
1719 zap_deposited_table(tlb->mm, pmd);
1720 spin_unlock(ptl);
1721 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1722 } else {
1723 struct page *page = NULL;
1724 int flush_needed = 1;
1725
1726 if (pmd_present(orig_pmd)) {
1727 page = pmd_page(orig_pmd);
1728 page_remove_rmap(page, true);
1729 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1730 VM_BUG_ON_PAGE(!PageHead(page), page);
1731 } else if (thp_migration_supported()) {
1732 swp_entry_t entry;
1733
1734 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1735 entry = pmd_to_swp_entry(orig_pmd);
1736 page = pfn_to_page(swp_offset(entry));
1737 flush_needed = 0;
1738 } else
1739 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1740
1741 if (PageAnon(page)) {
1742 zap_deposited_table(tlb->mm, pmd);
1743 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1744 } else {
1745 if (arch_needs_pgtable_deposit())
1746 zap_deposited_table(tlb->mm, pmd);
1747 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1748 }
1749
1750 spin_unlock(ptl);
1751 if (flush_needed)
1752 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1753 }
1754 return 1;
1755 }
1756
1757 #ifndef pmd_move_must_withdraw
1758 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1759 spinlock_t *old_pmd_ptl,
1760 struct vm_area_struct *vma)
1761 {
1762 /*
1763 * With split pmd lock we also need to move preallocated
1764 * PTE page table if new_pmd is on different PMD page table.
1765 *
1766 * We also don't deposit and withdraw tables for file pages.
1767 */
1768 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1769 }
1770 #endif
1771
1772 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1773 {
1774 #ifdef CONFIG_MEM_SOFT_DIRTY
1775 if (unlikely(is_pmd_migration_entry(pmd)))
1776 pmd = pmd_swp_mksoft_dirty(pmd);
1777 else if (pmd_present(pmd))
1778 pmd = pmd_mksoft_dirty(pmd);
1779 #endif
1780 return pmd;
1781 }
1782
1783 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1784 unsigned long new_addr, unsigned long old_end,
1785 pmd_t *old_pmd, pmd_t *new_pmd)
1786 {
1787 spinlock_t *old_ptl, *new_ptl;
1788 pmd_t pmd;
1789 struct mm_struct *mm = vma->vm_mm;
1790 bool force_flush = false;
1791
1792 if ((old_addr & ~HPAGE_PMD_MASK) ||
1793 (new_addr & ~HPAGE_PMD_MASK) ||
1794 old_end - old_addr < HPAGE_PMD_SIZE)
1795 return false;
1796
1797 /*
1798 * The destination pmd shouldn't be established, free_pgtables()
1799 * should have release it.
1800 */
1801 if (WARN_ON(!pmd_none(*new_pmd))) {
1802 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1803 return false;
1804 }
1805
1806 /*
1807 * We don't have to worry about the ordering of src and dst
1808 * ptlocks because exclusive mmap_sem prevents deadlock.
1809 */
1810 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1811 if (old_ptl) {
1812 new_ptl = pmd_lockptr(mm, new_pmd);
1813 if (new_ptl != old_ptl)
1814 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1815 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1816 if (pmd_present(pmd))
1817 force_flush = true;
1818 VM_BUG_ON(!pmd_none(*new_pmd));
1819
1820 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1821 pgtable_t pgtable;
1822 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1823 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1824 }
1825 pmd = move_soft_dirty_pmd(pmd);
1826 set_pmd_at(mm, new_addr, new_pmd, pmd);
1827 if (force_flush)
1828 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1829 if (new_ptl != old_ptl)
1830 spin_unlock(new_ptl);
1831 spin_unlock(old_ptl);
1832 return true;
1833 }
1834 return false;
1835 }
1836
1837 /*
1838 * Returns
1839 * - 0 if PMD could not be locked
1840 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1841 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1842 */
1843 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1844 unsigned long addr, pgprot_t newprot, int prot_numa)
1845 {
1846 struct mm_struct *mm = vma->vm_mm;
1847 spinlock_t *ptl;
1848 pmd_t entry;
1849 bool preserve_write;
1850 int ret;
1851
1852 ptl = __pmd_trans_huge_lock(pmd, vma);
1853 if (!ptl)
1854 return 0;
1855
1856 preserve_write = prot_numa && pmd_write(*pmd);
1857 ret = 1;
1858
1859 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1860 if (is_swap_pmd(*pmd)) {
1861 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1862
1863 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1864 if (is_write_migration_entry(entry)) {
1865 pmd_t newpmd;
1866 /*
1867 * A protection check is difficult so
1868 * just be safe and disable write
1869 */
1870 make_migration_entry_read(&entry);
1871 newpmd = swp_entry_to_pmd(entry);
1872 if (pmd_swp_soft_dirty(*pmd))
1873 newpmd = pmd_swp_mksoft_dirty(newpmd);
1874 set_pmd_at(mm, addr, pmd, newpmd);
1875 }
1876 goto unlock;
1877 }
1878 #endif
1879
1880 /*
1881 * Avoid trapping faults against the zero page. The read-only
1882 * data is likely to be read-cached on the local CPU and
1883 * local/remote hits to the zero page are not interesting.
1884 */
1885 if (prot_numa && is_huge_zero_pmd(*pmd))
1886 goto unlock;
1887
1888 if (prot_numa && pmd_protnone(*pmd))
1889 goto unlock;
1890
1891 /*
1892 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1893 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1894 * which is also under down_read(mmap_sem):
1895 *
1896 * CPU0: CPU1:
1897 * change_huge_pmd(prot_numa=1)
1898 * pmdp_huge_get_and_clear_notify()
1899 * madvise_dontneed()
1900 * zap_pmd_range()
1901 * pmd_trans_huge(*pmd) == 0 (without ptl)
1902 * // skip the pmd
1903 * set_pmd_at();
1904 * // pmd is re-established
1905 *
1906 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1907 * which may break userspace.
1908 *
1909 * pmdp_invalidate() is required to make sure we don't miss
1910 * dirty/young flags set by hardware.
1911 */
1912 entry = *pmd;
1913 pmdp_invalidate(vma, addr, pmd);
1914
1915 /*
1916 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1917 * corrupt them.
1918 */
1919 if (pmd_dirty(*pmd))
1920 entry = pmd_mkdirty(entry);
1921 if (pmd_young(*pmd))
1922 entry = pmd_mkyoung(entry);
1923
1924 entry = pmd_modify(entry, newprot);
1925 if (preserve_write)
1926 entry = pmd_mk_savedwrite(entry);
1927 ret = HPAGE_PMD_NR;
1928 set_pmd_at(mm, addr, pmd, entry);
1929 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1930 unlock:
1931 spin_unlock(ptl);
1932 return ret;
1933 }
1934
1935 /*
1936 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1937 *
1938 * Note that if it returns page table lock pointer, this routine returns without
1939 * unlocking page table lock. So callers must unlock it.
1940 */
1941 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1942 {
1943 spinlock_t *ptl;
1944 ptl = pmd_lock(vma->vm_mm, pmd);
1945 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1946 pmd_devmap(*pmd)))
1947 return ptl;
1948 spin_unlock(ptl);
1949 return NULL;
1950 }
1951
1952 /*
1953 * Returns true if a given pud maps a thp, false otherwise.
1954 *
1955 * Note that if it returns true, this routine returns without unlocking page
1956 * table lock. So callers must unlock it.
1957 */
1958 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1959 {
1960 spinlock_t *ptl;
1961
1962 ptl = pud_lock(vma->vm_mm, pud);
1963 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1964 return ptl;
1965 spin_unlock(ptl);
1966 return NULL;
1967 }
1968
1969 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1970 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1971 pud_t *pud, unsigned long addr)
1972 {
1973 pud_t orig_pud;
1974 spinlock_t *ptl;
1975
1976 ptl = __pud_trans_huge_lock(pud, vma);
1977 if (!ptl)
1978 return 0;
1979 /*
1980 * For architectures like ppc64 we look at deposited pgtable
1981 * when calling pudp_huge_get_and_clear. So do the
1982 * pgtable_trans_huge_withdraw after finishing pudp related
1983 * operations.
1984 */
1985 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1986 tlb->fullmm);
1987 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1988 if (vma_is_dax(vma)) {
1989 spin_unlock(ptl);
1990 /* No zero page support yet */
1991 } else {
1992 /* No support for anonymous PUD pages yet */
1993 BUG();
1994 }
1995 return 1;
1996 }
1997
1998 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1999 unsigned long haddr)
2000 {
2001 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2002 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2003 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2004 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2005
2006 count_vm_event(THP_SPLIT_PUD);
2007
2008 pudp_huge_clear_flush_notify(vma, haddr, pud);
2009 }
2010
2011 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2012 unsigned long address)
2013 {
2014 spinlock_t *ptl;
2015 struct mm_struct *mm = vma->vm_mm;
2016 unsigned long haddr = address & HPAGE_PUD_MASK;
2017
2018 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2019 ptl = pud_lock(mm, pud);
2020 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2021 goto out;
2022 __split_huge_pud_locked(vma, pud, haddr);
2023
2024 out:
2025 spin_unlock(ptl);
2026 /*
2027 * No need to double call mmu_notifier->invalidate_range() callback as
2028 * the above pudp_huge_clear_flush_notify() did already call it.
2029 */
2030 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2031 HPAGE_PUD_SIZE);
2032 }
2033 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2034
2035 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2036 unsigned long haddr, pmd_t *pmd)
2037 {
2038 struct mm_struct *mm = vma->vm_mm;
2039 pgtable_t pgtable;
2040 pmd_t _pmd;
2041 int i;
2042
2043 /*
2044 * Leave pmd empty until pte is filled note that it is fine to delay
2045 * notification until mmu_notifier_invalidate_range_end() as we are
2046 * replacing a zero pmd write protected page with a zero pte write
2047 * protected page.
2048 *
2049 * See Documentation/vm/mmu_notifier.txt
2050 */
2051 pmdp_huge_clear_flush(vma, haddr, pmd);
2052
2053 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2054 pmd_populate(mm, &_pmd, pgtable);
2055
2056 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2057 pte_t *pte, entry;
2058 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2059 entry = pte_mkspecial(entry);
2060 pte = pte_offset_map(&_pmd, haddr);
2061 VM_BUG_ON(!pte_none(*pte));
2062 set_pte_at(mm, haddr, pte, entry);
2063 pte_unmap(pte);
2064 }
2065 smp_wmb(); /* make pte visible before pmd */
2066 pmd_populate(mm, pmd, pgtable);
2067 }
2068
2069 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2070 unsigned long haddr, bool freeze)
2071 {
2072 struct mm_struct *mm = vma->vm_mm;
2073 struct page *page;
2074 pgtable_t pgtable;
2075 pmd_t _pmd;
2076 bool young, write, dirty, soft_dirty, pmd_migration = false;
2077 unsigned long addr;
2078 int i;
2079
2080 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2081 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2082 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2083 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2084 && !pmd_devmap(*pmd));
2085
2086 count_vm_event(THP_SPLIT_PMD);
2087
2088 if (!vma_is_anonymous(vma)) {
2089 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2090 /*
2091 * We are going to unmap this huge page. So
2092 * just go ahead and zap it
2093 */
2094 if (arch_needs_pgtable_deposit())
2095 zap_deposited_table(mm, pmd);
2096 if (vma_is_dax(vma))
2097 return;
2098 page = pmd_page(_pmd);
2099 if (!PageReferenced(page) && pmd_young(_pmd))
2100 SetPageReferenced(page);
2101 page_remove_rmap(page, true);
2102 put_page(page);
2103 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2104 return;
2105 } else if (is_huge_zero_pmd(*pmd)) {
2106 /*
2107 * FIXME: Do we want to invalidate secondary mmu by calling
2108 * mmu_notifier_invalidate_range() see comments below inside
2109 * __split_huge_pmd() ?
2110 *
2111 * We are going from a zero huge page write protected to zero
2112 * small page also write protected so it does not seems useful
2113 * to invalidate secondary mmu at this time.
2114 */
2115 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2116 }
2117
2118 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2119 pmd_migration = is_pmd_migration_entry(*pmd);
2120 if (pmd_migration) {
2121 swp_entry_t entry;
2122
2123 entry = pmd_to_swp_entry(*pmd);
2124 page = pfn_to_page(swp_offset(entry));
2125 } else
2126 #endif
2127 page = pmd_page(*pmd);
2128 VM_BUG_ON_PAGE(!page_count(page), page);
2129 page_ref_add(page, HPAGE_PMD_NR - 1);
2130 write = pmd_write(*pmd);
2131 young = pmd_young(*pmd);
2132 dirty = pmd_dirty(*pmd);
2133 soft_dirty = pmd_soft_dirty(*pmd);
2134
2135 pmdp_huge_split_prepare(vma, haddr, pmd);
2136 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2137 pmd_populate(mm, &_pmd, pgtable);
2138
2139 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2140 pte_t entry, *pte;
2141 /*
2142 * Note that NUMA hinting access restrictions are not
2143 * transferred to avoid any possibility of altering
2144 * permissions across VMAs.
2145 */
2146 if (freeze || pmd_migration) {
2147 swp_entry_t swp_entry;
2148 swp_entry = make_migration_entry(page + i, write);
2149 entry = swp_entry_to_pte(swp_entry);
2150 if (soft_dirty)
2151 entry = pte_swp_mksoft_dirty(entry);
2152 } else {
2153 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2154 entry = maybe_mkwrite(entry, vma);
2155 if (!write)
2156 entry = pte_wrprotect(entry);
2157 if (!young)
2158 entry = pte_mkold(entry);
2159 if (soft_dirty)
2160 entry = pte_mksoft_dirty(entry);
2161 }
2162 if (dirty)
2163 SetPageDirty(page + i);
2164 pte = pte_offset_map(&_pmd, addr);
2165 BUG_ON(!pte_none(*pte));
2166 set_pte_at(mm, addr, pte, entry);
2167 atomic_inc(&page[i]._mapcount);
2168 pte_unmap(pte);
2169 }
2170
2171 /*
2172 * Set PG_double_map before dropping compound_mapcount to avoid
2173 * false-negative page_mapped().
2174 */
2175 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2176 for (i = 0; i < HPAGE_PMD_NR; i++)
2177 atomic_inc(&page[i]._mapcount);
2178 }
2179
2180 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2181 /* Last compound_mapcount is gone. */
2182 __dec_node_page_state(page, NR_ANON_THPS);
2183 if (TestClearPageDoubleMap(page)) {
2184 /* No need in mapcount reference anymore */
2185 for (i = 0; i < HPAGE_PMD_NR; i++)
2186 atomic_dec(&page[i]._mapcount);
2187 }
2188 }
2189
2190 smp_wmb(); /* make pte visible before pmd */
2191 /*
2192 * Up to this point the pmd is present and huge and userland has the
2193 * whole access to the hugepage during the split (which happens in
2194 * place). If we overwrite the pmd with the not-huge version pointing
2195 * to the pte here (which of course we could if all CPUs were bug
2196 * free), userland could trigger a small page size TLB miss on the
2197 * small sized TLB while the hugepage TLB entry is still established in
2198 * the huge TLB. Some CPU doesn't like that.
2199 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2200 * 383 on page 93. Intel should be safe but is also warns that it's
2201 * only safe if the permission and cache attributes of the two entries
2202 * loaded in the two TLB is identical (which should be the case here).
2203 * But it is generally safer to never allow small and huge TLB entries
2204 * for the same virtual address to be loaded simultaneously. So instead
2205 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2206 * current pmd notpresent (atomically because here the pmd_trans_huge
2207 * and pmd_trans_splitting must remain set at all times on the pmd
2208 * until the split is complete for this pmd), then we flush the SMP TLB
2209 * and finally we write the non-huge version of the pmd entry with
2210 * pmd_populate.
2211 */
2212 pmdp_invalidate(vma, haddr, pmd);
2213 pmd_populate(mm, pmd, pgtable);
2214
2215 if (freeze) {
2216 for (i = 0; i < HPAGE_PMD_NR; i++) {
2217 page_remove_rmap(page + i, false);
2218 put_page(page + i);
2219 }
2220 }
2221 }
2222
2223 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2224 unsigned long address, bool freeze, struct page *page)
2225 {
2226 spinlock_t *ptl;
2227 struct mm_struct *mm = vma->vm_mm;
2228 unsigned long haddr = address & HPAGE_PMD_MASK;
2229
2230 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2231 ptl = pmd_lock(mm, pmd);
2232
2233 /*
2234 * If caller asks to setup a migration entries, we need a page to check
2235 * pmd against. Otherwise we can end up replacing wrong page.
2236 */
2237 VM_BUG_ON(freeze && !page);
2238 if (page && page != pmd_page(*pmd))
2239 goto out;
2240
2241 if (pmd_trans_huge(*pmd)) {
2242 page = pmd_page(*pmd);
2243 if (PageMlocked(page))
2244 clear_page_mlock(page);
2245 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2246 goto out;
2247 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2248 out:
2249 spin_unlock(ptl);
2250 /*
2251 * No need to double call mmu_notifier->invalidate_range() callback.
2252 * They are 3 cases to consider inside __split_huge_pmd_locked():
2253 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2254 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2255 * fault will trigger a flush_notify before pointing to a new page
2256 * (it is fine if the secondary mmu keeps pointing to the old zero
2257 * page in the meantime)
2258 * 3) Split a huge pmd into pte pointing to the same page. No need
2259 * to invalidate secondary tlb entry they are all still valid.
2260 * any further changes to individual pte will notify. So no need
2261 * to call mmu_notifier->invalidate_range()
2262 */
2263 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2264 HPAGE_PMD_SIZE);
2265 }
2266
2267 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2268 bool freeze, struct page *page)
2269 {
2270 pgd_t *pgd;
2271 p4d_t *p4d;
2272 pud_t *pud;
2273 pmd_t *pmd;
2274
2275 pgd = pgd_offset(vma->vm_mm, address);
2276 if (!pgd_present(*pgd))
2277 return;
2278
2279 p4d = p4d_offset(pgd, address);
2280 if (!p4d_present(*p4d))
2281 return;
2282
2283 pud = pud_offset(p4d, address);
2284 if (!pud_present(*pud))
2285 return;
2286
2287 pmd = pmd_offset(pud, address);
2288
2289 __split_huge_pmd(vma, pmd, address, freeze, page);
2290 }
2291
2292 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2293 unsigned long start,
2294 unsigned long end,
2295 long adjust_next)
2296 {
2297 /*
2298 * If the new start address isn't hpage aligned and it could
2299 * previously contain an hugepage: check if we need to split
2300 * an huge pmd.
2301 */
2302 if (start & ~HPAGE_PMD_MASK &&
2303 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2304 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2305 split_huge_pmd_address(vma, start, false, NULL);
2306
2307 /*
2308 * If the new end address isn't hpage aligned and it could
2309 * previously contain an hugepage: check if we need to split
2310 * an huge pmd.
2311 */
2312 if (end & ~HPAGE_PMD_MASK &&
2313 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2314 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2315 split_huge_pmd_address(vma, end, false, NULL);
2316
2317 /*
2318 * If we're also updating the vma->vm_next->vm_start, if the new
2319 * vm_next->vm_start isn't page aligned and it could previously
2320 * contain an hugepage: check if we need to split an huge pmd.
2321 */
2322 if (adjust_next > 0) {
2323 struct vm_area_struct *next = vma->vm_next;
2324 unsigned long nstart = next->vm_start;
2325 nstart += adjust_next << PAGE_SHIFT;
2326 if (nstart & ~HPAGE_PMD_MASK &&
2327 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2328 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2329 split_huge_pmd_address(next, nstart, false, NULL);
2330 }
2331 }
2332
2333 static void freeze_page(struct page *page)
2334 {
2335 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2336 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2337 bool unmap_success;
2338
2339 VM_BUG_ON_PAGE(!PageHead(page), page);
2340
2341 if (PageAnon(page))
2342 ttu_flags |= TTU_SPLIT_FREEZE;
2343
2344 unmap_success = try_to_unmap(page, ttu_flags);
2345 VM_BUG_ON_PAGE(!unmap_success, page);
2346 }
2347
2348 static void unfreeze_page(struct page *page)
2349 {
2350 int i;
2351 if (PageTransHuge(page)) {
2352 remove_migration_ptes(page, page, true);
2353 } else {
2354 for (i = 0; i < HPAGE_PMD_NR; i++)
2355 remove_migration_ptes(page + i, page + i, true);
2356 }
2357 }
2358
2359 static void __split_huge_page_tail(struct page *head, int tail,
2360 struct lruvec *lruvec, struct list_head *list)
2361 {
2362 struct page *page_tail = head + tail;
2363
2364 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2365 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2366
2367 /*
2368 * tail_page->_refcount is zero and not changing from under us. But
2369 * get_page_unless_zero() may be running from under us on the
2370 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2371 * atomic_add(), we would then run atomic_set() concurrently with
2372 * get_page_unless_zero(), and atomic_set() is implemented in C not
2373 * using locked ops. spin_unlock on x86 sometime uses locked ops
2374 * because of PPro errata 66, 92, so unless somebody can guarantee
2375 * atomic_set() here would be safe on all archs (and not only on x86),
2376 * it's safer to use atomic_inc()/atomic_add().
2377 */
2378 if (PageAnon(head) && !PageSwapCache(head)) {
2379 page_ref_inc(page_tail);
2380 } else {
2381 /* Additional pin to radix tree */
2382 page_ref_add(page_tail, 2);
2383 }
2384
2385 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2386 page_tail->flags |= (head->flags &
2387 ((1L << PG_referenced) |
2388 (1L << PG_swapbacked) |
2389 (1L << PG_swapcache) |
2390 (1L << PG_mlocked) |
2391 (1L << PG_uptodate) |
2392 (1L << PG_active) |
2393 (1L << PG_locked) |
2394 (1L << PG_unevictable) |
2395 (1L << PG_dirty)));
2396
2397 /*
2398 * After clearing PageTail the gup refcount can be released.
2399 * Page flags also must be visible before we make the page non-compound.
2400 */
2401 smp_wmb();
2402
2403 clear_compound_head(page_tail);
2404
2405 if (page_is_young(head))
2406 set_page_young(page_tail);
2407 if (page_is_idle(head))
2408 set_page_idle(page_tail);
2409
2410 /* ->mapping in first tail page is compound_mapcount */
2411 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2412 page_tail);
2413 page_tail->mapping = head->mapping;
2414
2415 page_tail->index = head->index + tail;
2416 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2417 lru_add_page_tail(head, page_tail, lruvec, list);
2418 }
2419
2420 static void __split_huge_page(struct page *page, struct list_head *list,
2421 unsigned long flags)
2422 {
2423 struct page *head = compound_head(page);
2424 struct zone *zone = page_zone(head);
2425 struct lruvec *lruvec;
2426 pgoff_t end = -1;
2427 int i;
2428
2429 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2430
2431 /* complete memcg works before add pages to LRU */
2432 mem_cgroup_split_huge_fixup(head);
2433
2434 if (!PageAnon(page))
2435 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2436
2437 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2438 __split_huge_page_tail(head, i, lruvec, list);
2439 /* Some pages can be beyond i_size: drop them from page cache */
2440 if (head[i].index >= end) {
2441 ClearPageDirty(head + i);
2442 __delete_from_page_cache(head + i, NULL);
2443 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2444 shmem_uncharge(head->mapping->host, 1);
2445 put_page(head + i);
2446 }
2447 }
2448
2449 ClearPageCompound(head);
2450 /* See comment in __split_huge_page_tail() */
2451 if (PageAnon(head)) {
2452 /* Additional pin to radix tree of swap cache */
2453 if (PageSwapCache(head))
2454 page_ref_add(head, 2);
2455 else
2456 page_ref_inc(head);
2457 } else {
2458 /* Additional pin to radix tree */
2459 page_ref_add(head, 2);
2460 spin_unlock(&head->mapping->tree_lock);
2461 }
2462
2463 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2464
2465 unfreeze_page(head);
2466
2467 for (i = 0; i < HPAGE_PMD_NR; i++) {
2468 struct page *subpage = head + i;
2469 if (subpage == page)
2470 continue;
2471 unlock_page(subpage);
2472
2473 /*
2474 * Subpages may be freed if there wasn't any mapping
2475 * like if add_to_swap() is running on a lru page that
2476 * had its mapping zapped. And freeing these pages
2477 * requires taking the lru_lock so we do the put_page
2478 * of the tail pages after the split is complete.
2479 */
2480 put_page(subpage);
2481 }
2482 }
2483
2484 int total_mapcount(struct page *page)
2485 {
2486 int i, compound, ret;
2487
2488 VM_BUG_ON_PAGE(PageTail(page), page);
2489
2490 if (likely(!PageCompound(page)))
2491 return atomic_read(&page->_mapcount) + 1;
2492
2493 compound = compound_mapcount(page);
2494 if (PageHuge(page))
2495 return compound;
2496 ret = compound;
2497 for (i = 0; i < HPAGE_PMD_NR; i++)
2498 ret += atomic_read(&page[i]._mapcount) + 1;
2499 /* File pages has compound_mapcount included in _mapcount */
2500 if (!PageAnon(page))
2501 return ret - compound * HPAGE_PMD_NR;
2502 if (PageDoubleMap(page))
2503 ret -= HPAGE_PMD_NR;
2504 return ret;
2505 }
2506
2507 /*
2508 * This calculates accurately how many mappings a transparent hugepage
2509 * has (unlike page_mapcount() which isn't fully accurate). This full
2510 * accuracy is primarily needed to know if copy-on-write faults can
2511 * reuse the page and change the mapping to read-write instead of
2512 * copying them. At the same time this returns the total_mapcount too.
2513 *
2514 * The function returns the highest mapcount any one of the subpages
2515 * has. If the return value is one, even if different processes are
2516 * mapping different subpages of the transparent hugepage, they can
2517 * all reuse it, because each process is reusing a different subpage.
2518 *
2519 * The total_mapcount is instead counting all virtual mappings of the
2520 * subpages. If the total_mapcount is equal to "one", it tells the
2521 * caller all mappings belong to the same "mm" and in turn the
2522 * anon_vma of the transparent hugepage can become the vma->anon_vma
2523 * local one as no other process may be mapping any of the subpages.
2524 *
2525 * It would be more accurate to replace page_mapcount() with
2526 * page_trans_huge_mapcount(), however we only use
2527 * page_trans_huge_mapcount() in the copy-on-write faults where we
2528 * need full accuracy to avoid breaking page pinning, because
2529 * page_trans_huge_mapcount() is slower than page_mapcount().
2530 */
2531 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2532 {
2533 int i, ret, _total_mapcount, mapcount;
2534
2535 /* hugetlbfs shouldn't call it */
2536 VM_BUG_ON_PAGE(PageHuge(page), page);
2537
2538 if (likely(!PageTransCompound(page))) {
2539 mapcount = atomic_read(&page->_mapcount) + 1;
2540 if (total_mapcount)
2541 *total_mapcount = mapcount;
2542 return mapcount;
2543 }
2544
2545 page = compound_head(page);
2546
2547 _total_mapcount = ret = 0;
2548 for (i = 0; i < HPAGE_PMD_NR; i++) {
2549 mapcount = atomic_read(&page[i]._mapcount) + 1;
2550 ret = max(ret, mapcount);
2551 _total_mapcount += mapcount;
2552 }
2553 if (PageDoubleMap(page)) {
2554 ret -= 1;
2555 _total_mapcount -= HPAGE_PMD_NR;
2556 }
2557 mapcount = compound_mapcount(page);
2558 ret += mapcount;
2559 _total_mapcount += mapcount;
2560 if (total_mapcount)
2561 *total_mapcount = _total_mapcount;
2562 return ret;
2563 }
2564
2565 /* Racy check whether the huge page can be split */
2566 bool can_split_huge_page(struct page *page, int *pextra_pins)
2567 {
2568 int extra_pins;
2569
2570 /* Additional pins from radix tree */
2571 if (PageAnon(page))
2572 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2573 else
2574 extra_pins = HPAGE_PMD_NR;
2575 if (pextra_pins)
2576 *pextra_pins = extra_pins;
2577 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2578 }
2579
2580 /*
2581 * This function splits huge page into normal pages. @page can point to any
2582 * subpage of huge page to split. Split doesn't change the position of @page.
2583 *
2584 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2585 * The huge page must be locked.
2586 *
2587 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2588 *
2589 * Both head page and tail pages will inherit mapping, flags, and so on from
2590 * the hugepage.
2591 *
2592 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2593 * they are not mapped.
2594 *
2595 * Returns 0 if the hugepage is split successfully.
2596 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2597 * us.
2598 */
2599 int split_huge_page_to_list(struct page *page, struct list_head *list)
2600 {
2601 struct page *head = compound_head(page);
2602 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2603 struct anon_vma *anon_vma = NULL;
2604 struct address_space *mapping = NULL;
2605 int count, mapcount, extra_pins, ret;
2606 bool mlocked;
2607 unsigned long flags;
2608
2609 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2610 VM_BUG_ON_PAGE(!PageLocked(page), page);
2611 VM_BUG_ON_PAGE(!PageCompound(page), page);
2612
2613 if (PageWriteback(page))
2614 return -EBUSY;
2615
2616 if (PageAnon(head)) {
2617 /*
2618 * The caller does not necessarily hold an mmap_sem that would
2619 * prevent the anon_vma disappearing so we first we take a
2620 * reference to it and then lock the anon_vma for write. This
2621 * is similar to page_lock_anon_vma_read except the write lock
2622 * is taken to serialise against parallel split or collapse
2623 * operations.
2624 */
2625 anon_vma = page_get_anon_vma(head);
2626 if (!anon_vma) {
2627 ret = -EBUSY;
2628 goto out;
2629 }
2630 mapping = NULL;
2631 anon_vma_lock_write(anon_vma);
2632 } else {
2633 mapping = head->mapping;
2634
2635 /* Truncated ? */
2636 if (!mapping) {
2637 ret = -EBUSY;
2638 goto out;
2639 }
2640
2641 anon_vma = NULL;
2642 i_mmap_lock_read(mapping);
2643 }
2644
2645 /*
2646 * Racy check if we can split the page, before freeze_page() will
2647 * split PMDs
2648 */
2649 if (!can_split_huge_page(head, &extra_pins)) {
2650 ret = -EBUSY;
2651 goto out_unlock;
2652 }
2653
2654 mlocked = PageMlocked(page);
2655 freeze_page(head);
2656 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2657
2658 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2659 if (mlocked)
2660 lru_add_drain();
2661
2662 /* prevent PageLRU to go away from under us, and freeze lru stats */
2663 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2664
2665 if (mapping) {
2666 void **pslot;
2667
2668 spin_lock(&mapping->tree_lock);
2669 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2670 page_index(head));
2671 /*
2672 * Check if the head page is present in radix tree.
2673 * We assume all tail are present too, if head is there.
2674 */
2675 if (radix_tree_deref_slot_protected(pslot,
2676 &mapping->tree_lock) != head)
2677 goto fail;
2678 }
2679
2680 /* Prevent deferred_split_scan() touching ->_refcount */
2681 spin_lock(&pgdata->split_queue_lock);
2682 count = page_count(head);
2683 mapcount = total_mapcount(head);
2684 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2685 if (!list_empty(page_deferred_list(head))) {
2686 pgdata->split_queue_len--;
2687 list_del(page_deferred_list(head));
2688 }
2689 if (mapping)
2690 __dec_node_page_state(page, NR_SHMEM_THPS);
2691 spin_unlock(&pgdata->split_queue_lock);
2692 __split_huge_page(page, list, flags);
2693 if (PageSwapCache(head)) {
2694 swp_entry_t entry = { .val = page_private(head) };
2695
2696 ret = split_swap_cluster(entry);
2697 } else
2698 ret = 0;
2699 } else {
2700 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2701 pr_alert("total_mapcount: %u, page_count(): %u\n",
2702 mapcount, count);
2703 if (PageTail(page))
2704 dump_page(head, NULL);
2705 dump_page(page, "total_mapcount(head) > 0");
2706 BUG();
2707 }
2708 spin_unlock(&pgdata->split_queue_lock);
2709 fail: if (mapping)
2710 spin_unlock(&mapping->tree_lock);
2711 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2712 unfreeze_page(head);
2713 ret = -EBUSY;
2714 }
2715
2716 out_unlock:
2717 if (anon_vma) {
2718 anon_vma_unlock_write(anon_vma);
2719 put_anon_vma(anon_vma);
2720 }
2721 if (mapping)
2722 i_mmap_unlock_read(mapping);
2723 out:
2724 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2725 return ret;
2726 }
2727
2728 void free_transhuge_page(struct page *page)
2729 {
2730 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2731 unsigned long flags;
2732
2733 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2734 if (!list_empty(page_deferred_list(page))) {
2735 pgdata->split_queue_len--;
2736 list_del(page_deferred_list(page));
2737 }
2738 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2739 free_compound_page(page);
2740 }
2741
2742 void deferred_split_huge_page(struct page *page)
2743 {
2744 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2745 unsigned long flags;
2746
2747 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2748
2749 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2750 if (list_empty(page_deferred_list(page))) {
2751 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2752 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2753 pgdata->split_queue_len++;
2754 }
2755 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2756 }
2757
2758 static unsigned long deferred_split_count(struct shrinker *shrink,
2759 struct shrink_control *sc)
2760 {
2761 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2762 return READ_ONCE(pgdata->split_queue_len);
2763 }
2764
2765 static unsigned long deferred_split_scan(struct shrinker *shrink,
2766 struct shrink_control *sc)
2767 {
2768 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2769 unsigned long flags;
2770 LIST_HEAD(list), *pos, *next;
2771 struct page *page;
2772 int split = 0;
2773
2774 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2775 /* Take pin on all head pages to avoid freeing them under us */
2776 list_for_each_safe(pos, next, &pgdata->split_queue) {
2777 page = list_entry((void *)pos, struct page, mapping);
2778 page = compound_head(page);
2779 if (get_page_unless_zero(page)) {
2780 list_move(page_deferred_list(page), &list);
2781 } else {
2782 /* We lost race with put_compound_page() */
2783 list_del_init(page_deferred_list(page));
2784 pgdata->split_queue_len--;
2785 }
2786 if (!--sc->nr_to_scan)
2787 break;
2788 }
2789 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2790
2791 list_for_each_safe(pos, next, &list) {
2792 page = list_entry((void *)pos, struct page, mapping);
2793 if (!trylock_page(page))
2794 goto next;
2795 /* split_huge_page() removes page from list on success */
2796 if (!split_huge_page(page))
2797 split++;
2798 unlock_page(page);
2799 next:
2800 put_page(page);
2801 }
2802
2803 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2804 list_splice_tail(&list, &pgdata->split_queue);
2805 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2806
2807 /*
2808 * Stop shrinker if we didn't split any page, but the queue is empty.
2809 * This can happen if pages were freed under us.
2810 */
2811 if (!split && list_empty(&pgdata->split_queue))
2812 return SHRINK_STOP;
2813 return split;
2814 }
2815
2816 static struct shrinker deferred_split_shrinker = {
2817 .count_objects = deferred_split_count,
2818 .scan_objects = deferred_split_scan,
2819 .seeks = DEFAULT_SEEKS,
2820 .flags = SHRINKER_NUMA_AWARE,
2821 };
2822
2823 #ifdef CONFIG_DEBUG_FS
2824 static int split_huge_pages_set(void *data, u64 val)
2825 {
2826 struct zone *zone;
2827 struct page *page;
2828 unsigned long pfn, max_zone_pfn;
2829 unsigned long total = 0, split = 0;
2830
2831 if (val != 1)
2832 return -EINVAL;
2833
2834 for_each_populated_zone(zone) {
2835 max_zone_pfn = zone_end_pfn(zone);
2836 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2837 if (!pfn_valid(pfn))
2838 continue;
2839
2840 page = pfn_to_page(pfn);
2841 if (!get_page_unless_zero(page))
2842 continue;
2843
2844 if (zone != page_zone(page))
2845 goto next;
2846
2847 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2848 goto next;
2849
2850 total++;
2851 lock_page(page);
2852 if (!split_huge_page(page))
2853 split++;
2854 unlock_page(page);
2855 next:
2856 put_page(page);
2857 }
2858 }
2859
2860 pr_info("%lu of %lu THP split\n", split, total);
2861
2862 return 0;
2863 }
2864 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2865 "%llu\n");
2866
2867 static int __init split_huge_pages_debugfs(void)
2868 {
2869 void *ret;
2870
2871 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2872 &split_huge_pages_fops);
2873 if (!ret)
2874 pr_warn("Failed to create split_huge_pages in debugfs");
2875 return 0;
2876 }
2877 late_initcall(split_huge_pages_debugfs);
2878 #endif
2879
2880 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2881 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2882 struct page *page)
2883 {
2884 struct vm_area_struct *vma = pvmw->vma;
2885 struct mm_struct *mm = vma->vm_mm;
2886 unsigned long address = pvmw->address;
2887 pmd_t pmdval;
2888 swp_entry_t entry;
2889 pmd_t pmdswp;
2890
2891 if (!(pvmw->pmd && !pvmw->pte))
2892 return;
2893
2894 mmu_notifier_invalidate_range_start(mm, address,
2895 address + HPAGE_PMD_SIZE);
2896
2897 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2898 pmdval = *pvmw->pmd;
2899 pmdp_invalidate(vma, address, pvmw->pmd);
2900 if (pmd_dirty(pmdval))
2901 set_page_dirty(page);
2902 entry = make_migration_entry(page, pmd_write(pmdval));
2903 pmdswp = swp_entry_to_pmd(entry);
2904 if (pmd_soft_dirty(pmdval))
2905 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2906 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2907 page_remove_rmap(page, true);
2908 put_page(page);
2909
2910 mmu_notifier_invalidate_range_end(mm, address,
2911 address + HPAGE_PMD_SIZE);
2912 }
2913
2914 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2915 {
2916 struct vm_area_struct *vma = pvmw->vma;
2917 struct mm_struct *mm = vma->vm_mm;
2918 unsigned long address = pvmw->address;
2919 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2920 pmd_t pmde;
2921 swp_entry_t entry;
2922
2923 if (!(pvmw->pmd && !pvmw->pte))
2924 return;
2925
2926 entry = pmd_to_swp_entry(*pvmw->pmd);
2927 get_page(new);
2928 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2929 if (pmd_swp_soft_dirty(*pvmw->pmd))
2930 pmde = pmd_mksoft_dirty(pmde);
2931 if (is_write_migration_entry(entry))
2932 pmde = maybe_pmd_mkwrite(pmde, vma);
2933
2934 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2935 page_add_anon_rmap(new, vma, mmun_start, true);
2936 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2937 if (vma->vm_flags & VM_LOCKED)
2938 mlock_vma_page(new);
2939 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2940 }
2941 #endif